
Memetic Computing (2022) 14:355–376
https://doi.org/10.1007/s12293-022-00372-x

REGULAR RESEARCH PAPER

Optimization of integrated production scheduling and vehicle routing
problemwith batch delivery to multiple customers in supply chain

Tanzila Azad1,3 · Humyun Fuad Rahman2 · Ripon K. Chakrabortty3 ·Michael J. Ryan4

Received: 11 September 2021 / Accepted: 2 July 2022 / Published online: 23 July 2022
© The Author(s) 2022

Abstract
In supply chain literature, production coordination and vehicle routing have received a lot of attention. Even though all
functions in the supply chain are interrelated, they are normally handled independently. This disconnected approach might
lead to less-than-ideal outcomes. Increasing total efficiency by integrating manufacturing and delivery scheduling processes is
popular. This study focuses on synchronic production–distribution scheduling difficulties, particularly permutation flow shop
scheduling in production and sequence-dependent setup time (SDST) and vehicle routing alternatives in distribution. To create
a cost-effective distribution among the placement of geographically separated clients and hence to minimize delivery costs,
batch delivery to customers employing a succession of homogenized capacity limitation vehicles is examined here. However,
this might result in the failure to complete multiple client orders before their deadlines, raising the cost of lateness. As a
result, the goal of this study is to lower the overall cost of tardiness and batch distribution in the supply chain. To accomplish
so, a mixed-integer nonlinear programming model is developed, and the model is solved using a suggested genetic algorithm
(GA). Because there is no established benchmark for this issue, a set of genuine problem scenarios is created in order to assess
the proposed GA in a viable and difficult environment. Ruiz’s benchmark data, which is derived from Taillard’s benchmark
cases of permutation flow shops, was supplemented with SDSTs in the production of test examples. In comparison to an
exact method, the results show that the proposed GA can rapidly seek solutions to optimality for most small-sized instances.
Furthermore, for medium and large-scale cases, the proposed GA continues to work well and produces solutions in a fair
amount of time in comparison to GA without the local search.

Keywords Integration · Permutation flow shop scheduling · Sequence-dependent setup time · Vehicle routing · Batch
delivery · Genetic algorithm

B Tanzila Azad
azadshashi33@gmail.com

Humyun Fuad Rahman
humyun.fuad@adfa.edu.au

Ripon K. Chakrabortty
r.chakrabortty@adfa.edu.au

Michael J. Ryan
mike.ryan@ieee.org

1 Department of Mechanical and Production Engineering,
Ahsanullah University of Science and Technology, Dhaka,
Bangladesh

2 Capability Systems Centre, School of Engineering and IT,
UNSW, Canberra, ACT 2610, Australia

3 School of Engineering and IT, UNSW, Canberra, ACT 2610,
Australia

4 Capability Associates, Canberra, ACT 2610, Australia

1 Introduction

The majority of supply and operations management research
has divided production processes into two categories: make-
to-order (MTO) and make-to-stock (MTS) production sys-
tems [19]. AnMTO production environment is more tailored
to the consumer’s needs and often produces high-priced
products. Order acceptance or rejection assessments and
configuration of production capacity, order arrival timeline,
and distribution time or due dates are all part of the pro-
duction planning in MTO [21]. On the other hand, MTS
manufacturing processes tend to focus on lower-cost, lower-
selection goods. A traditional MTS system’s production
preparation considers forecasting demands, how to satisfy
those demands, the size of each component’s batch, and
the production cycle duration. The most important aspect of
MTO is the efficient and productive utilization of available

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-022-00372-x&domain=pdf

356 Memetic Computing (2022) 14:355–376

capacity to meet consumer demands. To improve the con-
sumer experience in suchmanufacturing processes, goods are
advised to be shipped once they are finished in an assembly
line to meet the consumers’ timetable or schedule, resulting
in high delivery costs. A cost–benefit analysis of the cost of
lateness and the cost of delivery was intended for the neces-
sity of combining output and distribution in MTO industries;
when making tactical decisions, a trade-off between lateness
and delivery costs should be considered [34].

Extensive collaboration through the supply chain’s vari-
ous stages is essential to maintain a high-performing overall
structure and meet consumer expectations and demands.
According to Ulrich (2013), a mean improvement between 5
and 20% may result in integration at the tactical judgment
stage compared to an uncoordinated strategy. Traditional
VRP must be included in production planning for organiza-
tional level manufacturing and distribution concerns, notably
schedule preparation issues. Orders must be conveyed using
a vehicle’s fleet to a group of geographically dispersed clients
at one or more depots, using a network to construct routes
that meet all the customer’s standards in conventional VRP.
Even though development and vehicle route scheduling dif-
ficulties have been well-studied in the literature, integrating
the two has gotten less attention.

The permutation flow shop scheduling problem (PFSP)
has received a lot of attention in the last few decades [35].
The PFSP has been investigated utilizing several conditions
to reduce the make span [31]. Any set of customer orders to
be shipped in a single trip is referred to as a "batch," and after
the production of any sequence of customer orders in a batch
is completed, they are allocated to different customers in the
same order. Batch delivery to multiple customers becomes
substantially more complex because PFSP is proven to be
powerfully NP-complete with two or moremachines bymix-
ing production and delivery decisions in a PFSP with batch
supply to multiple clients (Kai [33]. In the study of Qin et al.
[18], products are firstly produced in a number of distributed
hybrid flow shops (HFS) and then delivered to a customer
in batches. Setup times, on the other hand, are normally
negligible. It is important to consider the impact of sequence-
dependent setup operations when deciding on a schedule.
As a result, integrating it into models might be a promising
research direction. Any configuration operations dependent
on the ordering of these two customer orders should be con-
ducted between the processes of two consecutive customer
orders on similar devices. Setup activities, such as clean-
ing or replacing appliances, do not seem to be expected
except between orders in a variety of practical situations,
such as printing, chemical, automobile manufacturing, and
pharmaceutical, but rather heavily reliant on the immediately
preceding procedure on the same system. Given the above,
we incorporate sequence-dependent setup time (SDST) into

our problem to bridge the distance between the proposal and
the following.

Since integrated output scheduling-vehicle routing issues
are complex, solving vast instances of those problems with
real solutions is incredibly difficult. Exact techniques are
mostly applicable for small-sized problems [14]. To solve
large scheduling vehicle routing problems, most studies
use metaheuristics such as simulated annealing, genetic
algorithm (GA), particle swarm optimization, ant colony
optimization, tabu search, differential evolution, and so on
[26]. Compared with the other algorithms, GAs are more
widely used as a solution approach [14]. Because it is dif-
ficult to solve and impossible to obtain optimal solutions,
particularly for large-scale instances, a hybridized version of
GA, i.e., GA with local search, is proposed here.

The hybridGA is also known asmemetic algorithm (MA),
which is simple to design and implement and effectively
solve complex optimization problems [19]. In GA, using
a population of solutions allows seeking in several direc-
tions. However, a lack of sufficient intensification prompts
researchers to consider a different approach with more pow-
erful search operators.MAs combines the advantages of GAs
with the inclusion of a local search engine to boost intensi-
fication. MAs have recently gotten a lot of attention from
the evolutionary computation community (ECC). They’ve
been proved to be promising and successful at address-
ing challenging optimization issues in various application
areas [3]. Since its birth in the late 1980s, MA and, in
general, methodologies underpinning the broader Memetic
Computing (MC) paradigm have been at the center of a
frenetic research effort. MAs have evolved rapidly to pro-
duce techniques with sophisticated cooperative mechanisms,
combiningmodern population-basedmetaheuristics (such as
evolutionary algorithms, swarm methods, and others) with
trajectory-based techniques (such as variable neighborhood
search, simulated annealing, tabu search), and other con-
structive algorithms (such as GRASP, branch and bound,
backtracking, etc.). Furthermore, even though they were
established some decades ago, the MC study fields continue
to attract a lot of interest from the scientific community [16].
As a result, the memetic algorithm has become a common
method for solving various engineering optimization prob-
lems, which has been considered accordingly in this work.
To the authors’ knowledge, there has been no investigation
of the issue of reducing the overall cost of tardiness and
batch distribution tomultiple customers, considering produc-
tion scheduling andvehicle routingproblems simultaneously.
More specifically, the contributions of this study can be sum-
marized as follows:

• Anew integrated scheduling system in a PFSP considering
SDSTandvehicle routing issues is proposed to reduce late-

123

Memetic Computing (2022) 14:355–376 357

ness and batch distribution costs to various supply chain
customers.

• A novel mixed-integer nonlinear programming model
(MINLP) is developed to determine the best solution to
the problem at hand.

• To solve the model, a hybrid GA (i.e., memetic algo-
rithm) is proposed to solve a realistic problem–instances
to achieve efficient or near-optimal solutions.

To determine the effectiveness of the proposed approach,
numerical experiments are conducted to analyses the effi-
cacy of the proposed approach. The remainder of the work
is organized as follows. The study on joined production and
distribution planning and routing decisions is reviewed in
the following section. Section three demonstrates the formal
definition and conclusions of an interconnected problem and
explains the proposed MINLP formulation for the problem
at hand, along with an illustrative illustration. The suggested
algorithm’s key points are revealed in section four. Section
five discusses the findings and interpretation of scientific
trials, including the comparative results of algorithms. Con-
clusions and possible directions are presented in section six.

2 Relevant literature

Production and delivery are two interconnected functions of
the supply chain, with the latter beginning as soon as the
final order of the production function is accomplished. These
two issues of scheduling have traditionally been resolved
sequentially and discretely. Integration can solve the problem
of suboptimality by combining the two problems into one.
Several scholars including explain the whys and wherefores
of companies choosing an uncoordinated solution over an
integrated one. These decisions are initially made by various
departments or several businesses, like third-party logistic
service providers. Second, a VRP for distribution planning
architecture, for example, is impossible to overcome on its
own and is a different issue. Third, inventory buffers between
certain roles are normally separated to minimize the need
to combine the supply chain’s production scheduling and
functions of distribution.

However, to further exploit resources and compete in
the globalized economy, there is a growing need to lessen
these intermediate buffer inventories. As a result, companies
are increasingly moving toward a just-in-time (JIT) strat-
egy in which delivery delays will cause major glitches at
the customer’s site. Still, there is no point in preventing this
situation at the expense of high transportation costs. Inte-
gration of production and distribution into a single problem
would be desirable. An integrated approach would be appre-
ciated, particularly for perishable or time-sensitive products
[30].Newspapers, diet, ready-mixed concrete, pharmacy, and

commercial adhesive materials are examples of products for
which an optimized method is used. This paper integrates
experiments focusing on batch processing and initialization
time in various machine environments. These two manu-
facturing characteristics requirements were chosen because
they substantially affect the method of manufacturing orders
instead of other aspects, such as production costs and periods.

2.1 Production scheduling and delivery under single
machine environments

A single machine arrangement is used in the large command
studies to fulfil customer orders, and several of those papers’
customer orders are mixed into a batch. Setup operations
are often ignored in single-machine reviews of production
scheduling and vehicle routing problems (PS-VRPs), and
they are not included in batch studies. Chang and Lee [5]
investigated a condition of two consumer areas and a single
unit environment in their analysis. Furthermore, Li et al. [11]
investigated the overall situation for an extra two customers
with a drag version of two customers. Chen andVairaktarakis
[7] investigated dual variants with several customers for a
single machine environment. The problems vary depending
on the output metric, such as mean or limited delivery time.
Orders are generated one after the other in these three trials
and then transmitted by a related vehicle driver. In the liter-
ature of Li et al. [11], it was assumed that a customer order
could be shipped in one trip but that separate orders from
the same client will be distributed in several trips. Wherever
the aim is to lessen the overall time required to finish all the
vehicle’s deliveries and return to the depot and to reduce the
sum of order delivery times at clients, respectively. Chen and
Vairaktarakis [7] looked for ways to maximize the trade-off
between delivery costs and the quality of consumer experi-
ence determined by distribution times.

The experiments described earlier with a machine envi-
ronment of a single setting may not account for setting up
operations. Park and Hong [17] investigated an optimized
PS-VRP for inventory items that are only available for a sin-
gle time, taking sequence-dependent configuration activities
into account in a single manufacturing system that needs to
process entirely separate iterations of a component. Since
each version is produced only once, consumer orders for
similar products are managed in a batch process. Customers
are given a date on both soft and rough deliveries. A breach
of the flexible deadline would result in a delay fee, while
a hard deadline would result in a penalty. Split distribu-
tions with a single order do not seem appropriate, although
where consumers order several items, it is possible to dis-
tribute each commodity by a different car. The MILP’s goal
is to reducemanufacturing, transportation, anddelivery costs.
Even though they considered SDST and batch processing of
materials, the system environment was not advanced.

123

358 Memetic Computing (2022) 14:355–376

2.2 Production scheduling and delivery
under a parallel machine environment

A parallel machine environment is used in around a third of
the experiments on combined PS-VRPs. Such experiments
are based on the use of similar parallel machines. Synchronal
problems of standardized parallel machines are studied by
Belo-Filho et al. [4]s. Chang et al. [6] are the first to examine
unrelated parallel machines. Most studies process customer
orders in batches, like those conducted in a single system
environment, and set up operations are largely unnoticed.
Any customer order, according toUllrich,must be performed
on one of the identical parallel machines, where time frames
are thought of as rigid edges at the customer’s geograph-
ical positions, as orders must be processed as quickly as
possible [30]. Delay deliveries are permitted; however, the
MILP’s goal is to reduce overall order lateness to the abso-
lute minimum. Batch loading and startup time was not taken
into consideration in this research. Chen and Vairaktarakis
[7] explore a parallel machine background in addition to a
machine environment considering a single setting. For an
analogous parallel machine configuration, two versions like
those for the single machine setting that differ within the
output metric, such as mean or most delivery time, are inves-
tigated. The balance of delivery costs and customer service
level is considered a parameter of the objective, much as it
is within the single system setup. Different orders from vari-
ous consumers can be served on unrelated parallel machines,
according to Chang et al.[6]. Both consumer orders delivered
by a common vehicle are serialized, and batch produced. The
developed nonlinear mathematical model’s goal function is
like that of Chen andVairaktarakis [7], reducing theweighted
combination of shipping times and net delivery costs.

Compared to prior research using an environment of the
parallel machine, Farahani et al. [10] explored a combined
PS-VRP for unpreserved food goods where a supplier pro-
duces many combinations of items that must be processed at
completely various temperature ranges in one of the identical
ovens. Many customer orders can be processed in real-time.
In this analysis, the MILP is used to account for SDSTs and
costs. The intention is to achieve a balance between shipping
and setup costs while maintaining the quality of unpreserved
food items.

2.3 Production scheduling and delivery under flow
shop environment

Previous research, in general, investigated a relatively basic
machine design where each customer order consists of a sin-
gle and parallel machine production process, according to
a careful study of the characteristics of the considered pro-
duction environment. Since most experiments use a machine
configuration of a single setting or a parallel resource con-

figuration in parallel machine environments, where largely
similar parallel machines are conceived of. Since several
layers of a manufacturing environment, like job and flow
shops, are frequently used for production operation, com-
bining those with a distribution option like VRP would
be an important forthcoming research path. Nonetheless,
the interconnected problem can become more complicated
to overcome because of these advanced machine settings.
Metaheuristics are the most successful algorithms used to
solve flow shop scheduling. In general, the metaheuristic
algorithms are categorized into local search-based meth-
ods such as: Iterated greedy algorithm [23],tabu search
and population-based algorithms such as artificial immune
system and artificial bee colony. Recently, many heuristic
techniques have been proposed to solve flow shops schedul-
ing problems, such as the insertion of local search and
constructive heuristics.

2.4 Vehicle routing problem in distribution in supply
chain

Most research considers an undiversified fleet of vehicles
when it comes to the transmission aspect of the intercon-
nected issue. In recent years, analysts have assumed that the
fleet is made up of a variety of vehicles of varying capabili-
ties and/or prices. For example, Toptal et al.[29] investigated
cost structure variability and time convenience. Nonetheless,
since it is impossible to consolidate the different orders, vehi-
cle routing is not considered in their analysis. Transportation
times must be factored in to ensure a consistent on-time dis-
tribution. Moreover, most of the papers account for delivery
costs, including multiple transportation costs depending on
factors such as distance or time travelled andfixed transporta-
tion costs for renting a vehicle. Many of the surveys that do
not include transit expenses have a service target. We prefer
to research a simple variant of the vehicle routing called the
Capacitated Vehicle Routing Problem (CVRP) during this
work, like the recently published study of L. Liu and Liu
[12]. For the first time, the cost of batch shipping to multiple
customerswithmultiple orders is determined by the vehicle’s
unutilized capacity costs, which are dependent on the travel
time involved.

The complexity of the problem system grows as each sup-
ply chain task, such as output and delivery, is solved simul-
taneously. An applied planning problem typically involves
many variables and constraints to devise a model. Exact
techniques are only used for experiments with a compar-
atively simplistic single machine setup for this involution
of integrated PS-VRPs [14]. Heuristics and metaheuristics
are proposed as solution strategies in a single machine
setting of batch processing. All experiments involving par-
allel system configurations are resolved using a heuristic or
meta(heuristic), like tabu search, adaptive massive neighbor-

123

Memetic Computing (2022) 14:355–376 359

hood search (A)LNS, GA, and ACO. Apart from Amorim
et al.[2], this was the only analysis that used professional
optimization tools as a solution technique. Belo-Filho et al.
[4] suggested a rebuild heuristic and an ALNS algorithm
to resolve the issue suggested by Amorim et al.[2]. Within
experiments of various machine configurations, as a solution
methodology for determining the solution to the problem,
either an optimization program or a heuristic is used [14].

To calculate the efficiency of the built (meta)heuristics,
examples of at most one hundred customer orders are typi-
cally used. Cases with up to 200 orders were used in a small
number of trials. Furthermore, to balance the outcomes of
each solution method, the issue is normally resolved with
commercial optimization tools like CPLEX and LINGO.
Except for Park et al. [17], who address cases of up to twenty-
one customers, commercial optimization tools will find the
right options for up to seven customers. Furthermore, using
a branch and cut algorithm solved instances of up to fifty
customers in an extremely basic single-machine setup with
batching. Metaheuristic-based solution methods, such as TS,
and GA, are commonly used to locate high-quality solutions
in a short period.

2.5 Summary

To summarize, previous studies have rigid expectations
that make it difficult to coordinate output and delivery
schedules within the supply chain. The following assump-
tions are made: (1) While configuration activities influence
the resiliency of the development schedule, they are often
overlooked in the manufacturing process. (2) In the manu-
facturing stage,most studies assume a relatively basic system
environment, such as a single or a parallel machine configu-
ration (3) The majority of researchers use a simple VRPwith
undiversified vehicles to one customer within the delivery
aspect of the integrated issue. (4) Each batch contains some
or all orders of a particular customer. (5) Distribution time
constraints, such as delivery due dates and time frames, are
needed in nearly half portion of the research. (6) The most
common target measures are service quality maximization
and cost reduction. Where real-life manufacturing and deliv-
ery chains are considered, only combined PS-VRP models
can be useful to decision-makers. The limiting assumptions
of previous studies prevent the experiments from accurately
reflecting the true existence of the issue at hand. Considering
the gaps in the previous research, this paper aims to integrate
SDST in a PFSP within the MINLP to lower the overall cost
of tardiness and batch distribution to multiple supply chain
customers.

3 Problem description and assumptions

The following is a formal description of the problem: a
permutation flow shop-based factory owned by a single man-
ufacturer, where a set of machines m � {1, 2,, M} in
series. The production process runs in an MTO production
system.A set of customers f � {1, 2, .., } F, reside atF differ-
ent locations. Every pair of locations (f,g), where f, g ∈F, and
f ��g, is associated with a travel time t f g which is assumed
to be constant. At the initial stages of the production, a set of
customer orders i � 1, 2, .., n arrive at the plant. Since the
customer orders are processed by an SDST flow shop where
λ is a permutation or sequence of n orders and the order in
position i of the sequence is denoted as λi, each order must be
processed through all of the machines within the same order.
The processing time of customer order i � {1, 2, .., n} on
machinem�{1, 2,, M} is symbolized byPT λi ,m .Mean-
while, STm

λi ,λ j
denotes SDST when order j follows an order

i on the Mth machine in the PFSP. Per order is linked to
a specific customer. Two operating choices must be com-
bined to solve SDST PFSP for batch distribution to various
customers: sequencing orders for production in a permuta-
tion flow shop considering SDST and separating items into
enough batches where b� {1, 2, .., } B for distribution. It
is also thought that every customer order i is non-splitable,
ready at time 0 and that as soon as it is started on the Mth
machine, it cannot be stopped till it is done (i.e., anticipation
is not allowed). Once all customer orders in a batch have
been processed, v � 1,2,…., V is a set of multiple homo-
geneous vehicles with equal capacities, where the capacity
of every vehicle v is defined by Q, which delivers the cus-
tomer orders to the related customers based on the due date
of each order i. (denoted as ddi). Customer orders from vari-
ous customers can be fulfilled by the same vehicle in a single
delivery. Furthermore, customer orders from the same cus-
tomer may be delivered by separate vehicles. Each vehicle
may carry one or more customer orders in a single deliv-
ery (allowing the capacity constraint), either for the same
or different customers. After serving a customer, a vehicle
essentially leaves that customer and either (1) serves another
customer in a different location (in case it carries order(s) for
that customer) or (2) returns to the depot. Due to the vehicle’s
capacity limit, certain batchesmust be kept at the plant before
the next visit. The routing portion of the problem is repre-
sented graphically by nodes 0 through F, where F is the set
of nodes within which 0 represents the plant and the location
of the customer order is represented by the remaining nodes.
The aim is to figure out the sequence of customer orders on
all the M machines and the order of customers’ order visits
and distribution times to those customers. Figure 1 depicts
the combined output and delivery scheduling process based
on our problem set.

123

360 Memetic Computing (2022) 14:355–376

Fig. 1 The integrated production scheduling and delivery planning procedure

The following assumptions are taken to formulate SDST
PFSP for batch distribution to multiple customers.

In the production stage:

• All customer orders are sent to the permutation flow shop
promptly.(Kai [33]

• Only one customer order can be processed at a time by a
single machine, and preemption is not allowed.

• The customer order processing sequence is the same for
all machines.(Kai [33]

• The time taken to set up two machines in a sequence is
considered.

In the delivery stage:

• For each batch delivery, there is no quantity or distance
limitation.(Kai [33]

• Every batch contains several customer orders.
• Any order cannot be split and shipped in one tour/vehicle,
but separate orders from a similar customer can be dis-
tributed through several tours/vehicles.

• There are an infinite number of vehicles available to ensure
that each batch is shipped as soon as it is available.

3.1 Illustrative example

The problem of m-machine flow shop scheduling with
SDSTs, multi-customers and homogeneous vehicles with
capacity constraints is regarded in this section as a basic
example of an integrated production and delivery problem.
Table 1 shows the customers’ co-ordinate value for the
illustrative example. Here, the first column represents the

Table 1 Customers co-ordinate for the illustrative example

Customer number XCOORD YCOORD

0 (depot) 0 0

1 40 69

2 22 75

3 38 80

customers’ id denoted by f where f is {0,1…,3}. The plant
in the center of the two-dimensional plane is denoted by the
number 0. The customer’s coordinates are listed in the second
and third columns. Table 2 displays the dataset produced for
a scenario with five machines, three customers, and fifteen
customer orders. The first two columns in Table 2 show the
customer and order id, respectively. μi denotes the size of
the demand for customer order i, PT λi ,1, PT λi ,2, PT λi ,3,

PT λi ,4andPT λi ,5 represent the processing times of the cus-
tomer order on machines 1, 2, 3, 4, and 5, respectively. The
last two columns reflect different customer order due dates
and unit tardiness costs per order, with the values in the last
column created at random using a uniform distribution.

Let us assume that each vehicle’s capacity Q is set to
150 kg. The freight time between customers f and j is sym-
bolized by tfg and assumed that tfg � tgf , i.e., the distances
are symmetric. Here t0f represents the distance between the
production plant and customer F. For this problem matter,
initial setup times on the machines are presented in Table 11
(Appendix A). The data is generated randomly using a uni-
form distribution with a range (1, 10). Table 12 represents the
shipping times, and Table 13, 14, 15, 16, and 17 (Appendix
A) represent the data for the SDSTs on machines 1, 2, 3, 4,

123

Memetic Computing (2022) 14:355–376 361

Table 2 Randomly generated sample dataset of illustrative example

Customer
ID, f

Order ID, i Processing
time,
PT λi ,1

Processing
time,
PT λi ,2

Processing
time,
PT λi ,3

Processing
time,
PT λi ,4

Processing
time,
PT λi ,5

Demand μi Due dateddi Tardiness
costs per
unit time
per order,
βi

1 1 54 79 16 66 58 59 967 1.73

1 2 83 3 89 58 56 30 870 1.25

1 3 15 11 49 31 20 10 146 0.56

1 4 71 99 15 68 85 30 782 2.31

1 5 77 56 89 78 53 10 67 3.23

2 6 36 70 45 91 35 67 702 1.09

2 7 53 99 60 13 53 20 225 0.85

2 8 38 60 23 59 41 40 324 2.50

2 9 27 5 57 49 69 20 605 1.22

2 10 87 56 64 85 13 20 410 0.90

3 11 76 3 7 85 86 30 505 1.89

3 12 91 61 1 9 72 30 721 3.50

3 13 14 73 63 39 8 50 92 2.65

3 14 29 75 41 41 49 45 620 0.75

3 15 12 47 63 56 47 50 429 2.90

Fig. 2 Example of a 5×15 SDST Permutation flow shop

and 5, respectively. The unit cost of the unutilized vehicle
per delivery α is randomly generated between (1, 10).

In five (M � 5) machines within the production stage,
the arrangement of customer orders is {9–15-6–3-1–4-2–14-
12–5-7–11-8–10-13}, and for both production and delivery,
each batch contains the same orders according to Fig. 2. The

load capacity of the vehicles is not surpassed for a specific
trip. As seen in Fig. 2, the completed customer order series
includes orders from three customers, namely customers 1,
2, and 3. Customer orders {1,2,3,4,5}, {6,7,8,9,10}, and
{11,12,13,14,15} belong to customers 1, 2 and 3 respectively.

123

362 Memetic Computing (2022) 14:355–376

Fig. 3 Feasible solutions for the illustrative example at the distribution
stage

Figure 3 represents the delivery stagewhere several homo-
geneous vehicles of the same capacity complete their tours.
The below are the four tours offered by the distribution ser-
vice: 0–2-3–1–0 (tour 1), 0–1–0 (tour 2), 0–3-1–2–0 (tour 3)
and 0–2-3–0 (tour 4). At the time, t � 0, we undertake that
all vehicles are available in the plant or depot. Therefore, we
assume that vehicle ID, v � 1 makes the first tour, ID v �
2 makes the second tour, ID v � 3 makes the third tour, and
finally, vehiclev � 4 makes the fourth tour.

When we look at Figs. 2 and 3, although the produc-
tion of orders 9, 15, and 6 complete at times 207, 262, and
340, respectively, the production completion time is 369 after
completing customer order 3, which is also included in the
first batch. Therefore, the batch arrival time of the first batch
carrying a total load (20 + 50 + 67 + 10 � 147<150 kg) by
vehicle v� 1 containing the customer orders to the associated
customer. So, customer order 9 is received by its customer
f � 2 at time 369 + t0,2 � 440 as the due date of customer
order 9 is 605, so this order is not tardy. Customer order 15 is
received by its customer f � 3 at time 369 + t0,2 + t2,3 � 478.
As the due date of the customer order, 15 is 429, so the order
is tardy, and the amount of tardiness is (478–429)� 49. Cus-
tomer order 6 is received by its customer f � 2 at time 440
as this order belongs to customer 2 and will be served with
customer order 9, because if a vehicle carries orders of the
same customer, they will be served at the arrival time of the
first order to that customer. The due date of order 6 is 702 so
the order is not tardy. Finally, customer order 3 is received by
its customer f � 1 at time 369 + t0,2 + t2,3 + t2,1 � 470 as it is
due date is 146, so this order becomes tardy, and the amount
of tardiness is 324 and the total delivery time of batch 1 by
1st vehicle is (470–369) � 101.

So, for batch 1, the cost of tardiness is (2.90×49 + 0.56×
324) � 323.54 and cost of delivery is {1.02× (150–147)×
101} � 309.06 and the net cost of lateness and distribution

is (323.54 + 309.06) � 632.6. For this illustrative case, we
will measure the overall cost of delay and distribution for the
remaining batches and then add the total costs of each batch
to achieve our objective value, which will reduce the entire
cost of lateness and batch distribution to multiple customers.

3.2 Amathematical formulation

The following notations are applied to formulate the mathe-
matical model and proposed algorithm:

Parameters:

f Index of customer, f � 1, 2, .., F

i Index of customer order, i � 1, 2, .., n.

m Index of machine in SDST PFSP, m � 1, 2,, M .

b Index of batch, b � 1, 2,, B

v Index of vehicle, v � 1, 2,, V

F The number of customers in the system

n The number of customer orders arriving in the system

M The number of machines in the PFSP environment

B The number of batches

V The number of vehicles

λi ith customer order in the customer order sequence λ �
{λ1, ……λn }, i � 1, 2, .., n.

PT λi ,m Processing time of customer order sequence λi on
machine m, i � 1, 2, .., n; m � 1, 2,, M

STm
λi ,λ j Sequence dependent set-up time of changing over from

order λi to order λ j on machine m, i, j � 1, 2, .., n;
m � 1, 2,, M

Q The maximum carrying capacity of the vehicle

μi The demand size of order i, we assume that μi ≤Q
(∀i � 1, 2, .., n); Suppose there are B delivery batches
with one vehicle for each batch

t f g � tg f Travel time between customers f and g (f, g � 1,……,
F; i ��g; index 0 indicates depot)

ddi Due date of customer order i

Aib The arrival time of batch b with customer order i to the
associated customer

α The unit cost of unutilized vehicle capacity per delivery

βi Per unit tardiness cost of customer order i

Continuous variable:

CT λi ,m Time of completing the customer order λi on machine
m, i � 1, 2, .., n; m � 1, 2,, M

Decision Variable:

X f g 1, if vehicle drives straight from node f to node g (f, g �
0, 1,…., F; f ��g)

0 otherwise

Yi f b 1, if customer order i belongs to customerf in batch b

0 otherwise

Zλi b 1, if λi is allocated to batch b, and

0 otherwise

123

Memetic Computing (2022) 14:355–376 363

Amixed-integer nonlinear programming model (MINLP)
for synchronization of production scheduling and distribu-
tion inpermutationflowshop-based supply chain considering
SDST and an infinite number of vehicles to distribute the
orders to the customer is given as:

(1)

Minimize
B∑

b �1

⎡

⎣

⎛

⎝
n∑

i�1

βi × max{0, Zλi b × Aib − ddi }
⎞

⎠

+α ×
⎛

⎝Q −
n∑

i�1

Zλi bμi

⎞

⎠ ×
n∑

i�1

F∑

f�0

F∑

g�0

Yi f bt f g X f g

⎤

⎦

Subject to-

CT λ1,1 ≥ PT λ1,1 + ST 1
0,λ1 (2)

CT λi ,1 ≥CT λi−1,1+ST
1
λi−1,λi +PT λi ,1 i � 2, 3,, n

(3)

(4)

CT λ1,m ≥ max{CT λ1,m−1, ST
m
0,λ1} + PT λ1,m m

� 2, 3,, M

(5)

CT λi ,m ≥ max
{
CT λi−1,m + STm

λi−1,λi ,CT λi ,m−1

}

+ PT λi ,m i � 2, 3,, n; m

� 2, 3,, M

n∑

i�1

X f g ≥ 1 g � 1, 2,, F (6)

B∑

b�1

Zλi b � 1, ∀i � 1, 2,, n (7)

n∑

i�1

Zλi bμi ≤ Q ∀b � 1, 2,, B (8)

(9)

∑n

i �1
Yi f b ≥ 1 ∀ f � 1, 2,, F ∀b

� 1, 2,, B

∑F

f �1
Yi f b � 1 ∀i � 1, 2,, n ∀b � 1, 2,, B

(10)

(11)

Aib ≥ maxi�1,2,...,n
{
Zλi b × CT λi M

}
+ t f g X f gYi f b b

� 1, 2,, B ∀i � 1, 2, .., n ∀ f � 1, 2,, F

(12)

μi ,Cλi ,m, Aib, ≥ 0 ∀i � 1, 2, .., n; b

� 1, 2,, B; m � 1, 2,, M

Zλi b, X f g,Yi f bε{0, 1} (13)

B �
∑n

i�1μi

Q
. (14)

The objective function (1) minimizes the total cost of
tardiness and delivery. Constraints (2) and (3) provide the
completion times of the first customer order and the remain-
ing (n–1) customer orders on the first machine, respectively.
Similarly, for each of the other (M–1) machines, constraints
(4) and (5) determine the completion times of the first cus-
tomer order and the remaining (n–1) job customer orders,
respectively. Constraint (6) ensures that each node is visited
at least once. According to constraint (7), each completed
customer order can only be assigned to a single batch. Con-
straint (8) states that the cumulative size of all customer
orders within a batch cannot be greater than Q, which is the
capacity constraint of each vehicle. Constraint (9) ensures
that each customer has at least one order or more, while con-
straint (10) ensures that each order has exactly one customer.
Constraint (11) gives the batch arrival time to the associa-
tive customer. Constraint (12) preserves the non-negativity
of the variables. Constraint (13) indicates that Zλi b, Yi f b,
and X f g are binary variables. For ease of computation, an
obvious lower bound is defined on the minimum number of
vehicles/batches needed to service the customers provided
by Eqs. 14.

4 Proposed algorithm

It is worth noting how important heuristic and metaheuris-
tic algorithms are for diverse decision problems in many
disciplines. Online learning, terminal operations scheduling,
multi-objective optimization, medicine, data categorization,
other fields, and the vehicle routing problem are only a few
examples. In the study of Zhao and Zhang [36], a learning-
based algorithm is proposed which aimed to enhance the
generalization ability. Learning automation (LA) is included
in the algorithm based on a decomposition many-objective
optimization framework.

Evolutionary many-objective optimization has been gain-
ing increasing attention from the evolutionary computation
research community. Much effort has been devoted to
addressing this issue by improving the scalability of multi
objective evolutionary algorithms. Abu Doush et al. [1] pro-
poses a new algorithm that applies heuristic techniques in
harmony search algorithm (HSA) to minimize the total flow
time. Z. Liu et al. [13] designed an Evolutionary Algorithm
to effectively combine vector angle with shift-based density
estimation for solving multi-objective problems using com-
plementary properties. For truck scheduling optimization at a
cold-chain cross-docking terminal with product perishability

123

364 Memetic Computing (2022) 14:355–376

considerations, Theophilus et al. [28] developed an Evolu-
tionary Algorithm, which is found to be the most promising
metaheuristic, considering both solution quality and CPU
time perspectives. A Hybrid Evolutionary Algorithm, which
deploys a set of local search heuristics, is developed to solve
the problem of minimizing carbon dioxide emissions due to
container handling at marine container terminals in the study
of Dulebenets et al. [9], where the proposed solution algo-
rithmcan be adopted as effective planning tools by themarine
container terminal operators and improve the environmental
sustainability of the terminal operations..

4.1 Genetic algorithm

A GA, which is an evolutionary algorithm, has been devel-
oped in this article. It was first proposed by Holland in 1992,
who was influenced by human evolution. The GA’s theory
is to prevent inbreeding replication by renewing the popula-
tion (set of solutions) based on a natural selection rule and
the best survival mechanism (local optimum). The renewal
cycle repeats itself from generation to generation before a
predetermined stopping point is reached. GA has been suc-
cessfully used to solve a wide range of difficult optimization
problems in recent years. Its popularity stems from its con-
venience, ease of use, and versatility are the primary reasons
for using GA as an optimization method in this study.

The key components of the GA for the problem at hand,
such as solution encoding, population initialization, genetic
operators, assessment of fitness, and generation renewal, are
represented in the following section. The genetic algorithm
depicted in Fig. 4 is a flow map, with every chromosome
representing a solution determined by a representationmech-
anism.

4.1.1 Encoding schemes and evaluation

The encoding of a candidate of the SDST PFSP with batch
supply to multiple customers for the issue at hand synchro-
nizes two operating choices, assessing the ordermanagement
sequencing and sorting consumer orders into batches while
taking capacity constraints into account for delivery to the
associated customer. As a result, a matrix of three rows and
n columns can be used to represent the chromosome. The
second row reflects the truck supply batches used to assign
the customer order to an appropriate number of batches. The
batch distribution assumes that the samebatch can ship orders
from separate customers in a single delivery, and orders from
the same customer can be delivered by different batches in
multiple deliveries. The first row of the matrix is a permu-
tation of n customer orders which represents the customer
order processing sequence on themachines in an SDSTPFSP
and the customer visit sequence in each delivery batch as
described by Ruiz et al. [25]. For the illustrative example

presented in Sect. 3.1, the chromosome of its partial solution
is illustrated in Fig. 5. In the second row ‘1, 1, 1, 1, 2, 2, 2, 3, 3,
3, 3, 3, 4, 4, 4’ signifies that 4 vehicle delivery tours are being
used to deliver all the customer orders. The vehicles take the
delivery tours immediately after all the customer orders con-
tained in that tour are completed in the production stage.
According to the first row, customers {4, 13, 5, 2}, {6, 1,9},
{14,10,3,7,15} and {12, 8, 11} are successively delivered by
the first, second, third and four homogeneous vehicle tours of
identical capacity, respectively. The third row represents the
customer numbers. As shown in Fig. 2, the completed cus-
tomer order sequence contains orders from three customers,
i.e., customers 1, 2 and 3, where customer orders {1,2,3,4,5},
{6,7,8,9,10} and {11,12,13,14,15} belongs to customer 1, 2
and 3, respectively.

4.1.2 Population initialization

It is recommended to use a quick and easy heuristic to find
a good solution for the first generation to speed up algo-
rithmic convergence. This method will drastically minimize
the amount of time it takes GA to reach a reasonable local
minimum. In GA, the initial population is traditionally gen-
erated at random. Nevertheless, random initialization could
not achieve a great solution in a fair amount of time [20].
We suggest that such non–random individuals be Popula-
tion size included in the initial population for this reason. The
following describes how individuals with Population size are
constructed: In population initialization, the first individual
is generated by using the NEH_RMB heuristic [25] to handle
set up time in the production phase of permutation flow shop
scheduling to give a satisfactory result. The second individual
is generated by the modified NEH_RMB heuristic consider-
ing EDD. The orders are first grouped by their EDD, and then
the technique is the same as the NEH_RMB heuristic. The
Earliest Due Date (EDD) is a widely used scheduling guide-
line to achieve successful outcomes for tardiness-related
metrics. As a result, NEH_RMB with EDD is considered
for population initialization when dealing with PFSP with
batch distribution to several customers. Finally, the random
insertion procedure is used for the initial population to find
(Population size–2) individuals.

4.1.3 Selection and crossover operation

An elitist approach dependent on the fitness feature is used to
select chosen individuals (parents) from the children’s gen-
eration population. When genetic operators (mutation and
crossover) are used, it is possible to lose the best chromo-
somes. Elitism is a way of maintaining a clone of the best
chromosomes in future generations. The process outlined
above allows the genetic algorithm to retain some of the best
solutions in each generation. Previous research has shown

123

Memetic Computing (2022) 14:355–376 365

Fig. 4 The flowchart of the
proposed genetic algorithm

Fig. 5 Example of encoding
representation

Customer order
number

4 13 5 2 6 1 9 14 10 3 7 15 12 8 11

Batch number 1 1 1 1 2 2 2 3 3 3 3 3 4 4 4

Customer number 1 3 1 1 2 1 2 3 2 1 2 3 3 2 2

that this process improves the performance of genetic algo-
rithms and reduces coverage time [22].

Two crucial genetic activities, exploitation and explo-
ration, are used to advance the genetic search [8]. In certain
cases, the crossover operator takes advantage of a superior
approach. For replication, the proposed algorithm uses a
modified two-point crossover. As seen in Fig. 6, the total
number of customer orders, batch, and customer is 15, 4,
and 3, respectively, in the illustrative illustration given in
Sect. 3.1. In every iteration, a real value between 0 and 1 is
produced randomly for the two parents until the crossover
probability (Pc) is less than the given value. If the random
number is≤Pc (crossover probability), the modified two-
point crossover operator splits each parent into three sections
by selecting two columns (Cc1 andCc2) at random.The genes
in one parent’s middle section are then replicated from one
father or mother to a child. The rest of the genes are even-
tually inserted in the child’s unfilled positions according to
their order of appearance in the other parent, from left to left
right.

4.1.4 Mutation

There are some methods for avoiding local optima. One of
them is a mutation (K. [32], one of the operators frequently
used to fix the local optimality of intelligent optimization
algorithms when they are being used built. The likelihood
that a crossover operator’s offspring will undergo mutation
during a mutation phase is known as the probability of muta-
tion. To diversify, a pairwise interchange mutation is applied
to every child with a mutation probability, Pm. Every itera-
tion generates a random real number between 0 and 1 that
is lower than the mutation probability (Pm), then two pair
genes with positions Cm1 and Cm2 are randomly selected
and exchanged to form a new child. Figure 7 depicts an exam-
ple of the pairwise interchange mutation procedure for the
illustrative example, discussed in Sect. 3.1, where the total
number of customer orders, batch, and customers is 15, 4,
and 3.

123

366 Memetic Computing (2022) 14:355–376

Fig. 6 Two-point crossover for Generating two children from two-parent

Fig. 7 Generating a solution according to interchange mutation

4.1.5 Repair process

A newly generated chromosome may violate the vehicle’s
capacity. As a consequence of that, the corresponding solu-
tion becomes infeasible. In such a case, a repairing operator
is implemented in the GA. The repairing operator consists
of a nonstop accumulation of the loads demand of customer
orders in a vehicle route until the overall weight of the load
exceeds the vehicle’s carrying capacity Q. If the total weight
of the vehicle exceeds the vehicle’s carrying capacity at the
ith column, then the batch index ‘b’ where b � 1, 2,, n
at the (i-1)th column allocated for a particular batch index in
row two is changed to ‘n + 1’. Furthermore, to indicate the
end of the deliveries, the last genetic element in row twomust
be certain to be ‘n + 1’. An example is illustrated in Fig. 7.
According to Table 2, customer orders 9, 15, 6, 3, 1, 4, 2, 14,
12,5,7,11,8,10 and 13 have demands 20, 50, 67, 10, 59, 30,
30, 45, 30,10,20,30,40,20 and 50, respectively. The vehicle
capacity isQ � 150. We can observe in Fig. 8 that the cumu-
lative load of the first six customer orders 14, 12,5,7,11, and
8 in the third vehicle route is equal to 175, which violates the
vehicle’s capacity, the vehicle route is infeasible because the

Fig. 8 An example of a repairing operator

last item of the third vehicle in row 2 is finished by ‘b � 3’.
To repair it, the last batch index of the third vehicle in row
2 is changed to ‘3 + 1 � 4’. In addition, we observe that it
does not violate the capacity constraint of the fourth vehicle
so, the batch index of customer orders 8,10, and 13 will be b
� 4. The pseudo-code of the Repair procedure is presented
in Fig. 12 (Appendix A).

4.1.6 Local search

Local search searches simply explore the solution’s environ-
ment to find the algorithm in an improved neighborhood than
the current solution. In this analysis, the best solution for each
generation is subjected to local search. The new chromosome
swaps the existing chromosome if it produces a better objec-
tive function. The proposed local search is aimed at lowering
overall costs.

The neighborhood structure is the insertion neighborhood
search, which searches for the best fit based on the EDD for
consumer orders in a similar batch.Customer order i ismoved
and tested in all possible positions inside batch b before being

123

Memetic Computing (2022) 14:355–376 367

Table 3 Time-related and cost-related parameters for test problem

Parameters Values

Processing time on the
machine in the PFSP,
PT λi ,m

Selected from Taillard’s
benchmark data[27]
from [25]

Sequence-dependent setup
time, STm

λi ,λ j

Selected from Taillard’s
benchmark data from
[25]

Number of customers, f U (0.3i, 0.6i)

The demand size μi of
order i

U (β/2, β); β � 100

Vehicle capacity, Q U, (max¯i
∑

μi
2)

Travel time between
customers f and j (tfg �
tgf)

U (1, 100)

Due date of the customer
order, ddi

dd � ∑M
m�1 PT λi ,m +

ST (i−1)i,m + t0 f +

U(0, β|(m+n−1)+(n+1)|
4)

Per unit tardiness costs per
order, βi

U (1, 10)

Per unit cost of the
unutilized vehicle per
delivery, α

U (1, 10)

Table 4 Parameters and their Levels in the proposed GA algorithm

Parameters Levels

1 2 3 4

Tournament size 10 15 20 25

Pop 50 100 150 200

Gen 100 200 300 400

Pc 0.3 0.4 0.5 0.6

Pm 0.05 0.10 0.15 0.20

put in the best position. The process is repeated before all
customer requests from all batches have been considered.

5 Results and experimental analysis

The literature does not include any scheduling algorithms to
deal with PFSP considering SDST under practical circum-
stances. It is a truly new combinatorial optimization problem,
enabling orders from numerous customers to be grouped
and transported by vehicles of limited capacity to multiple
customers. As a result, an explicit approach is used rather
than comparing the proposed GA to any known algorithms.
This section is divided into four subsections: random check
instances generation, experimental design, parameter stan-
dardizations, and experimental results and discussions.

Table 5 Orthogonal Array L16 (45)

Trial Parameters ARPD

Tournament size Pop Gen Pc Pm

1 1 1 1 1 1 0.8080

2 1 2 2 2 2 0.8080

3 1 3 3 3 3 0.0940

4 1 4 4 4 4 0.0940

5 2 1 2 3 4 2.9470

6 2 2 1 4 3 3.2270

7 2 3 4 1 2 0.1550

8 2 4 3 2 1 2.1170

9 3 1 3 4 2 1.4450

10 3 2 4 3 1 0.1980

11 3 3 1 2 4 1.5580

12 3 4 2 1 3 0.1890

13 4 1 4 2 3 0.0220

14 4 2 3 1 4 0.1070

15 4 3 2 4 1 0.5330

16 4 4 1 3 2 0.1250

Table 6 The value of response and significance rank for GA

Level Tournament size Pop Gen Pc Pm

1 0.4510 1.3055 1.4295 0.3148 0.9140

2 2.1115 1.0850 1.1193 1.1263 0.6333

3 0.8475 0.5850 0.9407 0.8410 0.8830

4 0.1968 0.6312 0.1173 1.3248 1.1765

Delta 1.9148 0.7205 1.3122 1.0100 0.5433

Rank 1 4 2 3 5

5.1 Generation of random test instances

The requirement for creating test examples significantly
affects evaluating the heuristic’s success over MINLP. Sine
there is no standard benchmark available for the problem
under study, we extended the standard benchmark data for
the flow shop scheduling problem [25] in the following way.

Ruiz’s benchmark [25] is extended from Taillard’s bench-
mark instances [27]. In this paper, four problem sets from
Ruiz’s benchmark [25] were considered by considering the
processing time of each job inmachine and their SDST as the
input data for the experiment. Each of the four sets considered
four different processing times to sequence-dependent setup
time ratios. For example, the SSD-10 instance set includes
120 instances with processing times that fit Taillard’s bench-
mark data and SDSTs that are 10% of the processing times.
The instance set SSD-50 has a setup time of 50% of the pro-
cessing time, while the instance sets SSD-100 and SSD-125
have setup times of 100% and 125% of the processing time,
respectively. For the suggested solution, we usually choose

123

368 Memetic Computing (2022) 14:355–376

Fig. 9 The value of ARPD for
each parameter level of GA

the first two instances from the sets {20×5, 20×10, 20×
20, 50×5, 50×10, 50×20, 100×5, 100×10, 100×20,
200×10, 20×20}, where the cumulative 88 is made up of
{11 sets×2 instances×4 SSD} problem sets. We selected
to address only the eighty-eight instances (up to two hundred
jobs and twentymachines). Apart from job-machine process-
ing times and SDSTs for each instance, other input data for
each problem instance is generated as follows. The number
of customers is randomly generated within 30% to 60% of
the total number of orders for every instance set. Below are
the time and cost-related parameters: We usually set a gen-
eral value before generating the demand size, and this value
can be used as a basis for generating all different parame-
ters. It is assumed that the demand size μi of customer order
i, is distributed uniformly randomly and is expressed by U
(β/2, β). We usually believe it cannot be smaller than the
maximum demand size when it comes to vehicle capacity. U

(max μi,

∑
μi
2) is the upper bound for availability, which is

set at 1
2 the total size of demand of all customer orders. It is

known that the distances are symmetric (i.e., t f g � tg f where
f and j represent customer (f, g � 1…., N; f ��g). Travel time
between customers f and g (t f g � tg f) is mounted to U (1,
100).To successfully handle each production anddistribution
activity, it is important to strike a balance between process-
ing and travel times. Since machine scheduling problems are
negligible, the combined problem comes down to a VRP if
process times are much longer than travel times.We prefer to
use (m + n-1) as the multiplier factor in the production stage
of the integrated problem, but (n + 1) in the distribution stage,
where m and n denote the number of machines and orders,
respectively. The per-unit cost of tardiness β i for a customer
order i belonged to customer f and therefore the unit cost of

the unutilized vehicle per delivery, α is fixed to U (1, 10).
Generations of due dates are determined in the last row using
similar expressions. All these datasets can be obtained from
this link for future use: https://research.unsw.edu.au/projects/
cross-disciplinary-optimisation-under-capability-context.

5.2 Experimental design

The proposed algorithm was coded in Python 3.7 and run on
an Intel(R) Core (TM) i5-10210U CPU running at 1.60 GHz
with an 8-GB RAM processor. The relative proportion devi-
ation (RPD) is a common performance parameter that is used
to assess an algorithm’s performance as follows:

RPD � |ObjVali − ObjValbest
ObjV albest

|×100 (15)

ObjVali denotes the objective value of a solution made
by a particular algorithm i while ObjValbest denotes the
objective value of the best solution generated by all the algo-
rithms considered.Meta heuristics canyield entirely different
outcomes in multiple runs due to their inherent randomness.
Rather than using RPD as a performance measure directly,
the metaheuristic runs a test problem ten times and then uses
the best RPD (BRPD) and average RPD (ARPD) from those
ten runs to show its efficiency. A meta-heuristic with lower
BRPD and ARPD, as seen in Eqs. 16 and 17, could pro-
vide more practical solutions for integrating the output of
the problem at hand.

BRPD � | BObjVali − ObjValbest
ObjValbest

|×100 (16)

123

https://research.unsw.edu.au/projects/cross-disciplinary-optimisation-under-capability-context

Memetic Computing (2022) 14:355–376 369

Table 7 Comparison of the proposed GA and Exact approach for small-sized example

Instance Objective value Exact approach GA

Size No. of customer
orders(i)

No. of machines
(m)

No. of customers
(f)

Exact approach GA RPD BRPD ARPD

Small 15 5 3 16,456 16,456 0 0 0

Medium 20 10 8 – 21,752.4 – 0 –

Large 100 10 40 – 902,752.4 – 0 –

Table 8 Comparison of GA and the proposed GA for different-sized example

Instance Objective value CPU in s GA Proposed GA

Problem size
(Orders i)

Number of
machines (m)

GA Proposed GA GA Proposed GA BRPD ARPD BRPD ARPD

20 5 154,512.4 151,815.8 122.246 73.32 1.78 0.537 0 0.450

5 93,062.09 61,692.82 136.104 87.82 50.85 0.286 0 0.152

10 133,303.7 112,361 158.65 127.26 18.64 2.493 0 2.398

10 58,038.86 49,436.66 155.999 117.09 17.40 0.191 0 0.149

20 154,854.7 103,469.4 398.801 327.73 49.66 0.370 0 0.297

20 244,671 166,898.5 226.48 197.13 46.60 0.947 0 0.838

50 5 248,348.6 226,538.1 290.401 248.28 9.63 0.187 0 0.171

5 509,395.6 481,365.3 216.862 169.96 5.82 0.436 0 0.306

10 431,902.1 346,329.3 575.169 360.48 24.71 0.462 0 0.339

10 765,172.9 754,676.1 3748.064 3521.05 1.39 0.052 0 0.049

20 579,579.6 539,032.3 516.862 441.21 7.52 0.073 0 0.046

20 453,509.1 451,607.8 503.373 399.29 0.42 0.404 0 0.285

100 5 3,558,295 2,578,956 331.526 265.42 37.97 0.120 0 0.056

5 1,208,915 1,194,377 462.177 423.78 1.22 0.537 0 0.485

10 1,083,543 1,025,975 3322.014 3149.17 5.61 0.446 0 0.335

10 3,581,041 2,509,704 546.557 489.22 42.69 0.178 0 0.126

20 1,315,201 1,272,748 4592.36 4082.96 3.34 0.171 0 0.168

20 2,561,955 2,516,201 1258.853 1102.54 1.82 0.224 0 0.143

200 10 6,637,461 6,500,056 1731.778 1525.80 2.11 0.121 0 0.029

10 4,754,171 4,730,561 2815.49 2521.99 0.50 0.193 0 0.171

20 5,862,138 5,704,786 3784.012 3350.21 2.76 0.224 0 0.131

20 5,831,166 5,779,424 5004.001 4410.87 0.90 0.200 0 0.070

ARPD � 1

10

10∑

r�1

|ObjValri − ObjValbest
ObjValbest

|×100 (17)

The value of the objective function of the best solution
produced by algorithm i over ten runs is represented by
Eq. 16, and the value of the objective function of the solu-
tion obtained by algorithm i in the rth run is represented by
Eq. 17.

Since the PFSP where SDST is considered for batch
distribution to numerous customers can be an innovative
combinatorial problem, as in the literature, there are no
benchmark data sets.As seen in Sect. 6 of Table 3, completely
different sets of test problems were created at random from

the extension of the benchmark data information during this
paper to demonstrate the efficacy of the suggested algorithms
(Fig. 8).

5.3 Parameter standardization

Subsequently, the efficiency of ameta(heuristic) is dependent
on its parameters (K. [32], tuning the main parameters of
GA, like the Tournament size, populations number (Pop),
generations number (Gen), probability of crossover (Pc), and
probability of mutation (Pm) is essential. As compared to the
classic full factorial experimental design, Taguchi’s design
experiment method [15] significantly decreases the number

123

370 Memetic Computing (2022) 14:355–376

Table 9 Experimental results of
the proposed algorithms for
small and large-sized instances

Instance type Number of
machines

Problem size (Orders) Average CPU in s

20 orders 50 orders 100 orders 200 orders

SSD-10 5 0.450 0.171 0.056 − 211.43

5 0.152 0.306 0.485 −
10 2.398 0.339 0.335 0.029 1476.51

10 0.149 0.049 0.126 0.171

20 0.297 0.046 0.168 0.131 1788.99

20 0.838 0.285 0.143 0.070

SSD-50 5 0.364 0.160 0.158 − 174.847

5 0.125 0.240 0.014 −
10 0.864 0.190 0.167 0.130 1227.579

10 0.693 0.015 0.329 0.583

20 0.974 1.238 0.790 0.002 1444.274

20 1.100 0.010 0.145 0.013

SSD-100 5 0.070 0.804 0.572 − 209.403

5 0.931 0.368 0.303 −
10 3.570 0.077 0.136 0.041 1589.125

10 0.592 0.055 0.120 0.505

20 0.184 0.248 0.156 0.051 1759.242

20 0.429 0.841 0.186 0.102

SSD-125 5 0.680 0.097 0.066 − 203.363

5 1.244 0.707 0.147 −
10 0.476 0.711 0.472 0.090 1497.803

10 2.407 0.006 0.314 0.065

20 1.879 0.895 0.047 0.149 1785.565

20 1.871 0.253 0.082 0.650

Average 0.947 0.337 0.229 0.173

of experiments expected and is thus used to standardize the
parameters of the proposed GA (Table 4).

Since there are five parameters, each of which has four
stages, a total of 45 � 1024 experiments must be required
to be performed within the maximum factorial experimen-
tal framework. On the other hand, the Taguchi technique
solely examines 16 variations of factor levels based on the
orthogonal array L16(45) seen in Table 5. Each combination
algorithm is run ten times independently to ensure correct
parameters to evaluate an appropriate GA parameter con-
figuration. GA runs ten times with a specific parameter
configuration for this set of samples, and the stopping crite-
ria for each run are close to the maximum number of fitness
evaluations. After that, ARPD is collected as an efficiency
indicator. The Taguchi experimental findings show the incli-
nation of every parameter is shown in Fig. 9 by the Taguchi
experimental findings. The x-axis in this diagram represents
the primary GA parameters that need to be adjusted, while
the y-axis represents the average objective value for every
parameter level. The subsequent parameter of GA could offer

satisfactory results: Tournament size � 25, Pop � 150, Gen
� 400, Pc � 0.3 and Pm � 0.10.

Table 6 shows the value of response and rank of every
parameter for every stage based on ARPD values. This table
also displays each parameter’s delta values, which is the gap
between the highest and lowest average values of response
for every element. Tournament size, for example, has a delta
value of 1.9148 (� 2.1115–0.1968) in Table 6. It is criti-
cal to recognize that a parameter with a higher delta value
is more significant than another. The Tournament size is the
most critical parameter for the proposed genetic algorithm,
according to the delta value in Table 6, while the Pm is
the least important parameter. To check the parameters, all
eighty-eight instances were chosen that were generated by
extending Taillard’s benchmark data information from [24]
of permutation flow shopswith SDST.Wherever the stopping
criteria of every run are set to the generation (Gen number; it
will stop once the number of recent generations reaches the
maximum generation (Gen) number.

123

Memetic Computing (2022) 14:355–376 371

Table 10 Experimental results of the proposed algorithm for small and large-sized instances

Problem size
(Orders)

Number of
machines

Instance type

SSD-10 CPU time in s SSD-50 CPU time in s SSD-100 CPU time in s SSD-125 CPU in s

20 5 0.450 69.28 0.364 73.32 0.070 63.79 0.680 70.80

5 0.152 64.27 0.125 87.82 0.931 64.85 1.244 82.63

10 2.398 90.33 0.864 127.26 3.570 91.95 0.476 116.83

10 0.149 88.86 0.693 117.09 0.592 90.63 2.407 109.07

20 0.297 243.46 0.974 327.73 0.184 244.07 1.879 336.45

20 0.838 138.36 1.100 197.13 0.429 174.43 1.871 186.34

50 5 0.171 175.67 0.160 248.28 0.804 228.27 0.097 242.10

5 0.306 134.85 0.240 169.96 0.368 171.64 0.707 181.07

10 0.339 355.55 0.190 360.48 0.077 456.01 0.711 479.88

10 0.049 261.99 0.015 352.05 0.055 348.13 0.006 355.08

20 0.046 300.64 1.238 441.21 0.248 432.83 0.895 423.27

20 0.285 301.45 0.010 399.29 0.841 431.63 0.253 422.70

100 5 0.056 241.57 0.158 265.41 0.572 285.35 0.066 279.84

5 0.485 363.44 0.014 423.78 0.303 406.27 0.147 399.96

10 0.335 310.17 0.167 314.17 0.136 326.63 0.472 377.09

10 0.126 465.29 0.329 489.22 0.120 475.27 0.314 448.97

20 0.168 3330.54 0.790 4082.96 0.156 4358.56 0.047 4129.45

20 0.143 768.24 0.145 1102.55 0.186 972.58 0.082 1081.37

200 10 0.029 1062.44 0.130 1525.80 0.041 1537.86 0.090 1488.25

10 0.171 2046.99 0.583 2521.99 0.505 2582.95 0.065 2739.83

20 0.131 2615.67 0.002 3350.21 0.051 3355.00 0.149 3256.69

20 0.070 3855.83 0.013 4410.87 0.102 4315.41 0.650 4237.66

Average 0.327 785.67 0.377 972.208 0.470 973.369 0.605 974.788

5.4 Experimental results and discussions

Even with moderately sized customer orders, the MINLP
model is unable to have optimum solutions due to the dif-
ficulty of the problem. To inspect the effectiveness of the
proposed GA, LINGO 18.0 was employed. A comparative
analysis has been done between the obtained result from the
genetic algorithm and the outputs of lingo 18.0. The indicator
considered in the comparison is the RPD value. A compari-
son of the outcomes is also given in Table 7 to determine the
success of the proposed MINLP model.

In terms of calculation, Table 7 indicates the results of
GA and an exact solution. The first column indicates the size
of the instance, and the second, third, and fourth columns
indicate the customer order (i), machine number (m), and
several customers (f), respectively. The fifth and sixth col-
umn shows the objective value of the exact approach solved in
LINGO18.0 and the proposed algorithm, and in the last three
columns, the relative proportion deviation (RPD) of the exact
approach and best and average RPD value for metaheuristic
is provided.

The relative percentage deviation (RPD) shows that the
exact method (LINGO) generates the same solutions as GA,
which indicates the validation of the proposed GA. But
for such a complex problem at hand, the commercial soft-
ware LINGO could not give any feasible solution with the
increased number of variables, even for a moderate size of
instances. On the other hand, the proposed GA finds high-
quality solutions for medium and large-scale problems in a
short amount of time.

In terms of calculation, Table 8 indicates the results of
GA (GA without local search and repair process).and pro-
posedGA (where a genetic algorithm is hybridizedwith local
search and a repair process is also implemented here to avoid
constraint violation). The first column indicates the size of
the instance, and the second column indicates the machine
number (m). The third and fourth column shows the objective
value of the GA and the proposed genetic algorithm, the fifth
and sixth column represents the CPU time in seconds for GA
and Proposed GA, respectively, and in the last four columns,
the best and average RPD value for metaheuristics (GA and
Proposed GA) is provided respectively.

123

372 Memetic Computing (2022) 14:355–376

The average relative percentage deviation (ARPD) shows
that the proposed GA, finds high-quality solutions for differ-
ent sized problems in a short amount of time.

5.4.1 Impact on variations in the number of customer
orders andmachines of the proposed algorithm’s
efficiency

This section is designed to interpret the overall success of
the proposed Genetic algorithm for a variety of customer
orders andmachine numbers. Table 9 shows the experimental
results of the proposed algorithms for different sized {20×
5, 20×10, 20×20, 50×5, 50×10, 50×20, 100×5, 100×
10, 100×20, 200×10, 20×20} instances. Where the first
column represents instance type, the number of machines is
represented by the second column, the columnnumbers third,
fourth, fifth, and sixth represent the order size, respectively,
and the last column represents the average CPU time in the
second.

Table 9 groups all 88 instances into four order size cat-
egories, and a statistical study of the average value of all
four categories reveals that the ARPD value of GA steadily
declines as the number of customer orders grows. As a
result, the proposed algorithm’s solution efficiency vastly
outperforms for large-sized instances. We have also divided
the findings into a certain number of orders and various
machines. As can be seen from the solution, the number of
machines does not affect the efficiency of the proposed algo-
rithm, but the total CPU time of orders of different instance
types increases as the number of machines increases.

5.4.2 Impact of variation of setup time in the proposed
algorithm’s efficiency

This section is designed for viewing the proposed Genetic
algorithm’s overall output in terms of setup time variabil-
ity. The proposed algorithms’ experimental findings for four
types of Taillard benchmark data are shown in Table 9: SSD-
10, SSD-50, SSD-100, and SSD-125. The setup times in the
SSD-10 instance set are evenly distributed in the range [1;
9] if the processing times in Taillard instances are obtained
from a uniform distribution in the range [1; 99], and in the
instance sets SSD-50, SSD-100, and SSD-125, [1; 49], [1;
99], and [1; 124], respectively, The first column in Table 10
represents order size, the number of machines is represented
by the second column, the third, fourth, fifth, seventh, and
ninth columns designate the instance type, and the fourth,
sixth, eighth, and last columns represent the CPU time of the
specific instance type in seconds, respectively.

The ARPD value and the computing time of GA steadily
increase as the percentage of setup time with the uniform
distribution of processing time in the range [1; 99] increases,
according to a comparative study of the average value of all

Fig. 10 Effects of the variability of setup time

four-instance types with differing setup time. As a result, the
proposed algorithm’s solution efficiency improves as the per-
centage of setup time decreases. Figure 10 depicts the overall
percentage rise as the setup time varies with the processing
time.

5.4.3 Generation wise solution improvement

The success of any algorithm is often measured by its
speedy convergence. This sub-section represents the conver-
gence speed of the proposed metaheuristic. Figure 11 reveals
convergence behaviour for a large (200×20), medium
(100×10, 50×5), and small-sized (20×5) instances pic-
tured by a graph (a), (b), (c), and (d), respectively. Wherever
the number of generations is 400. The graph plots the total
values of the objective function of all genes (in the y-axis)
against every generation number (in the x-axis). It is rea-
sonable to expect the evolved metaheuristic to converge at
around 250 generations for large andmedium-sized instances
and around 50 generations for small-sized instances.

6 Conclusions and future directions

In this paper, we have addressed synchronous production
scheduling and distribution planningwhere permutation flow
shop scheduling and VRPs are addressed practically. This
study differs from others in that-

• Several previous studies have neglected to consider the
SDST for PFSP to combine it with the distribution scheme.

• To reduce production costs, SDST is combined with PFSP,
which makes this issue more realistic.

• To reduce shipping costs, batching is performed to dis-
tribute each batch to several consumers by a different
homogeneous capacity-constrained vehicle.

• To identify optimal solutions with our proposed MINLP,
we have suggested a genetic algorithm to generate a close-
to-optimal solution.

123

Memetic Computing (2022) 14:355–376 373

Fig. 11 Convergence of GA for
a different size and typed
instances

(a) (b)

(d)(c)

• To validate the solution exact method (LINGO) was
applied to small instances, generating the same solutions
as the proposed GA.

• To compare the performance of proposed GA, especially
for medium and large-sized problem instances, we have
implemented GA (GA without local search) where the
average relative percentage deviation (ARPD) shows that
the proposed GA finds high-quality solutions for different
sized problems in a short amount of time.

• To assess the success of the proposed solution, we created
a series of trials where numerical studies show that the
recommended solution improves the problem’s efficiency
by lowering the average cost of lateness and distribution.

Obtaining the optimal or best solutions within realistic
computational times for PFSP considering SDST with batch
distribution to multiple customers is difficult, particularly for
large-scale problems.Our proposedGAyields near-optimum
solutions for integrating production and distribution deci-
sions in a PFSP. The only shortcoming is we assumed an
infinite number of vehicles rather than considering a finite
number to avoid more complexity.

This research would be expanded in many areas to shed
light on upcoming studies. A sensitivity analysis will be per-
formed to see how different vehicle capacities affect the
problem and, as a result, the effect of a finite number of
multiple vehicles with homogeneous/heterogeneous capaci-
ties. In addition, alternative metaheuristics can be combined
with efficient local search methods to provide even better
outcomes.

7 Appendix

See Fig. 12 and Tables 11, 12, 13, 14, 15, 16 and 17.

Input: Individuals of a generation, Vehicle capacity,
Maximum batch number of an individual

Step 1: Demand calculation in all batches of an individual
WHILE demand in a batch is more than vehicle capacity DO

Step 2: Increase the batch number
Step 3: Allocate the last job to the new batch
Step 4: Update the demand of the current batch and the

new batch
END

Step 5: Replace the old individual with the repaired
individual

Output: Repaired individual of a generation which doesn't
violate the vehicle capacity constrain

Fig. 12 The pseudo-code of the Repair process

Table 11 Data for initial setup times on the machines

Number of machines Initial set up time [randomly generated
using uniform distribution]

1 5

2 2

3 1

4 4

5 3

123

374 Memetic Computing (2022) 14:355–376

Table 12 The required travel
time between the customers

f 0 1 2 3

0 0 88 71 45

1 88 0 41 75

2 71 41 0 38

3 45 75 38 0

Table 13 Random data for the SDSTs on the machine 1

ST 1
λi ,λ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 5 8 2 7 7 4 5 4 3 8 7 9 2 3

2 9 0 8 1 1 9 6 7 9 6 1 6 1 6 7

3 1 7 0 2 9 5 2 9 5 6 3 6 6 1 1

4 7 7 4 0 6 6 3 7 8 9 2 6 5 8 8

5 5 7 5 3 0 6 6 2 8 5 4 5 4 7 2

6 8 6 2 7 3 0 2 1 7 3 8 4 4 1 6

7 8 7 5 9 1 8 0 7 4 1 2 9 5 5 3

8 6 4 4 4 1 8 1 0 1 1 5 6 6 3 9

9 7 4 2 6 4 3 6 6 0 3 7 6 8 9 4

10 7 8 6 6 6 8 9 6 6 0 4 1 1 4 6

11 5 9 8 5 3 3 7 1 9 1 0 9 7 6 3

12 9 7 4 2 2 7 5 5 4 8 2 0 5 7 4

13 1 9 7 2 4 4 7 9 9 4 1 5 0 3 9

14 9 2 5 4 1 2 2 2 6 8 8 1 6 0 1

15 5 8 8 1 3 8 7 7 4 9 3 9 9 4 0

Table 14 Random data for the SDSTs on the machine 2

ST 2
λi ,λ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 2 8 9 5 6 2 9 6 6 8 8 6 3 4

2 7 0 5 3 7 9 1 8 6 5 9 3 8 7 3

3 4 2 0 2 7 3 9 1 6 5 9 5 7 6 7

4 9 7 2 0 6 4 1 4 1 4 2 7 4 6 3

5 8 3 5 2 0 4 5 4 3 4 3 2 7 9 2

6 3 7 5 6 9 0 7 8 9 1 2 1 1 4 5

7 6 8 4 4 1 2 0 3 4 3 8 9 5 5 6

8 4 4 5 4 6 4 5 0 6 6 4 1 3 6 5

9 9 1 2 9 7 8 9 4 0 8 9 6 5 5 2

10 5 8 2 4 4 5 2 1 1 0 8 5 5 8 8

11 6 7 5 3 8 3 1 3 2 9 0 7 3 6 4

12 3 5 7 8 1 8 5 7 6 8 7 0 3 2 6

13 3 8 4 9 2 2 2 6 2 1 5 9 0 6 1

14 7 7 5 5 9 7 9 8 3 3 8 6 9 0 2

15 8 8 2 7 6 9 8 8 3 7 9 5 7 9 0

Table 15 Random data for the SDSTs on the machine 3

ST 3
λi ,λ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 6 8 2 5 3 7 1 4 3 5 8 8 6 1

2 6 0 8 2 7 3 6 2 8 3 6 6 1 8 1

3 5 7 0 6 2 9 5 8 4 3 7 7 5 8 3

4 3 3 6 0 8 4 2 9 9 5 5 2 2 2 4

5 3 4 5 3 0 4 9 4 5 3 8 5 5 6 8

6 6 1 6 1 1 0 4 1 7 6 4 7 5 5 8

7 3 6 3 9 3 1 0 2 1 3 1 9 3 2 1

8 7 1 1 9 7 5 8 0 8 4 5 2 1 9 9

9 1 1 8 9 1 6 6 5 0 9 5 5 4 4 1

10 1 8 1 1 1 3 4 9 1 0 9 7 1 6 7

11 1 3 8 5 9 1 9 5 8 1 0 9 5 2 8

12 2 5 5 3 5 6 6 3 9 8 4 0 8 3 4

13 2 6 2 3 1 3 7 6 8 1 5 3 0 7 5

14 7 2 8 7 4 2 6 2 6 9 4 9 8 0 7

15 9 1 9 3 3 4 7 3 6 2 6 9 7 1 0

Table 16 Random data for the SDSTs on the machine 4

ST 4
λi ,λ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 7 1 8 1 5 6 7 4 4 3 2 4 7 8

2 5 0 1 5 8 6 9 3 5 8 6 3 3 8 1

3 6 4 0 7 4 1 7 7 6 6 8 5 3 3 8

4 1 4 5 0 8 3 4 9 8 9 6 5 2 1 3

5 3 2 3 9 0 5 8 8 5 5 5 8 9 3 1

6 8 2 8 2 5 0 1 7 8 1 4 2 6 1 7

7 1 3 2 4 3 3 0 4 8 5 7 7 5 2 7

8 9 8 2 2 5 4 6 0 9 3 7 9 2 1 3

9 1 1 8 4 5 7 5 2 0 1 3 5 2 8 4

10 3 5 1 8 1 9 4 9 7 0 2 7 1 3 2

11 9 9 5 2 9 6 3 7 9 6 0 8 5 4 5

12 3 2 9 1 5 7 4 4 5 5 6 0 8 4 7

13 5 8 2 4 2 6 6 4 4 7 9 2 0 9 6

14 6 1 8 6 3 1 4 7 6 1 5 8 6 0 8

15 1 3 8 6 7 1 1 2 7 8 7 3 2 1 0

Table 17 Random data for the SDSTs on the machine 5

ST 5
λi ,λ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 5 3 4 4 9 1 2 7 6 7 7 6 8 4

2 3 0 8 4 1 3 1 1 3 4 3 6 4 3 7

3 1 6 0 1 4 9 2 1 2 8 3 4 4 3 9

4 7 7 4 0 6 3 3 3 3 7 7 3 9 6 5

5 6 7 4 6 0 9 5 6 5 7 7 5 4 5 3

6 6 8 9 1 9 0 9 3 1 8 9 8 4 2 5

7 8 9 1 9 4 3 0 8 9 6 3 4 2 5 4

8 1 6 2 5 9 3 4 0 6 7 1 2 5 2 2

9 1 7 4 9 5 3 3 3 0 4 4 6 8 3 8

10 3 1 6 1 3 5 9 5 3 0 7 2 6 1 2

11 9 4 9 9 6 1 4 2 9 8 0 3 1 3 6

12 9 7 4 7 4 4 8 8 2 5 7 0 9 5 6

13 5 6 3 8 1 4 3 8 1 4 4 5 0 6 8

14 5 8 3 2 5 9 8 7 9 3 1 8 5 0 5

15 9 8 2 4 3 1 7 6 3 1 1 4 6 3 0

123

Memetic Computing (2022) 14:355–376 375

Funding OpenAccess funding enabled and organized by CAUL and its
Member Institutions. No funds, grants, or other support was received.

Data availability The datasets generated during and/or analyzed during
the current study are available in the below link-https://research.unsw.
edu.au/projects/cross-disciplinary-optimisation-under-capability-
context

Declarations

Conflict of interest The authors have no relevant financial or non-
financial interests to disclose. The authors have no conflicts of interest
to declare relevant to this article’s content. All authors certify that they
have no affiliations with or involvement in any organization or entity
with any financial interest or non-financial interest in the subject matter
or materials discussed in this manuscript. The authors have no financial
or proprietary interests in any material discussed in this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abu Doush I, Al-Betar MA, Awadallah MA, Santos E, Hammouri
AI, Mafarjeh M, AlMeraj Z (2019) Flow shop scheduling with
blocking using modified harmony search algorithm with neigh-
boring heuristics methods. Appl Soft Comput J. https://doi.org/10.
1016/j.asoc.2019.105861

2. Amorim P, Belo-Filho MAF, Toledo FMB, Almeder C, Almada-
Lobo B (2013) Lot sizing versus batching in the production
and distribution planning of perishable goods. Int J Prod Econ
146(1):208–218. https://doi.org/10.1016/j.ijpe.2013.07.001

3. Behmanesh E, Pannek J (2021) A comparison between memetic
algorithm and genetic algorithm for an integrated logistics network
with flexible delivery path. OpRes Forum 2(3):871. https://doi.org/
10.1007/s43069-021-00087-8

4. Belo-Filho MAF, Amorim P, Almada-Lobo B (2015) An adap-
tive large neighbourhood search for the operational integrated
production and distribution problem of perishable products. Int
J Prod Res 53(20):6040–6058. https://doi.org/10.1080/00207543.
2015.1010744

5. Chang YC, Lee CY (2004) Machine scheduling with job delivery
coordination. Eur J Oper Res 158(2):470–487. https://doi.org/10.
1016/S0377-2217(03)00364-3

6. Chang YC, Li VC, Chiang CJ (2014) An ant colony optimization
heuristic for an integrated production and distribution schedul-
ing problem. Eng Optim 46(4):503–520. https://doi.org/10.1080/
0305215X.2013.786062

7. Chen ZL, Vairaktarakis GL (2005) Integrated scheduling of pro-
duction and distribution operations. Manage Sci 51(4):614–628.
https://doi.org/10.1287/mnsc.1040.0325

8. Crepinsek M, Liu SH, Mernik M (2013) Exploration and exploita-
tion in evolutionary algorithms: a survey. ACM Comput Surv
45(3):1–33. https://doi.org/10.1145/2480741.2480752

9. Dulebenets MA, Moses R, Ozguven EE, Vanli A (2017)
Minimizing carbon dioxide emissions due to container han-
dling at marine container terminals via hybrid evolutionary
algorithms. IEEE Access 5:8131–8147. https://doi.org/10.1109/
ACCESS.2017.2693030

10. Farahani P, Grunow M, Günther HO (2012) Integrated production
and distribution planning for perishable food products. Flex Serv
Manuf J 24(1):28–51. https://doi.org/10.1007/s10696-011-9125-0

11. Li CL, Vairaktarakis G, Lee CY (2005) Machine scheduling
with deliveries to multiple customer locations. Eur J Op Res
164(1):39–51. https://doi.org/10.1016/j.ejor.2003.11.022

12. Liu L, Liu S (2020) Integrated production and distribution
problem of perishable products with a minimum total order
weighted delivery time. Mathematics 8(2):81. https://doi.org/10.
3390/MATH8020146

13. Liu Z,WangY, Huang P (2018) AnD: Amany-objective evolution-
ary algorithm with angle-based selection and shift-based density
estimation. Inf Sci. https://doi.org/10.1016/j.ins.2018.06.063

14. Moons S, Ramaekers K, Caris A, and Arda Y (2016) Integrating
production scheduling and vehicle routing decisions at the oper-
ational decision level : a review and discussion Research group
Logistics , Hasselt University , Campus Diepenbeek , Agoralaan
Building D , 3590 Diepenbeek , Belgium QuantOM , HEC . Com-
puters and Industrial Engineering. doi: https://doi.org/10.1016/j.
cie.2016.12.010

15. Nair VN (1992) Taguchis parameter design: a panel discussion.
Technometrics 34(2):127–161. https://doi.org/10.1080/00401706.
1992.10484904

16. Osaba E, Del Ser J, Cotta C, Moscato P (2022) Editorial: memetic
computing: accelerating optimization heuristics with problem-
dependent local search methods. Swarm Evol Comput 70:101047.
https://doi.org/10.1016/j.swevo.2022.101047

17. Park YB, Hong SC (2009) Integrated production and dis-
tribution planning for single-period inventory products. Int J
Comput Integr Manuf 22(5):443–457. https://doi.org/10.1080/
09511920802527590

18. Qin H, Li T, Teng Y, Wang K (2021) Integrated production
and distribution scheduling in distributed hybrid flow shops.
Memetic Comput 13(2):185–202. https://doi.org/10.1007/s12293-
021-00329-6

19. Rahman HF, Sarker R, Essam D (2015) A genetic algorithm for
permutation flow shop scheduling under make to stock production
system. Comput Ind Eng 90:12–24. https://doi.org/10.1016/j.cie.
2015.08.006

20. Rahman HF, Sarker R, Essam D (2015) A real-time order accep-
tance and scheduling approach for permutationflowshopproblems.
Eur J Op Res 247(2):488–503. https://doi.org/10.1016/j.ejor.2015.
06.018

21. RahmanHF, Sarker R, EssamD (2018)Multiple-order permutation
flow shop scheduling under process interruptions. Int J AdvManuf
Technol 97(5–8):2781–2808. https://doi.org/10.1007/s00170-018-
2146-z

22. Rani S, Suri B, Goyal R (2019) On the effectiveness of using elitist
genetic algorithm inmutation testing. Symmetry 11(9):865. https://
doi.org/10.3390/sym11091145

23. Ribas I, Companys R, Tort-Martorell X (2021) An iterated
greedy algorithm for the parallel blocking flow shop scheduling
problem and sequence-dependent setup times. Expert Syst Appl
184:115535. https://doi.org/10.1016/j.eswa.2021.115535

123

https://research.unsw.edu.au/projects/cross-disciplinary-optimisation-under-capability-context
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.asoc.2019.105861
https://doi.org/10.1016/j.ijpe.2013.07.001
https://doi.org/10.1007/s43069-021-00087-8
https://doi.org/10.1080/00207543.2015.1010744
https://doi.org/10.1016/S0377-2217(03)00364-3
https://doi.org/10.1080/0305215X.2013.786062
https://doi.org/10.1287/mnsc.1040.0325
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1109/ACCESS.2017.2693030
https://doi.org/10.1007/s10696-011-9125-0
https://doi.org/10.1016/j.ejor.2003.11.022
https://doi.org/10.3390/MATH8020146
https://doi.org/10.1016/j.ins.2018.06.063
https://doi.org/10.1016/j.cie.2016.12.010
https://doi.org/10.1080/00401706.1992.10484904
https://doi.org/10.1016/j.swevo.2022.101047
https://doi.org/10.1080/09511920802527590
https://doi.org/10.1007/s12293-021-00329-6
https://doi.org/10.1016/j.cie.2015.08.006
https://doi.org/10.1016/j.ejor.2015.06.018
https://doi.org/10.1007/s00170-018-2146-z
https://doi.org/10.3390/sym11091145
https://doi.org/10.1016/j.eswa.2021.115535

376 Memetic Computing (2022) 14:355–376

24. Ruiz R, Maroto C (2005) A comprehensive review and evaluation
of permutation flowshop heuristics. Eur J Op Res 165(2):479–494.
https://doi.org/10.1016/j.ejor.2004.04.017

25. Ruiz R, Maroto C, Alcaraz J (2005) Solving the flowshop schedul-
ing problem with sequence dependent setup times using advanced
metaheuristics. Eur J Op Res 165(1):34–54. https://doi.org/10.
1016/j.ejor.2004.01.022

26. Shao W, Pi D (2016) A self-guided differential evolution with
neighborhood search for permutation flow shop scheduling. Expert
Syst Appl 51:161–176. https://doi.org/10.1016/j.eswa.2015.12.
001

27. Taillard E (1993) Benchmarks for basic scheduling prob-
lems. Eur J Op Res 64(2):278–285. https://doi.org/10.1016/0377-
2217(93)90182-M

28. Theophilus O, Dulebenets MA, Pasha J, Lauyip Y, Fathollahi-
Fard A, Mazaheri M (2021) Truck scheduling optimization at a
cold-chain cross-docking terminal with product perishability con-
siderations. Computers Indus Eng. https://doi.org/10.1016/j.cie.
2021.107240

29. Toptal A, Koc U, Sabuncuoglu I (2014) A joint production and
transportation planning problem with heterogeneous vehicles. J
Op Res Soc 65(2):180–196. https://doi.org/10.1057/jors.2012.184

30. Ullrich CA (2013) Integratedmachine scheduling and vehicle rout-
ing with time windows. Eur J Op Res 227(1):152–165. https://doi.
org/10.1016/j.ejor.2012.11.049

31. Vallada E, Ruiz R, Minella G (2008) Minimising total tardiness
in the m-machine flowshop problem: a review and evaluation of
heuristics and metaheuristics. Comput Op Res 35(4):1350–1373.
https://doi.org/10.1016/j.cor.2006.08.016

32. Wang K, Choi SH, Lu H (2015) A hybrid estimation of distribution
algorithm for simulation-based scheduling in a stochastic permu-
tation flowshop. Comput Ind Eng 90:186–196. https://doi.org/10.
1016/j.cie.2015.09.007

33. WangK,LuoH,LiuF,YueX (2018)Delivery tomultiple customers
in supply chains. IEEE Trans Syst, Man, Cybern: Syst 48(10):1–12

34. Xiong S, Feng Y, Huang K (2020) Optimal MTS and MTO
hybrid production system for a single product under the cap-and-
trade environment. Sustainability (Switzerland). https://doi.org/10.
3390/su12062426

35. Yağmur E, Kesen SE (2020) Amemetic algorithm for joint produc-
tion and distribution scheduling with due dates. Computers Indus
Eng 142:106342. https://doi.org/10.1016/j.cie.2020.106342

36. Zhao H, Zhang C (2020) An online-learning-based evolutionary
many-objective algorithm. Inf Sci 509(195):1–21. https://doi.org/
10.1016/j.ins.2019.08.069

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.ejor.2004.04.017
https://doi.org/10.1016/j.ejor.2004.01.022
https://doi.org/10.1016/j.eswa.2015.12.001
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/j.cie.2021.107240
https://doi.org/10.1057/jors.2012.184
https://doi.org/10.1016/j.ejor.2012.11.049
https://doi.org/10.1016/j.cor.2006.08.016
https://doi.org/10.1016/j.cie.2015.09.007
https://doi.org/10.3390/su12062426
https://doi.org/10.1016/j.cie.2020.106342
https://doi.org/10.1016/j.ins.2019.08.069

	Optimization of integrated production scheduling and vehicle routing problem with batch delivery to multiple customers in supply chain
	Abstract
	1 Introduction
	2 Relevant literature
	2.1 Production scheduling and delivery under single machine environments
	2.2 Production scheduling and delivery under a parallel machine environment
	2.3 Production scheduling and delivery under flow shop environment
	2.4 Vehicle routing problem in distribution in supply chain
	2.5 Summary

	3 Problem description and assumptions
	3.1 Illustrative example
	3.2 A mathematical formulation

	4 Proposed algorithm
	4.1 Genetic algorithm
	4.1.1 Encoding schemes and evaluation
	4.1.2 Population initialization
	4.1.3 Selection and crossover operation
	4.1.4 Mutation
	4.1.5 Repair process
	4.1.6 Local search

	5 Results and experimental analysis
	5.1 Generation of random test instances
	5.2 Experimental design
	5.3 Parameter standardization
	5.4 Experimental results and discussions
	5.4.1 Impact on variations in the number of customer orders and machines of the proposed algorithm's efficiency
	5.4.2 Impact of variation of setup time in the proposed algorithm’s efficiency
	5.4.3 Generation wise solution improvement

	6 Conclusions and future directions
	7 Appendix
	References

