
Memetic Computing (2022) 14:253–285
https://doi.org/10.1007/s12293-022-00365-w

REGULAR RESEARCH PAPER

Metaheuristic approaches for ratio cut and normalized cut graph
partitioning

Gintaras Palubeckis1

Received: 5 October 2021 / Accepted: 3 April 2022 / Published online: 29 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Partitioning a set of graph vertices into two or more subsets constitutes an important class of problems in combinatorial
optimization. Two well-known members of this class are the minimum ratio cut and the minimum normalized cut problems.
Our focus is on developing metaheuristic-based approaches for ratio cut and normalized cut graph partitioning. We present
three techniques in this category: multistart simulated annealing (MSA), iterated tabu search (ITS), and the memetic algorithm
(MA). The latter two use a local search procedure. To speed up this procedure, we apply a technique that reduces the effort
required for neighborhood examination. We carried out computational experiments on both random graphs and benchmark
graphs from the literature. The numerical results indicate that the MA is a clear winner among the tested methods. Using
rigorous statistical tests, we show that MA is unequivocally superior to MSA and ITS in terms of both the best and average
solution values. Additionally, we compare the performances of MA and the variable neighborhood search (VNS) heuristic
from the literature, which is the state-of-the-art algorithm for the normalized cut model. The experimental results demonstrate
the superiority of MA over VNS, especially for structured graphs.

Keywords Combinatorial optimization ·Graph partitioning ·Ratio cut ·Normalized cut ·Metaheuristics ·Memetic algorithm

1 Introduction

Partitioning a set of objects into two or more subsets con-
stitutes an important class of problems in combinatorial
optimization. A member of this class can often be mod-
eled by a graph whose vertices represent objects and whose
edges link vertices pairs that have some kind of relation-
ship. Let G = (V , E) be an undirected graph with vertex
set V and edge set E . For an integer m ≥ 2, a solution
to a graph partitioning problem is a set p = {V1, . . . , Vm}
in which Vi , i ∈ M = {1, . . . ,m}, are nonempty and
mutually disjoint subsets of V such that ∪i∈MVi = V .
The various graph partitioning problems differ in the objec-
tive function and/or in the constraints. In many cases, the
objective function incorporates the total edge weights con-
necting vertices from different subsets in partition p. Let the
edge weights of graph G be denoted by cuv , (u, v) ∈ E .

B Gintaras Palubeckis
gintaras.palubeckis@ktu.lt;
gintaras.palubeckis77@gmail.com

1 Faculty of Informatics, Kaunas University of Technology,
Studentu 50-408, 51368 Kaunas, Lithuania

For Vk, Vl ⊂ V , Vk ∩ Vl = ∅, the sum C(Vk, Vl) =
∑

u∈Vk ,v∈Vl cuv is called the cut between subsets Vk and Vl .
There are several graph partitioning problems that require
minimizing the cut between partition subsets (or clusters).
One of them is the ratio cut graph partitioning problem.
For a graph G and fixed integer m ≥ 2, it is stated
as

min
p∈Π

Fr (p) =
m∑

k=1

C(Vk)/|Vk | (1)

where C(Vk) is the shortcut to C(Vk, V \ Vk) and Π is the
set of all partitions of V into m nonempty subsets. Thus, the
contribution of a partition subset Vk to (1) is represented by
the ratio of the cut between Vk and the rest of the graph to the
cardinality of Vk . Problem (1) was first considered by Wei
and Cheng [69] and Hagen and Kahng [25] for m = 2 and
then generalized to a multiway ratio cut (i.e., for m > 2) by
Chan et al. [11]. Later, Shi andMalik [58] introduced another
objective function called normalized cut. The corresponding
graph partitioning problem is expressed as follows:

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-022-00365-w&domain=pdf
http://orcid.org/0000-0002-4991-1505

254 Memetic Computing (2022) 14:253–285

min
p∈Π

Fn(p) =
m∑

k=1

C(Vk)/d(Vk) (2)

where d(Vk) = ∑
v∈Vk dv and the sum dv = ∑

u∈V cvu is
referred to as the weighted degree of the vertex v ∈ V . In (2),
the term for a partition subsetVk is the ratio of the cut between
Vk and the rest of the graph to the sumof theweighted degrees
of the vertices in Vk . Yu and Shi [70] extended the normalized
cut model to m > 2 partition subsets.

A salient feature of both the ratio cut and normalized cut
models is that no constraints are imposed on the partition
subset size. This makes a significant difference versus graph
partitioning problems in which the size of each subset is
bounded from above and below. A well-studied problem of
this sort is themaximally diverse grouping problem (MDGP).
Many algorithms for solving the MDGP have been pro-
posed, including variable neighborhood search [5,51], hybrid
genetic algorithms [51,60], multistart simulated annealing
[51], tabu search with strategic oscillation [22], the artificial
bee colony algorithm [55], iterated tabu search [52], iterated
maxima search [36], andneighborhooddecomposition-based
variable neighborhood search and tabu search [37]. Other
related graph partitioning problems include maximum k-cut
[15], ratio association [16], minimum conductance graph
partitioning [10,43,44], overlapping normalized cut [63],
cohesive clustering [7], partition size constrained minimum
cut [1], and edge-ratio clustering [6].

Many applications of the ratio cut and normalized cut
graph partitioning problems have been identified in the litera-
ture. Perhaps themain application of these graph partitioning
models can be observed in clustering. Ratio cut and normal-
ized cut-based clustering methods can be used in a variety of
domains, such as image data analysis [14], pattern recog-
nition [33,61], web search [63], data mining [3], image
segmentation [28,58], and gene network analysis [16]. Other
applications include community detection [32,39,48], data
classification [47,73], VLSI design [25], tree segmentation
[35], salient object detection [21], robot swarm dynamic
regrouping [53], Bayesian-type statistics [59], water distribu-
tion network partitioning [71], and detecting similar groups
in heterogeneous networks [40].

It is well known that both the ratio cut and normalized cut
graph partitioning problems are NP-hard [25,30]. Therefore,
it is necessary to develop heuristic algorithms for these prob-
lems. Exact methods can be used to solve problem instances
with very small sizes only. Fan and Pardalos [17] presented
quadratically constrained programs that can be used to find
optimal ratio and normalized cuts. They reported computa-
tional results for graphs with 10 vertices. For large graphs,
one must resort to heuristic algorithms, which provide good
but not necessarily optimal solutions. Most of the efforts in
this direction have been focused on developing spectralmeth-

ods for graph partitioning. The basic idea of these methods is
to relax (1) and (2) into continuous optimization problems.
The latter can be solved by first computing the eigenvectors
of the Laplacianmatrix of the graph and then finding the final
partition using k-means or other suitable algorithms. Many
studies have been devoted to the design and performance
evaluation of spectral algorithms for ratio cut and normal-
ized cut, including those by Hagen and Kahng [25], Chan et
al. [11], Fan and Pardalos [17], Hochbaum [30],Merkurjev et
al. [47], Zhang et al. [72], and Han et al. [26]. Many authors
have proposed various improvements to the standard spec-
tral clustering method. Lu et al. [42] presented nonnegative
and sparse spectral clustering algorithms based on the ratio
cut and normalized cut criteria. Experiments have shown that
these algorithms outperform the standard spectral clustering
technique. Chen et al. [12] proposed a direct normalized cut
algorithm exploiting the idea of directly optimizing the nor-
malized cut model. The algorithm has only a quadratic time
complexity. Chen et al. [13] considered a new normalized
cut model with balance regularization to avoid a trivial solu-
tion. They developed an iterative method to solve the new
model without using eigendecomposition. More comprehen-
sive discussions of the spectral method for graph clustering
and partitioning can be found in the tutorial by von Luxburg
[64] and survey papers by Nascimento and de Carvalho [49]
and Gallier [23].

Although the traditional approach to ratio cut and nor-
malized cut graph partitioning relies on using the spectral
method, there are also algorithms that are based on different
principles. Jia et al. [33] proposed an approximate weighted
kernel k-means algorithm for the normalized cut. The algo-
rithm avoids the direct eigendecomposition of the Laplacian
matrix and is suitable for handling very large graphs. Lorente-
Leyva et al. [41] outlined two alternative approaches for
the normalized cut partitioning problem. One approach is
a heuristic search procedure, and the other is a quadratic
formulation-based method. Dhillon et al. [16] designed a
fast multilevel algorithm that can be tuned to minimize spe-
cific objectives, including ratio cut and normalized cut. The
refinement step of the algorithm employs the weighted ker-
nel k-means technique. Fan and Pardalos [17] presented
several semidefinite programming relaxations for ratio and
normalized cut models. They developed a graph partition-
ing algorithm whose main step involves solving one of these
relaxations. Compared with the spectral clustering method,
this algorithm can obtain improved solutions.

However, the literature lacks metaheuristic-based appr-
oaches for finding theminimum ratio cut or normalized cut in
the graph. One such approach was proposed by Hansen et al.
[27]. They developed a variable neighborhood search (VNS)
algorithm for the normalized cut model. Their local search
(LS) procedure within the VNS framework analyzes all the
possibilities of moving a vertex from one partition subset to

123

Memetic Computing (2022) 14:253–285 255

another. The algorithm also employs a fast LS technique that
considers only moves between connected subsets (two ver-
tex subsets Vk and Vl are connected if there is an edge whose
one vertex belongs to Vk and the other vertex belongs to Vl).
During VNS execution, this technique is combined with the
complete LS strategy. The experimental results show that the
VNS method of Hansen et al. [27] is an efficient approach
for solving the normalized cut graph partitioning problem.
Metaheuristic-based approaches have also been developed
for several related problems. Cafieri et al. [6] proposed a
VNS algorithm for graph bipartitioning with the edge-ratio
criterion. The algorithm is embedded into a hierarchical divi-
sive heuristic to obtain a partition of the vertex set of the graph
into a larger number of subsets. Mu et al. [48] and Ji et al.
[32] presented ant colony optimization algorithms for com-
munity detection in complex networks. In their approach, the
ratio cut is included as a linear term in the objective function
(modularity density) of the problem. Lu et al. [43] developed
a hybrid evolutionary algorithm for finding minimum con-
ductance in the graph. The algorithm employs a tabu search
technique as a local optimization procedure.

Literature analysis shows that the ratio cut and normalized
cut graph partitioning problems have been mostly addressed
by using various heuristic techniques. Most often, they are
obtained through continuous relaxations of ratio or normal-
ized cut models. Very little research has been devoted to
metaheuristic optimization approaches although graph par-
titioning and clustering have many applications in a wide
range of areas, as outlined earlier in this section. Considering
these observations, ourmotivation is to implement and inves-
tigate the performance of metaheuristic-based algorithms for
graph partitioning with ratio cut and normalized cut criteria.
The main significance of this work lies in the development
and experimental comparison of several metaheuristic algo-
rithms for these graph partitioning problems. In the case of
the normalized cut criterion, the comparison includes both
the new algorithms and the best existing method. The sig-
nificance of comparative analysis of various approaches is
that it can help identify promising directions for designing
better algorithms. The results of our computational study
underscore the potential for evolutionary methods for solv-
ing graph partitioning problems. The main contribution of
our work consists of three diverse algorithms for ratio cut
and normalized cut graph partitioning. A simulated anneal-
ing (SA) algorithm is selected because of its popularity and
success in solving complex combinatorial optimization prob-
lems. To be able to apply a CPU-based termination rule, we
implemented SA as a multistart procedure. The iterated tabu
search (ITS) algorithm is chosen because the tabu search
(TS) is one of the most widely used local search meth-
ods. To potentially achieve better performance, we apply TS
iteratively. Population-based evolutionary approaches in our
study are represented by the memetic algorithm (MA). We

preferMAover the genetic algorithm (GA), becauseMAusu-
ally demonstrates faster convergence and better optimization
than GA. The algorithm choice was guided by two reasons.
First, our focus is on metaheuristics that exist for a long time
and have shown excellent performance in solving numerous
combinatorial optimization problems. Second, we consider
the diversity factor and do not limit ourselves to consider-
ing only evolutionary techniques. It seems that some of the
new population-based methods can perform equally well or
even outperform the ITS and SA algorithms. In recent years,
many effective strategies have been proposed to address opti-
mization problems. They include a memetic algorithm with
competition [68], iterated local search with tabu search [50],
a multistart iterated tabu search algorithm [4], brain storm
optimization with an orthogonal learning mechanism [45],
and a decomposition-based algorithm using a localized con-
trol variable analysis approach [46].

We experimentally compare the proposed algorithms on
two different sets of graphs: random graphs and benchmark
graphs from the literature. We report results for both ratio
cut and normalized cut graph partitioning scenarios. We also
present comparison results between our best algorithm and
the state-of-the-art VNS-based algorithm of Hansen et al.
[27].

The remainder of the paper is organized as follows. In
Sects. 2, 3, and 4, we present the multistart simulated anneal-
ing (MSA), iterated tabu search, and memetic algorithms,
respectively. Section 5 is devoted to experimental analy-
sis and comparisons of algorithms. Concluding remarks are
given in Sect. 6.

2 Multistart simulated annealing

In this section, we present an implementation of the SA
method for ratio cut and normalized cut graph partitioning.
This method is based on an analogy between the metallurgi-
cal process of annealing in thermodynamics and the process
of searching for the global extremumof a function. This anal-
ogy has been efficiently exploited by Kirkpatrick et al. [34]
and Černý [8]. The guiding principle of the SA method is
to escape a local optimum by accepting worsening moves
with a certain probability. A recent overview of different SA
variants can be found in [20].

The idea of simulated annealing is to generate trial solu-
tions in the neighborhood of the current solution and either
accept or reject them. A new solution is always accepted if
it improves the current solution. Otherwise, a decision on
acceptance or rejection is made at random with a probabil-
ity depending on the difference between objective function
values of two solutions and the current temperature of the
cooling process. Because the search starts with a high initial
temperature, this probability is higher at the initial steps of

123

256 Memetic Computing (2022) 14:253–285

Fig. 1 Illustration of the
relocation move: vertex v is
transferred to subset V3

2 2

v
2

V1

V3

V2
2 2

2

V1

V3

V2

v

Fig. 2 Illustration of the swap
move: the vertices u and v are
interchanged 2

2
V1

V3

V2 2

v

2V1

V3

V2vu

u

the algorithm. As the algorithm proceeds, the temperature is
reduced after each iteration. The algorithm stops whenever
the temperature becomes very close to zero. At each tempera-
ture level, a certain number of trial solutions are evaluated. In
our implementation of SA, the initial temperature is obtained
by generating a random solution and calculating the absolute
difference between objective function values of the random
solution and a solution in its neighborhood many times. The
temperature is initializedwith the largest of these differences.
Another important design feature of our algorithm is that SA
is executed multiple times.

Without loss of generality, we present our multistart sim-
ulated annealing algorithm in terms of the ratio cut metric.
The adaptation of the algorithm to the case of normalized
cut graph partitioning requires only very minor changes that
come from using a different objective function. The algo-
rithm employs two move types, relocating a vertex from its
current subset to the other subset in a partition and swapping
two vertices located in two distinct subsets. The relocation
move is illustrated in Fig. 1, where vertex v ∈ V1 is moved to
partition subset V3. An example of the swap move is shown
in Fig. 2, where the solution on the right is obtained by swap-
ping vertex v ∈ V3 with vertex u ∈ V1. The choice of move
type at each iteration is controlled by a parameter Q ∈ [0, 1],
which defines the probability of selecting a swapmove. Triv-
ially, the relocation move is performed with the probability
1 − Q. Assume that a vertex v ∈ Vk , k ∈ M , is relocated
from its current subset Vk to subset Vl , l �= k, of the parti-
tion p = {V1, . . . , Vm} ∈ Π . Let the resulting partition be
denoted by p′. Naturally, it is assumed that v belongs to the
set V ′(p), composed of taking the union of all subsets in p

having cardinality greater than one. Thus, v ∈ Vk ⊆ V ′(p) =
∪m
i=1,|Vi |>1Vi . For p ∈ Π , we can define the relocation neigh-

borhood N1(p) of p as the set of all partitions that can be
obtained from p by relocating a single vertex. The change in
cost incurred by applying a move is called the move gain. In
the case of the above-defined relocation move, it is denoted
by δ(p, p′). Formally, δ(p, p′) = Fr (p′) − Fr (p). To pro-
vide an expression for δ, we rewrite the objective function of
(1) as Fr (p) = ∑m

i=1 R(Vi) where

R(Vi) = C(Vi)/|Vi |. (3)

For a vertex v ∈ V and a subset Vi ∈ p, let cv(Vi) =
∑

u∈Vi cvu . This number represents the sum of weights of
edges between v and vertices in subset Vi . Of course, the
sum cv(Vi) is also defined for v ∈ Vi . The sums cv(Vi) along
with the cut weights C(Vi) and ratios R(Vi) can be used to
compute δ as follows.

Proposition 1 For a vertex v ∈ Vk and a subset Vl , l �= k, in
the partition p,

δ(p, p′) = (C(Vk) − dv + 2cv(Vk))/(|Vk | − 1)

+ (C(Vl) + dv − 2cv(Vl))/(|Vl | + 1) − R(Vk) − R(Vl).
(4)

Proof Let us denote the cutweights for partition p′ byC ′(Vi),
Vi ∈ p′. Imagine that in the first step of the relocation oper-
ation, vertex v is temporarily removed from graph G (and
thus out of Vk). Then, the weight of the cut between Vk and
V \ Vk decreases by dv − cv(Vk) and that between Vl and
V \Vl decreases by cv(Vl). In the second step, the vertex v is
inserted into Vl . This increases the weight of the cut between

123

Memetic Computing (2022) 14:253–285 257

Vk and V \ Vk by cv(Vk) and that between Vl and V \ Vl by
dv − cv(Vl). Thus

C ′(Vk) = C(Vk) − dv + 2cv(Vk) (5)

and

C ′(Vl) = C(Vl) + dv − 2cv(Vl). (6)

Considering the fact that C ′(Vi) = C(Vi) for all i �= k, l, we
can write

δ(p, p′) = C ′(Vk)/(|Vk | − 1) + C ′(Vl)/(|Vl | + 1)

−R(Vk) − R(Vl). (7)

Substituting (5) and (6) into (7), we obtain (4). ��

To illustrate the computation of δ by (4), we use Fig. 1 in
which edge weights greater than one are indicated close to
the edges. For k = 1 and l = 3, we have C(Vk) = 3,
C(Vl) = 3, cv(Vk) = 2, cv(Vl) = 2, dv = 4, R(Vk) =
0.75, and R(Vl) = 1.5. Putting these values in (4), we obtain
δ(p, p′) = (3−4+4)/3+(3+4−4)/3−0.75−1.5 = −0.25.

Upon acceptance of the move, the cut weights of the sub-
sets Vk and Vl are updated according to Equations (5) and (6):
C(Vk) is decreased by dv−2cv(Vk) andC(Vl) is increased by
dv −2cv(Vl). The values of cw(Vk) and cw(Vl),w ∈ V \{v},
are updated by setting

cw(Vk) := cw(Vk) − cwv,

cw(Vl) := cw(Vl) + cwv. (8)

In the case of normalized cut graph partitioning, Equation
(4) is slightly modified as follows:

δ(p, p′) = (C(Vk) − dv + 2cv(Vk))/(d(Vk) − dv)

+ (C(Vl) + dv − 2cv(Vl))/(d(Vl) + dv)

− C(Vk)/d(Vk) − C(Vl)/d(Vl).

(9)

If the move is accepted, then dv is subtracted from d(Vk) and
added to d(Vl). Certainly, the operations defined by Equa-
tions (5), (6), and (8) are also applied.

Nextwe consider the swapmove.Assume that a vertex v ∈
Vk is interchanged with a vertex u ∈ Vl , l �= k. As before, we
denote the initial partition by p and the resulting partition by
p′. All the partitions that can be obtained from p in this way
form the swap neighborhood N2(p) of p. The gain of swap
move is denoted by Δ(p, p′). By definition, Δ(p, p′) =
Fr (p′)− Fr (p). The following statement presents a formula
for Δ.

Proposition 2 For a vertex v ∈ Vk and a vertex u ∈ Vl ,
l �= k,

Δ(p, p′) = (C(Vk) + du − dv + 2(cv(Vk)

− cu(Vk) + cuv))/|Vk |
+ (C(Vl) + dv − du + 2(cu(Vl)

− cv(Vl) + cuv))/|Vl |
− R(Vk) − R(Vl).

(10)

Proof We split the swap operation into four steps. Assume
first that vertex v is temporarily removed from graph G. This
action decreases C(Vk) by dv − cv(Vk) and C(Vl) by cv(Vl).
In the second step, vertex u is removed from graph G. As
a result, C(Vk) is further decreased by cu(Vk) − cuv and
C(Vl) by du − cuv − cu(Vl). The graph is restored by first
adding vertex v to subset Vl . This step increases C(Vk) by
cv(Vk). Since vertex u is removed from graph G, the current
weighted degree of vertex v is dv − cuv , and the current sum
of edge weights between v and Vl is cv(Vl)−cuv . Therefore,
C(Vl) increases by dv − cuv − (cv(Vl)− cuv) = dv − cv(Vl).
In the last step, the vertex u is inserted into Vk . Now, the
sum of edge weights between u and Vk is cu(Vk) − cuv . It
follows that C(Vk) is increased by du − (cu(Vk) − cuv) =
du−cu(Vk)+cuv . Since vertex v has beenmoved to subset Vl ,
it also follows that C(Vl) is increased by cu(Vl) + cuv . Now,
let C ′(Vi), Vi ∈ p′, stand for the cut weights for partition p′.
Summing the changes in C(Vk) for each step of the above
procedure, we obtain

C ′(Vk) = C(Vk) − (dv − cv(Vk))

− (cu(Vk) − cuv) + cv(Vk)

+ (du − cu(Vk) + cuv) = C(Vk)

+ du − dv + 2(cv(Vk) − cu(Vk) + cuv).

(11)

Analogously

C ′(Vl) = C(Vl) − cv(Vl)

− (du − cuv − cu(Vl)) + (dv − cv(Vl))+
(cu(Vl) + cuv) = C(Vl) + dv − du

+ 2(cu(Vl) − cv(Vl) + cuv).

(12)

Clearly, C ′(Vi) = C(Vi) for all i �= k, l. Therefore, substi-
tuting (11) and (12) into equationΔ(p, p′) = C ′(Vk)/|Vk |+
C ′(Vl)/|Vl | − R(Vk) − R(Vl) gives (10). ��
Figure 2 provides an example of the swap move. As before,
only edge weights greater than 1 are shown. For k = 3 and
l = 1,we haveC(Vk) = 5,C(Vl) = 5, cv(Vk) = 1, cv(Vl) =
3, cu(Vk) = 2, cu(Vl) = 1, dv = 5, du = 3, and R(Vk) =
R(Vl) = 5/3. Then, using (10), we can calculate the swap
move gainΔ(p, p′), which is equal to (5+3−5+2(1−2+
1))/3+ (5+ 5− 3+ 2(1− 3+ 1))/3− 5/3− 5/3 = −2/3.

123

258 Memetic Computing (2022) 14:253–285

If the solution p′ is accepted, then first, the cut weights of
the subsets Vk and Vl are updated using Equations (11) and
(12) (assuming that C ′(Vk) and C ′(Vl) represent new values
ofC(Vk) andC(Vl), respectively). Then, since vertices v and
u are swapped, the following assignments are performed:

cv(Vk) := cv(Vk) + cuv, cv(Vl) := cv(Vl) − cuv, (13)

cu(Vk) := cu(Vk) − cuv, cu(Vl) := cu(Vl) + cuv, (14)

cw(Vk) := cw(Vk) + cuw − cvw,

cw(Vl) := cw(Vl) + cvw − cuw,

w ∈ V \ {u, v}. (15)

For a normalized cut, the swap move gain is computed as
follows:

Δ(p, p′) = (C(Vk) + du − dv + 2(cv(Vk) − cu(Vk)

+ cuv))/(d(Vk) − dv + du)

+ (C(Vl) + dv − du + 2(cu(Vl) − cv(Vl)

+ cuv))/(d(Vl) + dv − du)

− C(Vk)/d(Vk) − C(Vl)/d(Vl).

(16)

Equations (13)–(15) are applicable for both objective func-
tions, Fr and Fn .

Before presenting the MSA algorithm, we need to define
a mapping, denoted by q, from vertex set V to set M , which
represents the indices of the partition subsets. We will write
q(v) = k to indicate that vertex v belongs to subset Vk of par-
tition p. The pseudocode of MSA is given in Algorithm 1. In
addition to the aforementioned move type selection prob-
ability Q, the parameters of MSA are the cooling factor
α, the final temperature Tmin, and the number of moves,
β, to be attempted at each temperature level. The initial
temperature Tmax is computed using the formula Tmax =
max(maxp′∈N ′

1
|δ(p, p′)|,maxp′∈N ′

2
|Δ(p, p′)|), where p is

a starting partition generated in Line 2 of Algorithm 1 and
N ′
1 (N

′
2) is a sequence of partitions obtained by applying ran-

domly chosen relocation (respectively, swap) moves to the
partition p (thus N ′

1 and N ′
2 are extracted from the neighbor-

hoods N1(p) and N2(p), respectively).Wefixed the length of
both sequences at 5, 000. Having the initial and final temper-
atures of the annealing process, we can calculate the number
of temperature levels γ̄ (Line 5).

As seen in the pseudocode, our SA algorithm is imple-
mented as a multistart procedure. The reason for such a
choice is to fairly compare the algorithmwith other presented
algorithms using a time-based stopping criterion. Obviously,
there is no efficient way to control the number of SA restarts.
This number decreases with increasing value of the parame-
ter β. Usually, β is assumed to be dependent on the size of
the problem instance. Our multistart mechanism is simple-
minded. At the start of each iteration, a random partition of

Algorithm 1Multistart simulated annealing.

MSA

1: while stop condition is not met do

2: Generate a partition p ∈ Π randomly and set f := Fr (p)

3: if first execution of the “while” loop then

4: Assign p to p∗ and f to f ∗

5: Compute Tmax and γ̄ = �(log(Tmin) − log(Tmax))/ logα�

6: end if

7: T := Tmax

8: for γ = 1, . . . , γ̄ do

9: for i = 1, . . . , β do
10: if random(0, 1)> Q then // relocation move
11: Randomly select a vertex v ∈ V ′(p) and a subset Vl , l �= k = q(v)

12: Compute δ := δ(p, p′) by (4) where p′ is the solution defined by
v and l

13: else // swap move
14: Randomly select vertices v, u ∈ V such that k = q(v) �= l = q(u)

15: Compute δ := Δ(p, p′) by (10) where p′ is the solution defined
by v and u

16: end if
17: if δ ≤ 0 or exp(−δ/T) ≥ random(0, 1) then
18: f := f + δ

19: if relocation move has been selected then
20: Update C(Vk),C(Vl), and cw(Vk), cw(Vl) for all w �= v by (5),
(6), and (8)

21: Move v from Vk to Vl // partition p and mapping q are updated
22: else // swap move
23: Update C(Vk) and C(Vl) by (11) and (12)
24: Update cw(Vk) and cw(Vl) for all w ∈ V by (13)–(15)
25: Swap the vertices v and u // partition p and mapping q are
updated

26: end if
27: Compute R(Vk) and R(Vl) by (3)
28: if f < f ∗ then Assign p to p∗ and f to f ∗ end if
29: end if
30: end for
31: T := αT
32: end for
33: end while
34: Stop with the solution p∗ of value f ∗

the graph is generated. This is done by first randomly gen-
erating a permutation of the vertices of G and then splitting
its entries (vertices) into m subsets of approximately equal
sizes. The latter operation assigns the first �n/m� vertices in
the permutation to the first subset, the next �n/m� (or �n/m�)
vertices to the second subset and so on. The obtained parti-
tion of the graph is passed to the SA method. Additional
operations must be performed before entering SA for the first
time. They include initialization of the best solution p∗ and
calculation of the initial temperature Tmax. This temperature
is reused in subsequent SA restarts. It can be noted that SA
withmultiple starts requires no additional parameters beyond
those of classical SA or the probability parameter Q.

From the pseudocode, we see that SA is wrapped in the
“while” statement, which loops until a stop condition is met.
We use a stopping criterion, where the search is terminated
when a maximum time limit is reached. At the beginning of
the iteration, the values of the sums cw(Vi), w ∈ V , i ∈ M ,

123

Memetic Computing (2022) 14:253–285 259

and the cut weights C(Vi), i ∈ M , for the generated solu-
tion p are initialized. The best solution to the algorithm is
denoted as p∗ and its value is f ∗. This solution is memo-
rized in Line 28. At each iteration, either a relocation move
(Lines 11 and12) or a swapmove (Lines 14 and15) is selected
and evaluated. This choice is controlled by the probability
parameter Q. If the move is accepted, then the current solu-
tion p and related information are updated in Lines 18–27.
The temperature is changed after performing β iterations.
As is a common practice in SA implementations, the tem-
perature is decreased according to the geometric schedule
(Line 31). We note that in the normalized cut case, Equa-
tions (4) and (10) should be replaced with Equations (9) and
(16), respectively (Lines 12 and 15). Considering only the
innermost loop in Algorithm 1, we can obtain the following
statement.

Proposition 3 The computational complexity of the body of
loop 9–30 of MSA is O(n).

Proof The major bottleneck of computations in Lines 10–29
ofMSA is updating cw(Vk), cw(Vl),w ∈ V (either in Line 20
or in Line 24). This clearly takes O(n) time. The same upper
bound holds on the number of operations required to save the
improved solution when such a solution is found (Line 28).
Other steps inside the loop are less time-consuming. In par-
ticular, only O(1) time is needed to compute the gain of a
move (Lines 12 and 15). ��

We remark that the parameter β in many SA implemen-
tations depends linearly on the size of the problem. This is
also the case in our experiments with MSA (see Sect. 5.2).
Therefore, all operations inside the loop 8–32 of MSA can
be performed in O(n2) time. However, evaluating the time
complexity of all executions of this loop, which implements
SA, is difficult because the number of its repetitions depends
on the initial temperature Tmax. In our algorithm, this temper-
ature is a quantity dependent on the character of the problem
instance being solved.

3 Iterated tabu search

A possible alternative to the SA technique is the widely used
TS method [24]. We apply it to minimize the ratio cut and
normalized cut objective functions iteratively.

The main idea of our TS implementation is to repeatedly
execute tabu search and solution perturbation procedures.
The use of such a strategy implies that it is only the first
iteration where TS starts with a fully random solution. The
solution perturbation procedure starts with a relatively good
solution and proceeds by performing a number of random
moves. The resulting solution is passed to the TS compo-
nent of the approach. The key idea of tabu search is to allow

accepting worsening solutions to prevent getting stuck in
local minima. To avoid cycling in the search process, for
each move performed, the reverse move is forbidden for a
specified number of iterations. For this purpose, we use two
tabu tables, one for relocation moves and another for swap
moves. The TS procedure stops when a predefined number
of iterations is reached. This number is an important param-
eter of the algorithm. A noteworthy feature of our approach
is that the TS procedure is enhanced with the integration of
an LS technique. Each of them explores both the relocation
and swap neighborhoods at each iteration.

As in the case of SA, we present the ITS algorithm for
the ratio cut partitioning problem. The pseudocode of the top
level of our TS implementation is shown in Algorithm 2. The
search starts from a solution generated using the same pro-
cedure as for the MSA method. The best solution is denoted
as p∗ and its value is f ∗. The TS algorithm and solution per-
turbation procedure, namedget_restart_partition,
are executed repeatedly within the loop 3–6. To stop the loop,
a CPU time-based termination condition is used.

Algorithm 2 Iterated tabu search.

ITS
1: Randomly generate a partition p ∈ Π and set f := Fr (p)
2: Assign p to p∗ and f to f ∗
3: while stop condition is not met do
4: Apply the tabu search procedure TS(p, f , p∗, f ∗)
5: p :=get_restart_partition(p, f)
6: end while
7: Stop with the solution p∗ of value f ∗

Algorithm 3 gives the pseudocode of the TS component of
the approach. This component accepts and returns the current
partition p, the best-found partition p∗, and their objective
function values f and f ∗. It starts with the initialization of
the tabu tables t = (tvu) and t̃ = (t̃vl) by setting their entries
to −τ , where τ is the tabu tenure parameter. As the TS algo-
rithm proceeds, the entry tvu of the tabu table t is used to store
the last iteration number in which the vertices v and u have
been swapped. Similarly, t̃vl contains the last iteration num-
ber in which vertex v has been moved from partition subset
Vl to a different subset. Another parameter of the algorithm
is the number of iterations I . In each iteration, both neigh-
borhood N1 and neighborhood N2 are explored. The selected
move is specified by the vertex v∗ and partition subset Vl∗
in the case of relocation and by the vertices v∗ and u∗ in
the case of the swap operation. To distinguish which move
type is selected, we use the flag variable ξ , which equals 0
for relocation and 1 for swap move. The gain incurred by
the selected move is denoted by δmin. In the gain calcula-
tion, p is the current solution, and p′ is either the solution
obtained by relocating vertex v from subset Vk to subset Vl
(Line 7) or the solution obtained by swapping vertices v and u

123

260 Memetic Computing (2022) 14:253–285

Algorithm 3 Tabu search.

TS(p, f , p∗, f ∗)

1: Set tvu := −τ for all v, u ∈ V , v �= u, and t̃vl := −τ for all v ∈ V and
l ∈ M

2: for i = 1, . . . , I do

3: Set δmin := ∞, ρ := 0, and U := V

4: for each vertex v do

5: U := U \ {v}

6: for each l, l �= k = q(v), in the case of v ∈ V ′(p) do

7: Compute δ := δ(p, p′) by (4) where p′ is the solution defined by v

and l

8: if f + δ < f ∗ then

9: ρ := ρ + 1
10: With probability 1/ρ set δmin := δ, v∗ := v, l∗ := l, and ξ := 0
11: else if i − t̃vl > τ and δ < δmin then
12: Set δmin := δ, v∗ := v, l∗ := l, and ξ := 0
13: end if
14: end for
15: for each vertex u ∈ U such that l = q(u) �= k = q(v) do
16: Compute δ := Δ(p, p′) by (10) where p′ is the solution defined by

v and u
17: if f + δ < f ∗ then
18: ρ := ρ + 1
19: With probability 1/ρ set δmin := δ, v∗ := v, u∗ := u, and ξ := 1
20: else if i − tvu > τ and δ < δmin then
21: Set δmin := δ, v∗ := v, u∗ := u, and ξ := 1
22: end if
23: end for
24: end for
25: if ξ = 0 then t̃v∗q(v∗) := i else tv∗u∗ := i end if
26: Perform relocation (if ξ = 0) or swap (if ξ = 1) move // as in
Lines 19–27 of MSA

27: f := f + δmin
28: if ρ > 0 then
29: p :=local_search(p, f)
30: Assign p to p∗ and f to f ∗
31: end if
32: end for
33: return current partition p, its value f , and possibly updated p∗ and f ∗

(Line 16). The variable ρ is used to knowwhether an improv-
ing solution has been found. If this is the case, ρ is positive. If
two or more improving solutions are discovered, then one of
them (or,more precisely, the correspondingmove) is selected
probabilistically (Lines 10 and 19). The role of the set U in
the algorithm (Lines 3, 5, and 15) is to guarantee that each
pair of vertices (v, u) is considered only once. The algorithm
also uses the set V ′ and mapping q, which we defined in the
previous section.

Once neighborhoods N1 and N2 of the current solution
p have been explored, the algorithm proceeds by updating
the tabu tables t and t̃ (Line 25) and performing either the
relocation or swap operation, depending on the value of ξ

(Line 26). These operations are implemented in the sameway
as those in MSA (Lines 19–27 of Algorithm 1). Specifically,
Equations (5), (6), and (8) are used for v = v∗, k = q(v∗),
and l = l∗ in the case of the relocation move, and Equations
(11)–(15) are used for v = v∗, u = u∗, k = q(v∗), and l =
q(u∗) if the swap move has been selected. In the same step,

the current partition p is updated. If an improved solution has
been found (ρ > 0), then the TS algorithm attempts to further
improve this solution by applying a local search procedure
(Line 29). A description of this procedure is given later in
this section.

Looking at the TS pseudocode, we can see that the
statements inside the outermost loop can be split into two
sequences: those in Lines 3–27 and those in Lines 28–31.
The first of these sequences has a worst-case runtime O(n2).
The second of these sequences includes a call to the LS pro-
cedure.However, itsworst-case time complexity is unknown.
A remark on the computational complexity of the basic parts
of local_search is given at the end of this section.
To periodically direct the search toward unexplored regions

Algorithm 4 Solution perturbation.

get_restart_partition(p, f)

1: Generate the values of the solution perturbation parameters K and L

2: U := ∅ // initially U is an empty set

3: repeat K times

4: Select L pairs (v, l), v ∈ V ′(p) \U , l ∈ M , l �= q(v), with smallest δ

computed by (4)

5: Randomly choose a pair, say (v∗, l∗), from the list constructed in Step 4

6: f := f + δ(p, p′), where p′ is the solution defined by v∗ and l∗

7: Update p by performing relocation move // as in Lines 20, 21, and 27 of
MSA

8: U := U ∪ {v∗}

9: end repeat
10: return partition p and its value f

of the solution space, the ITS algorithm applies a solu-
tion perturbation procedure get_restart_partition.
Its pseudocode is presented in Algorithm 4. The input to
the procedure includes a partition p, which is the last
solution recorded by the TS component of the approach.
At the initialization step, get_restart_partition
first draws uniformly at random an integer Kmax from the
interval [nκ1, nκ2] and then integers K from the interval
[Kmin, Kmax] and L from the interval [Lmin, Lmax]. In these
calculations, κ1, κ2, Kmin, Lmin, and Lmax are ITS param-
eters. The first two parameters, that is, κ1 and κ2 define
the range for the maximum number of relocation moves
to be performed. To bound this number from below, the
parameter Kmin is used. At each iteration of the solution
perturbation procedure, a list of the best relocation moves
is built. The parameters Lmin and Lmax restrict the length
of this list to be bounded from below and above, respec-
tively. The role of all these ITS parameters is to guide
the diversification of the search. Their appropriate values

123

Memetic Computing (2022) 14:253–285 261

are selected experimentally. The parameters K and L of
the get_restart_partition procedure, when used
together, control the level of degradation of the objective
function value due to the perturbation of the current partition
p. The quality of the generated partition deteriorates with
the increase in K and L . In contrast, small values of K and
L may lead to producing a partition that is too close to the
input solution p. From the pseudocode, it should be clear
that the use of the setU guarantees that each vertex is moved
from one subset to another at most once. Provided L is a
constant and K is proportional to n (such choices are made
in Sect. 5.2), the computational complexity of the procedure
get_restart_partition is O(n2m).

Algorithm 5 Local search.

local_search(p, f)

1: Set λ :=true and si := 1 for each i ∈ M

2: while λ =true do

3: λ :=false

4: for each pair k ∈ M ′(p) and l ∈ M \ {k} such that sk > 0 or sl > 0 do

5: μ :=true

6: while μ =true and |Vk | > 1 do

7: μ :=false

8: for each v ∈ Vk do

9: Compute δ := δ(p, p′) by (4) for p′ defined by v and l
10: if δ < 0 then Set μ :=true, v∗ := v and break from the loop end if
11: end for
12: if μ =true then
13: λ :=true
14: Perform relocation move for v∗ and l // as in Lines 20, 21, and 27 of
MSA

15: f := f + δ

16: Set sk := 2 and sl := 2
17: end if
18: end while
19: end for
20: for each pair k, l ∈ M , l > k, such that sk > 0 or sl > 0 do
21: μ :=true
22: while μ =true do
23: μ :=false
24: for each v ∈ Vk and each u ∈ Vl do
25: Compute δ := Δ(p, p′) by (10) for p′ defined by v and u
26: if δ < 0 then Set μ :=true, v∗ := v, u∗ := u and break from the
loop end if

27: end for
28: if μ =true then
29: λ :=true
30: Perform swap move for v∗ and u∗ // as in Lines 23–25 and 27 of
MSA

31: f := f + δ

32: Set sk := 2 and sl := 2
33: end if
34: end while
35: end for
36: if λ =true then Set si := si − 1 for each si > 0, i ∈ M end if
37: end while
38: return partition p and its value f

We end this section by describing our implementation of
the LS algorithm for the considered graph partitioning prob-

lems. As seen before, this algorithm is employed within the
TS framework. However, perhaps more importantly, the LS
procedure is the key ingredient of anMA, which is presented
in the next section. The pseudocode of the LS procedure is
given in Algorithm 5. As is typical in most LS implementa-
tions, the procedure executes in a number of iterations. Each
iteration performs all the operations contained in the outer
“while” loop (Lines 3–36). For a partition p at the beginning
of the loop, let us consider a partition subset Vk , k ∈ M .
Assume that the content of Vk does not change during the
execution of the iteration. More precisely, no vertex v ∈ Vk
moves to another subset (Line 14), and no vertex u ∈ V \ Vk
is added to Vk (Line 14 when l = k). Moreover, no vertex
v ∈ Vk is interchanged with a vertex u ∈ V \ Vk (Line 30).
In this case, the entry sk of the vector S = (s1, . . . , sm) at the
end of the iteration (Line 36) is equal to 0. If at least one of
the above conditions is not satisfied, then sk = 1. Within the
loop, some entries of S may temporarily be set to 2. Assume
now that sk = 0 and sl = 0 for subsets Vk and Vl . Then, in
the next iteration, all the gains δ and Δ expressed by (4) and
(10) for Vk and Vl , respectively, have nonnegative values. It
follows that, in the next iteration, there is no need to exam-
ine moves in which both subsets, Vk and Vl , are involved.
This strategy implemented in the local_search proce-
dure reduces the computational time needed to reach a locally
optimal solution. The same technique oriented at accelerating
neighborhood examinations was proposed by Lai et al. [37]
for the MDGP. These authors, however, considered reloca-
tion moves and swap moves separately. They used two 0− 1
matrices of size m × m. The (i, j)-entry of the first matrix
takes value 0 if and only if no relocation of a vertex from the
i th group to the j th group resulted in obtaining an improving
solution. Similarly, the second matrix is defined with respect
to the swap operation. Lai et al. [37] provided computational
results that demonstrated the unequivocal efficiency of the
proposed neighborhood exploration strategy.

As can be seen in Algorithm 5, each iteration of our LS
procedure is composed of two phases. In the first of them
(Lines 4–19), the neighborhood N1 of the current partition p
is explored. In Line 4, M ′(p) refers to the set of subsets in
partition p whose size is greater than 1. Formally, M ′(p) =
{k | k ∈ M, Vk ∈ p, |Vk | > 1}, where M = {1, . . . ,m} as
before. If an improving solution is found, then flag μ is set
to true (Line 10). As a result, the current solution p and its
value f are updated (Lines 14 and 15). In the second phase
(Lines 20–35), a better-quality solution is searched for in
neighborhood N2(p). If such a solution is found among the
neighbors of p, then it is used to replace p (Lines 30 and 31).

It can be observed from the pseudocode that the time com-
plexity of the body (Lines 7–17) of the first inner “while” loop
is O(n) and that of the body (Lines 23–33) of the second
inner “while” loop is O(n2). In obtaining these estimates, it
is assumed that in the worst case, the size of partition subsets

123

262 Memetic Computing (2022) 14:253–285

can be proportional to the graph order n. The number of times
the “while” loops are executed depends on the graph and on
the starting solution p. This number, however, is difficult to
estimate.

4 Amemetic algorithm

Evolutionary algorithms are an important class of approaches
for solving various optimization problems. Among them, the
memetic algorithm is one of the most successful techniques.
The fundamental concept of the MA is to apply the genetic
operators in combination with an LS procedure. In this sec-
tion, we present anMA for ratio cut and normalized cut graph
partitioning. As before, a description is given in terms of the
first of these problems.

Like a GA, the MA manipulates a population of indi-
viduals where each individual represents a solution to the
optimization problem being solved. To generate new mem-
bers of the population, a crossover operator comes into play.
Usually, it is a binary operator that combines the genes of
two parents in some manner to produce an offspring. In
the context of ratio cut and normalized cut, individuals in
the population correspond to partitions of vertex set V . A
convenient method for coding an individual is to use a map-
ping q introduced in Sect. 2. We remind that for a partition
p = {V1, . . . , Vm} and a vertex v ∈ Vi , the value q(v) = i
points to the partition subset to which vertex v belongs.

One of the key ideas of our proposed algorithm is to
employ the crossover operator that is used in grouping
genetic algorithms (GGAs) (see [31,54]). In a GGA, the
chromosomes represent the allocation of certain objects (e.g.,
vertices of the graph) to groups. When generating offspring
from two parents, a GGA manipulates groups instead of
group members. Our crossover operator randomly selects
two individuals as parents and repeatedly transfers a subset
of vertices from one of the selected parents to offspring. If the
resulting collection of subsets does not cover all the vertices
of the graph, then a repair mechanism is triggered to obtain a
feasible partition. The offspring partition replaces the worst
individual in the current population if it is not worse than
the worst individual and of course differs from all individ-
uals in the population. Another component of our memetic
algorithm is the LS procedure, which is precisely the same
as that used in the ITS algorithm. Certainly, this procedure
is applied to each generated offspring. Moreover, LS is used
to improve randomly generated graph partitions when con-
structing an initial population of solutions.

Let p′ and p′′ be two partitions in Π that are submit-
ted as an input to the crossover operator. The pseudocode of
our GGA crossover implementation is given in Algorithm 6,
where r , r ′, and r ′′ are the current number of subsets in the
offspring partition p and parent partitions p′ and p′′, respec-

Algorithm 6 Crossover procedure for ratio cut.

get_offspring(p′, p′′)
// p′ and p′′ are parent partitions

1: Initialize q(v) with 0 for each v ∈ V

2: Set r := 0, r ′ := m, and r ′′ := m

3: while r < m and r ′ + r ′′ > 0 do

4: Increment r by 1

5: if random(0, 1)< 0.5 or r ′′ = 0 and, in addition, r ′ > 0 then

6: Select a subset Vk ∈ p′ with R(Vk) = minVi∈p′ R(Vi)

7: Set q(v) := r for each v ∈ Vk

8: Remove Vk from p′ and decrement r ′ by 1

9: Remove all vertices of Vk from p′′, and possibly update r ′′
10: else
11: Perform operations in Lines 6–9 with roles of p′ and p′′ (and r ′ and r ′′)
reversed

12: end if
13: end while
14: if U := {v ∈ V | q(v) = 0} is nonempty then
15: while U �= ∅ do
16: Select a vertex v from the set U and remove it from U
17: if r < m then
18: Increment r by 1 and set q(v) := r
19: else
20: Randomly select a subset index k ∈ {1, . . . ,m}
21: Set q(v) := k
22: end if
23: end while
24: end if
// Suppose that the mapping q defines a partition p = {V1, . . . , Vr }
25: if r = m then return p
26: Set M̃ := {1, . . . , r} and compute Z(M̃) = (

∑
i∈M̃ |Vi |)/|M̃ | = n/r

27: while r < m do
28: Select a subset Vk , k ∈ M̃ , at random from those satisfying

|Vi | ≥ max(2, Z(M̃))

29: if Vk is selected in Line 28 then
30: Increment r by 1
31: Remove k from M̃ and update Z(M̃) accordingly
32: Randomly split Vk into two subsets of nearly equal size: Vr and new Vk
33: else // No subset Vi , i ∈ M̃ , with |Vi | ≥ max(2, Z(M̃)) exists
34: Reset M̃ to {1, . . . , r} and compute Z(M̃) as in Line 26
35: end if
36: end while
37: return p

tively, and where the resulting offspring is represented by
the mapping q. The most important part of the procedure
(the “while” loop spanning Lines 3–13) serves to transfer
genetic information from the parents to the offspring. First,
it equiprobably selects one of the parents and then finds a
partition subset of this parent with the smallest value of the
ratio R (given by (3)). Ties among subsets are broken by
random selection. The chosen subset, Vk , is moved from the
parent partition p′ (or p′′) to the offspring partition (Lines 7
and 8 in the case of p′). Assume that the parent p′ is involved
in this operation. Then, each vertex of Vk is removed from
the corresponding subset of the partition p′′ (Line 9). The
iteration terminates by deleting empty subsets of p′′, if any,
and updating their number r ′′ accordingly. If the parent p′′
is selected, then similar operations with respect to p′′ are
performed (Line 11). Upon emptying both p′ and p′′ (then

123

Memetic Computing (2022) 14:253–285 263

r ′ = r ′′ = 0), there may still be some vertices uncovered by
offspring subsets. The set of such vertices in the pseudocode
is denoted by U . If U �= ∅ and r < m, then the priority is to
create single-vertex subsets (Lines 17, 18). When r reaches
m, every remaining vertex of U is assigned to a randomly
chosen partition subset (Lines 20, 21). The resulting parti-
tion p completely covers the vertices of the graph. However,
it may occur that p consists of an insufficient number of
subsets. In this case, to repair the partition p, an additional
“while” loop is used (Lines 27–36). In this part of the pseu-
docodeof the algorithm, M̃ is the set of indices of the partition
subsets that are used as potential candidates for splitting, and
Z(M̃) denotes the average size of these subsets. Before enter-
ing the loop, Z(M̃) = n/r because initially ∪i∈M̃ Vi = V
(Line 26). Assume that r < m at this point. Then, the par-
tition p is refined by applying the subset splitting operation
m−r times. Only subsets of size at least Z(M̃) (and trivially
at least 2) are candidates for splitting. Each iteration starts by
randomly selecting one of the subsets (Line 28). The chosen
subset is randomly split into two subsets of nearly equal size
(Line 32). Its index is removed from M̃ , and the new value of
Z(M̃) is calculated (Line 31). If no suitable subset is found,
then a new round of splitting begins with an enlarged set M̃
(Line 34). Concluding the description of the crossover oper-
ator, we remark that an offspring can be generated efficiently.

Proposition 4 The computational complexity of the proce-
dure get_offspring is O(n2).

Proof Observe that get_offspring performs O(n2)
operations to compute the ratios R(Vi), i ∈ M . This can be
performed at the initialization stage of the procedure. Other
parts of the crossover have less complexity. In particular, all
iterations of the “while” loops 3–13 and 27–36 take O(nm)

time. ��

Algorithm 7 Memetic algorithm.

MA
1: f ∗ := ∞
2: P := init_population(p∗, f ∗)
3: while stop condition is not met do
4: Randomly choose two individuals, p′ and p′′, from the population P
5: p :=get_offspring(p′, p′′)
6: f := Fr (p)
7: p :=local_search(p, f)
8: P :=evaluate_offspring(P, p, f , p∗, f ∗)
9: end while

10: Stop with the solution p∗ of value f ∗

The pseudocode of the top level of the MA for ratio cut
graph partitioning is presented in Algorithm 7. After con-
structing an initial population P (Line 2), the algorithm
iterates over the following four steps until a termination con-
dition is satisfied: selection of a pair of individuals in the

current generation as parents (Line 4), crossover of the par-
ents, generation of an offspring p (Line 5), execution of
an LS algorithm on the offspring p (Line 7), and evalua-
tion of p (Line 8). Similar to MSA and ITS, the iterations
stop when a maximum time limit is reached. The best solu-
tion in MA is denoted as p∗ and its value is f ∗. MA

Algorithm 8 Generating the initial population.

init_population(p∗, f ∗)
// P is population and z is its size
1: P := ∅
2: while |P| < z do
3: Generate a partition p̃ ∈ Π at random and set f := Fr (p̃)
4: p :=local_search(p̃, f)
5: if f < f ∗ then Assign p to p∗ and f to f ∗ end if
6: if p differs from each p′ ∈ P then
7: Include p into P
8: else if p̃ differs from each p′ ∈ P then
9: Include p̃ into P

10: end if
11: end while
12: return P

is based on the application of four procedures. Two were
previously described: get_offspring previously in this
section and local_search in Sect. 3. The pseudocode of
init_population is given in Algorithm 8. This proce-
dure creates an initial population P of size z, where z is a
parameter of MA. In the pseudocode, p∗ is the best solution
in the population, and f ∗ is its objective function value. At
each iteration, the candidates for inclusion in P are a par-
tition p̃ ∈ Π generated at random using the same routine
as for MSA and a locally optimal solution p produced by
local_search applied to p̃. A priority is assigned to par-
tition p. If p differs from all solutions currently in P , then it
is appended to the population. Otherwise, an attempt is made
to add the partition p̃ to P .

The condition in Line 6 of Algorithm 8 is checked using
an m ×m matrix, H = (hi j), whose entry hi j is the number
of vertices v ∈ V such that q(v) = i and q ′(v) = j , where
q and q ′ are the mappings corresponding to partitions p and
p′, respectively. The following statement demonstrates that
this condition as well as that in Line 8 can be checked rather
easily.

Proposition 5 The computational complexity of checking
whether partitions p ∈ Π and p′ ∈ Π are different is O(n).

Proof Clearly, constructing the matrix H takes only O(n)

operations. The partitions p and p′ are different if and only
if thematrix H constructed for themhasmore thanm nonzero
entries. Taken together, these two observations prove the
claim. ��

Algorithm 9 gives the pseudocode of the procedure
evaluate_offspring. It attempts to replace the worst
individual in population P with generated offspring p. This

123

264 Memetic Computing (2022) 14:253–285

Algorithm 9 Updating the population.

evaluate_offspring(P, p, f , p∗, f ∗)
1: if f < f ∗ then
2: Assign p to p∗ and f to f ∗
3: η :=true
4: else
5: if p differs from each p′ ∈ P and f ≤ maxp′∈P Fr (p′) then η :=true

6: else η :=false end if
7: end if
8: if η =true then
9: Replace the worst individual in P by p
10: end if
11: return P

procedure is also responsible for memorizing the best solu-
tion found.

5 Computational experiments

The purpose of this section is to examine the computational
performance of the described algorithms for ratio cut and
normalized cut graph partitioning. We present comparative
experiments on both randomly generated graphs and well-
known benchmark graphs taken from the literature.

5.1 Experimental setup

All the algorithms were coded in the C++ programming lan-
guage, and the tests were carried out on a laptop with an Intel
Core i5-6200UCPU running at 2.30GHz.We remark that the
code is designed to be applicable for graphs of arbitrary den-
sity. To achieve this requirement, the graph is represented in
a computer’s memory by the edge-weight matrix. This puts
a limit on the size of graphs the code can deal with. Our
computer can handle graphs with up to approximately 104

vertices.
We performed our experiments on the following two sets

of graphs:

(a) complete undirected graphs with edge weights generated
in the following two steps. First, each vertex is assigned a
point whose coordinates are sampled randomly and uni-
formly from a rectangle. Then, for each pair of vertices
u, v ∈ V , the weight of the edge (u, v) ∈ E is computed
as cuv = min(1/duv, 100), where duv is the Euclidean
distance between points corresponding to the vertices u
and v. The ensemble of graphs generated in this way is
split into five subsets according to the number of vertices,
which is 200, 500, 1000, 2000, and 3000, respectively.
Each subset consists of five graphs.

(b) A collection of 36 benchmark graphs. It consists of the
following three sets: the 10th DIMACS Implementation
Challenge Benchmark [2] (first 18 graphs in the tables
to follow, that is, from karate to add32, inclusively),

12 graphs from the Network Data Repository [56] (from
Trefethen-200 to bio-dmela in the tables), and 6
social network samples [9] (last 6 graphs in the tables,
that is, from soc52 to pokec_2000). We remark that
the graph named netscience has more than 100 iso-
lated vertices. We deleted them, reducing the size of
netscience from 1589 to 1461.

The dataset (a) and the source codes of the presented algo-
rithms are publicly available at http://www.personalas.ktu.lt/
~ginpalu/grpart.html.

In our computational experiments, we run each algorithm
10 times on each graph in sets (a) and (b). Maximum CPU
time limits for a run of an algorithm were as follows: 30 s
for n ≤ 200, 200 s for 200 < n ≤ 500, 500 s for 500 <

n ≤ 1000, 1000 s for 1000 < n ≤ 2000, 2000 s for 2000 <

n ≤ 4000, 4000 s for 4000 < n ≤ 6000, and 8, 000 s for
n > 6000. To assess the performance of the algorithms, we
use the following measures: the objective function value of
the best solution out of 10 runs, the average objective function
value of 10 solutions, and the average time taken to find the
best solution in a run.

5.2 Parameter settings

The main control parameters of the MSA algorithm are the
cooling factor α, the final temperature Tmin, and the number
of iterations at each temperature level, β. Following recom-
mendations from the SA literature [57,62], we set α to 0.95,
Tmin to 0.0001, and β to 100n. The specific parameter of our
implementation of SA is the move type selection probability
Q. We tested values of Q from 0 to 1 in increments of 0.1.
To this end, we run MSA on a training sample consisting of
10 complete graphs whose edge weights are generated using
the same procedure as for set (a). The five graphs in this sam-
ple are of order n = 200 and the other of order n = 500.
The number of partition subsets is 5 for n = 200 and 10
for n = 500. The sample is disjoint from set (a), which is
reserved for the testing stage. The performance of the MSA
configurations was measured in terms of the average objec-
tive function value over 10 runs. The experiment in the case of
ratio cut has shown that ourMSA algorithm is quite robust to
variation in the parameter Q in the interval [0, 0.9]. We also
found that its solutions are substantially worse for Q = 1.
This implies that using only swap operations is not a good
strategy. Restricting to the interval [0, 0.9], a marginally bet-
ter performance was observed for Q = 0.1. Therefore, we
set Q to 0.1. A similar experiment was conducted with MSA
for the case of normalized cut graph partitioning. Analogous
conclusions as in the previous experiment were made. Based
on the results obtained, we decided, for the normalized cut
case, to set Q to 0.2.

123

http://www.personalas.ktu.lt/~{}ginpalu/grpart.html
http://www.personalas.ktu.lt/~{}ginpalu/grpart.html

Memetic Computing (2022) 14:253–285 265

The parameters of our ITS algorithm are τ , κ1, κ2, Kmin,
Lmin, Lmax, and I (see Sect. 3). To determine good values for
these parameters, we experimentedwith the same training set
of graphs as used for theMSA algorithm.We relied on a sim-
ple parameter setting procedure. Its idea consists of allowing
one parameter to take a number of predefined values while
keeping the other parameters fixed at reasonable values cho-
sen during preliminary tests. We ran ITS for both problems,
ratio cut and normalized cut minimization. Because of their
close similarity, it was possible to identify a common set of
good parameter values for both problems. First, we varied κ1
from 0.1 to 0.9 in increments of 0.1. The related parameter
κ2 (> κ1) was fixed at 1, which is the maximum possible
value. The range of acceptable values for κ1 was found to
be 0.5 to 0.8. We fixed κ1 at 0.7. Then, we attempted to
decrease the value of κ2. Respecting condition κ2 > κ1, we
tested two values of κ2: κ2 = 0.8 and κ2 = 0.9. However,
none of them led to better results. Therefore, we fixed κ2
at 1 for all further experiments with ITS. We continued by
examining the following 6 values of the parameter Kmin: 1,
5, 10, 15, 20, and 50. The results showed little sensitivity of
ITS to this parameter. We arbitrarily set Kmin to 15. The next
step was to analyze the effect of the parameter Lmin. We ran
ITS with Lmin ∈ {3, 5, 10, 25, 50, 100, 200}. We observed
that the algorithm was fairly robust to the choice of Lmin.
Slightly better results were obtained with smaller values of
Lmin. Based on this finding, we set Lmin = 10. In the next
experiment, we tried the following values of the parame-
ter Lmax: 10, 25, 50, 100, 200, 300, 500, 700, 1000, 1500,
2000, and 3000. The ITS algorithm showed consistently good
performance when Lmax varied from 200 to 2000. Its perfor-
mance deteriorated for Lmax ≤ 100 and Lmax = 3000. We
decided to fix Lmax at 500. Further, we investigated how the
performance of ITS depends on the tabu tenure parameter
τ . We varied τ from 5 to 30 with a step of 5. Additionally,
we tested τ = 3. The range of acceptable values for τ was
found to be quite wide. The results of very similar quality
were obtained for τ ∈ {10, . . . , 30}. We fixed τ at 20, which
was the middle value in this set. Perhaps a more important
parameter of TS in the ITS framework is the number of iter-
ations I . We ran ITS for the following values of I : 20, 50,
100, 200, 400, and 600. The best performance of ITS was
observed when using I ∈ {100, 200}, with a slight edge to
I = 100. The algorithm showed the worst performance for
I = 600, especially for I = 20. Considering these findings,
we elected to set I to 100.

The only parameter of our memetic algorithm is the pop-
ulation size z. We performed trial runs of MA with values
of z up to 500 individuals. Based on the results obtained, we
fixed z at 100. The performance ofMAdecreasedwhen using
smaller values of z. By increasing z above 100, the results on
the training set of graphs appeared to be equally good or even
marginally better than in the case of z = 100. However, MA

Table 1 Number of partition subsets (m) and time limit (in seconds)
for random graphs

Graph series n m Time limit (s)

g-200 200 5 30

g-500 500 10 200

g-1000 1000 20 500

g-2000 2000 30 1000

g-3000 3000 50 2000

Table 2 Best results for ratio cut when running MSA, ITS, and MA on
random graphs

Graph F∗
r

MSA ITS MA

g-200-1 29.470787 28.465644 28.465644

g-200-2 28.517328 29.273550 28.517328

g-200-3 30.987977 28.973014 28.973014

g-200-4 28.018165 27.991020 27.991020

g-200-5 27.843409 27.843409 27.843409

g-500-1 198.782258 199.255728 198.422620

g-500-2 205.177224 205.732897 204.587033

g-500-3 203.013723 205.030860 203.013723

g-500-4 211.324003 210.961690 209.366998

g-500-5 205.164948 205.659258 205.024331

g-1000-1 1066.858248 1084.433932 1061.061249

g-1000-2 1066.365263 1065.563404 1055.293605

g-1000-3 1074.052434 1098.746424 1074.549342

g-1000-4 1088.758073 1097.070798 1082.427574

g-1000-5 1052.218926 1070.969257 1047.958047

g-2000-1 3555.965694 3568.355139 3542.648687

g-2000-2 3427.247307 3448.666324 3414.023989

g-2000-3 3575.194193 3606.018014 3566.690424

g-2000-4 3503.978136 3503.188732 3480.601163

g-2000-5 3574.354453 3627.354310 3582.175691

g-3000-1 10,177.017043 10,236.556683 10,160.933638

g-3000-2 9644.329837 9688.840004 9617.682643

g-3000-3 9654.802322 9712.334919 9643.131826

g-3000-4 9792.708644 9844.506723 9786.830270

g-3000-5 9509.276970 9557.378026 9499.811186

with such z values becomes unduly time-consuming when
used to partition large graphs. This comes from the fact that
each individual of the initial population is submitted to an LS
procedure that, for large graphs, takes a significant amount
of time. Thus, the population size in our memetic algorithm
should not be too large, and z = 100 is a good choice.

5.3 Numerical results for ratio cut

In this section, we present computational results obtained by
the proposed algorithms for ratio cut graph partitioning. To

123

266 Memetic Computing (2022) 14:253–285

Table 3 Average results for
ratio cut when running MSA,
ITS, and MA on random graphs
(the time is in seconds)

Graph MSA ITS MA
F̄r Time F̄r Time F̄r Time

g-200-1 29.568885 19 28.465644 3 28.465644 1

g-200-2 28.676491 15 29.338723 9 28.517328 1

g-200-3 31.036475 14 28.991713 11 29.009659 2

g-200-4 28.202671 16 28.097177 15 28.018686 6

g-200-5 28.526665 14 28.222911 14 27.843409 1

g-500-1 199.687609 88 200.862029 88 198.491499 56

g-500-2 206.432303 97 206.764527 56 204.587033 17

g-500-3 203.429266 97 207.039165 54 203.087972 40

g-500-4 212.618641 116 215.678167 59 209.858584 83

g-500-5 205.901594 99 207.778088 50 205.328684 101

g-1000-1 1069.421050 213 1097.856368 70 1064.103136 373

g-1000-2 1069.617529 295 1093.238921 108 1057.419530 346

g-1000-3 1077.223346 325 1116.316648 42 1076.574194 368

g-1000-4 1092.684641 342 1118.042031 101 1084.293881 397

g-1000-5 1062.036247 252 1084.078647 81 1049.871139 362

g-2000-1 3576.523899 547 3609.580853 143 3545.146297 959

g-2000-2 3462.714848 628 3504.891449 369 3417.816873 878

g-2000-3 3594.326927 559 3712.926018 172 3571.157759 915

g-2000-4 3513.369869 629 3552.292048 211 3485.098691 911

g-2000-5 3604.991310 602 3679.960011 187 3587.270757 869

g-3000-1 10,238.240934 1278 10,528.516808 666 10,184.505301 1823

g-3000-2 9671.068240 1153 9885.932732 979 9628.423598 1829

g-3000-3 9697.201817 1457 9864.712575 1106 9654.822446 1872

g-3000-4 9828.842172 1446 10,066.155128 849 9799.888439 1857

g-3000-5 9539.164250 1180 9720.000781 978 9510.454537 1899

Fig. 3 Best solutions for
g-200-5. a Ratio cut (Fr =
27.843409, Fn = 1.460579). b
Normalized cut (Fr =
48.911503, Fn = 1.266439)

(a)

(b)

perform pairwise comparisons between two algorithms, we
apply the Wilcoxon signed-rank test.

We began our comparison by testing the performance of
each of the algorithms on random graphs (set (a) in Sect. 5.1).
The size of graphs, n, and the number of partition subsets,m,
are shown in Table 1. Time limits (last column of the table)
were provided in Sect. 5.1. Tables 2 and 3 summarize the

results of the experiment, where the first column identifies
the graph and the rest of the tables report the performance
of MSA, ITS, and MA. Columns 2–4 of Table 2 contain
the objective function value of the best solution out of 10
runs, denoted as F∗

r . The best value of F
∗
r for each instance

is highlighted in boldface. The two columns of Table 3 for
each algorithm give the average objective function value of

123

Memetic Computing (2022) 14:253–285 267

Table 4 Summary of the results
obtained by the tested
algorithms for ratio cut on
random graphs

Algorithm pair OFV #wins #ties #losses p-value Statistical significance

MA versus MSA Best 20 3 2 < 0.001 Yes

Average 25 0 0 < 0.001 Yes

MA versus ITS Best 21 4 0 < 0.001 Yes

Average 23 1 1 < 0.001 Yes

MSA versus ITS Best 18 1 6 < 0.001 Yes

Average 21 0 4 < 0.001 Yes

Fig. 4 Time taken by MSA,
ITS, and MA to find the best
solution in a run (the case of
ratio cut). a Random graphs. b
Benchmark graphs

(a) (b)

10 solutions, denoted as F̄r , and the average time (in seconds)
taken to reach the last improvement in solution quality. The
best value of F̄r among all the algorithms is indicated in
boldface.

An example solution for a random graph is presented in
Fig. 3a. It is the best solution for g-200-5 obtained by the
tested algorithms. It was found in two runs (out of 10) of
MSA, two runs of ITS, and all 10 runs of MA.

Table 2 shows that MA performs considerably better than
the other two algorithms. The MA obtained the best solution
formore than 90%of the graphs (23 out of 25), whereasMSA
and ITS produced the best result for 5 and 4 graphs, respec-
tively. Comparing average values (Table 3), we observe even
more prominent dominance of MA. This algorithm yielded
the best results for 24 graphs. The average performance of
the other two algorithms was much worse: ITS obtained the
best average values for two graphs only, whereasMSA failed
to do so for the entire set of graphs.

The results of the pairwise comparison of algorithms are
shown in Table 4, where the names of the algorithms are
given in the first column. The second column identifies the
values being compared: “Best” denotes the values displayed
in the columns in Table 2 labeled F∗

r and “Average” denotes
those in the columns in Table 3 labeled F̄r . Columns 3 to 5 of
Table 4 show comparison results: #wins, #ties, and #losses
count the number of graphs on which the first algorithm in
the pair finds a better, an equally good or an inferior solu-
tion than the second algorithm. Additionally, we applied the
Wilcoxon signed-rank test for each pair of algorithms. The

p-values from this test are estimated in the penultimate col-
umn. Using a standard significance level of 0.05, we found
that the results of the first algorithm in the pair are better than
those of the second algorithm (by placing “Yes” in the last
column). Table 4 clearly shows that the MA is superior to
the MSA technique and ITS method. Comparing the latter
two approaches, an obvious advantage of MSA over ITS is
observed.

Figure 4a shows the performance comparison of the tested
algorithms in terms of computational time. Each point in the
plot represents the average value taken over 5 graphs. The
results indicate that the algorithms can be ranked, from fastest
to slowest, in the following order: ITS, MSA, and MA.

In Tables 5 and 6, we computationally compare the
algorithms on graphs in the (b) dataset. Their second and
third columns give the size of the graph and the number
of partition subsets, respectively. The labels of the other
columns have the same meaning as in Tables 2 and 3.
By analyzing the results in Tables 5 and 6, we find that
MA performs much better than the other two algorithms.
We observe that MA produced the best solution for 35
graphs (out of 36). The ITS and MSA algorithms obtained
the best solutions for 12 and 9 benchmark graphs, respec-
tively. Moreover, MA achieved the best average result for
35 graphs, whereas each of MSA and ITS did this only for
7 graphs. The only graph on which MA was defeated (by
MSA) was add20. We also notice that Table 5 includes
7 graphs (karate, dolphins, polbooks, football,
can-292, ia-infect-dublin, and soc52) for which

123

268 Memetic Computing (2022) 14:253–285

Table 5 Best results for ratio
cut when running MSA, ITS,
and MA on benchmark graphs
from the literature

Graph n m F∗
r

MSA ITS MA

karate 34 2 0.937931 0.937931 0.937931

dolphins 62 2 0.432056 0.432056 0.432056

polbooks 105 3 2.295626 2.295626 2.295626

football 115 12 41.956854 41.956854 41.956854

jazz 198 2 3.498814 1.005076 1.005076

celegansneural 297 20 37.192437 31.111511 31.111511

celegans_metabolic 453 3 0.918349 1.292873 0.906726

delaunay_n10 1024 20 18.019499 19.243098 15.329365

email 1133 2 0.550802 0.670216 0.500884

netscience 1461 12 0.138986 0.091430 0.000000

delaunay_n11 2048 30 28.493743 28.351407 20.785773

add20 2395 5 0.768463 0.827959 0.801684

data 2851 25 26.980359 28.331474 18.579787

delaunay_n12 4096 50 57.933976 44.455957 33.371430

3elt 4720 20 13.037060 9.615413 5.407438

uk 4824 25 11.161544 9.593982 2.981080

power 4941 20 5.585462 5.840868 2.929816

add32 4960 20 4.176777 4.714050 3.336302

Trefethen-200 200 6 29.302787 29.177737 29.177737

ash292 292 5 2.160565 2.128728 2.108259

can-292 292 4 2.701870 2.701870 2.701870

ia-infect-dublin 410 2 0.515001 0.515001 0.515001

dwt-503 503 3 1.434769 1.456562 1.434769

Trefethen-700 700 8 46.778263 46.178871 46.178633

can-715 715 5 3.104721 3.464374 2.940939

L 956 6 1.483827 1.771585 1.077067

dwt-1005 1005 10 6.053665 6.664872 5.095268

road-minnesota 2642 10 1.789967 2.247812 0.845962

socfb-Brandeis99 3898 2 6.554323 0.000000 0.000000

bio-dmela 7393 3 0.854338 1.072443 0.366938

soc52 52 3 2.437500 2.437500 2.437500

gplus_200 200 5 0.872655 0.851482 0.851482

gplus_500 500 5 0.847377 1.055230 0.668285

pokec_500 500 5 0.866088 0.583463 0.485606

gplus_2000 2000 10 3.104040 3.366344 2.343085

pokec_2000 2000 10 5.311986 5.690171 3.605891

all three heuristics were capable of finding the best solution.
A summary of the pairwise comparison results between the
algorithms is given in Table 7. The entry “No” in the last col-
umnmeans that there is no significant difference between the
results of the two compared algorithms. From the table, it can
be concluded thatMA is by far the best performing algorithm
for the (b) set of graphs. The number of losses is at most 1.
We can also see that there is no marked difference between
the results of MSA and ITS at the selected significance level
of 0.05.

The computational time taken by each of the tested algo-
rithms is depicted in Fig. 4b. To construct the plots shown
there, we split the interval [250, 7750] into subintervals of
length 500 and then, for each subinterval, identified all graphs
whose number of vertices falls within that subinterval. In this
way, we obtained 10 nonempty subsets of graphs. For exam-
ple, the subset corresponding to the subinterval [250, 750)
consists of 10 graphs. Each point in the plot represents the
average value of the time taken over all graphs in the cor-
responding subset and is placed at the x coordinate being

123

Memetic Computing (2022) 14:253–285 269

Table 6 Average results for
ratio cut when running MSA,
ITS, and MA on benchmark
graphs from the literature (the
time is in seconds)

Graph n m MSA ITS MA
F̄r Time F̄r Time F̄r Time

karate 34 2 0.937931 23 0.937931 0 0.937931 0

dolphins 62 2 0.432056 15 0.432056 0 0.432056 0

polbooks 105 3 2.295626 18 2.295626 0 2.295626 0

football 115 12 41.956854 14 41.956854 0 41.956854 0

jazz 198 2 3.498814 14 1.010230 0 1.005076 0

celegansneural 297 20 39.537592 126 34.427923 42 31.111511 0

celegans_metabolic 453 3 0.918349 138 1.454931 62 0.906726 1

delaunay_n10 1024 20 18.777441 759 20.083913 84 15.515484 644

email 1133 2 0.565147 598 0.892314 147 0.500884 1

netscience 1461 12 0.210992 462 0.199925 807 0.000000 54

delaunay_n11 2048 30 30.569323 1241 31.267510 74 20.979736 1816

add20 2395 5 0.783234 1323 0.930753 833 0.801684 459

data 2851 25 27.978858 1477 31.938601 151 19.016062 1959

delaunay_n12 4096 50 59.404881 2065 48.470260 240 33.677608 3858

3elt 4720 20 13.628198 2996 11.701970 245 5.464363 3744

uk 4824 25 11.426019 2263 10.800167 2975 4.020491 3863

power 4941 20 5.846557 2418 6.380431 2936 3.260920 3787

add32 4960 20 4.816276 2513 5.591480 2496 3.611136 2900

Trefethen-200 200 6 29.428377 16 29.177737 1 29.177737 0

ash292 292 5 2.173243 107 2.138945 58 2.110577 27

can-292 292 4 2.701870 101 2.810330 40 2.701870 1

ia-infect-dublin 410 2 0.630187 82 0.629642 77 0.515001 1

dwt-503 503 3 1.434890 209 1.486739 338 1.434769 7

Trefethen-700 700 8 46.949315 250 46.256942 218 46.178633 26

can-715 715 5 3.358126 304 3.613356 207 2.940939 25

L 956 6 1.683417 262 2.031320 54 1.083021 160

dwt-1005 1005 10 6.756896 499 7.723954 29 5.138586 320

road-minnesota 2642 10 2.099074 1137 2.446506 1033 0.929364 1885

socfb-Brandeis99 3898 2 6.554323 1136 0.000000 0 0.000000 1

bio-dmela 7393 3 0.889243 6422 1.157065 2651 0.448604 996

soc52 52 3 2.437500 15 2.437500 0 2.437500 0

gplus_200 200 5 0.872655 15 0.941756 16 0.851482 0

gplus_500 500 5 0.966212 77 1.148792 129 0.675894 25

pokec_500 500 5 0.992090 152 0.716869 62 0.485606 3

gplus_2000 2000 10 3.470316 632 4.034365 632 2.435137 147

pokec_2000 2000 10 6.351653 517 6.713176 731 4.194163 226

Table 7 Summary of the results
obtained by the tested
algorithms for ratio cut on
benchmark graphs from the
literature

Algorithm pair OFV #wins #ties #losses p-value Statistical significance

MA versus MSA Best 27 8 1 < 0.001 Yes

Average 29 6 1 < 0.001 Yes

MA versus ITS Best 24 12 0 < 0.001 Yes

Average 29 7 0 < 0.001 Yes

MSA versus ITS Best 16 7 13 > 0.2 No

Average 19 5 12 > 0.2 No

123

270 Memetic Computing (2022) 14:253–285

Table 8 Best results for a normalized cut when runningMSA, ITS, and
MA on random graphs

Graph F∗
n

MSA ITS MA

g-200-1 1.329776 1.315066 1.315066

g-200-2 1.401752 1.363153 1.363153

g-200-3 1.219671 1.205851 1.205851

g-200-4 1.207305 1.215972 1.207305

g-200-5 1.266439 1.266439 1.266439

g-500-1 3.468584 3.476683 3.455826

g-500-2 3.841118 3.835036 3.835036

g-500-3 3.792776 3.794346 3.790331

g-500-4 3.484301 3.540494 3.468899

g-500-5 3.682650 3.682650 3.685251

g-1000-1 9.834501 10.013168 9.724178

g-1000-2 9.937449 9.987719 9.630570

g-1000-3 10.082908 9.995309 9.955058

g-1000-4 9.947898 10.043799 9.676365

g-1000-5 9.986396 9.890707 9.599150

g-2000-1 16.900033 17.037897 16.863759

g-2000-2 17.302464 17.290662 16.875586

g-2000-3 17.261999 17.283946 16.919533

g-2000-4 17.286398 17.056313 16.992265

g-2000-5 17.166575 17.051547 16.949080

g-3000-1 32.868900 32.749950 32.245723

g-3000-2 32.914623 32.825475 32.158796

g-3000-3 32.940740 33.094891 32.469108

g-3000-4 32.924627 33.059634 32.490853

g-3000-5 33.163969 33.066114 32.455933

the midpoint of the corresponding subinterval. We excluded
from consideration the 8 smallest graphs (of an order less
than 250) because the algorithms, especially ITS and MA,
require a very small amount of time to partition. The right-
most points in the plots were obtained for a single graph,
namely bio-dmela. Perhaps they can be marked as out-
liers when comparing the algorithms. We can see in Fig. 4b
that ITS tends to take less CPU time than MSA and MA.
These two latter algorithms are comparable in terms of com-
putation time. In fact, MA was slightly faster than MSA for
graphs of an order n < 2700, and MSA is faster than MA
for graphs with n > 2700. The running times of the tested
algorithms for individual graphs are listed in Table 6.

5.4 Numerical results for a normalized cut

In the second phase of experimentation, we tested the devel-
oped algorithms for the graph partitioning problem with the
normalized cut objective function. Their performance was
evaluated using the same scenario as in the previous section.

First, we tested MSA, ITS, and MA on the set of random
graphs. The results are reported in Tables 8 and 9. The objec-
tive function value of the best solution (out of 10 runs) is
denoted by F∗

n and the average objective function value of
10 solutions is denoted by F̄n . Contrasting the results from
Tables 2 and 3, and those from Tables 8 and 9, we see that the
MA showed equally strong performance in solving both par-
titioning problems on random graphs. We can find in Table 8
that MA produced the best solution for 24 graphs in the set,
whereas MSA and ITS obtained the best result for 3 and 6
graphs, respectively. We observe from Table 9 that MA pro-
vided the best average solutions for 23 random graphs. Each
of the other two algorithms achieved the best average value
for a single graph. The results of the pairwise comparison
of algorithms are shown in Table 10. They statistically sup-
port the assertion that MA performs better than MSA and
ITS. Looking at the statistics for MSA and ITS, we observe
a significant difference in favor of MSA only for the case of
average solutions.

Figure 3b shows the best solution found for graph
g-200-5. This solution is achieved by all three heuristics. In
particular, the MA arrived at this solution in each of 10 runs.
The solutions for the ratio cut (Fig. 3a) and normalized cut
(Fig. 3b)were quite different. The ratio cut objective function
value for the second of these solutions was 48.911503, which
was much worse than that for the first one. In contrast, the
first solution was inferior to the second one in terms of the
normalized cut objective function. Its value was 1.460579
against 1.266439 for the second solution.

The execution time of the tested algorithms is plotted in
Fig. 5a. The ranking of the algorithms from fastest to slowest
was ITS, MSA, and MA. This is exactly the same as in the
case of ratio cut minimization. It can also be noted thatMA is
marginally faster than ITS and MSA for small graphs (with
n ≤ 500).

Tables 11 and 12 summarize the results of MSA, ITS,
and MA on the set of benchmark graphs from the literature.
Inspecting these tables reveals the clear superiority of the
MA over other approaches in our evaluation. This algorithm
produced the best partition for each of the 36 graphs.We also
see that MSA and ITS yielded the best solution for 8 and 12
graphs, respectively, in the set. Looking at the average values
F̄n , we found that MA obtained the best result for all graphs,
whileMSAand ITS failed inmanycases andmatched theMA
performance for 6 and 8 benchmark graphs, respectively. We
also made a pairwise comparison of heuristics. The results
are displayed in Table 13, from which it is apparent that MA
dominates the other two algorithms. The superiority of MA
over other approaches is even more pronounced than in the
random graph case. From the last two rows in Table 13, we
can conclude that the quality of solutions delivered by MSA
and ITS looks comparable.

123

Memetic Computing (2022) 14:253–285 271

Table 9 Average results for a
normalized cut when running
MSA, ITS, and MA on random
graphs (the time is in seconds)

Graph MSA ITS MA
F̄n Time F̄n Time F̄n Time

g-200-1 1.329776 14 1.315284 12 1.315828 1

g-200-2 1.434167 17 1.369071 14 1.363153 3

g-200-3 1.238273 16 1.206219 8 1.205851 2

g-200-4 1.223865 17 1.278333 12 1.207305 1

g-200-5 1.272482 15 1.272793 15 1.266439 1

g-500-1 3.498204 114 3.583851 132 3.465290 66

g-500-2 3.917550 115 3.879862 105 3.847909 45

g-500-3 3.869482 62 3.854537 105 3.798395 89

g-500-4 3.519804 94 3.653742 124 3.483869 36

g-500-5 3.692783 101 3.774761 76 3.695054 40

g-1000-1 10.051920 320 10.168825 185 9.758664 310

g-1000-2 10.091892 320 10.209080 131 9.642397 342

g-1000-3 10.203580 301 10.312122 92 9.981957 360

g-1000-4 10.035471 342 10.193633 63 9.707875 384

g-1000-5 10.092003 210 10.229109 164 9.623047 369

g-2000-1 17.218792 477 17.425192 373 16.906716 869

g-2000-2 17.575799 572 17.722551 316 16.915658 912

g-2000-3 17.474202 483 17.654850 400 16.992583 899

g-2000-4 17.418200 636 17.515490 450 17.042475 950

g-2000-5 17.359247 647 17.448308 309 16.996156 905

g-3000-1 33.033366 1631 33.091513 781 32.344338 1663

g-3000-2 33.066883 1430 33.119156 1372 32.245668 1803

g-3000-3 33.190598 1133 33.299338 880 32.532437 1770

g-3000-4 33.144343 1442 33.297176 577 32.576456 1914

g-3000-5 33.354442 1256 33.478115 1187 32.575388 1668

Table 10 Summary of the
results obtained by the tested
algorithms for a normalized cut
on random graphs

Algorithm pair OFV #wins #ties #losses p-value Statistical significance

MA versus MSA Best 22 2 1 < 0.001 Yes

Average 24 0 1 < 0.001 Yes

MA versus ITS Best 19 5 1 < 0.001 Yes

Average 24 0 1 < 0.001 Yes

MSA versus ITS Best 11 2 12 > 0.2 No

Average 20 0 5 < 0.001 Yes

Fig. 5 Time taken by MSA,
ITS, and MA to find the best
solution in a run (the case of
normalized cut). a Random
graphs. b Benchmark graphs

(a) (b)

123

272 Memetic Computing (2022) 14:253–285

Table 11 Best results for a
normalized cut when running
MSA, ITS, and MA on
benchmark graphs from the
literature

Graph n m F∗
n

MSA ITS MA

karate 34 2 0.256410 0.256410 0.256410

dolphins 62 2 0.090616 0.090616 0.090616

polbooks 105 3 0.357999 0.357999 0.357999

football 115 12 4.046195 4.046195 4.046195

jazz 198 2 0.157503 0.157503 0.157503

celegansneural 297 20 9.942777 10.005737 9.878295

celegans_metabolic 453 3 0.443966 0.474388 0.195767

delaunay_n10 1024 20 2.879400 2.871209 2.592740

email 1133 2 0.232049 0.232504 0.215629

netscience 1461 12 0.097262 0.077844 0.000000

delaunay_n11 2048 30 4.568587 4.349694 3.470871

add20 2395 5 0.600447 0.629620 0.386418

data 2851 25 3.286234 2.930128 2.038039

delaunay_n12 4096 50 8.691735 7.167249 5.609273

3elt 4720 20 2.158368 1.587407 0.929342

uk 4824 25 4.057219 3.607386 1.629709

power 4941 20 1.625724 2.332730 1.349342

add32 4960 20 0.975372 1.555498 0.326691

Trefethen-200 200 6 2.249661 2.249661 2.249661

ash292 292 5 0.351585 0.343277 0.342347

can-292 292 4 0.385405 0.385405 0.385405

ia-infect-dublin 410 2 0.063591 0.043793 0.043793

dwt-503 503 3 0.191229 0.189659 0.184988

Trefethen-700 700 8 2.773342 2.772250 2.772250

can-715 715 5 0.441312 0.435508 0.435508

L 956 6 0.447864 0.454578 0.283702

dwt-1005 1005 10 0.927519 0.907562 0.785061

road-minnesota 2642 10 0.851094 0.829972 0.330296

socfb-Brandeis99 3898 2 0.320622 0.147692 0.147692

bio-dmela 7393 3 0.876248 0.762828 0.403828

soc52 52 3 0.712968 0.712968 0.712968

gplus_200 200 5 0.290692 0.302318 0.277428

gplus_500 500 5 0.230335 0.297260 0.196626

pokec_500 500 5 0.171848 0.197513 0.129259

gplus_2000 2000 10 1.086015 1.053661 0.647314

pokec_2000 2000 10 1.511054 1.548266 0.842486

Figure 5b illustrates the computational time of the tested
algorithms as a function of the graph size. We can see that as
in the ratio cut case, ITS took less time tofind the best solution
in a run than MSA and MA. In particular, ITS dominates
MSA over the whole range of graph sizes. We also observe
that MA is the fastest approach for small graphs (with n ≤
1500). However, with increasing n, it became the slowest
algorithm. The timing results for individual graphs are shown
in Table 12.

5.5 Comparison with the state of the art

For comparison purposes, we implemented the VNS algo-
rithm of Hansen et al. [27]. Similar to the algorithms in this
paper, VNS has been coded in the C++ programming lan-
guage. The experiments were conducted with the parameter
values used in [27]. We restricted ourselves to comparing the
best of our algorithms, MA, against VNS. We remind that
Hansen et al. [27] developed their algorithm for solving the
normalized cut graph partitioning problem.

123

Memetic Computing (2022) 14:253–285 273

Table 12 Average results for a
normalized cut when running
MSA, ITS, and MA on
benchmark graphs from the
literature (the time is in seconds)

Graph n m MSA ITS MA
F̄n Time F̄n Time F̄n Time

karate 34 2 0.256410 18 0.256410 0 0.256410 0

dolphins 62 2 0.090616 16 0.090616 0 0.090616 0

polbooks 105 3 0.357999 15 0.357999 0 0.357999 0

football 115 12 4.046195 16 4.046195 0 4.046195 0

jazz 198 2 0.157503 12 0.157503 0 0.157503 0

celegansneural 297 20 9.978573 102 10.043401 129 9.889473 91

celegans_metabolic 453 3 0.444504 63 0.535099 119 0.195767 5

delaunay_n10 1024 20 2.956622 568 3.082031 281 2.620307 733

email 1133 2 0.232101 513 0.236139 546 0.216769 62

netscience 1461 12 0.122566 694 0.214127 686 0.000000 120

delaunay_n11 2048 30 4.730520 990 4.804968 143 3.504679 1815

add20 2395 5 0.637167 893 0.752580 1041 0.391417 1309

data 2851 25 3.486326 1282 3.411918 177 2.067953 1946

delaunay_n12 4096 50 8.926666 2687 8.007167 465 5.671613 3908

3elt 4720 20 2.280803 2710 1.932474 712 0.943059 3723

uk 4824 25 4.234634 2318 4.168123 2684 1.980777 3882

power 4941 20 1.823150 2573 2.489125 2293 1.530633 3791

add32 4960 20 1.201003 2526 1.716454 1955 0.403704 3391

Trefethen-200 200 6 2.261075 14 2.249661 1 2.249661 1

ash292 292 5 0.359794 90 0.344835 102 0.342347 2

can-292 292 4 0.388111 111 0.385405 51 0.385405 1

ia-infect-dublin 410 2 0.063591 69 0.059631 20 0.043793 1

dwt-503 503 3 0.193707 304 0.190427 187 0.188414 27

Trefethen-700 700 8 2.793341 258 2.772296 248 2.772250 38

can-715 715 5 0.460751 264 0.442612 222 0.436007 24

L 956 6 0.499008 219 0.515649 56 0.284154 112

dwt-1005 1005 10 0.990432 511 1.012138 326 0.797461 133

road-minnesota 2642 10 0.920393 1351 0.985167 979 0.361209 1939

socfb-Brandeis99 3898 2 0.321812 1061 0.147705 461 0.147701 418

bio-dmela 7393 3 0.889283 7049 0.810167 4496 0.413778 7481

soc52 52 3 0.712968 17 0.712968 0 0.712968 0

gplus_200 200 5 0.293464 13 0.334596 18 0.277428 0

gplus_500 500 5 0.238586 107 0.317876 125 0.204525 18

pokec_500 500 5 0.196052 72 0.234238 79 0.129259 6

gplus_2000 2000 10 1.256574 599 1.184974 707 0.700524 521

pokec_2000 2000 10 1.691226 716 1.717825 687 0.845040 648

Table 13 Summary of the
results obtained by the tested
algorithms for a normalized cut
on benchmark graphs from the
literature

Algorithm pair OFV #wins #ties #losses p-value Statistical significance

MA versus MSA Best 28 8 0 < 0.001 Yes

Average 30 6 0 < 0.001 Yes

MA versus ITS Best 24 12 0 < 0.001 Yes

Average 28 8 0 < 0.001 Yes

ITS versus MSA Best 17 8 11 > 0.2 No

Average 14 6 16 > 0.2 No

123

274 Memetic Computing (2022) 14:253–285

Table 14 Comparison of the
memetic algorithm with the
state-of-the-art algorithm, VNS,
of Hansen et al. [27] for
normalized cut partitioning of
random graphs (the time is in
seconds)

Graph VNS [27] MA
F∗
n F̄n Time F∗

n F̄n Time

g-200-1 1.315066 1.331910 1 1.315066 1.315828 1

g-200-2 1.363153 1.391170 7 1.363153 1.363153 3

g-200-3 1.207078 1.226515 1 1.205851 1.205851 2

g-200-4 1.207305 1.283627 4 1.207305 1.207305 1

g-200-5 1.266439 1.297508 1 1.266439 1.266439 1

g-500-1 3.565152 3.691304 61 3.455826 3.465290 66

g-500-2 3.835036 3.901362 61 3.835036 3.847909 45

g-500-3 3.790331 3.902471 36 3.790331 3.798395 89

g-500-4 3.576887 3.703809 69 3.468899 3.483869 36

g-500-5 3.770853 3.838569 78 3.685251 3.695054 40

g-1000-1 9.825321 9.944504 206 9.724178 9.758664 310

g-1000-2 9.796339 9.883550 182 9.630570 9.642397 342

g-1000-3 9.972615 10.050408 213 9.955058 9.981957 360

g-1000-4 9.755182 9.885892 289 9.676365 9.707875 384

g-1000-5 9.694180 9.817429 201 9.599150 9.623047 369

g-2000-1 16.881007 16.939856 468 16.863759 16.906716 869

g-2000-2 16.933214 17.147329 553 16.875586 16.915658 912

g-2000-3 16.975062 17.032259 630 16.919533 16.992583 899

g-2000-4 16.969761 17.075015 515 16.992265 17.042475 950

g-2000-5 16.974046 17.054939 419 16.949080 16.996156 905

g-3000-1 31.981446 32.182476 1039 32.245723 32.344338 1663

g-3000-2 32.155155 32.256756 1421 32.158796 32.245668 1803

g-3000-3 32.257388 32.339845 1473 32.469108 32.532437 1770

g-3000-4 32.321777 32.416463 1225 32.490853 32.576456 1914

g-3000-5 32.221956 32.351820 1120 32.455933 32.575388 1668

Table 15 Comparison of MA
versus VNS: a summary of the
results

Graphs OFV #wins #ties #losses p-value Statistical significance

Random Best 13 6 6 > 0.2 No

Average 21 0 4 < 0.025 Yes

Benchmarks Best 24 11 1 < 0.001 Yes

Average 30 5 1 < 0.001 Yes

In Table 14, we report the results achieved by VNS and
MAfor randomgraphs. The three columns for each algorithm
report F∗

n , F̄n , and the average time for reaching the best
result. The best value of F∗

n and F̄n for each instance is shown
in boldface and in italics, respectively. It can be seen that
MA performs better or equally well with VNS for all graphs
of order up to 2000 except for g-2000-4 in terms of F∗

n .
A different conclusion is reached for graphs of order 3000,
where VNS produced better partitions than MA. We also
observe that, for n ≥ 1000, the average time taken by VNS
to find the best solution in a run is significantly shorter than
that ofMA. This means that VNS spendsmore time thanMA
without improving the quality of the output solution.

We summarize the results of the experiment in the first
two rows of Table 15. As before, the Wilcoxon signed-rank
test at the significance level of 0.05 was used to compare the
performance of the two algorithms. The test demonstrated
a statistically significant difference in the average quality of
solutions obtained byMA and VNS.We see that MA outper-
formed VNS on the 21 random graphs (out of 25). However,
there was no statistically significant difference between the
results of the two algorithms in the case of the best solutions.

Table 16 shows the results of the experiment on the set of
benchmark graphs. The last six columns of this table have the
same structure as in Table 14.We observe that MA surpassed
or matched the VNS algorithm across all graphs except uk.
We also see that VNS could find the best result for 12 of

123

Memetic Computing (2022) 14:253–285 275

Table 16 Comparison of the
memetic algorithm with the
state-of-the-art algorithm, VNS,
of Hansen et al. [27] for
normalized cut partitioning of
benchmark graphs (the time is in
seconds)

Graph n m VNS [27] MA
F∗
n F̄n Time F∗

n F̄n Time

karate 34 2 0.256410 0.256410 0 0.256410 0.256410 0

dolphins 62 2 0.090616 0.090616 0 0.090616 0.090616 0

polbooks 105 3 0.357999 0.357999 0 0.357999 0.357999 0

football 115 12 4.046195 4.046195 0 4.046195 4.046195 0

jazz 198 2 0.157503 0.249612 0 0.157503 0.157503 0

celegansneural 297 20 9.878295 9.899448 73 9.878295 9.889473 91

celegans_metabolic 453 3 0.443966 0.661832 67 0.195767 0.195767 5

delaunay_n10 1024 20 2.601046 2.702850 584 2.592740 2.620307 733

email 1133 2 0.232049 0.252497 169 0.215629 0.216769 62

netscience 1461 12 0.073751 0.121331 873 0.000000 0.000000 120

delaunay_n11 2048 30 3.810993 3.954550 1577 3.470871 3.504679 1815

add20 2395 5 0.602376 0.672602 1195 0.386418 0.391417 1309

data 2851 25 2.427628 2.625715 1859 2.038039 2.067953 1946

delaunay_n12 4096 50 6.508810 6.825981 3818 5.609273 5.671613 3908

3elt 4720 20 1.335464 1.491187 3799 0.929342 0.943059 3723

uk 4824 25 1.562372 1.781972 3899 1.629709 1.980777 3882

power 4941 20 1.641364 1.751849 3972 1.349342 1.530633 3791

add32 4960 20 1.389029 1.589182 3708 0.326691 0.403704 3391

Trefethen-200 200 6 2.249661 2.253546 1 2.249661 2.249661 1

ash292 292 5 0.343277 0.388463 21 0.342347 0.342347 2

can-292 292 4 0.385405 0.527403 15 0.385405 0.385405 1

ia-infect-dublin 410 2 0.043793 0.065767 0 0.043793 0.043793 1

dwt-503 503 3 0.200969 0.227937 147 0.184988 0.188414 27

Trefethen-700 700 8 2.772310 2.861548 98 2.772250 2.772250 38

can-715 715 5 0.440794 0.485988 31 0.435508 0.436007 24

L 956 6 0.301281 0.359839 257 0.283702 0.284154 112

dwt-1005 1005 10 0.856210 0.952162 350 0.785061 0.797461 133

road-minnesota 2642 10 0.656730 0.720834 1945 0.330296 0.361209 1939

socfb-Brandeis99 3898 2 0.298508 0.298508 268 0.147692 0.147701 418

bio-dmela 7393 3 0.748778 0.769965 7716 0.403828 0.413778 7481

soc52 52 3 0.712968 0.712968 0 0.712968 0.712968 0

gplus_200 200 5 0.277428 0.287320 9 0.277428 0.277428 0

gplus_500 500 5 0.251453 0.303077 136 0.196626 0.204525 18

pokec_500 500 5 0.268187 0.349631 51 0.129259 0.129259 6

gplus_2000 2000 10 1.064966 1.257695 904 0.647314 0.700524 521

pokec_2000 2000 10 1.650285 1.867055 755 0.842486 0.845040 648

36 graphs. However, almost all of these graphs are of small
sizes. To compare the quality of solutions produced by the
algorithms more accurately, we calculate the relative differ-
ence between their objective function values. To this end, we
apply the following formula

e = ((FVNS − FMA)/min(FVNS, FMA))100%, (17)

where e is the relative difference, and FVNS and FMA denote
the objective function values achieved by VNS and MA,
respectively. Figure 6 shows the relative differences calcu-
lated using (17) for FVNS and FMA values contained in the
columns in Table 16 labelled F∗

n . In this figure, we omit
netscience forwhich e is not defined aswell as the graphs
for which e < 2%. The results demonstrate that MA signifi-
cantly outperforms the VNS algorithm. The average relative

123

276 Memetic Computing (2022) 14:253–285

celegans_metabolic
gplus_500
pokec_500
dwt_503
L
dwt_1005
email
gplus_2000
pokec_2000
delaunay_n11
add20
road-minnesota
data
socfb-Brandeis99
delaunay_n12
3elt
uk
power
add32
bio-dmela

50 053001005- 300250200150

Fig. 6 Relative difference between the best objective function value
obtained by the MA and VNS methods

difference (calculated for 35 graphs) between the F∗
n values

of VNS and MA is 35%.
From Table 16, we find that the advantage of MA over

VNS becomes even more prominent when considering the
average performance of algorithms. The VNS heuristic
achieved the best average result for uk and 5 smallest graphs
only. There are a number of graphs for which VNS, unlike
MA, failed to find the best solution in all 10 runs. Three such
graphs (jazz, Trefethen-200, gplus_200) have 200
or fewer vertices. Figure 7 depicts the percentage differences
calculated by substituting the F̄n values of VNS andMA into
Equation (17). The figure lists only those graphs for which
e > 4%. The results again indicate a very clear superiority
of MA over the VNS algorithm. The average relative differ-
ence between VNS and MA in terms of the F̄n value is 48%.
Statistically significant differences among the algorithms are
confirmed by the Wilcoxon signed-rank test in the last two
rows of Table 15.

Evaluating the computational speed of the MA and VNS
algorithms reveals that they take a similar amount of time to
find the best solution in a run (compare the time columns in
Table 16). This especially can be seen when the graph order
becomes large. Overall, the average time taken by VNS was
1064 s and that taken by MA was 1004 s.

5.6 Comparison with a different variant of the
crossover operation

The numerical results reported in Sects. 5.4 and 5.5 demon-
strate the effectiveness and excellent performance of the MA

celegans_metabolic
gplus_500
pokec_500
dwt_503

L
dwt_1005
email
gplus_2000
pokec_2000
delaunay_n11
add20
road-minnesota
data
socfb-Brandeis99
delaunay_n12
3elt
uk
power
add32
bio-dmela

50-50 0 100 300250200150

can_715

jazz
ash292
can_292
ia-infect-dublin

Fig. 7 Relative difference between the average objective function value
of solutions found by the MA and VNS methods

in solving the normalized cut partitioning problem for bench-
mark graphs as well as for random graphs of order up to
2000. However, MA was less successful for random graphs
with 3000 vertices. It is difficult to determine a possible rea-
son for this shortcoming. We investigated the behavior of the
offspring generation procedure get_offspring. In the
first stage of this procedure, all vertices of the graph were
assigned to offspring subsets. If the required number of sub-
sets was reached, then the procedure stopped (Line 25 of
Algorithm 6). Otherwise, a subset splitting operation was
performed until m partition subsets were created (Lines 26–
36 ofAlgorithm6).Weobserved amuchmore frequent use of
this operation for random graphs with n = 3000 in compari-
son with benchmark graphs and small random graphs. In the
case of random graphs of order 3000, the splitting operation
was applied on average in 79.9% of all generated offspring
(the average is taken over 5 graphs and 10 runs for each of
them). This percentage reduces to 49.1% for random graphs
with n = 2000 and is less than 1% for all benchmark graphs
except football and soc52, which are very easy to solve
by all tested algorithms. One might guess that frequent use
of the subset splitting operation may have a negative impact
on the performance of the proposed memetic algorithm.

123

Memetic Computing (2022) 14:253–285 277

In the process of MA design, we developed a version of
the algorithm with a different variant of the crossover oper-
ation. This crossover differs from those typically used in
GGAs. We restrict ourselves to a brief outline of the alter-
native version of the MA because this algorithm generally
showed inferior performance compared to the MA presented
inSect. 4. The alternative crossover procedure uses thematrix
H = (hi j) introduced in Sect. 4. Suppose that H is con-
structed for parent partitions p′ and p′′. Let q ′ and q ′′ be
the mappings corresponding to partitions p′ and p′′, respec-
tively. The procedure first identifies the m largest entries
of the matrix H . Their set (denoted by Ψ) is used to con-
struct a one-to-one mapping g from {(i, j) | hi j ∈ Ψ } to
M . Basically, the mapping g can be simply viewed as arbi-
trary labeling of the elements of Ψ by the integers in the set
{1, . . . ,m}. Having the mapping g, the procedure can define
sets Ai = {g(i, k) | k ∈ {1, . . . ,m}, hik ∈ Ψ }, i ∈ M ,
and Bj = {g(k, j) | k ∈ {1, . . . ,m}, hkj ∈ Ψ }, j ∈ M .
Then, the vertices of the graph are processed one by one.
For v ∈ V , let i = q ′(v), j = q ′′(v). If i and j are such
that hi j ∈ Ψ , then q(v) is set to g(i, j). Otherwise, q(v)

is assigned a partition subset index chosen randomly either
from the set Ai ∪Bj if this set is nonempty or from the set M .
The resulting offspring partition is represented by the map-
ping q. We use MA′ to refer to the version of the MA with
the just outlined crossover operator.

We experimentally compared MA′ versus MA and con-
cluded that the performance of MA′ was inferior to that of
MA for benchmark graphs and for smaller random graphs.
However, MA′ is more effective than MA when solving the
normalized cut graphpartitioning problem for randomgraphs
of order 2000 and 3000. This can clearly be seen in Table 17,
where the results for VNS from Table 14 are repeated for
comparison reasons. MA′ produced the best solution for 8
graphs, whereas MA and VNS yielded the best partition for
only one graph. We also observe that MA′ obtained the best
average results for 9 of 10 graphs. By comparing the time
columns for MA in Table 14 and MA′ in Table 17, we found
that MA′ was more than twice as fast as MA. However,
as mentioned before, MA′ could not successfully compete
with MA when the comparison between algorithms was per-
formed over all graphs in our test suite. In particular, MA
yielded better or equal quality solutions compared toMA′ for
almost all (34 out of 36) benchmark graphs. To save space,
we, therefore, do not provide detailed experimental results
for MA′.

5.7 Comparisons with the genetic algorithm and
multistart local search

To further evaluate the MA performance, we compared it
with the genetic algorithm for normalized cut graph parti-
tioning. We constructed the latter simply by removing all the

calls to the LS procedure fromMA.We refer to this algorithm
as GA1. We also tested another configuration of the genetic
algorithm,whichwas obtained fromMAby removing calls to
local_search from the offspring generation steps only.
In other words, we modified MA by deleting Step 7 of Algo-
rithm 7. However, we kept using local_search while
generating the initial population. We call this configuration
of the genetic algorithm GA2. Additionally, we evaluated
the performance of the multistart local search method. This
method is very simple and straightforward. It consists of
repetitively applying local_search to randomly gener-
ated starting partitions of the graph.We refer to this algorithm
as MLS.

To avoid unnecessarily long computations, we performed
the comparison of algorithms on a set of smaller-size graphs
from our testbed. This set consists of 10 random graphs with
200 and 500 vertices and all benchmark graphs of order less
than 1000. We run each algorithm 10 times on each graph
with the same cutoff time as before. To assess the perfor-
mance of GA1, GA2, and MLS, we used MA as a reference
method.

Table 18 summarizes the results of the computational
experiments carried out for GA1, GA2, and MLS. We write
FGA1−FMA todenote the difference in the F∗

n values between
GA1 and MA in the column under heading “Best”, and the
difference in the F̄n values between GA1 and MA in the col-
umn under heading “Average”. The differences FGA2 − FMA

and FMLS − FMA are defined similarly. The three bottom
lines in the table serve as a summary that includes the differ-
ences between objective function values averaged over all 29
graphs, the number of graphs for which the two algorithms
achieve the same accuracy, and the number of graphs for
which the tested algorithm (GA1, GA2 or MLS) produced
worse solutions than MA.

The main observation from the table is that MA shows
great superiority over both genetic algorithm configurations
and the multistart local search approach. We also see that the
pure genetic algorithm, GA1, was by far the worst algorithm
in the comparison. It was the only one that failed to match the
performance of MA for all graphs in the test suite. Another
conclusion is that the other two algorithms, GA2 and MLS,
demonstrate comparable performance in terms of solution
quality. However, each of them was significantly surpassed
by the proposed memetic algorithm. Therefore, we conclude
that the main reason for the success of MA lies in the inte-
gration of the grouping genetic algorithm with the fast LS
technique. As Table 18 shows, individually, these compo-
nents of the approach produce inferior results.

5.8 Analysis of themain parameters

In this section, we study the effect of the main parame-
ters on the performance of the developed algorithms. Again,

123

278 Memetic Computing (2022) 14:253–285

Table 17 Comparison of MA
and VNS with MA′ for
normalized cut partitioning of
large random graphs

Graph VNS [27] MA MA′
F∗
n F̄n F∗

n F̄n F∗
n F̄n Time

g-2000-1 16.881007 16.939856 16.863759 16.906716 16.835347 16.847496 235

g-2000-2 16.933214 17.147329 16.875586 16.915658 16.957265 16.974367 304

g-2000-3 16.975062 17.032259 16.919533 16.992583 16.826985 16.853760 335

g-2000-4 16.969761 17.075015 16.992265 17.042475 16.904339 16.914954 304

g-2000-5 16.974046 17.054939 16.949080 16.996156 16.911500 16.939781 256

g-3000-1 31.981446 32.182476 32.245723 32.344338 31.987247 32.026407 798

g-3000-2 32.155155 32.256756 32.158796 32.245668 32.111144 32.135333 824

g-3000-3 32.257388 32.339845 32.469108 32.532437 32.207694 32.237487 837

g-3000-4 32.321777 32.416463 32.490853 32.576456 32.188217 32.210425 809

g-3000-5 32.221956 32.351820 32.455933 32.575388 32.182967 32.211187 899

Table 18 Difference in solution
values between each tested
algorithm (GA1, GA2, and
MLS) and the reference method
MA for normalized cut graph
partitioning

Graph FGA1 − FMA FGA2 − FMA FMLS − FMA
Best Average Best Average Best Average

g-200-1 1.167162 1.357356 0 0.002052 0 0.001690

g-200-2 1.196249 1.341626 0 0.016591 0.009714 0.019265

g-200-3 1.183462 1.405166 0 0.018944 0.007902 0.029355

g-200-4 0.711652 0.936732 0 0.022860 0 0.015943

g-200-5 0.802133 0.995463 0 0.005915 0.000618 0.018303

g-500-1 2.885116 3.647773 0.045725 0.070485 0.075784 0.116486

g-500-2 3.441242 3.802045 0.015730 0.032751 0.021662 0.026262

g-500-3 3.020083 3.585652 0.007052 0.051348 0.051468 0.081077

g-500-4 2.393034 3.038013 0.057843 0.082211 0.121643 0.144298

g-500-5 3.113781 3.487876 0.021505 0.036614 0.059854 0.078331

karate 0.022161 0.085067 0 0 0 0

dolphins 0.151209 0.317575 0 0 0 0

polbooks 0.504993 0.720510 0 0 0 0

football 0.333149 1.406913 0 0 0 0

jazz 0.489774 0.599128 0 0 0 0

celegansneural 2.860721 3.168994 0.258713 0.332509 0.329260 0.358113

celegans_metabolic 1.148899 1.369098 0.252367 0.264751 0.182945 0.243158

Trefethen-200 1.653816 1.797297 0.000138 0.001707 0 0

ash292 1.729106 2.208209 0.008564 0.047468 0.024786 0.042343

can-292 1.484284 1.708798 0 0.001523 0 0

ia-infect-dublin 0.593671 0.654876 0 0 0 0

dwt-503 1.237672 1.386546 0.008630 0.014412 0.006166 0.004479

Trefethen-700 3.429825 3.526682 0.000170 0.000463 0.000023 0.000036

can-715 2.537377 2.764893 0.063423 0.103191 0.043325 0.071006

L 3.339905 3.616975 0.543790 0.613626 0.372426 0.437497

soc52 0.069794 0.222356 0 0 0 0

gplus_200 1.503558 1.720256 0.025582 0.065141 0 0.041644

gplus_500 2.077289 2.467264 0.191239 0.259102 0.181010 0.216877

pokec_500 2.238249 2.504857 0.172179 0.213432 0.137765 0.158294

Average 1.631702 1.925655 0.057678 0.077831 0.056081 0.072567

#ties 0 0 13 7 12 9

#losses 29 29 16 22 17 20

123

Memetic Computing (2022) 14:253–285 279

Table 19 Difference in solution values between theMSA algorithmwith β ′ = 100 andMSA configurations with β ′ = 500 and 1000 for normalized
cut graph partitioning

Graph FMSA(500) − FMSA(100) FMSA(1000) − FMSA(100) #restarts for various β ′
Best Average Best Average 100 500 1000

g-200-1 0 0.025893 0 0.031799 22.4 5.0 3.0

g-200-2 −0.002139 0.031529 0.054999 0.065779 21.8 4.9 2.9

g-200-3 0.007379 −0.002211 0.016465 0.009080 22.8 5.0 3.0

g-200-4 0 0.007005 0 0.003394 18.2 4.0 2.0

g-200-5 0 0.017600 0.000618 0.022839 18.0 4.0 2.0

g-500-1 −0.005110 0.033308 0.007634 0.035170 23.6 5.0 3.0

g-500-2 0.024382 0.047372 0.054408 0.078468 31.1 6.7 4.0

g-500-3 0.036224 0.011362 0.036224 0.036448 27.7 6.0 3.0

g-500-4 −0.015402 0.028148 0.008865 0.053359 22.8 5.0 3.0

g-500-5 0.001208 0.037273 0.003961 0.039619 24.9 5.0 3.0

celegansneural −0.005768 −0.016602 −0.029006 −0.005188 57.0 11.9 6.0

celegans_metabolic 0 0.000556 0 0.002066 33.2 7.1 4.0

Trefethen-200 0 0.016525 0.000138 0.027930 24.7 5.2 3.0

ash292 −0.009238 0.007046 −0.000097 0.012073 92.3 18.8 9.6

can-292 0 0.014561 0 0.018618 88.4 18.3 9.5

dwt-503 −0.000116 0.002411 0.000444 0.005273 102.1 20.6 10.9

Trefethen-700 0.040256 0.041165 0.031991 0.074261 27.6 6.0 3.0

can-715 0.015026 0.030757 0.015178 0.051910 24.4 5.3 3.0

L −0.015007 0.023414 0.059726 1.682849 10.0 2.1 1.1

gplus_200 0 0.023964 −0.013264 0.053604 21.1 4.8 2.8

gplus_500 0.002408 0.007583 0.002408 0.024089 26.1 5.9 3.0

pokec_500 0.001040 0.024265 0.025697 0.045529 22.9 5.2 3.0

Average 0.003416 0.018769 0.012563 0.107680 34.7 7.4 4.0

#wins 7 2 3 1

#ties 7 0 4 0

#losses 8 20 15 21

we focus on the normalized cut graph partitioning problem.
We conducted computational experiments on the same set
of graphs as used in the previous section. However, we do
not report results for graphs for which all variations of the
tested algorithm gave the best result. Additionally, we ran
our memetic algorithm on several large graphs. The main
configurations of the algorithms were used as a basis for
comparison.

5.8.1 Usefulness of the restart strategy in simulated
annealing

The parameter of MSA that helps to adjust the number of SA
restarts is the number ofmoves attempted at each temperature
level. Its value in the main experiment (Sect. 5.4) is set to
β = 100n. Let us denote this parameter as β = β ′n. By
increasing β ′ we can decrease the number of SA restarts. We
performed an additional experiment with the β ′ set to 500

and 1000. We denote the MSA configurations for tested β ′
values by MSA(100), MSA(500), and MSA(1000).

Table 19 compares the results of MSA(500) and MSA
(1000) with those of MSA(100). Columns 2–5 of this table
were obtained in the same manner as Columns 2–7 of
Table 18. We denoted the objective function value achieved
by MSA(β ′) with β ′ ∈ {100, 500, 1000} by FMSA(β ′). As
before, this value is F∗

n for columns labeled “Best” and F̄n
for columns labeled “Average”. The FMSA(100) values were
extracted from Tables 8, 9, 11, and 12. The last columns
in Table 19 display the number of SA restarts (averaged
over 10 runs) in the three scenarios considered. The bottom
rows of the table show the wins/ties/losses for MSA(500) or
MSA(1000) versus MSA(100).

As observed in Table 19, the difference in solution values
between MSA(β ′) with β ′ > 100 and MSA(100) increased
with increasingβ ′. This is especially visiblewhen comparing
average results. Thus, performing a larger number of shorter

123

280 Memetic Computing (2022) 14:253–285

Table 20 Difference in solution values between the ITS algorithm with I = 100 and ITS configurations with I = 20, 50, and 500 for normalized
cut graph partitioning

Graph FITS(20) − FITS(100) FITS(50) − FITS(100) FITS(500) − FITS(100)
Best Average Best Average Best Average

g-200-1 0 0.019025 0 −0.000218 0 0.000687

g-200-2 0.026261 0.061670 0 0.002894 0 0.009038

g-200-3 0.001227 0.012612 0 0.001050 0 0.000736

g-200-4 0.021557 0.090407 0.013957 0.000386 0.035923 0.018332

g-200-5 0.000618 0.027548 0 0.001880 0 0.010790

g-500-1 0.032194 0.015965 0.010423 −0.011446 0.035913 0.141521

g-500-2 0.034383 0.041995 0.000790 −0.019134 0.000790 0.008335

g-500-3 0.040497 0.051091 0.014318 0.002553 0.027178 0.099457

g-500-4 0.026220 −0.003907 −0.064589 −0.073240 −0.018709 0.110520

g-500-5 0.027721 0.005420 0.020293 0.020865 0.075962 0.091639

celegansneural 0.004635 0.031424 0.000902 0.008464 −0.024926 0.022521

celegans_metabolic −0.002320 0.038069 −0.001943 −0.003822 −0.001101 0.087545

Trefethen-200 0 0.002174 0 0 0 0.000014

ash292 0.008382 0.070563 0.001546 0.007580 −0.000930 0.001102

can-292 0 0.092973 0 0.002695 0 0.001986

ia-infect-dublin 0 0.001701 0.017009 0.003681 0 0.001701

dwt-503 0.005862 0.028297 0.001482 0.005425 0 0.001348

Trefethen-700 0.000911 0.019276 0.000606 0.003091 0 −0.000034

can-715 0.005715 0.021471 0 0.006284 0 0.007522

L 0.067159 0.090576 0.040737 0.052957 −0.118570 −0.077637

gplus_200 0.037575 0.038121 −0.006514 0.003038 0.013606 0.017676

gplus_500 0.001468 0.025732 0.001318 0.011869 −0.004480 0.043435

pokec_500 0.011421 −0.002065 0.013676 0.000236 −0.019656 0.002144

Average 0.015282 0.033919 0.002783 0.001178 0.000043 0.026103

#wins 1 2 3 5 7 2

#ties 4 0 7 1 10 0

#losses 18 21 13 17 6 21

SA runs from different starting points was better than per-
forming a smaller number of longer SA runs.

5.8.2 The effect of the number of TS iterations on the ITS
performance

Aswe observed in Sect. 5.2, the ITS algorithm is fairly robust
to the choice of the parameters that it depends upon. From
preliminary experiments, it was found that the number of TS
iterations, I , was one of the most important parameters of
the ITS approach. The results given in Sect. 5.4 for ITS were
obtained with I = 100. To learn more about the influence
of parameter I on the performance of the algorithm, we ran
ITS with I = 20, 50, and 500.

Table 20 shows the comparison results of the four vari-
ations of the ITS algorithm. To distinguish between these
variations, we use the same naming convention as in the pre-
vious section (thus, for example, ITS(20) stands for ITS with

I = 20). The differences shown in Table 20 were obtained
similarly to those in Tables 18 and 19. The last three rows of
the table evaluate the tested configurations of the ITS algo-
rithm versus ITS(100).

From the table, we note that replacing I = 100 with I ∈
{20, 50, 500} makes the ITS algorithm less efficient in terms
of the average solution quality obtained over 10 runs of ITS.
Comparing the best results produced by the four versions
of ITS, we found that ITS(500) performs equally well as
ITS(100). In this respect, the other two variations (with I =
50 and especially I = 20)wereworse than ITSwith I = 100.

5.8.3 The effect of the population size on the MA
performance

The only parameter of our memetic algorithm is the popula-
tion size (denoted by z in Sect. 4). In our main experiments,
we fixed this parameter to 100. To examine the influence of

123

Memetic Computing (2022) 14:253–285 281

Table 21 Difference in solution
values between the MA
algorithm with population size
z = 100 and MA configurations
with z = 50 and 500 for
normalized cut graph
partitioning

Graph FMA(50) − FMA(100) FMA(500) − FMA(100)
Best Average Best Average

g-200-1 0 0.000234 0 −0.000762

g-200-2 0 0.001395 0 0

g-200-3 0 0.000909 0 0

g-200-5 0 0.002585 0 0

g-500-1 0 0.010216 0 −0.008061

g-500-2 0 0.004239 0.003148 −0.003125

g-500-3 0 0.004233 0 −0.007365

g-500-4 0 0.008290 0 −0.012044

g-500-5 0.000017 0.001054 −0.002601 −0.009748

celegansneural 0.020051 0.041856 −0.001311 −0.009233

ash292 0 0.002388 0 0

dwt-503 0 -0.000458 0 −0.003181

can-715 0 0.002027 0 −0.000499

L −0.000050 0.005322 −0.000671 −0.000877

gplus_500 0 0.003246 0 −0.006613

delaunay_n12 0.007373 0.026521 0.489255 0.563219

3elt −0.001851 −0.002526 0.573124 0.691849

uk −0.059800 −0.196686 2.193496 2.124620

power −0.264570 −0.300354 1.366916 1.267332

add32 0.110039 0.098538 1.028891 1.074933

Average −0.009440 −0.014349 0.282512 0.283022

#wins 4 4 3 11

#ties 12 0 11 4

#losses 4 16 6 5

this parameter on the performance of the MA, we conducted
additional experiments in which MA was run with z set to
50 and to 500. The results are summarized in Table 21. Its
structure is similar to that of Table 20. We denote different
configurations of MA by MA(z), z ∈ {50, 100, 500}.

A close inspection of Table 21 allows us to conclude that
the behavior of MA depends on the graph size. For smaller
graphs (first 15 rows of the table), the performance of MA
increases with increasing z values. In this case, MA(100)
is better than MA(50) (there are many positive entries in
the second and third columns), and MA(500) is better than
MA(100) (all but one entry in the last two columns and the
first 15 rows are nonpositive). However, the picture is com-
pletely different for large graphs (last 5 graphs in the table).
We see thatMA(100) drastically outperformsMA(500). This
can be explained by the fact that MA(500) takes a significant
amount of time to create an initial population of individuals,
which is 5 times larger than that ofMA(100). The population
is composed of solutions obtained by first randomly gener-
ating graph partitions and then improving them by applying
the LS procedure. However, LS is not sufficiently fast for
large graphs and random initial solutions. Since MA(500)
initializes a large-sized population, the amount of time left

for offspring generation is significantly reduced. Therefore,
for large graphs, MA(500) produces a considerably smaller
number of offspring than MA(100). For the uk graph, for
example, on average, this number is 771, 1830 and 2496 for
MA(500), MA(100), and MA(50), respectively. Producing
fewer offspring leads to a reduction in the quality of solu-
tions found by MA(500).

From the table, we can also see that the performance of
MA(50) is comparable to that ofMA(100). The latter obtains
a smaller average objective function value for a larger number
of graphs. On the other hand, the average values of F∗

n and
F̄n achieved by MA(50) are slightly smaller than those for
MA(100). This advantage of MA(50) is due to the excellent
performance of this version of MA for the power graph.

5.9 Analysis of the LS strategy

In this section, we discuss the impact of using vector S in our
LS procedure on the performance of the memetic algorithm.
The role of the vector S is to accelerate the neighborhood
exploration process by evaluating only a subset of all possi-
ble relocation and swap moves. The vector S is used to mark
the partition subsets that have been changed in the previous

123

282 Memetic Computing (2022) 14:253–285

Table 22 Difference in solution values between MA-SD and MA for
normalized cut graph partitioning

Graph FMA−SD − FMA #impr
Best Average

g-2000-1 0.024464 0.044930 9

g-2000-2 0.035619 0.043351 9

g-2000-3 0.073531 0.052916 10

g-2000-4 0.021778 0.047195 10

g-2000-5 0.051860 0.049714 9

g-3000-1 0.053193 0.070922 8

g-3000-2 0.116064 0.101844 10

g-3000-3 0.023612 0.064504 9

g-3000-4 0.086269 0.076046 10

g-3000-5 0.066354 0.087438 8

celegansneural 0 0.002400 1

delaunay_n11 0.002657 0.005041 9

data 0.001712 0.010269 10

delaunay_n12 0.016847 0.028090 10

3elt 0.002593 0.003916 9

uk 0.347104 0.169495 10

power 0.092182 0.096161 9

add32 0.008754 0.001819 5

road-minnesota 0.001258 0.009760 10

bio-dmela 0.001455 0.001423 5

Average 0.051365 0.048362 8.5

LS iteration. Then, in the current LS iteration, it is redun-
dant to evaluate moves consisting of relocating a vertex from
one unmarked subset to another unmarked subset. A similar
observation can be made regarding swap moves.

In order to show the effectiveness of the proposed LS strat-
egy, we experimentally compared the developed memetic
algorithm against its version obtained by replacing the LS
algorithm of Sect. 3 with a simplified LS procedure. The lat-
ter does not use the vector S. Its pseudocode is obtained
from that in Algorithm 5 by removing initialization of S
(Line 1), conditions imposed on S (Lines 4 and 20), and
statements in Lines 16, 32, and 36. It is important to note
that both LS implementations (i.e., that given in Algo-
rithm 5 and the simplified procedure) return the same locally
optimal solution. However, it is reasonable to expect that
the former would be faster than the latter. We refer to
the version of MA with S usage disabled in LS as MA-
SD.

Table 22 compares the performance of MA and MA-SD
on 10 random graphs and 10 benchmark graphs from our test
suite. We provide results obtained for large graphs. For small
graphs, the performance difference betweenMAandMA-SD
is less significant. The second and third columns of the table
provide the same kind of statistics as Table 21. The column

labeled “#impr” gives the number of runs (out of 10) when
MA yielded a better solution than MA-SD. In the remaining
runs (if #impr < 10), MA and MA-SD produced the same
solution. Figure 8 compares the objective function values
achieved byMAandMA-SD for the two graphs,g-3000-4
and road-minnesota.

Table 22 and Fig. 8 show that the proposed LS strategy
leads to a significantly better performance of MA com-
pared to the use of a traditional LS procedure. The reason
behind this observation is that with a faster LS technique,
the memetic algorithm is able to generate more offspring,
which in many cases allows obtaining better results. As can
be seen in the last column of Table 22,MA improvedMA-SD
solutions in all 10 runs for 8 of the 20 graphs. The average
improvement rate is 85%. Thus, the proposed LS accelera-
tion technique has a positive impact on the performance of
the memetic algorithm.

6 Concluding remarks

The main focus of the paper was to investigate the capa-
bilities of the most popular metaheuristic approaches when
applied to ratio cut and normalized cut graph partitioning
problems. Three specific algorithms were developed: multi-
start simulated annealing, iterated tabu search, and memetic
algorithms. In each of the algorithms, some optimization
strategies were adopted. By calculating and updating the cut
weights for the partitions efficiently, the time complexity of
the inner loop of SA was significantly reduced. This allows
more SA restarts to be performed. Both ITS and MA used
a local search procedure. To speed up this procedure, we
applied a technique that reduces the effort required for neigh-
borhood examination. In the MA, we implemented a version
of the crossover operator that was used in GGAs.

We carried out computational experiments on two sets
of graphs. The results show that the MA is unequivocally
superior to both MSA and ITS with respect to solution qual-
ity. This conclusion is valid for both models (ratio cut and
normalized cut) and graph types (random and benchmark
graphs from the literature). In some experiments, MA could
find better or equally good solutions than ITS or MSA for
all graphs in a given set. We also concluded that, in terms of
the solution quality, MSA showed better performance than
ITS for random graphs. However, there was no statistically
significant difference between the results of these two algo-
rithms for the considered set of benchmark graphs. Finally,
from the results of our study, we concluded that ITS was
the fastest algorithm in the comparison. It tends to find rea-
sonable solutions more quickly than other tested algorithms.
However, theMA is not unacceptably slow compared to ITS.
For smaller graphs, MA is even faster than ITS and MSA.
Additionally, we experimentally comparedMA, which is our

123

Memetic Computing (2022) 14:253–285 283

Fig. 8 Comparison between
MA and MA-SD in terms of the
objective function value. a
g-3000-4. b
road-minnesota

(a) (b)

best algorithm, with the VNS algorithm of Hansen et al. [27]
(which is the state-of-the-art algorithm for the normalized
cutmodel).We found thatMAprovided better overall perfor-
mance thanVNS. Based on the obtained results, it is believed
that the MA is an excellent approach to solving the ratio cut
and normalized cut models.

There are promising directions for further research. One
area of interest can be to develop innovative evolutionary
algorithms for minimum cut problems. Some of the recent
population-based metaheuristic algorithms can be used to
solve these problems, such asmonarch butterfly optimization
[18,19], earthworm optimization algorithm [67], elephant
herding optimization [66], moth search algorithm [65], slime
mold algorithm [38], and Harris hawks optimization [29].
The proposed LS procedure could be embedded in such
algorithms and used as a powerful technique for search inten-
sification. Another promising way is to construct hybrid
algorithms by combining two (or even more) metaheuris-
tic methods to benefit from the strengths of each of them.
Finally, an important avenue for further work is to apply the
ideas of the ratio and normalized cut algorithms for develop-
ing metaheuristic-based techniques for solving other graph
partitioning problems.

References

1. Aksoylar C, Qian J, SaligramaV (2017) Clustering and community
detection with imbalanced clusters. IEEE Trans Signal Inf Process
Netw 3(1):61–76

2. Bader DA, Kappes A,MeyerhenkeH, Sanders P, Schulz C,Wagner
D (2017) Benchmarking for graph clustering and partitioning. In:
Alhajj R, Rokne J (eds) Encyclopedia of social network analysis
and mining. Springer, New York. https://doi.org/10.1007/978-1-
4939-7131-2_23

3. Banerjee S, Kayal D (2016) Detection of hard exudates using
mean shift and normalized cut method. Biocybern Biomed Eng
36(4):679–685

4. Bektur G (2020) Amulti-start iterated tabu search algorithm for the
multi-resource agent bottleneck generalized assignment problem.
Int J Optim Control Theor Appl 10(1):37–46

5. Brimberg J, Mladenović N, Urošević D (2015) Solving the max-
imally diverse grouping problem by skewed general variable
neighborhood search. Inf Sci 295:650–675

6. Cafieri S, Hansen P,Mladenović N (2014) Edge-ratio network clus-
tering by variable neighborhood search. Eur Phys J B 87:116

7. Cao B, Glover F, Rego C (2015) A tabu search algorithm for cohe-
sive clustering problems. J Heuristics 21(4):457–477

8. Černý V (1985) Thermodynamical approach to the traveling sales-
man problem: an efficient simulation algorithm. J Optim Theory
Appl 45(1):41–51

9. Chalupa D (2017) A memetic algorithm for the minimum conduc-
tance graph partitioning problem. arXiv preprint arXiv:1704.02854

10. Chalupa D, Hawick KA, Walker JA (2018) Hybrid bridge-based
memetic algorithms for finding bottlenecks in complex networks.
Big Data Res 14:68–80

11. Chan PK, Schlag MDF, Zien JY (1994) Spectral k-way ratio-cut
partitioning and clustering. IEEE Trans Comput Aided Des Integr
Circuits Syst 13(9):1088–1096

12. Chen X, HongW, Nie F, He D, Yang M, Huang JZ (2018) Spectral
clustering of large-scale data by directly solving normalized cut.
In: Proceedings of the 24th ACM SIGKDD international confer-
ence on knowledge discovery & data mining (KDD 2018). ACM,
London, pp 1206–1215

13. Chen X, Hong W, Nie F, Huang JZ, Shen L (2020) Enhanced bal-
anced min cut. Int J Comput Vis 128:1982–1995

14. Chen X, Huang JZ, Nie F, Chen R, Wu Q (2017) A self-balanced
min-cut algorithm for image clustering. In: IEEE international con-
ference on computer vision (ICCV 2017). IEEE, Venice, Italy, pp
2080–2088. https://doi.org/10.1109/ICCV.2017.227

15. de SousaVJR,AnjosMF, LeDigabel S (2019) Improving the linear
relaxation of maximum k-cut with semidefinite-based constraints.
EURO J Comput Optim 7(2):123–151

16. Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without
eigenvectors: amultilevel approach. IEEETrans PatternAnalMach
Intell 29(11):1944–1957

17. Fan N, Pardalos PM (2012) Multi-way clustering and bicluster-
ing by the ratio cut and normalized cut in graphs. J Comb Optim
23(2):224–251

18. Faris H, Aljarah I, Mirjalili S (2018) Improved monarch butterfly
optimization for unconstrained global search and neural network
training. Appl Intell 48(2):445–464

19. FengY,Deb S,WangGG,AlaviAH (2021)Monarch butterfly opti-
mization: a comprehensive review. Expert Syst Appl 168:114418

20. Franzin A, Stützle T (2019) Revisiting simulated annealing: a
component-based analysis. Comput Oper Res 104:191–206

21. Fu K, Gong C, Gu IYH, Yang J (2015) Normalized cut-based
saliency detection by adaptive multi-level region merging. IEEE
Trans Image Process 24(12):5671–5683

123

https://doi.org/10.1007/978-1-4939-7131-2_23
https://doi.org/10.1007/978-1-4939-7131-2_23
http://arxiv.org/abs/1704.02854
https://doi.org/10.1109/ICCV.2017.227

284 Memetic Computing (2022) 14:253–285

22. Gallego M, Laguna M, Martí R, Duarte A (2013) Tabu search with
strategic oscillation for the maximally diverse grouping problem.
J Oper Res Soc 64(5):724–734

23. Gallier J (2016) Spectral theory of unsigned and signed graphs.
Applications to graph clustering: a survey. arXiv preprint
arXiv:1601.04692

24. Glover F, Laguna M (1997) Tabu search. Kluwer Publisher
25. Hagen L, Kahng AB (1992) New spectral methods for ratio

cut partitioning and clustering. IEEE Trans Comput Aided Des
11(9):1074–1085

26. Han J, Xiong K, Nie F (2017) Orthogonal and nonnegative graph
reconstruction for large scale clustering. In: Proceedings of the
twenty-sixth international joint conference on artificial intelligence
(IJCAI 2017). Melbourne, pp 1809–1815

27. Hansen P, Ruiz M, Aloise D (2012) A VNS heuristic for escap-
ing local extrema entrapment in normalized cut clustering. Pattern
Recognit 45(12):4337–4345

28. He Y, Gong H, Xiong B, Xu X, Li A, Jiang T, Sun Q, Wang S,
Luo Q, Chen S (2015) iCut: an integrative cut algorithm enables
accurate segmentation of touching cells. Sci Rep 5:12089. https://
doi.org/10.1038/srep12089

29. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen
H (2019) Harris hawks optimization: algorithm and applications.
Future Gener Comput Syst 97:849–872

30. Hochbaum DS (2013) A polynomial time algorithm for Rayleigh
ratio on discrete variables: replacing spectral techniques for
expander ratio, normalized cut, and Cheeger constant. Oper Res
61(1):184–198

31. James TL, Brown EC, Keeling KB (2007) A hybrid grouping
genetic algorithm for the cell formation problem. Comput Oper
Res 34(7):2059–2079

32. Ji P, Zhang S, Zhou Z (2020) A decomposition-based ant colony
optimization algorithm for the multi-objective community detec-
tion. J Ambient Intell Humaniz Comput 11(1):173–188

33. Jia H, Ding S, Du M, Xue Y (2016) Approximate normalized cuts
without eigen-decomposition. Inf Sci 374:135–150

34. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by sim-
ulated annealing. Science 220(4598):671–680

35. Krzystek P, Serebryanyk A, Schnörr C, Červenka J, Heurich M
(2020) Large-scale mapping of tree species and dead trees in
Šumava national park and Bavarian forest national park using lidar
and multispectral imagery. Remote Sens 12:661. https://doi.org/
10.3390/rs12040661

36. Lai X, Hao J-K (2016) Iterated maxima search for the maximally
diverse grouping problem. Eur J Oper Res 254(3):780–800

37. Lai X, Hao J-K, Fu ZH, Yue D (2021) Neighborhood decom-
position based variable neighborhood search and tabu search for
maximally diverse grouping. Eur J Oper Res 289(3):1067–1086

38. Li S, ChenH,WangM,Heidari AA,Mirjalili S (2020) Slimemould
algorithm: a newmethod for stochastic optimization. Future Gener
Comput Syst 111:300–323

39. Liu C, Liu Q (2018) Community detection based on differential
evolution using modularity density. Information 9:218. https://doi.
org/10.3390/info9090218

40. Liu X, Shen C, Guan X, Zhou Y (2019) Digger: detect similar
groups in heterogeneous social networks. ACM Trans Knowl Dis-
cov Data 13(1):2. https://doi.org/10.1145/3267106

41. Lorente-Leyva LL, Herrera-Granda ID, Rosero-Montalvo PD,
Ponce-Guevara KL, Castro-Ospina AE, Becerra MA, Peluffo-
Ordóñez DH, Rodríguez-Sotelo JL (2018) Developments on
solutions of the normalized-cut-clustering problem without eigen-
vectors. In: Huang T, Lv J, Sun C, Tuzikov AV (eds) Advances in
neural networks-ISNN 2018, vol 10878. Lect Notes Comput Sci.
Springer, pp 318–328

42. Lu H, Fu Z, Shu X (2014) Non-negative and sparse spectral clus-
tering. Pattern Recognit 47(1):418–426

43. Lu Z, Hao J-K, Wu Q (2020) A hybrid evolutionary algorithm for
finding low conductance of large graphs. Future Gener Comput
Syst 106:105–120

44. Lu Z, Hao J-K, Zhou Y (2019) Stagnation-aware breakout tabu
search for the minimum conductance graph partitioning problem.
Comput Oper Resh 111:43–57

45. MaL,ChengS, ShiY (2021)Enhancing learning efficiency of brain
stormoptimizationvia orthogonal learningdesign. IEEETransSyst
Man Cybern Syst 51(11):6723–6742

46. Ma L, Huang M, Yang S, Wang R, Wang X (2021) An adaptive
localized decision variable analysis approach to large-scale mul-
tiobjective and many-objective optimization. IEEE Trans Cybern.
https://doi.org/10.1109/TCYB.2020.3041212

47. Merkurjev E, Bertozzi A, Yan X, Lerman K (2017) Modified
Cheeger and ratio cut methods using the Ginzburg–Landau func-
tional for classification of high-dimensional data. Inverse Probl.
https://doi.org/10.1088/1361-6420/33/7/074003

48. Mu C, Zhang J, Liu Y, Qu R, Huang T (2019) Multi-objective
ant colony optimization algorithm based on decomposition
for community detection in complex networks. Soft Comput
23(23):12683–12709

49. Nascimento MCV, de Carvalho ACPLF (2011) Spectral methods
for graph clustering—a survey. Eur J Oper Res 211(2):221–231

50. Nogueira B, Tavares E, Maciel P (2021) Iterated local search with
tabu search for theweighted vertex coloring problem.ComputOper
Res 125:105087. https://doi.org/10.1016/j.cor.2020.105087

51. PalubeckisG,Karčiauskas E, RiškusA (2011)Comparative perfor-
mance of three metaheuristic approaches for the maximally diverse
grouping problem. Inf Technol Control 40(4):277–285

52. PalubeckisG,OstreikaA,RubliauskasD (2015)Maximally diverse
grouping: an iterated tabu search approach. J Oper Res Soc
66(4):579–592

53. Qiao Z, Zhang J, Qu X, Xiong J (2020) Dynamic self-organizing
leader-follower control in a swarm mobile robots system under
limited communication. IEEE Access 8:53850–53856

54. Ramos-Figueroa O, Quiroz-Castellanos M, Mezura-Montes E,
Schütze O (2020) Metaheuristics to solve grouping problems: a
review and a case study. Swarm Evol Comput 53:100643

55. Rodriguez FJ, Lozano M, García-Martínez C, González-Barrera
JD (2013) An artificial bee colony algorithm for the maximally
diverse grouping problem. Inf Sci 230:183–196

56. Rossi RA, Ahmed NK (2015) The network data repository with
interactive graph analytics and visualization. In: Proceedings of
the twenty-ninth AAAI conference on artificial intelligence. AAAI
Press, Austin, pp 4292–4293

57. Rutenbar RA (1989) Simulated annealing algorithms: an overview.
IEEE Circuits Devices Mag 5(1):19–26

58. Shi J, Malik J (2000) Normalized cuts and image segmentation.
IEEE Trans Pattern Anal Mach Intell 22(8):888–905

59. Shi X,Wu Y, Rao CR (2017) Consistent and powerful graph-based
change-point test for high-dimensional data. Proc Natl Acad Sci U
S A 114(15):3873–3878

60. Singh K, Sundar S (2019) A new hybrid genetic algorithm for the
maximally diverse grouping problem. Int J Mach Learn Cybern
10(10):2921–2940

61. Tolić D, Antulov-Fantulin N, Kopriva I (2018) A nonlinear
orthogonal non-negative matrix factorization approach to subspace
clustering. Pattern Recognit 82:40–55

62. van Laarhoven PJM (1988) Theoretical and computational aspects
of simulated annealing. Erasmus Universiteit Rotterdam, Rotter-
dam

63. VanLierdeH,ChowTWS,ChenG (2020)Scalable spectral cluster-
ing for overlapping community detection in large-scale networks.
IEEE Trans Knowl Data Eng 32(4):754–767

64. von Luxburg U (2007) A tutorial on spectral clustering. Stat Com-
put 17(4):395–416

123

http://arxiv.org/abs/1601.04692
https://doi.org/10.1038/srep12089
https://doi.org/10.1038/srep12089
https://doi.org/10.3390/rs12040661
https://doi.org/10.3390/rs12040661
https://doi.org/10.3390/info9090218
https://doi.org/10.3390/info9090218
https://doi.org/10.1145/3267106
https://doi.org/10.1109/TCYB.2020.3041212
https://doi.org/10.1088/1361-6420/33/7/074003
https://doi.org/10.1016/j.cor.2020.105087

Memetic Computing (2022) 14:253–285 285

65. Wang GG (2018) Moth search algorithm: a bio-inspired meta-
heuristic algorithm for global optimization problems. Memet
Comput 10(2):151–164

66. Wang GG, Deb S, Coelho LS (2015) Elephant herding optimiza-
tion. In: Proceedings of the 2015 3rd international symposium on
computational and business intelligence (ISCBI). IEEE, Bali, pp
1–5. https://doi.org/10.1109/ISCBI.2015.8

67. Wang GG, Deb S, Coelho LS (2018) Earthworm optimisation
algorithm: a bio-inspired metaheuristic algorithm for global opti-
misation problems. Int J Bio-Inspired Comput 12(1):1–22

68. Wang L, Lu J (2019) A memetic algorithm with competition for
the capacitated green vehicle routing problem. IEEE/CAAJAutom
Sin 6(2):516–526

69. Wei Y-C, Cheng C-K (1991) Ratio cut partitioning for hierarchi-
cal designs. IEEE Trans Comput Aided Des Integr Circuits Syst
10(7):911–921

70. Yu SX, Shi J (2003) Multiclass spectral clustering. In: Proceed-
ings of the ninth IEEE international conference on computer vision
(ICCV’03), vol 1. IEEE, Nice, pp 313–319. https://doi.org/10.
1109/ICCV.2003.1238361

71. Zevnik J, Kramar Fijavž M, Kozelj D (2019) Generalized normal-
ized cut and spanning trees for water distribution network parti-
tioning. J Water Resour Plan Manag 145(10):04019041. https://
doi.org/10.1061/(ASCE)WR.1943-5452.0001100

72. Zhang R, Nie F, Li X (2017) Self-weighted spectral clustering with
parameter-free constraint. Neurocomputing 241:164–170

73. Zheng S, Xu Z, Yang H, Song J, Pan Z (2019) Comparisons of
different methods for balanced data classification under the dis-
crete non-local total variational framework. Math Found Comput
2(1):11–28

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/ISCBI.2015.8
https://doi.org/10.1109/ICCV.2003.1238361
https://doi.org/10.1109/ICCV.2003.1238361
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001100
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001100

	Metaheuristic approaches for ratio cut and normalized cut graph partitioning
	Abstract
	1 Introduction
	2 Multistart simulated annealing
	3 Iterated tabu search
	4 A memetic algorithm
	5 Computational experiments
	5.1 Experimental setup
	5.2 Parameter settings
	5.3 Numerical results for ratio cut
	5.4 Numerical results for a normalized cut
	5.5 Comparison with the state of the art
	5.6 Comparison with a different variant of the crossover operation
	5.7 Comparisons with the genetic algorithm and multistart local search
	5.8 Analysis of the main parameters
	5.8.1 Usefulness of the restart strategy in simulated annealing
	5.8.2 The effect of the number of TS iterations on the ITS performance
	5.8.3 The effect of the population size on the MA performance

	5.9 Analysis of the LS strategy

	6 Concluding remarks
	References

