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Abstract
The dynamic pickup and delivery problem (DPDP) is essential in supply chain management and logistics. In this study, we
consider a real-world DPDP from daily delivery scenarios of a company. In the problem, orders are generated randomly and
released periodically. The orders should be completed as soon as possible to minimize the cost. We propose a novel memetic
algorithm (MA) to address this problem. The proposed MA consists of a genetic algorithm and a local search strategy
that periodically solves a static pickup and delivery problem when new orders are released. We have conducted extensive
experiments on 64 real-world instances to assess the performance of our method. Three state-of-the-art algorithms are chosen
as the baseline algorithms. Experimental results demonstrate the effectiveness of the MA in solving the real-world DPDP.

Keywords Logistics · Pickup and delivery problem · Dynamic optimization · Memetic algorithm

1 Introduction

The vehicle routing problem (VRP) is one of themost widely
studied problems in operations research [1]. It has practical
significance because many real-world problems in applica-
tions, such as transportation, supply chain management and
production planning, can be formulated asVRP [2]. The clas-
sic VRP aims to determine a route plan for a fleet of vehicles
to serve a set of customers. In recent decades, the VRP and
its variants have been intensively studied [1, 3].
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The pickup and delivery problem (PDP) [4] is an essential
variant of VRP inwhich goodsmust be delivered from differ-
ent origins to different destinations. Based on the availability
of information, PDP can be classified into two categories:
static and dynamic. In static PDP, all problem information is
known at the beginning, while in dynamic PDP, there is little
prior information available, and vehicle actions have to be
decided dynamically. In this paper, we focus on a real-world
dynamic PDP (DPDP) arising from Huawei’s daily deliv-
ery scenarios.1 The problem was presented in a competition
held by Huawei in 2021. During the manufacturing process,
many cargoes need to be delivered to factories. However,
most delivery requirements cannot be given in advance due
to the uncertainties of customers’ requirements and produc-
tion processes. The information for delivery orders includes
the pickup factory, the delivery factory, the amount of cargo,
and the time requirement. These orders occur randomly, and
a fleet of homogenous vehicles is periodically scheduled to
serve these orders.Due to a large number of delivery requests,
even a tiny improvement in logistics efficiency can bring
significant benefits. Therefore, it is necessary to develop an
effective method to tackle this problem.

The real-world DPDP considered in this study has the
following characteristics:

1 Huawei is a leading global provider of information and com-
munication technology (ICT) infrastructures and intelligent devices,
manufacturing billions of products in hundreds of factories annually.
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• Limited vehicle capacity A vehicle has a maximum load
capacity.

• Time windows Orders need to be completed within the
time windows. Otherwise, the penalty cost is incurred.

• Order split Splitting is only allowed for orders that exceed
the loading capacity of the vehicle.

• Last-in-first-out (LIFO) loading The last loaded cargo
should be unloaded first.

• OpenVRPThe vehicle does not need to return to its initial
location.

• Large-scale problemThousands of orders are considered.
• Dynamic orders Orders are generated periodically.

Figure1 gives an example of the real-world DPDP. Two
vehicles are available, and the initial locations of the vehicles
are generated randomly.Delivery orderswith the information
on the pickup and delivery factories, cargo amount, and time
windows are generated dynamically. At 9:00, two orders, O1

and O2, are generated and assigned to the vehicle V1 and
V2, respectively. Let us suppose O1 and O2 need to trans-
port cargoes from F1 to F2 and from F3 to F5, respectively.
According to O1, V1 takes cargoes at F1 and sends them to
F2. Similarly, according to O2, V2 first takes cargoes at F3.
At 9:30, a new order O3 which needs to transport cargoes
from F4 to F5 is generated and assigned to V2. Therefore, V2
travels to F4 to take cargoes and finally to F5 for delivery.
The LIFO loading constraint should be satisfied. Thus, the
cargoes taken from F4 should be unloaded from V2 first.

From the perspective of objective functions, two objective
functions need to be optimized in the problem. The first is to
minimize the average traveling distance of vehicles, and the
second is to reduce the penalty cost caused by violating the
timewindowconstraint. The real-worldDPDP is hard since it
is an extension of the classicalVRP that has been proven to be
NP-hard [5]. To the best of our knowledge, although several
researchers have addressed the DPDP, few have ever consid-
ered all the above characteristics simultaneously. There is still
a gap between the recent research and the need of real-world
applications. Because of its complexity, the exact algorithms
cannot effectively solve the real-world DPDP, particularly
for large-scale instances. Instead, metaheuristics can provide
high-quality solutionswithin a reasonable time [6], which are
expected to be effective for the considered problem.

Evolutionary algorithms (EAs) are a type of metaheuris-
tic used to manipulate a population of solutions. An EA is
suitable for dynamicproblemsbecause: (1) the solutions scat-
tering over the search space are beneficial to capture the
dynamic changes in dynamic problems. (2) It can transfer
problem-specific knowledge from one generation to another,
which helps deal with a cyclic dynamic environment [7]. It
is well known that combining population-based evolution-
ary search with problem-specific local search is an effective
way to design powerful evolutionary computation meth-

ods [8]. These kinds of algorithms are often called memetic
algorithms (MAs). MAs are the most famous representative
methods in the field of memetic computing, which is a com-
bination of multiple branches of computer science and the
transfer of other scientific methods such as biology, soci-
ology, and physics [9]. During the past few decades, MAs
have been successfully applied to various complex prob-
lems [10]. Following the discipline of MAs, we design a
MA to solve the real-world DPDP effectively. The proposed
MA consists of two components: (1) the first component is
a genetic algorithm that obtains a diverse population and
explores the search space. (2) The second component is a
local search that helps the search find high-quality solutions.
Simultaneously using these two components can balance the
exploration and exploitation well. Experimental results on
small-scale to large-scale (up to 4000orders)DPDP instances
show the effectiveness of the proposed MA compared with
that of the state-of-the-art methods.

The contributions of this study are summarized as follows:

• We focus on an application-oriented DPDP variant with
multiple constraints.

• We provide a memetic algorithm, MA, to solve the real-
world DPDP. MA consists of a genetic algorithm and a
local search. The former component explores the search
space, while the latter aims to find high-quality solutions
in a search region. Therefore, the proposed MA can bal-
ance exploration and exploitation well, and high-quality
solutions can be expected to be obtained.

• Comparedwith the state-of-the-art algorithms, the exper-
imental results show that MA can obtain high-quality
solutions for large-scale instances in a reasonable run-
ning time. The proposedMA can be seen as a benchmark
algorithm for comparison in future works.

The rest of this paper is organized as follows. In Sect. 2,
we present the background, including the problem definition
and the literature review. In Sect. 3, we describe the proposed
MA. Section4 contains the dataset description, analysis of
the MA and experimental results. Finally, in Sect. 5 we give
the conclusion and future work.

2 Background

2.1 Problem definition

The real-world DPDP can be defined as a complete directed
graph G = {F, E}, where

1. F = {F1, . . . , FM } represents a set of factories, where Fi
(i ∈ {1, . . . , M}) is the ID of the i th factory. Each factory
has several cargo docks. When a vehicle arrives at a new
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factory Fi , it is assigned to a cargo dock for loading and
unloading, which takes dock approaching time Docki .

2. E = {Ei, j | i, j ∈ {1, . . . , M}} represents the arcs
between the factories. Each arc Ei, j has a travel distance
di, j and a travel time ti, j from the i th factory to the j th
factory.

The orders are dynamically generated in the problem. Let
O = {O1, . . . , ON } be the order set. Each order Oj ( j ∈
{1, . . . , N }) has the following attributes:

Oj =
{
F j
p , F j

d , q j , tw j

}
. (1)

where

F j
p The pickup factory of Oj .

F j
d The delivery factory of Oj .
q j The amount of cargo. There are three types of cargoes,

namely standard pallet, small pallet and box. Thus, q j

consists of the standard pallet amount qstandardj , the

small pallet amount qsmall
j , and the box amount qboxj ,

i.e., q j = (qstandardj , qsmall
j , qboxj ). The demands of the

standard pallet amount, small pallet and box are 1, 0.5
and 0.25, respectively.

tw j The service time window of Oj . tw j = [b j , e j ], where
b j and e j represent the order creation time and com-
mitted completion time, respectively.

Let V = {V1, . . . , VK } be a set of homogeneous vehi-
cles. Each vehicle Vk (k ∈ {1, . . . , K }) has a maximum load
capacity Q. The initial locations of the vehicles are randomly
set to the factories. For the real-world DPDP, we need to
plan K routes R = {R1, . . . , RK } with the lowest cost. Each
route is served by a vehicle. Let Rk = 〈P1,k, . . . , PNk ,k〉 be
the kth route visited by Vk . Each node Pi,k has the following
attributes:

Pi,k = {Oi,k, Fi,k}. (2)

where

Oi,k The i th order served by Vk .
Fi,k The factory ID where Vk is going to visit. Fi,k = Fi,k

p

if the vehicle is to pick up cargoes of Oi,k . Otherwise,
Fi,k = Fi,k

d .

Based on these notations, the travel distance of Rk is cal-
culated as:

Distk =
Nk−1∑
i=1

dFi,k ,Fi+1,k (3)

and the average traveling distance of all routes is calculated
as:

AD = 1

K

K∑
k=1

Distk (4)

Let ai,k be the arrival time of Vk at the factory Fi,k and li,k
be the leaving time. The arrival time ai,k (i ∈ {1, . . . , Nk})
is calculated as:

ai,k = li−1,k + tFi−1,k ,Fi,k (5)

where l0,k denotes the time Vk was assigned the first order,
i.e., Vk starts from the initial location immediately after
receiving the first order. tF0,k ,F1,k denotes the travel time
between Vk’s initial location F0,k and the first visited factory
F1,k . The leaving time li,k (i ∈ {1, . . . , Nk}) is calculated as:

li,k = ai,k + DATi,k + si,k (6)

where DATi,k is the dock approaching time of Vk at Fi,k ,
which is defined as:

DATi,k =
{
Docki if Fi−1,k �= Fi,k
0 otherwise

(7)

si,k is the service time of Vk for serving Oi,k , which is cal-
culated as:

si,k = sstandardi,k + ssmall
i,k + sboxi,k (8)

where sstandardi,k , ssmall
i,k and sboxi,k are the loading/unloading

time for standard pallet, small pallet and box of Oi,k , respec-
tively.

Each order should be dispatched by exactly one vehicle.
Besides, all orders should be completed within the time win-
dows. Otherwise, the violation of the timewindow constraint
of Oi,k results in a delay time dti,k , which is calculated as:

dti,k = max
(
li,k − ei,k, 0

)
(9)

The penalty cost PC is defined as the total delay time of
all orders, which is calculated as follows:

PC =
K∑

k=1

Nk∑
i=1

dti,k (10)

The optimization objective of the real-world DPDP is to
minimize the average traveling distance of all routes AD and
the penalty cost PC. The two functions are in conflict [11].
One specific scenario is that many orders are generated with
the samepickup anddelivery factories at different time.Then,
when every order is generated and served immediately by a
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Fig. 1 Illustration of the
real-world DPDP

vehicle, the objective function PC has the minimum value,
while the objective function AD has the maximum value. On
the contrary, when the orders are delayed until the orderswith
the same pickup and delivery nodes are packed to be served
by a vehicle, the objective function PC has the maximum
value, while the objective function AD has the minimum
value. In the real business scenario, if a delay occurs, the
subsequent assembling and selling are canceled or delayed,
resulting in significant economic loss [12]. Therefore, the
orders should be completed as soon as possible. The fitness
function of the real-world DPDP is defined as:

min f = AD + λ × PC (11)

whereλ is a large positive value (e.g., 10,000). This definition
shows that the penalty cost is more important than is the
average traveling distance due to the large λ.

The constraints of the problem can be defined as follows:

1. Limited vehicle capacity For each vehicle Vk , the demand
of loaded cargoes cannot exceed the maximum load
capacity Q. More specifically, let us suppose Vk is to
pick up cargoes of Oi,k and let ci−1,k be the capacity
of Vk before serving Oi,k . The following condition must
hold:

ci−1,k+qstandardi,k +0.5×qsmall
i,k +0.25×qboxi,k ≤ Q (12)

2. An order can be split into small orders if the demand
for its cargo exceeds the maximum load capacity of the
vehicle. The smallest units of different types of cargoes
are one standard pallet, one small pallet and one box.
For example, let us suppose the maximum load capac-
ity of a vehicle is 5, and an order with q = (6, 0, 1)

(total demand is 6.25) is assigned to the vehicle. Since the
demand exceeds the maximum load capacity, the order
can be split into several combinations of small orders
that meet the capacity constraint, i.e., two orders with
q = (5, 0, 0) and q = (1, 0, 1), respectively. However,
splitting is not allowed for orders that do not exceed the
maximum load capacity.

3. Time window constraint Orders should be completed
within the time windows. Otherwise, the penalty cost is
calculated according to Eq. (10).

4. LIFO loading constraint The last loaded cargo must be
first unloaded.

For example, in Fig. 1, there are five factories F =
{F1, F2, F3, F4, F5}, three orders O = {O1, O2, O3} and
two vehicles V = {V1, V2}. The orders are detailed as fol-
lows:

• O1 = {F1, F2, (1, 0, 1), [9 : 00, 13 : 00]}
• O2 = {F3, F5, (2, 0, 0), [9 : 00, 13 : 00]}
• O3 = {F4, F5, (3, 1, 0), [9 : 30, 13 : 30]}

There are two routes R = {R1, R2} in the figure, where R1

and R2 are served by V1 and V2, respectively. Following the
problem defined above, the routes can be defined as follows:

1. R1 = 〈{O1, F1}, {O1, F2}〉
2. R2 = 〈{O2, F3}, {O3, F4}, {O3, F5}, {O2, F5}〉

2.2 Related work

TheVRP is to plan a set of least-cost routes for a fleet of vehi-
cles to satisfy the demand of customers. VRPwas formulated
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by Dantzig and Ramser [13]. Since then, many variants of
VRP have been successfully applied in practice. InVRP, if all
information is known before solving the problem, the prob-
lem is regarded as static VRP. Until now, most researchers
have focused on static VRPs. However, the information may
be dynamic and not known in advance in real-world scenar-
ios such as ride-sharing and home delivery. This type of VRP
is referred to as dynamic VRP (DVRP). Compared to the
static VRP, the dynamic VRP has yet to be thoroughly stud-
ied. Psaraftis et al. [14] presented a comprehensive review
of the works on DVRPs over 3decades, and recent literature
[15] reviewed the research in this area in 2015–2021. The
DVRP is NP-hard. Thus, exact methods such as branch-and-
price [16] can only apply to the small-scale DVRP within
reasonable computing time. Most methodologies for large-
scale DVRPs are heuristics or metaheuristics, which can be
further divided into two categories: insertion methods and
reoptimization methods.

In the insertion methods, a feasible solution is constructed
by adding a newly generated order to the current routing plan.
This kind of method has been widely used in the field of
DVRP. To name a few, Pureza and Laporte [17] proposed a
constructive–deconstructive heuristic with waiting strategies
for the DPDP with time windows. Ulmer [18], Ulmer and
Thomas [19], Ulmer et al. [20] first modeled the same-day
delivery problem with soft deadlines, the same-day deliv-
ery with heterogeneous fleets of drones and vehicles, and
the restaurant meal delivery problem as a Markov decision
process, respectively, and then applied the insertion methods
to solve these problems. Xu et al. [21] proposed a dynamic
programming-based insertion operator for dynamic rideshar-
ing. In their work, a partition-based frameworkwas proposed
to reduce the time complexity of a generic insertion operator.

In the reoptimizationmethods, the problemwas addressed
againwhenneworders arrive.Mitrović-Minić andLaporte [22]
proposed an approach based on waiting strategies for the
DPDP with time windows. The proposed algorithm consists
of a cheapest insertion and a tabu search procedure.AbdAllah
et al. [23] proposed an enhanced genetic algorithm to solve a
DVRP. For each period, a genetic algorithm is called to solve
a static VRP-like instance generated by an event manager
subsystem. Fikar [24] proposed an insertion heuristic to solve
a problem in e-grocery deliveries. In the heuristic, all new
requests are evaluated and inserted into the best positions in
the current solution. Then, local search is applied to improve
the solution. Park et al. [25] proposed a genetic algorithm to
solve a dynamic version of VRP with simultaneous pickup
and delivery. The period of the reoptimization process is
determined by awaiting strategy. Karami et al. [26] proposed
a periodic approach to solve the DPDP with time windows.
The proposed method is a two-step scheduling heuristic con-
sisting of a cheapest insertion and a local search. Archetti
et al. [27] proposed a variable neighborhood search method

to solve the online vehicle routing problem with occasional
drivers. Xu and Wei [28] proposed a heuristic incorporating
Clarke–Wright saving algorithm and adaptive large neigh-
borhood search for DPDP with transshipments and LIFO
constraints.

Following the second category, MA has been successfully
applied to several DVRPs. Euchi et al. [29] proposed an ant
colony based on a 2-opt local search for a DVRP. Necula
et al. [30] proposed an ant colony optimization with a local
search procedure for a DPDP with time windows. Mańdziuk
and Żychowski [31] proposed a MA with a starting delay
mechanism for a DVRP with dynamic requests. Berahhou
and Benadada [32] proposed a MA combining a genetic
algorithm and a local search for a DVRP with simultane-
ous delivery and pickup. da Silva Júnior et al. [33] proposed
a multiple ant colony system with random variable neigh-
borhood descent to solve a DPDP with time windows. The
algorithm has two phases. The first is a static routing for
known customers, and the second is to reoptimize the routes
continuously or periodically for dynamic customers.

The real-world DPDP considered in this study contains
multiple constraints and sources from the competition held
by Huawei in 2021. There were 153 teams participating
in the competition. Three metaheuristic algorithms, namely
variable neighborhood search with multiple local search
strategies and an efficient disturbance (VNSME) [11], inser-
tionmethod (IM) and local search (LS), won gold, silver, and
bronze prizes respectively in the competition. The winning
algorithms are briefly described as follows:

1. VNSME An initial solution is first constructed by using
the cheapest insertion method for each period. Then,
the VNS method is utilized to improve this solution.
It consists of several local searches, including couple-
exchange, couple-relocate, block-exchange, and block-
relocate. Moreover, the 2-opt is utilized as the perturba-
tion operator.

2. IMAn insertion strategy is utilized to construct a solution
for each period.

3. LS The idea of LS is similar to VNS. For each period,
an initial solution is constructed by an insertion strategy
which first inserts urgent orders into the route plan and
then inserts the remaining orders in decreasing travel time
order. A local search strategy then improves the solution.

Table 1 summarizes the related work for the DVRPs. The
abbreviations for problem constraints in Table 1 are speci-
fied in Table 2. Although several methods exist for solving
the DVRPs, few have ever applied to the considered DPDP.
Because of the different problem structures, those applied to
otherDVRPvariantsmay not directly apply to the considered
DPDP. Unlike the winning algorithms that manipulate a sin-
gle solution, the proposed MA controls a population during
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Table 1 Related work for DVRPs

Reference Problem constraint Method
VC PD SDD TW HF TS LIFO OS OVRP Insertion Reoptimization

Pureza and Laporte [17] � � � �
Ulmer [18] � � � �
Ulmer and Thomas [19] � � � �
Ulmer et al. [20] � � � �
Xu et al. [21] � � � �
Mitrović-Minić and Laporte [22] � � � �
AbdAllah et al. [23] � �
Fikar [24] � � � �
Park et al. [25] � � �
Karami et al. [26] � � � �
Archetti et al. [27] � � � �
Xu and Wei [28] � � � � �
Euchi et al. [29] � � �
Necula et al. [30] � � � �
Mańdziuk and Żychowski [31] � �
Berahhou and Benadada [32] proposed � � �
da Silva Júnior et al. [33] � � � �
Gold price in the competition [11] � � � � � � VNSME

Silver price in the competition � � � � � � IM

Bronze price in the competition � � � � � � LS

Ours � � � � � � MA

Table 2 Abbreviations for problem constraint

Problem constraint Abbreviation

Vehicle capacity VC

Pickup and delivery PD

Same-day delivery SDD

Time windows TW

Heterogeneous fleet HF

Transshipment TS

Last-in-first-out LIFO

Order split OS

Open VRP OVRP

the search. Therefore, MA can explore the search space and
get more chances to find high-quality solutions. The experi-
mental results in Sect. 4 show the superiority of the proposed
MA over the competitors.

3 Memetic algorithm

3.1 Main framework

In the real-world DPDP, the orders are released periodically
at a time interval �T . When new orders are released at time
t , a static PDP problem is first formed by all the orders that
have not been completed. Then, MA is applied to solve the
static problem and returns a route plan R(t). The route plan
is a set of routes defined in Sect. 2.1. Algorithm 1 presents
the framework of the proposed MA. Each period generates
a new batch of orders, and all unstarted orders are collected
(Line 4). Then, the status of all vehicles is updated (Line 5).
Based on the information of orders and vehicles at time t ,
a population containing N solutions is first initialized (Line
6). Then, the population undergoes the evolutionary process
to obtain a feasible route plan (Lines 8–17). At each gen-
eration, N offspring solutions are generated by a crossover

123



Memetic Computing (2024) 16:203–217 209

Algorithm 1 MA for the Real-world DPDP
1: t ← �T
2: R(0) ← ∅ � R(t) denotes the best route plan in each period.
3: while t ≤ T do � T is the length of a working day.
4: O(t) ← Collect_orders(t) � /* O(t) is a set of unstarted orders.

*/
5: R(t) ← Update_status(R(t − �T ), t)
6: P = {p1, . . . , pN } ←Initialize_population(R(t), O(t))
7: Q ← ∅ � Q denotes the offspring
8: for i ter = 1 to GMAX do
9: for i = 1 to N do
10: Randomly choose two parent solutions p j , pk from P .
11: p′ ←Crossover(p j , pk )
12: p′ ← Local_search(p′)
13: Q ← Q ∪ p′
14: end for
15: Choose the best N solutions from P ∪ Q to form the new

parents P
16: end for
17: Record the best solution of P as R(t).
18: t ← t + �T
19: end while

operator (Line 11) and improved by a local search (Line 12).
The crossover operator is a diversification mechanism for
discovering promising unexplored areas in the search space,
while the local search is an intensification mechanism for
obtaining high-quality solutions within the search areas [34].
Combining these two operators leverages their advantage to
find better solutions. After that, the fitness values of parent
and offspring solutions are calculated by Eq. (11), and the
best N solutions are selected as the new parent solutions for
the next generation (Line 15). We repeat this process until
the stopping criterion is met. Finally, the best solution in the
population is regarded as the route plan R(t) at time t .

3.2 Collecting orders and updating status

3.2.1 Collecting orders

First, we collect all unstarted orders O(t) at time t . The
unstarted orders include the new orders and those that have
been assigned but not started. For each order Oi ∈ O(t),
it is necessary to check whether Oi ’s demand exceeds the
vehicle’s maximum load capacity. If it does, Oi is split into
multiple small orders with the smallest cargo unit. For exam-
ple, suppose the vehicle’smaximum load capacity is five, and
there is an order O with q = (5, 1, 1) (total demand is 5.75).
Since the demand of O exceeds the vehicle’s maximum load
capacity, O is split into seven small orders, i.e., five orders
with q = (1, 0, 0), one order with q = (0, 1, 0) and one
order with q = (0, 0, 1).

3.2.2 Updating status

Given the route plan R(t − �T ) at previous time t − �T ,
the status of the vehicles at time t needs to be updated, and
an initial route plan at time t is obtained. Specifically, let Rk

denote the route served by the vehicle Vk . We first update
Vk’s location at time t ; then, we remove the orders that have
been completed and those that have not yet started at time t .

For example, let the route at time t − �T be

Rk(t − �T ) = 〈{O1, F1}, {O1, F2}, {O2, F2}, {O2, F3},
{O3, F4}, {O3, F5}〉

and the vehicle Vk was serving the order O1 at F2. The updat-
ing process consists of the following two steps:

1. First, the location ofVk at time t is calculated according to
Eqs. (3)–(8). Assume that after the calculation, Vk arrives
at F3 and begins to serve the order O2 at time t .

2. Then, we remove the completed order O1 and the
unstarted order O3 from Rk so the route contains only
the ongoing order O2 at time t .

Therefore, after the updating process, the route at time t
is Rk(t) = 〈{O2, F2}, {O2, F3}〉.

3.3 Population initialization

For each static DPDP at time t , we initialize the popula-
tion P with N solutions based on the route plan R(t) and
the set of unstarted orders O(t). Each solution pi ∈ P is a
route plan with K routes. Algorithm 2 presents the initial-
ization procedure. First, we check if there are orders whose
pickup factories are the same factory where the vehicles are
currently located and whose delivery factories are the same
as the next destinations of the vehicles. If they exist, these
orders are assigned to the vehicles one by one without violat-
ing the capacity constraint and without increasing the total
delay of the routes (Line 1). This strategy can help construct
a high-quality initial solution with less delay time, as it saves
dock approaching timewhen a vehicle serves multiple orders
sequentially at the same factory, compared to serving mul-
tiple orders at different factories. The assigned orders are
removed from O(t) (Line 2). For example, we suppose the
unstarted order set is O = {O3, O4, O5} at time t , where

• O3 = {F4, F3, (1, 0, 1), [9 : 00, 13 : 00]}
• O4 = {F2, F3, (1, 1, 0), [8 : 30, 12 : 30]}
• O5 = {F2, F3, (2, 1, 0), [9 : 30, 13 : 30]}

Besides, suppose that one of the routes in R(t) is Rk =
〈{O2, F2}, {O2, F3}〉. The vehicle is currently at F2 and the
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Algorithm 2 Population Initialization at Time t
Input: An initial route plan R(t) and a set of unstarted orders O(t)
Output: An initial population P = {p1, . . . , pN }
1: R(t) ← Assign_orders(R(t), O(t))
2: Remove the assigned orders from O(t).
3: for i = 1 to N do
4: pi ← R(t)
5: for each Oj ∈ O(t) do
6: Randomly choose a route from pi and append Oj to the end

of the route.
7: end for
8: end for
9: return P

next destination is F3. Since the pickup factory of O4 and
O5 is F2, which is the vehicle’s current location. Meanwhile,
the delivery factory of both orders is F3, which is the next
destination of the vehicle. Therefore, after serving O2 at F2,
the vehicle should continue to serve O4 and O5 in turn at
F2 if the vehicle’s capacity constraint is not violated and the
total delay time of Rk does not increase. After assigning O4

and O5 to the vehicle, the route Rk is updated as:

Rk = 〈{O2, F2}, {O4, F2}, {O5, F2}, {O5, F3}, {O4, F3},
{O2, F3}〉

O4 and O5 are removed from O(t), and only O3 remains in
O(t).

Second, the population P is initialized based on the
updated R(t) and O(t) (Lines 3–8). For each solution pi ∈
P , we first copy R(t) to pi , then randomly assign all orders in
O(t) to pi . After this procedure, N feasible initial solutions
are generated.

3.4 Crossover operator

The crossover operator is the main operator in MA. It pro-
duces a new population of solutions (i.e., offspring solutions)
by combining the parent solutions. To obtain high-quality
solutions, the crossover operator should be designed to
ensure that offspring solutions inherit good features of both
parents [35]. In this study, the crossover operator for the real-
worldDPDP is designed to combine two parent solutions into
one offspring solution, which is described as follows. Given
two parent solutions p1 and p2, we first calculate the total
delay time of each route. The routes with less delay time
are selected and copied into the offspring solution. Then, we
check whether the offspring solution is feasible, i.e., there
are duplicate orders served by multiple vehicles. If there are,
duplicate orders are removed from the routes to ensure that
each order is served exactly by one vehicle. Finally, all unal-
located orders are randomly assigned to the vehicles of the
offspring solution.

Fig. 2 Illustration of the crossover operator

Figure2 illustrates the process of the crossover operator.
For simplicity, each solution contains three routes served by
three vehicles, and each route contains only the orders (the
pickup and delivery factories are ignored). The process is
described as follows.

1. First, the delay time of each route is calculated. For exam-
ple, the delay time of R1, R2, and R3 in p1 is calculated
as 0, 150, and 50, respectively, while the delay time of
R1, R2, and R3 in p2 is calculated as 0, 100, and 300,
respectively.

2. Second, the routes with less delay time, i.e., R3 in p1 and
R2 in p2, are selected and combined to form an offspring
solution. Since the delay time of R1 in both parents is the
same, we randomly choose a route (e.g., R1 in p1) and
copy it into the offspring solution. However, the offspring
solution is not feasible because the order O5 has been
assigned to two vehicles R2 and R3. Since the delay time
of R2 is larger than R3, we remove O5 from R2 to (1)
obtain a feasible solution and (2) further reduce the delay
time.

3. Third, we check whether any unallocated orders exist
in the offspring solution. Because the order O3 is in the
parent solutions but not in the offspring solution, it is ran-
domly inserted into the offspring solution. For example,
it is appended at the end of R2 in the offspring solution
in the figure.

The proposed crossover operator can transfer elite com-
ponents (i.e., the routes with less delay time) from the
parent solutions to the offspring solutions. Moreover, the
search space is explored by introducing randomness into
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Algorithm 3 Local Search
Input: An initial route plan x
Output: An improved route plan x ′
1: x ′ ← x
2: for i ter = 1 to LSMAX do
3: Choose an order Oi in x ′ by the roulette wheel selection.
4: Remove Oi from x ′ and reinsert it into the best feasible position

in x ′.
5: end for
6: return x ′

the crossover operator. Therefore, the crossover operator is
expected to be effective for the real-world DPDP.

3.5 Local search

The offspring solution produced by the crossover operator
is further improved by local search. The local search con-
sists of iterative exploitation of neighborhoodmove to search
for high-quality solutions in a search region. Algorithm 3
presents the local search procedure. Given an initial solution
x , two steps are performed sequentially in each iteration:

1. In the first step, we calculate each order’s delay time in
x . Then, the roulette wheel selection [36] is performed to
select an order from x according to the delay time. The
order with a larger delay time has a larger chance to be
chosen.

2. In the second step, the selected order is removed from x
and reinserted into the best feasible position to obtain a
better neighborhood solution x ′. The best feasible posi-
tion is the position that leads to the minimum fitness
value calculated by Eq. (11) and without violating any
constraints.

3.6 Complexity analysis

The proposed MA mainly consists of the genetic algorithm
and local search. In the genetic algorithm, two steps are
sequentially performed:

1. Population initialization Generate a feasible solution
takes O(NO(t)), where NO(t) denotes the number of
orders at time t . Since N feasible solutions are gener-
ated at this step, it takes O(N · NO(t)).

2. Crossover operator The worst case to generate an off-
spring solution is to reassign all orders to the solution,
which takes O(NO(t)). Thus, it takes O(N · NO(t)) to
generate N offspring solutions at each generation.

The local search iteratively performs neighborhoodmoves
to improve the solution quality. A neighborhoodmove selects
an order and removes it from the solution, which takes

Table 3 Dataset settings

Instance set Number of
instances

Number of
vehicles

Number of
orders

Set 1 8 5 50

Set 2 8 5 100

Set 3 8 20 300

Set 4 8 20 500

Set 5 8 50 1000

Set 6 8 50 2000

Set 7 8 100 3000

Set 8 8 100 4000

O(NO(t)). Then, the selected order is reinserted into the
best position of the solution, which takes O(N 2

O(t)). There-

fore, the local search takes O(LSMAX ·N 2
O(t)), where LSMAX

denotes the depth of the local search.
In summary, the complexity of the MA mainly depends

on local search, which takes O(N · LSMAX · N 2
O(t)) at each

generation.

4 Computational experiments

In this section, experiments are carried out on a server (Eight
CPUs with Intel Xeon (Cascade Lake) Platinum 8269CY at
2.5GHz, 16.0GB of RAM) to assess the performance of the
proposedMA. TheMA is implemented in C++ and compiled
by g++ with C++ 11 support on Ubuntu 14.04. The dataset
description, parameter settings and experimental results are
presented in the following sections.

4.1 Dataset description

We use 64 instances extracted from the company’s delivery
scenarios [37] to validate the effectiveness of the MA. These
instances can be categorized into eight sets: Set 1–Set 8. Each
set contains eight instances of different sizes. Each instance
contains information on all orders for a working day (24h).
The information is detailed in Sect. 2.1. According to the real
business scenarios, the time interval �t is set to 10min, i.e.,
the period for order release is 10min. Therefore, a working
day is split into 144 time intervals. A static PDP is formed
at each interval and needs to be solved within 10min. More
details of the datasets can be found in Table 3.

From the perspective of factories, there are 154 factories
in total. The travel distance and travel time metrics between
the factories are asymmetry. The vehicles have the same load
capacity. Due to the traffic conditions, the triangle inequality
may not hold for travel time in the real world.
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Table 4 Parameter values Parameters Factor level
1 2 3 4

N 5 10 15 20

GMAX 5 10 15 20

LSMAX 5 10 15 20

Table 5 Orthogonal table for the MA

No. N GMAX LSMAX Average value Average time (s)

1 5 5 5 32,772.5 76.73071

2 10 10 5 22,790.22 205.3899

3 15 15 5 20,273.87 484.3576

4 20 20 5 18,624.5 744.6289

5 5 10 10 28,355.08 163.0499

6 10 5 10 25,545.56 183.818

7 15 20 10 19,560.53 760.0465

8 20 15 10 18,953.06 866.7497

9 5 15 15 28,087.98 295.8831

10 10 20 15 20,955 690.2481

11 15 5 15 22,776.85 291.9641

12 20 10 15 18,993.84 793.2827

13 5 20 20 27,769.75 466.809

14 10 15 20 19,862.42 770.5875

15 15 10 20 19,187.47 800.9073

16 20 5 20 21,438.76 547.217

4.2 Parameter settings

The proposed MA has three parameters to be tuned, i.e., the
population size N , the number of generations GMAX , and
the depth of local search LSMAX . To achieve the best per-
formance, it is necessary to detect the best settings for the
algorithmic parameters [2]. To this end, the Taguchi orthog-
onal arrays experimental design method [38] is utilized for
parameter turning. Table 4 shows the different values of these
parameters. According to the number of parameters and lev-
els, we choose the orthogonal array L16(43) to carry out the
experiments. Therefore, there are 16 combinations of param-
eters to be tested. All 64 instances are used for testing. The
MA with each combination of parameters runs ten times on
each instance.

Table 5 shows the average values and running time on all
instances for the MA with various combinations of parame-
ters. The best average value is highlighted in bold. According
to the results in Table 5, we illustrate the mean effect of
each parameter setting in Fig. 3. We observe that in terms of
solution quality, larger parameters lead to better results. The
parameter N controls the population size. Larger N helps pre-
serve a diverse population and facilitates the exploration of
the search space. The parameter LSMAX controls the depth of

the local search. Larger LSMAX helps better exploit a specific
region in the search space. Therefore,MAwith larger param-
eters can enhance search ability and obtain better solutions.
Nevertheless, MA with larger parameters uses more running
time, as shown in Fig. 3. Therefore, if time permits, it is rec-
ommended to use larger parameters to obtain better results.
We adopt the setting {N = 20,GMAX = 20,LSMAX = 20}
for the rest of the experiments.

4.3 Effectiveness of components in MA

The main components in MA are the crossover operator and
the local search. To validate the effectiveness of the two com-
ponents, two variants of MA, MA_no_ls and MA_no_x, are
proposed to be compared with MA. In MA_no_ls, the local
search is removed from the MA, while in MA_no_x, the
crossover operator is removed from the MA. All algorithms
run ten times on each instance.

Table 6 shows the results of all algorithms on each dataset.
The best and average values are presented in the “Best Value”
and “Average Value” columns. The best values are high-
lighted inbold.Moreover, nonparametric statistical tests, i.e.,
the Friedman test and Wilcoxon signed-rank test [39, 40] at
5% significance level, are carried out further to show the dif-
ference between the MA and the competitors. Table 7 shows
the statistics summarizing all performance comparisons. The
columnw/t/l indicates theMAsignificantly outperforms the
competitor on w instances, performs similarly to the com-
petitor on t instances, and is outperformed by the competitor
on l instances, respectively. The last row shows the average
rankings of algorithms calculated according to the Friedman
method. A smaller ranking means better performance.

From Tables 6 and 7, MA performs best among all
algorithms. Specifically, MA significantly outperforms the
MA_no_ls and MA_no_x on 18 and 51 instances, respec-
tively, and is outperformed by the MA_no_ls and MA_no_x
on 4 and 1 instances, respectively. MA obtains the best aver-
age values on all instances and gets the first rank, followed by
MA_no_ls and MA_no_x. This indicates that the crossover
operator has a significant impact on the performance of
the algorithm. The proposed crossover operator can explore
the search space while preserving the elite components of
the parent solutions, increasing the chance of finding more
promising search regions. Therefore, it is essential to utilize
the crossover operator for exploration. However, if only the
crossover operator is used, the MA_no_ls is still inferior to
the MA. The reason may be that some high-quality solu-
tions cannot be found in a search region. The local search
can dive into a search region to find a high-quality solution.
Combining the crossover operator and local search can scat-
ter the search into different regions and find better solutions
in these regions. Therefore, the MA achieves the best results
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Fig. 3 Mean effect of each
parameter

Table 6 Results of MA_no_ls, MA_no_x and MA on eight datasets

Instance MA_no_ls MA_no_x MA
Best
value

Average
value

Average
time

Best
Value

Average
value

Average
time

Best Average
value

Average
time

Set 1 504.43 1355.25 13.12 518.86 895.89 28.84 1181.32 1442.5 48.48

Set 2 20,779.82 37,579.56 18.91 42355.71 66,972.40 107.24 20,904.62 36,094.91 144.26

Set 3 100.83 183.90 20.94 111.75 149.45 163.77 97.17 102.28 272.04

Set 4 2705.93 8436.99 49.35 7584.35 26, 287.40 385.10 1733.75 4610.8 604.41

Set 5 859.38 1232.10 85.79 276.98 2221.03 664.73 491.03 1252.9 1160.87

Set 6 47,464.16 78, 322.69 684.48 133,823.09 213,628.28 2041.92 39,974.92 75,391.12 3202.05

Set 7 2291.59 3223.72 498.89 2939.99 9288.46 2146.13 1962.38 3609.9 3704.3

Set 8 7552.17 17,514.85 1218.77 40,289.20 62,541.20 3264.66 6956.60 17, 556.11 5333.84

Av 10,282.29 18, 481.13 323.78 28,487.49 47,748.01 1100.30 9162.72 17,507.57 1808.78

The running time is given in seconds

Table 7 Statistical results of
performance comparisons of
MA with MA_no_ls and
MA_no_x by Wilcoxon’s test
and Friedman test

64 instances w/t/l R+ R− p value α = 0.05 α = 0.15

MA versus MA_no_ls 18/42/4 1345.0 735.0 0.041049 Yes YES

MA versus MA_no_x 51/12/1 1916.0 164.0 0 Yes Yes

Average ranking MA_no_ls: 1.7812 MA_no_x: 2.7188 MA: 1.5
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Table 8 Results of VNSME, IM, LS and MA on eight datasets

Instance VNSME IM LS MA
Best
value

Average
value

Average
time

Objective
value

Time Objective
value

Time Best
value

Average
value

Average
time

Set 1 1712.26 3860.04 12,677.47 13,676.25 291.92 1763.83 12.95 1181.32 1442.5 48.48

Set 2 35,650.41 48,845.70 41,032.08 599,932.78 312.99 62,180.17 13.34 20,904.62 36,094.91 144.26

Set 3 2172.99 5808.67 21,710.81 2310.72 272.02 10,110.14 15.60 97.17 102.28 272.04

Set 4 8344.14 15,755.91 28,736.95 105,049.36 265.19 28,297.94 18.43 1733.75 4610.8 604.41

Set 5 11,493.34 15,141.10 28,201.12 17,683.52 263.26 73,412.50 31.51 491.03 1252.9 1160.87

Set 6 37,392.09 62,161.85 83,240.11 137,412.22 269.82 349,933.19 77.75 39,974.92 75,391.12 3202.05

Set 7 42,870.50 67,841.11 109,125.86 40,785.67 275.42 596,060.01 245.31 1962.38 3609.9 3704.3

Set 8 155,701.88 212,504.88 187,077.25 75,814.67 279.10 1,091,696.33 402.75 6956.60 17,556.11 5333.84

Av 36,917.20 53,989.91 63,975.21 124,083.15 278.72 276,681.76 102.21 9162.72 17,507.57 1808.78

As VNSME and MA are stochastic, the best and average values for ten runs on each dataset are presented in the table. The running time is given in
seconds
Best average value is highlighted in bold

among all algorithms. The experimental results confirm the
effectiveness of the crossover operator and the local search.

4.4 ComparingMAwith baseline algorithms

To assess the performance of the proposed MA, the win-
ning algorithms in the competition held by Huawei, i.e.,
VNSME[11], IMandLS, are adopted as the competitors. The
source codes and video talks are available on the website.2

Since we focus on the same DPDP problem as these three
algorithms, we regard them as state-of-the-art algorithms
and utilize them as baseline algorithms. The source codes of
VNSME, IM, and LS are implemented in Java, Python, and
C++, respectively. For a fair comparison, the baseline algo-
rithms adopt their original parameter settings. All algorithms
run under the same environment. Since VNSME andMA are
stochastic algorithms, they run ten times independently on
each instance, while the IM and LS are deterministic and run
once on each instance.

Table 8 shows the results of all algorithms on each dataset.
Moreover, the Friedman test and the Wilcoxon signed-rank
test [39, 40] at 5% significance level are carried out further
to show the difference between the MA and the competitors.
Table 9 shows the statistics summarizing all performance
comparisons. From Tables 8 and 9, MA obtains the best
results on most instances and gets the first rank. Specifically,
MA significantly outperforms the VNSME, IM and LS on
36, 62 and 55 instances, respectively, and is outperformed
by the VNS and LS on 9 and 4 instances, respectively. The
numeric results show the effectiveness of the MA in solving
the real-world DPDP.

2 For more details, please visit the URL: https://competition.
huaweicloud.com/information/1000041411/Winning.

In addition, Fig. 4 visually shows the values obtained by
VNSME, IM, LS and the proposed MA on all instances.
The average values obtained by VNSME and MA on each
instance are presented in the figure. It is clear that MA can
obtain the best solutions on most instances. The main dif-
ference between MA and the competitor is that MA is a
population-based method that manipulates a set of solutions,
while the competitors only operate on a single solution during
the search process. The crossover operator in MA enhances
the diversity and increases the chance of finding promising
areas where high-quality solutions may exist. In contrast, the
competitors may not fully explore the search space as MA
because only one solution is used. Therefore, MA performs
the best among all algorithms.

Finally, we compare the total running time of the competi-
tors on all instances to show the efficiency of the algorithms.
As different algorithms are implemented in different pro-
gramming languages, i.e., VNSME, IM, LS, and MA are
implemented in Java, Python, C++, and C++, respectively,
their running time cannot be directly compared. Accord-
ing to [41], Java and Python execute applications 1.43×
and 29.50× slower on average than their C++ counterparts
respectively. Therefore, we recalculate the running time of
VNSME and IM based on these factors, making them com-
parable with LS and MA. Figure5 shows the total running
time of the competitors on all instances. IM solves the prob-
lem with the shortest running time, followed by LS, MA and
VNSME, respectively. The proposed MA runs slower than
are IM and LS because of its population-based nature. Never-
theless, the MA can obtain much better solutions than those
of IM and LS. Moreover, the longest total running time for a
large-scale instance with 4000 orders is 6600s, i.e., the run-
ning time for solving a static DPDP for each time interval is
about 45 s, much lower than the threshold (10min). There-
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Table 9 Statistical results of performance comparisons of MA with VNSME, IM and LS by Wilcoxon’s test and Friedman test

64 instances w/t/l R+ R− p value α = 0.05 α = 0.15

MA versus VNSME 36/19/9 1777.0 303.0 0.000001 Yes YES

MA versus IM 62/2/0 2045.0 35.0 0 Yes Yes

MA versus LS 55/5/4 2058.0 22.0 0 Yes Yes

Average ranking VNSME: 2.375 IM: 2.9688 LS: 3.3594 MA: 1.2969

Fig. 4 Objective values obtained by VNSME, IM, LS and MA on 64 instances. Best viewed in color

fore, the proposed MA can solve large-scale instances in a
reasonable running time.

In summary, from the experimental results, the proposed
MA has the best overall performance in terms of solution
quality and running time. Therefore, the effectiveness ofMA
in solving the real-world DPDP is confirmed.

5 Conclusion and future work

In this study, we propose a memetic algorithm (MA) for
solving a real-world DPDP with multiple constraints. In the
DPDP, orders are periodically released and should be com-
pleted as soon as possible.When the new orders are released,
a static PDP is formed by all uncompleted orders and solved

by the proposedMA. TheMA consists of a genetic algorithm
for exploring the promising search space and a local search
for exploiting the best solution in a search region. To vali-
date the effectiveness of the MA, experiments are carried out
on 64 real-world DPDP instances. Three metaheuristics, i.e.,
VNSME, IM and LS, are adopted as the baseline algorithms.
Experimental results show the effectiveness of the MA in
solving the DPDP.

However, the proposed MA still has some limitations.
First, the problem-specific knowledge may not be fully used
since only one neighborhood operator is utilized in the MA.
To enhance the exploitation ability, more sophisticated local
search strategies can be adopted in the future, e.g., (1) by
incorporating more neighborhood operators and (2) by using
tabu search, simulated annealing, or VNS instead of the sim-
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Fig. 5 Total running time of VNSME, IM, LS and MA on 64 instances. Best viewed in color

ple local search. Second, although the MA solves the DPDP
in a reasonable running time, it still requires a long time to
achieve good results and may not be suitable in real-time
scenarios. In the future, learning-based algorithms [12, 42]
can be adopted as the local search to accelerate the running
speed of the MA.
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