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Abstract
With the deepening of economic globalization and the development of the manufacturing industry, distributed manufacturing
patterns have become a popular topic in current production research. In the background of distributed shop scheduling,
process planningproblems in different factories are considered integrallywith scheduling problems to utilize the heterogeneous
machining resources of distributed factories. To address actual production problemsmore concretely, this paper investigates the
multiobjective distributed integrated process planning and scheduling (MODIPPS) problem tominimizemakespan, maximum
machine load, and total machine load, and it establishes a mixed-integer linear programming (MILP) model. In addition, by
designing a new encoding method based on the OR-nodes of the process network graph, this paper proposes a multiobjective
memetic algorithm (MOMA) to solve the problem. The proposed MOMA can guarantee the feasibility of individuals by
several specially designed genetic operators so that the process precedence constraints in the network graph are satisfied in the
whole algorithm period. Furthermore, the algorithm introduces a simulated annealing (SA) mechanism to avoid falling into a
local optimum by accepting relatively poor individuals with a certain probability. Finally, through comparison experiments on
benchmarks, the proposed method shows sufficient effectiveness and superiority in solving MODIPPS problems compared
with existing classic multiobjective optimization algorithms.

Keywords Multiobjective optimization · Memetic algorithm · Distributed scheduling · Heterogeneous process

1 Introduction

In the background of economic globalization [11], the
demand for individualization of orders has greatly increased,
which has led to a diversification of products [12, 27,
33]. Enterprises are developing in the direction of mass
customization. It is becoming increasingly difficult for tradi-
tional manufacturing and management patterns to meet the
development requirements of modern enterprises. Therefore,
the manufacturing mode has begun to evolve from the tra-
ditional single workshop to multiple distributed workshops
[25, 28]. Distributed manufacturing has gradually become
an important trend and has been successfully applied in
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many important industries, such as aircraft, aerospace, and
electronic products [9, 26, 40]. Focusing on distributed man-
ufacturing systems, distributed shop scheduling studies plans
for distributing jobs among enterprises, factories, and shops
and the production schemes within each enterprise, factory,
or shop to optimize production indices [34].. Therefore, it is
critical to generate production schemes based on the concrete
conditions of different factories. By rationally allocating pro-
duction tasks across factories, managers can better hedge the
risks associated with single production and reduce the corre-
sponding production costs and product delivery cycles [25,
31].

Distributed manufacturing patterns have become a typi-
cal phenomenon in industry [24]. Current research related to
distributed manufacturing focuses on distributed flow shop
problems (DFSPs) or distributed job shop problems (DJSPs).
The structures of factories are mostly homogeneous [19].
However, in fact, due to the different production capabilities
of different factories, they can provide completely differ-
ent alternative process plans for the same part. Treating
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each factory as a simple homogeneous job shop environ-
ment constitutes neglect and waste of flexible manufacturing
capability. Therefore, considering heterogeneous process
flexibility in distributed manufacturing, i.e., distributed inte-
grated process planning and scheduling (DIPPS) problems, is
more suitable for actual production environments. Compared
with the DJSP or distributed FJSP (DFJSP), the DIPPS prob-
lem is more general and has a more complex solution space
structure, which also means that it is more relevant to actual
production requirements and more valuable for research.

By taking full advantage of the complementarity of pro-
cess planning and shop scheduling, their integration can
greatly facilitate the development of an intelligent man-
ufacturing system [1]. In the last decade, the integrated
process planning and scheduling (IPPS) problem has become
a research hotspot in the manufacturing system area. It is
also an NP-hard problem and is more complicated than the
job shop scheduling problem [29]. Process planning has a
large number of manufacturing flexibilities that can provide
more choices for production but makes it difficult to obtain
the optimal process plan [14]. These complex constraints
and flexibilities bring great difficulty for modeling and solv-
ing this problem. Traditionally, process planning and shop
scheduling are carried out sequentially. Scheduling the jobs
whose process routes are predetermined means that the pro-
cess planning system cannot provide flexible support for
the scheduling system. This can lead to some production
problems, such as unbalanced machine loads, bottlenecked
resources, and conflicting optimization objectives in the dis-
tributed manufacturing system [20]. Therefore, it is essential
to carry out research on IPPS in distributed manufacturing
systems.

There are few existing publications on DIPPS, and their
innovations have mainly concerned the design of chromo-
some representation methods for genetic algorithms (GAs)
[13, 35, 36]. These studies were very creative, with novel
ideas for subsequent DIPPS research. However, the above
research did not greatly improve the overall framework of
the algorithm. Their encoding methods were carried out by
encoding the process routes generated from the network
graph rather than directly encoding the process network
itself. This indirect intermediate method can allow the algo-
rithms to miss some potential optimal solutions. In addition,
the work of generating process routes from various net-
works with complex topological relationships can consume
many human and computational resources and reduce the
efficiency of production management. Most importantly, the
above research assumed that the number of process routes
was enumerable and limited, but it was not. The jobs used
as examples in these publications have only 3–5 alternative
process routes [13], while the actual process planning (PP)
problem has been proven to be NP-hard in the literature [17].
Therefore, it cannot be simply represented by a limited num-

ber (3–5) of routes, and such simplification is inappropriate.
In this paper, a mathematical model of DIPPS based on a
network graph is developed, and a new encoding and decod-
ing approach is designed. This approach directly codifies the
selection state of the OR-nodes in the chromosomes, which
can enable more kinds of representations for process routes
and the effective reconstruction of the solution space.

Most production problems are multiobjective, while all
the current studies of DIPPS problems are single-objective
[13, 35, 36, 38]. Aiming to solve multiobjective problems
in actual production and to provide high-quality alterna-
tive schemes for production management decision-makers,
this paper investigates the multiobjective DIPPS (MOIPPS)
problem to minimize makespan, total machine workload,
and maximum machine workload. Common handling meth-
ods for multiobjective problems include the weight-based
method and the Pareto-based method. Because it is diffi-
cult to trade off weight coefficients between objectives, the
Pareto-basedmethod has becomemainstream in currentmul-
tiobjective optimization research. As a typical representative
of many meta-heuristics, the GA has always been one of the
main methods of solving scheduling problems. However, the
traditional GA is not as powerful in local search as it is in
global search. The memetic algorithm (MA) is a combina-
tion of global search based on population and local heuristic
search based on individuals; thus, it has a good balance of
exploration ability and exploitation ability.MAhas been suc-
cessfully applied in solving IPPS problems and has achieved
a certain degree of success. To improve the performance of
traditional MA, a new encoding method for chromosome
representation is proposed and integrated into theMA frame-
work, and amultiobjectiveMA (MOMA) is further proposed
to solve MODIPPS problems. For the local search compo-
nent of the MOMA, a simulated annealing (SA) mechanism
is introduced to receive relatively worse individuals with a
certain probability in the neighborhood of the current solu-
tion, which can prevent the algorithm from falling into a local
optimumprematurely and canbalance theglobal search capa-
bility and local search capability. For fairness of comparison,
numerical experiments are conducted on open benchmarks.
The main contributions of this paper are as follows:

1. In this paper, the MODIPPS problem is studied for
the first time, and a mixed-integer linear program-
ming (MILP) mathematical model for the multiobjective
problem is established based on heterogeneous process
network graphs.

2. The SA mechanism is introduced to prevent the MOMA
from falling into a local optimum by receiving relatively
worse individuals with a certain probability, balancing
the global search ability and local search ability of the
algorithm.
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3. The proposed MOMA can obtain a better Pareto solu-
tion set. Comparison experiments on the benchmarks
show sufficient effectiveness and superiority in solving
MODIPPSproblems comparedwith existing classicmul-
tiobjective optimization algorithms.

The structure of the paper is arranged as follows: Sect. 2
reviews the relevant literature. Section 3 introduces the
MODIPPS problem and the mathematical model. Section 4
presents the MOMA and the SA mechanism. Section 5
describes the numerical experiments. Section 6 concludes
the research.

2 Literature review

2.1 Distributed shop scheduling problem

Jia et al. [5] proposed distributed manufacturing to reduce
product cost and risk and proposed an improved genetic
algorithm to solve the DJSP. Naderi et al. [23] studied the
DFSP and established six different MILP models and then
proved that the distributed permutation flow shop schedul-
ing problem (DPFSP) is an NP-hard problem. To meet the
requirements of different manufacturing modes, Ying et al.
[34] established a MILP model for the distributed hybrid
flow shop scheduling problem (DHFSP) for the first time
and designed an iterative greedy (IG) algorithm. As an exten-
sion of the DFSP, optional flexible constraints were added to
the DHFSP. Zhao et al. [40] proposed an improved differ-
ential evolution algorithm for the DFSP with blocking to
minimize the maximum completion time. Giovanni et al.
[3] researched the DFJSP, which can be regarded as an
extension of the DJSP. Based on the above work, Wu et al.
[33] investigated the distributed assembly flexible job shop
scheduling problem and proposed a MILP model. To mini-
mize tardiness and cost, a hybrid multiobjective algorithm
of the differential evolution (DE) algorithm and SA was
designed to solve the problem. Li et al. [7] first studied
the distributed heterogeneous no-wait flow shop schedul-
ing problem and proposed a discrete artificial bee colony
algorithm (DABC) to solve this problem. For the distributed
heterogeneous permutation flow shop scheduling problem,
to minimize the maximum completion time, negative social
impact, and energy consumption, Lu et al. [18] proposed a
knowledge-basedmultiobjectivememetic optimization algo-
rithm (KMMOA).

In summary, the current distributed scheduling research
has mainly focused on the basic flow shop schedul-
ing problem (FSP), permutation flow shop schedul-
ing problem, and JSP. Moreover, the environment of
most factories is homogeneous. To better serve practi-
cal production, it is necessary to study distributed shop

scheduling problems with heterogeneous process flexibili-
ties.

2.2 Multi-objective integrated process planning
and scheduling problem

In the IPPS problem, process planning is often considered
based on a classical scheduling problem. A process planning
problem can be viewed as a constrained traveling sales-
man problem (TSP), which is NP-hard. Similarly, the JSP
has also been proved to be NP-hard. As a problem inte-
grating the above two, the IPPS problem is much more
difficult to solve. Li et al. [8] proposed a game theory-based
approach to investigate themultiobjective IPPS problem, and
the Nash equilibrium in the game theory-based approach
has been used to address multiple objectives. Mohammadi
et al. [20] proposed a hybridmultiobjective simulated anneal-
ing algorithm (MOHSA) by fully utilizing the capability
of exploration search and fast convergence. Considering
IPPS as a multiobjective optimization problem in reconfig-
urable manufacturing settings, Mohapatra et al. [21] applied
the nondominated sorting genetic algorithm-II (NSGA-II)
to take into account the computational intractability of the
problem. Li et al. [10] modified the solution representa-
tion with a multilayer structure and applied NSGA-II to
solve MOIPPS problems. Jin et al. [6] proposed a multi-
objective memetic algorithm to solve the MOIPPS problem.
Considering the makespan, critical machine workload, and
machine total workload as the objective functions, Shok-
ouhi et al. [29] tried to solve the IPPS problem with the
GA in a weighted-sum form. Zhao et al. [39] proposed a
two-generation Pareto ant colony algorithm for multiobjec-
tive job shop scheduling problems (MOJSP) with alternative
process plans and unrelated parallel machines. Aiming at
saving energy and reducing carbon emissions, Zhang et al.
[37] took advantage of the integration between process plan-
ning and scheduling to achieve energy savings by using a
hierarchical multistrategy genetic algorithm based on non-
dominated sorting. For a real-world case from a battery
packaging machinery workshop, Wen et al. [32] proposed
a two-stage solution method based on NSGA-II for green
MOIPPS problems. The current status of research related
to MOIPPS is arranged chronologically in Table 1. The
research objectives focus on the makespan, cost, workload,
energy consumption, etc. Numerous algorithms have been
proposed by researchers to solve this problem, with notable
results. In this paper, the framework is also based on an
evolutionary algorithm, the memetic algorithm, which incor-
porates local search to balance the search ability of the
algorithm.

123



196 Memetic Computing (2022) 14:193–209

Table 1 Publications on the MOIPPS problem

Citations Optimization objectives Journals

[32] Makespan, total carbon
emission, and total
tardiness

Swarm and Evolutionary
Computation

[37] Total energy consumption,
makespan, and peak
power

Energies

[39] Maximum completion
time, tardiness penalty
costs, total production
workload, total machine
workload deviation, total
production costs

Journal of Intelligent
Manufacturing

[29] Makespan, critical
machine workload,
machines total workload

Production and
Manufacturing Research

[6] Makespan, Maximum
machine workload, Total
workload of machines

International Journal of
Advanced
Manufacturing
Technology

[10] Makespan, cost, idle time,
the maximum machine
workload

China Mechanical
Engineering

[22] Makespan, cost (fixed cost
and operating cost), idle
time

International Journal of
Production Research

[21] Machining cost,
makespan, maximization
of machine utilization

International Journal of
Production Research

[8] Makespan, the maximum
working time, the total
workload of machines

Expert Systems with
Applications

[20] Preparation times, total
tardiness

International Journal of
Production Research

3 Problem formulation for MODIPPS

3.1 DIPPS problem and the network graph

In the DIPPS problem, each distributed factory can pro-
vide a process network graph for a job i, and the concrete
process route of job i needs to be summarized from the
network graph. As shown in Fig. 1, the network graph is
composed of five types of nodes: the start node, which is
virtual and represents the start of the job’s production pro-
cess; the end node, which is also virtual and indicates the
end of the production process; intermediate nodes, imply-
ing operations; and OR-nodes, combined with JOIN-nodes,
representing process flexibilities. An intermediate node con-
tains three types of information: the operation number in
a solid circle, the optional machine number in {}, and the
corresponding processing time in []. The nodes in the net-
work are connected by arrows indicating the precedence
relationship constraints between operations. Only one of
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Fig. 1 An example of a network graph

the process paths between an OR-node and the correspond-
ing JOIN-node is chosen. The operations on the chosen
paths with other operations compose a feasible operation
combination for the part. In addition, only one machine is
selected as the platform to process the corresponding opera-
tion: 1(3)–6(7)–4(5)–7(13)–5(8)–9(3)–10(13). The numbers
outside the parentheses indicate operations, and those inside
are the machines. Since different jobs have different process
network graphs, the number of alternative process routesmay
be great.

3.2 MILPmathematical model

For preliminary knowledge of the mathematical model, the
details can be found in our previous work [15]. ThisMOIPPS
problem is established based on the precedence relationship
modeling idea, and the process network graph and topology
analysis were discussed in detail in the previous publication
[14].

The model is established based on the following assump-
tions:

(1) A job can only be assigned to one factory;
(2) A machine can only process one operation at a time,

and the processing procedure cannot be interrupted;
(3) At the beginning, all jobs and machines are already

available;
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(4) The transportation time of the jobs from each factory
to the destination varies.

Sets, subscripts, and notation

F The set of factories

f Factories, 1≤ f ≤|F |

N The job set
J f
i The operation set of job i if it is assigned to factory f

R f
i The OR-node set of job i’s process network in factory f

Mf The machine set in factory f
O f
i j Operation j of job i if it is assigned to factory f

i, i’ Jobs, 1≤ i ≤|N |

j, j’ Operations, 1≤ j ≤ |J f
i |

k, k’ Machines, 1≤k ≤ |Mf |

r, r’ OR-nodes, 1≤ r ≤ |R f
i |

l, l’ Links

Parameters

U f
i j j ′ 1 if O f

i j should be processed before O f
i j , according to the

precedence relationship represented by job i’s network
provided by factory f ; 0 otherwise

P f
i jk The processing time of O f

i j on the kth machine of set Mf

W f
i jrl 1 if O f

i j is located at the rth OR-node’s lth link in the network
provided by factory f for job i; 0 otherwise

E f
i The transportation time of job i from factory f to its destination

Variables
D f
i 1 if job i is delivered to factory f ; 0 otherwise

R f
irl 1 if the lth link of the rth OR-node of job i is selected; 0

otherwise

X f
i j 1 if O f

i j is selected; 0 otherwise

Z f
i jk 1 if O f

i j is processed on machine k; 0 otherwise

Y f
i ji ′ j ′ 1 if O f

i j is processed before O f i ′
j ′ ; 0 otherwise

S f
i j The starting time of O f

i j

Ci The completion time of job i

Cmax Makespan

MMW The maximal machine workload

TWM The total workload of the machines

Objectives:
(1) Minimize the maximum completion time:

min f1 � Cmax (1)

(2) Minimize the maximal machine workload:

min f2 � MMW (2)

(3) Minimize the total workload of the machines:

min f3 � TWM (3)

Constraints:

Each job can only be assigned to one factory:

∑

f

D f
i � 1, ∀i (4)

Only one link of an OR-node can be selected. If the job
is not assigned to factory f , the network with the OR-nodes
provided by factory f for job i will not be considered:

∑

l

R f
irl � D f

i , ∀ f , i, r (5)

∑

j

X f
i j � D f

i , ∀ f , i (6)

If the link where operation O f
i j is located is not traversed,

O f
i j will not be selected.

X f
i j ≤ M · (1 − W f

i jrl ) + M · R f
irl , ∀ f , i, j, r , l (7)

After analyzing the premises of selecting the operations,
it can be concluded that if an operation is not controlled by
any OR-node, it will certainly be selected, and it will also
be selected if all its controlling links are traversed. There-
fore, this paper formulates the OR-node function constraint
as follows:

X f
i j ≥ 1 − M ·

∑

r

∑

l

W f
i jrl · (1 − R f

irl ), ∀ f , i, j (8)

O f
i j will be assigned to one machine selected from its

alternative machine set.

∑

k

Z f
i jk � X f

i j , ∀ f , i, j (9)

The precedence relationship 0–1 variable Y f
i ji ′ j ′ should

be constrained according to the precedence constraints
expressed by the networks.

∑

i ′

∑

j

∑

j ′
Y f
i ji ′ j ′ ≤ M · D f

i , ∀ f , i (10)

∑

i

∑

j

∑

j ′
Y f
i ji ′ j ′ ≤ M · D f

i ′ , ∀ f , i ′ (11)

M · (2 − X f
i j − X f

i j ′ ) + Y f
i ji j ′ ≥ U f

i j j ′ , ∀ f , i, j, j ′ (12)

The operations belonging to the same job should be
processed sequentially according to the precedence relation-
ships.

(13)

S f
i j ′ ≥ S f

i j +
∑

k

P f
i jk · Z f

i jk − M

· (3 − X f
i j − X f

i j ′ − Y f
i ji j ′ ), ∀ f , i, j, j ′
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(14)

S f
i j ≥ S f

i j ′ +
∑

k

P f
i j ′k · Z f

i j ′k − M

· (2 − X f
i j − X f

i j ′ + Y f
i ji j ′ ), ∀ f , i, j, j ′

The operations assigned to the same machine should also
obey the precedence relationships.

S f
i ′ j ′ ≥ S f

i j + P f
i jk − M

· (3 − Z f
i jk − Z f

i ′ j ′k′ − Y f
i ji ′ j ′), ∀ f , i, i ′, j, j ′, k

(15)

(16)

S f
i j ≥ S f

i ′ j ′ + P f
i ′ j ′k − M

· (2 − Z f
i jk − Z f

i ′ j ′k′ + Y f
i ji ′ j ′), ∀ f , i, i ′, j, j ′, k

If job i is not processed in factory f , S f
i j will not be con-

sidered and is set to 0:

∑

j

S f
i j ≤ M · D f

i , ∀ f , i (17)

From the above, the completion time can be obtained as:

(18)

Cmax ≥ S f
i j +

∑

k

P f
i jk · Z f

i jk − M · (1 − X f
i j )

+ E f
i · D f

i , ∀ f , i, j

The MMW value can be obtained as:

MMW � max∀ f ,k

⎛

⎝
∑

i

∑

j

P f
i jk · Z f

i jk

⎞

⎠ (19)

The TWM value can be obtained as:

TWM�
∑

f

∑

k

∑

i

∑

j

P f
i jk · Z f

i jk (20)

4 The proposedMOMA

4.1 Multiobjective memetic algorithm

In contrast to the GA, which simulates biological evolution-
ary procedures, Moscato et al. proposed the MA [4], which
simulates cultural evolutionary procedures. The MA uses
local heuristic search to simulate mutation and is supported
by a large amount of expertise, so the MA can be consid-
ered a combination of population-based global search and
individual-based local heuristic search (Table 2). This com-
bination mechanism of the MA makes its search efficiency

greater than that of the traditional GA in some optimization
problems, and it can be applied to a wide range of problem
areas with satisfactory results. The crossover operator and
mutation operators for individuals are designed according
to the encoding method. In addition, the MOMA deals with
multiple objectives in a Pareto-based way to find the optimal
Pareto frontier. The Pareto frontier and Pareto dominating
relationships have been widely introduced in multiobjective
optimization publications and will not be repeated in this
paper. The flow chart of the MOMA is given in Fig. 2.

The concrete steps of the proposed MOMA are shown
below:

Step 1: Initialization. Set the parameters and generate the
population randomly. The generation number is Gen � 1.

Step 2: Select individuals through tournament selection,
and perform crossoverwith probabilityPC andmutationwith
probability PM .

Step 3: For each individual Xcur, perform an SA search.
Step 4: Evaluate the population and generate the Pareto

frontier. Determine whether the termination criteria are sat-
isfied; if so, go to step 5, and otherwise, go to step 3.

Step 5: Output the solutions of the current Pareto frontier.
End.

4.2 Codingmethods

The encoding method proposed in this paper includes four
types of chromosomes: factory chromosomes, OR-node
chromosomes, operation chromosomes, and machine chro-
mosomes (Fig. 3). Except for the factory chromosome, all
types of chromosomes have subchromosomes corresponding
to factories, as shown in Fig. 4. The factory chromosome
is used to represent the factory selected for the job. The
OR-node chromosome represents the selection state of the
OR-nodes in the network. ‘1’ and ‘2’ represent the left and
right links, respectively. For the operation chromosome,
each gene contains both a job number and an operation num-
ber. The decoding order is from left to right. The machine
chromosome, arranged in the order of the job numbers,
represents the machine assigned by the operation at each
position. In conclusion, the complete production scheme is
decoded from the above example: factory 1 is responsible
for processing jobs 1 and 3, while factory 2 is responsible
for job 2. The production order of the operations in factory 1
is 1–1(1)→3–2(2)→1–2(4)→1–3(2)→3–3(1)→3–7(5)
→3–5(4)→3–6(4), and that in factory 2 is
2–3(2)→2–1(1)→2–4(4)→2–6(3). The pair of num-
bers outside the parentheses represents a job and its
operation number, and the number inside the parentheses is
the assigned machine number. According to the decoding
method described in the previous publication [16], the
objective makespan can be obtained easily.
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Table 2 The MODIPPS
example problem Job Factory 1 Factory 2

Operation Alternative machines Operation Alternative machines

1 1 1, 2 1 1, 3

2 2, 4 2 3, 4

3 2, 3 3 2, 4

2 1 3, 5 1 2, 4

2 3, 4 2 3, 4

3 1, 5 3 2, 5

4 1, 4, 5 4 1, 2, 4

3 1 2, 3 1 2, 3

2 2, 4 2 3, 4

3 1, 5 3 2, 5

4 1, 3 4 1, 2

5 1, 3, 4 5 2, 3, 4

6 2, 4 6 2, 3

Beginning 

Parameters Setting

Initialize the populations
Gen = 1

Evaluate the population and 
generate the Pareto frontier 

Termination Criteria 
Satisfied?

Generate new individual for each 
one of the current population

Perform the crossover operation 
with probabilityPC

Output the solutions of the current 
Pareto frontier

Ending

Xur =Xur or  Xur =Xnew

Xur =Xnew

Perform the mutation operation with 
probabilityPM

Y

N

Xnew dominates Xcur?

N

Rand < PSA?

Y

Y

Simulated annealing operations

Select individuals through 
tournament selection

Genetic operations

SA terminated?

Gen = Gen + 1

Xur dominates Xnew?
N

Calculate the PSA

Y

Y

N

N

Fig. 2 The flow chart of the proposed MOMA

4.3 Initialization

Each individual in the population is randomly initialized
according to the above encoding rules, and each individ-
ual represents a solution. All individuals should obey the

precedence constraints to ensure the smooth operation of the
MOMA. Without infeasible individuals in the population, in
other words, there is no need to adjust the operation chromo-
some of the infeasible individuals after each iteration. This
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Fig. 3 Example process network
graphs
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Fig. 4 The coding method for a
MOIPPS scheme

OR-node 
chromosome

Job 1 Job 2 Job 3

Job 1 Job 2 Job 3

Operation 
chromosome

Machine 
chromosome

Factory chromosome 1 2 1
Job 1 Job 2 Job 3 1 2 2 2

2 2 1 1

Factory 1

Factory 2

Factory 1

Factory 2

Factory 1

Factory 2

1 1 2 1 1 1 2 1 1 1 1 2 1

1 2 1 1 2 1 3 1 1 1 2 3 2

1-1 2-31-2 2-21-32-1 2-4 3-23-1 3-33-43-5 3-6

1-1 2-1 1-2 2-2 1-32-3 2-4 3-2 3-1 3-33-4 3-5 3-6

saves adjustment time for the algorithm to a certain extent
and can accelerate the solving speed of the algorithm.

4.4 Crossover

A new individual is obtained by the crossover operator
between two parent individuals, which are selected by
the tournament selection method. The crossover method is
shown in Fig. 5. Two points are randomly selected, and the

genes outside the points are transferred to the new individ-
ual at the same positions, while the sequence of genes inside
the points is obtained by mapping. This mapping operation
can generate an offspring chromosomewith the same legality
from two feasible operation chromosomes to ensure contin-
uous legitimacy in the evolutionary process of the MOMA.
For factory, OR-node, and machine chromosomes that are
not constrained by precedence, their offspring chromosomes
can be obtained by swapping the subsequences in the corre-
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1-1 2-4 1-2 2-22-1 2-3 3-2 3-1 3-3

1-1 2-1 1-2 2-21-2 2-3 3-2 3-1 3-3

2-2 1-1 2-3 2-42-1 1-2 3-1 3-3 3-2Parent
Individual 2

New 
Individual

Parent
Individual 1

Operation chromosome

Fig. 5 Crossover for the operation chromosome

SuccessorPredecessor Selected point

1-1 2-4 1-2 2-22-1 2-33-2 3-1 3-3

Fig. 6 Mutation for operation chromosome

sponding positions. This operation is relatively simple, so it
will not be described here.

4.5 Mutation

This paper designs a single-point insertion operation as the
mutation operator, as shown in Fig. 6. A point is randomly
selected to determine the range where it can be inserted,
i.e., its predecessor operation and successor operation. The
selected operation point can be inserted at any position in
the range. The factory chromosome, OR-node chromosome,
and machine chromosome are not constrained by the prece-
dence constraints, so the mutation can be performed through
single-point switching to randomly select a point and switch
the selection state to one of the other states. The switching
operation is shown in Fig. 7.

4.6 Simulated annealingmechanism

The proposed algorithm has a powerful global search capa-
bility, but it easily falls into a local optimum, so the SA
mechanism for local search is introduced here to address the
shortcomings of the algorithm. In the SA step, new individ-
uals are generated by the above two genetic operations. The
concrete steps of SA are shown below.

For each individual Xcur, perform SA search:
Step 1: Randomly select an individual to carry out the

crossover operationwith the current individualXcur, and then
carry outmutation on the current individual to generate a new
individual Xnew.

Step 2: Determine whether Xnew dominates Xcur. If so,
set Xcur � Xnew and go to step 5; otherwise, go to step 3.

Step 3: Determine whether Xcur dominates Xnew. If so,
go to step 4; otherwise, set Xcur � Xnew or Xnew � Xcur and
go to step 5.

Step 4: Calculate PSA and generate a [0, 1] random value
Rand.DeterminewhetherRand <PSA. If so, setXcur �Xnew;
otherwise, go to step 5.

Step 5: Determine whether SA has terminated. If so, go
to step 6; otherwise, go to step 1.

Step 6: Output the current solution Xcur. End.
The PSA of the single-objective optimization problem is

calculated as follows, where f new and f cur denote the fitness
values of the new individual and the current individual:

PSA �

⎧
⎪⎨

⎪⎩

1, f new < f cur

exp

(
− f new − f cur

T

)
, f new ≥ f cur

(21)

Since this paper studies multiobjective optimization, the
above PSA formula for single-objective problems cannot be
applied directly to this multiobjective problem. The PSA for-
mula for the multiobjective problem is shown below, and the
subscript m denotes the m th optimization objective in the
multiobjective optimization problem.

PSA �

⎧
⎪⎪⎨

⎪⎪⎩

1, Xnew dominates Xcur

M∏

m�1

exp

(
− fm

T

)
, otherwise

(22)

The value T in Eqs. (21) and (22), which is the current
temperature, and the intermediate variable f m can be calcu-
lated as follows:

fm �
{

0, i f f newm < f curm

f newm − f curm , otherwise
(23)

T � αk · T0 (24)

where α is the cooling rate; k is the number of cooling times,
which is set to the current iteration number of the MOMA;
and T0 is the initial temperature.

5 Experimental studies and discussion

To test the proposedMOMA, two groups of numerical exper-
iments are designed. The data of these numerical experiments
are openly available in existing publications, so the experi-
mental results can objectively illustrate the superiority of the
proposed algorithm. The cases are divided into two groups
according to the size of the experimental case: the first group
is from the literature [35, 36], and the second is adopted
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Fig. 7 Mutation for the three
chromosomes
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Table 3 Orthogonal array and
average values No Parameters Avg. of IGD

PopSize Pm Pc α T0

1 100 0.2 0.2 0.99 500 46.7

2 100 0.4 0.4 0.98 400 60.8

3 100 0.6 0.6 0.97 300 69.2

4 100 0.8 0.8 0.96 200 77.7

5 200 0.2 0.4 0.97 200 35.3

6 200 0.4 0.2 0.96 300 47.6

7 200 0.6 0.8 0.99 400 59.1

8 200 0.8 0.6 0.98 500 63.6

9 300 0.2 0.6 0.96 400 20.9

10 300 0.4 0.8 0.97 500 22.2

11 300 0.6 0.2 0.98 200 39.8

12 300 0.8 0.4 0.99 300 40.3

13 400 0.2 0.8 0.98 300 20.1

14 400 0.4 0.6 0.99 200 11.1

15 400 0.6 0.4 0.96 500 15.6

16 400 0.8 0.2 0.97 400 10.7

from [13]. The case data can be downloaded from the rel-
evant website to facilitate comparative studies by future
researchers. The proposed MOMA is implemented via C++
programming and is run on a PC with an i7-8700 CPU
and 16 GB memory. The classic NSGA-II and MOEA/D
algorithms are employed for comparison with the proposed
MOMA. In addition, a version of the MOMAwithout an SA
mechanism, named MOMA_NSA, is employed to prove the
effectiveness of SA in the MOMA. Each algorithm is run
10 times independently with a fixed running time of 300 s.
The three performance indicators for themultiobjective algo-
rithms are the set coverage (CS), generational distance (GD),
and inverse generational distance (IGD). CS was proposed
by Zitzler et al. [41] to compare the coverage rates of two
solution sets. A larger CS value means that there are more
solutions in this solution set that dominate those in the other
set, which also means that this set is closer to the optimal
Pareto frontier. The second evaluation indicator is GD [30],

which is used to describe the distance between the current
Pareto frontier and the optimal Pareto frontier. The IGD indi-
cator is a comprehensive evaluation index that can reflect the
convergence and distribution degrees [2]. The smaller the
IGD value is, the better the comprehensive performance of
the MOEA is.

(1) CS. Suppose both sets A and B are approximations of
the Pareto frontier. C (A, B)>C (B, A) means that set A is a
better approximation of the optimal Pareto frontier. Then, C
(A, B) is defined by Eq. (25).

C(A, B) � |{b ∈ B|∃a ∈ A : a dominates b }|
|B| (25)

(2) GD. By calculating the distance between a point on
the current Pareto frontier and the optimal Pareto frontier,
the solution set obtained by the algorithm is evaluated. The
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Fig. 8 Main effects plot for MOMA

Table 4 The comparison based
on GD Problem No. of

factories/jobs/machines
GD MOEA/D NSGA-II MOMA_NSA MOMA

P1 2/4/18 Average 84.76 3.59 66.37 0.88

Std 14.81 4.04 12.92 1.63

P2 2/6/10 Average 96.14 3.52 66.19 3.33

Std 40.65 5.63 13.40 3.52

The results in bold are better

Table 5 The comparison based
on IGD Problem No. of

factories/jobs/machines
IGD MOEA/D NSGA-II MOMA_NSA MOMA

P1 2/4/18 Average 79.02 6.21 77.02 1.81

Std 12.17 2.82 12.91 1.79

P2 2/6/10 Average 83.81 10.03 74.66 4.82

Std 20.67 7.80 20.17 4.52

The results in bold are better

smaller the GD value is, the better the current Pareto frontier.
GD is defined as follows:

GD �
√∑n

i�1 d
2
i

n
, (26)

where di is the Euclidean distance from the ith point of the
current Pareto frontier (PF) to the nearest point of the optimal
Pareto frontier (PF*) and n is the number of solutions in
PF. Since the optimal frontier cannot be obtained directly,
PF* here is the optimal Pareto frontier composed of all the
solutions of various multiobjective evolutionary algorithms
after each independent run.

(3) IGD. The shortest distance from a point on PF* to PF
is calculated to evaluate the algorithms. IGD is defined as
follows:

IGD �
√∑

i∈PF∗ d∗2
i

n
, (27)

where di* is the Euclidean distance from the ith point of PF*

to the nearest point of PF and n is the number of solutions in
PF*. Since the optimal frontier cannot be obtained directly,
PF* here is the optimal Pareto frontier composed of all the
solutions of various multiobjective evolutionary algorithms.
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Table 6 The comparison based on CS (part 1)

Problem No. of factories/jobs/machines CS A:MOEA/D
B:NSGA-II

A:MOEA/D
B:MOMA

A:NSGA-II
B:MOMA

C(A, B) C(B, A) C(A, B) C(B, A) C(A, B) C(B, A)

P1 2/4/18 Average 0 1.00 0 1.00 0.16 0.49

Std 0 0 0 0 0.28 0.48

P2 2/6/10 Average 0 1.00 0 1.00 0.31 0.31

Std 0 0 0 0 0.32 0.48

The results in bold are better

Table 7 The comparison based on CS (part 2)

Problem No. of factories/jobs/machines CS A:MOEA/D
B: MOMA_NSA

A: NSGA-II
B: MOMA_NSA

A: MOMA_NSA
B:MOMA

C(A, B) C(B, A) C(A, B) C(B, A) C(A, B) C(B, A)

P1 2/4/18 Average 0.27 0.46 1.00 0 0 1

Std 0.21 0.32 0 0 0 0

P2 2/6/10 Average 0 1.00 0 1.00 0.31 0.31

Std 0 0 0 0 0.32 0.48

The results in bold are better

Table 8 The comparison based
on GD Problem No. of

factories/jobs/machines
GD MOEA/D NSGA-II MOMA_NSA MOMA

E1 2/24/18 Average 545.30 295.94 609.8 0.00

Std 155.06 54.38 161.0 0.00

E2 2/36/10 Average 716.38 409.83 678.68 0.00

Std 203.54 172.59 141.67 0.00

E3 2/60/9 Average 2214.25 1588.92 2531.29 24.38

Std 562.37 1053.97 617.66 77.10

E4 2/30/3 Average 1058.40 211.52 997.01 0.00

Std 155.93 90.60 194.38 0.00

E5 2/60/6 Average 49.05 35.09 52.52 0.00

Std 10.17 13.84 6.53 0.00

E6 2/48/5 Average 31.05 1.88 35.69 0.15

Std 3.15 2.30 7.20 0.47

E7 2/30/5 Average 24.31 5.05 24.69 0.00

Std 5.34 3.19 4.30 0.00

E8 2/36/5 Average 10.87 6.41 12.00 0.00

Std 1.95 2.25 2.25 0.00

E9 2/30/6 Average 39.67 12.59 36.77 0.00

Std 9.02 11.06 8.93 0.00

E10 2/30/5 Average 6.10 1.39 5.75 0.00

Std 0.54 1.58 0.97 0.00

E11 2/48/6 Average 23.42 4.68 21.80 0.00

Std 2.90 2.21 4.28 0.00

The results in bold are better
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Table 9 The comparison based
on IGD Problem No. of

factories/jobs/machines
IGD MOEA/D NSGA-II MOMA_NSA MOMA

E1 2/24/18 Average 409.44 218.80 399.67 0

Std 149.35 73.92 148.54 0

E2 2/36/10 Average 404.42 245.23 399.15 0

Std 173.30 116.64 160.31 0

E3 2/60/9 Average 1412.33 1292.52 1445.41 27.05

Std 644.41 756.86 825.45 62.57

E4 2/30/3 Average 1033.26 227.02 1016.33 0

Std 244.61 88.67 253.10 0

E5 2/60/6 Average 18.55 14.61 18.05 0

Std 3.23 3.86 3.32 0

E6 2/48/5 Average 28.44 7.63 26.55 1.48

Std 8.50 3.95 7.49 1.60

E7 2/30/5 Average 24.93 10.72 25.83 0.53

Std 5.36 5.02 7.15 1.05

E8 2/36/5 Average 13.96 13.32 14.36 0

Std 1.42 4.49 1.52 0

E9 2/30/6 Average 37.61 19.90 39.12 1.14

Std 7.76 5.20 7.81 2.68

E10 2/30/5 Average 7.32 6.29 6.43 1.21

Std 2.52 3.44 1.48 0.79

E11 2/48/6 Average 24.99 12.78 26.11 0.58

Std 5.17 5.24 4.79 1.16

The results in bold are better

The parameter configuration affects the performance of
the MOMA. The parameters are the population size PopSize,
the crossover probability Pc, the mutation probability Pm,
the cooling rate α, and the initial temperature T0. A Taguchi
design-of-experiment (DOE) approach is adopted to deter-
mine themost appropriate parameter configuration. The level
of each parameter is as follows: PopSize � {100, 200, 300,
400}, Pm � {0.2, 0.4, 0.6, 0.8}, Pc � {0.2, 0.4, 0.6, 0.8}, α �
{0.96, 0.97, 0.98, 0.99}, and T0 � {200, 300, 400, 500}. An
orthogonal array L16(45) is used, as shown in Table 3. The
comprehensive index IGD is selected to evaluate the parame-
ter combinations. According to Fig. 8, the MOMA performs
better with the parameter combination PopSize � 400, Pm �
0.2, Pc � 0.2, α � 0.97, and T0 � 500.

5.1 Experiment 1

Cases P1 and P2 in this group of experiments are small-scale
DIPPS problems, which are derived from the literature [35,
36]. By comparing the indicatorsGD, IGD, andCS, as shown
in Tables 4, 5, the proposedMOMAcan obtain a better Pareto
frontier with smaller GD and IGD values than those of the
other comparison algorithms, indicating that the frontier of
the MOMA is closer to the optimal one. According to the
value of the indicator CS, the number of dominating solu-

tions in the MOMA solution set is greater than the number
of dominated solutions when compared with the other two
algorithms. Therefore, the proposed MOMA performed bet-
ter than NSGA-II, MOMA_NSA and MOEA/D.

5.2 Experiment 2

This group of experiments contains 11 cases. The numbers
of factories, jobs, and machines in these examples are shown
in the Tables 6, 7, and the cases that belong to the large-
scale DIPPS problem are indicated. The comparison results
for NSGA-II, MOMA_NSA and MOEA/D are shown in
Tables 8, 9, 10, 11. The MOMA has smaller GD and IGD
values and is superior to the comparison algorithms in terms
of the indicator CS. Taking case E11 as an example, its Gantt
chart and the Pareto front graphs of the three algorithms are
as shown in Figs. 9 and 10.

5.3 Discussions

From the above experimental results and the three compara-
tive indicators, it can be concluded that theMOMAproposed
in this paper outperforms the comparative algorithms in
the different testing instances. Compared with MOEAD and
NSGA2, theMOMAhas not only a strong global search abil-
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Table 10 The comparison based on coverage (part 1)

Problem No. of factories/jobs/machines Coverage A:MOEA/D
B:NSGA-II

A:MOEA/D
B:MOMA

A:NSGA-II
B:MOMA

C(A, B) C(B, A) C(A, B) C(B, A) C(A, B) C(B, A)

E1 2/24/18 Average 0 1.00 0 1.00 0 1.00

Std 0 0 0 0 0 0

E2 2/36/10 Average 0 1.00 0 1.00 0 1.00

Std 0 0 0 0 0 0

E3 2/60/9 Average 0 0.82 0 0.99 0.06 0.8

Std 0 0.20 0 0.04 0.20 0.42

E4 2/30/3 Average 0 1.00 0 1.00 0 1.00

Std 0 0 0 0 0 0

E5 2/60/6 Average 0 0.69 0 1.00 0 1.00

Std 0 0.26 0 0 0 0

E6 2/48/5 Average 0 1.00 0 1.00 0.03 0.46

Std 0 0 0 0 0.08 0.49

E7 2/30/5 Average 0 1.00 0 1.00 0 0.90

Std 0 0 0 0 0 0.16

E8 2/36/5 Average 0 0.97 0 1.00 0 1.00

Std 0 0.09 0 0 0 0

E9 2/30/6 Average 0 1.00 0 1.00 0 0.81

Std 0 0 0 0 0 0.36

E10 2/30/5 Average 0 0.89 0 0.98 0 0.53

Std 0 0.17 0 0.06 0 0.43

E11 2/48/6 Average 0 1.00 0 1.00 0 0.83

Std 0 0 0 0 0 0.33

The results in bold are better

Table 11 The comparison based on coverage (part 2)

Problem No. of factories/jobs/machines Coverage A:MOEA/D
B: MOMA_NSA

A: NSGA-II
B: MOMA_NSA

A: MOMA_NSA
B:MOMA

C(A, B) C(B, A) C(A, B) C(B, A) C(A, B) C(B, A)

E1 2/24/18 Average 0.14 0.48 1.00 0 0 1.00

Std 0.23 0.29 0 0 0 0

E2 2/36/10 Average 0.40 0.38 1.00 0 0 1.00

Std 0.38 0.42 0 0 0 0

E3 2/60/9 Average 0.48 0.36 0.80 0 0 1.00

Std 0.22 0.32 0.27 0 0 0

E4 2/30/3 Average 0.40 0.28 1.00 0 0 1.00

Std 0.36 0.34 0 0 0 0

E5 2/60/6 Average 0.27 0.33 0.69 0 0 1.00

Std 0.26 0.20 0.26 0 0 0

E6 2/48/5 Average 0.24 0.53 1.00 0 0 1.00

Std 0.22 0.33 0 0 0 0
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Table 11 continued

Problem No. of factories/jobs/machines Coverage A:MOEA/D
B: MOMA_NSA

A: NSGA-II
B: MOMA_NSA

A: MOMA_NSA
B:MOMA

C(A, B) C(B, A) C(A, B) C(B, A) C(A, B) C(B, A)

E7 2/30/5 Average 0.31 0.43 1.00 0 0 1.00

Std 0.31 0.30 0 0 0 0

E8 2/36/5 Average 0.33 0.33 0.96 0 0 1.00

Std 0.29 0.24 0.12 0 0 0

E9 2/30/6 Average 0.46 0.26 1.00 0 0 1.00

Std 0.31 0.23 0 0 0 0

E10 2/30/5 Average 0.35 0.57 0.87 0 0 0.97

Std 0.23 0.20 0.20 0 0 0.07

E11 2/48/6 Average 0.50 0.34 1.00 0 0 1.00

Std 0.34 0.32 0 0 0 0

The results in bold are better

Fig. 9 Pareto frontier graph of three algorithms of case E11

ity but also a better local search ability. By introducing the
SA mechanism for local search in a specific neighborhood,
the MOMA should accept relatively poor solutions with a
certain probability so that it converges at a certain speed and
ensures the diversity of the population. Therefore, the algo-
rithm can avoid falling into a local optimum prematurely and
can guarantee the solution quality. The balance of exploration
and exploitation abilities is the MOMA’s important charac-
teristic, and it is also the key to obtaining better solutions.

6 Conclusions

This paper describes a new manufacturing mode in a dis-
tributed manufacturing system, which integrates the process
planning subsystem with the scheduling subsystem. Owing
to the complementarity of the two subsystems, the produc-
tion efficiency and the quality can be significantly improved.
This method could provide more potential choices for pro-
duction managers to save costs and keep production steady.
Furthermore, it is difficult for operators to make deci-
sions on multiobjective problems in actual production, and
actual problems are always multiobjective problems. For the
MODIPPS problem, a novel network-based MILP model is
established for the first time, and the MOMA is designed
by taking advantage of the network and the OR-node logic.
The encoding and decoding method is newly designed for
the distributed manufacturing mode to integrate the process
planning and scheduling steps. Owing to the introduction of
the SA mechanism to enhance the exploration and exploita-
tion ability, the proposed MOMA outperforms the other two
classic multiobjective algorithms.
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Fig. 10 The Gantt chart for case E11

TheMOMA proposed in this paper can provide managers
with a near-optimal Pareto frontier and greatly reduces the
difficulty of decision-making for multiobjective production
problems. The integrationmode can accelerate the intelligen-
tization of modern manufacturing systems and can greatly
improve the production management capacity of enterprises.
This successful application should inspire managers to con-
sider and deal with production problems from a global
perspective and explore their solutions from the perspective
of the essential problem characteristics.
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