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Abstract
Modelling other agents is a challenging topic in artificial intelligence research particularly when a subject agent needs to
optimise its own decisions by predicting their behaviours under uncertainty. Existing research often leads to a monotonic set
of behaviours for other agents so that a subject agent can not cope with unexpected decisions from the other agents. It requires
creative ideas about developing diversity of behaviours so as to improve the subject agent’s decision quality. In this paper, we
resort to evolutionary computation approaches to generate a new set of behaviours for other agents and solve the complicated
agents’ behaviour search and evaluation issues. The new approach starts with the initial behaviours that are ascribed to the
other agents and expands the behaviours by using a number of genetic operators in the behaviour evolution. This is the first
time that evolutionary techniques are used to modelling other agents in a general multiagent decision framework. We examine
the new methods in two well-studied problem domains and provide experimental results in support.

Keywords Intelligent agents · Evolutionary computation · Planning and decision making

1 Introduction

Modelling other agents is an important issue in artificial intel-
ligence (AI) research while intelligent agent technologies are
applied in a wide range of applications. A subject agent inter-
acts with other agents who could be either collaborative or
competitive and reside in a common environment. The sub-
ject agent needs to predict the other agents’ behaviours in
order to optimise its interaction decisions. The prediction is
generally conducted by first modelling how the other agents
optimise their own decisions through decision models and
then solving the models to estimate their optimal decisions.
Since a true of the other agent is not known, a well-developed
line of research mainly adopts the idea of hypothesising a
large set of candidate models for the other agent, which is
expected to return a good estimation of its behaviours [1,12].

Solving a large set of candidate decision models for other
agents is complicated since the models generally involves
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many correlated variables in the optimisation of decisions
over multiple time steps [15]. Even if we could solve the
models, the solutions often lead to monotonic behaviours for
other agents. This is due to the constraints of model parame-
ters and the impossible exploration of all possible models of
the other agents. Essentially we expect to increase the diver-
sity of other agents’ behaviours predicted by a subject agent
so that the subject agent will increase the robustness of its
optimal decisions in their interactions.

Inspired by an imagination mechanism that enhances
human-like task solutions [13], we proceed to enrich ratio-
nal behaviours for other agents in this paper. We start from
a set of initial behaviours of other agents and use evolution-
ary computation to generate a good diversity of potential
behaviours for the other agents. The difficulty lies in the
evaluation of behavioural rationality that controls the qual-
ity of evolutionary behaviours. As we do not know initial
states of a decision model, we evaluate possible behaviours
by first deciding the most probable states and then compar-
ing adjacent behaviours. The comparison may lead to a new
behaviour for the other agents. The rational behaviours inject
extra inputs to the evolutionary loop, which eventually sup-
plies a set of candidate behaviours of other agents.

A good set of possible behaviours that prescribe how other
agents act can allow a subject agent to optimise its decisions
in their interactions. To effectively evaluate the quality of
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the generated behaviour through evolutionary mechanism,
we select a general multiagent interaction model, namely
interactive dynamic influence diagrams (I-DIDs) [23], as the
evaluation framework in which a subject agent optimises its
decisions through modelling other agents’ behaviours. From
a subject agent’s viewpoint, an I-DID model can represent
possible behaviours of other agents and then optimise its own
decisions over time. Since it does not hold any assumption
about other agents, it is an ideal sequential decision making
framework for either collaborative or competitive agents. In
parallel, evolutionary behaviours provide a novel technique
for dealing with complex models of other agents in I-DIDs.
Additionally, we evaluate the entire framework in two prob-
lem domains and demonstrate the quality of evolutionary
behaviours in agents’ interactions.

This article is organised as follows. Section 2 briefly intro-
duces the I-DIDmodel and elaborate the role of evolutionary
behaviours in the model. Section 3 develops a genetic algo-
rithm based mechanism to generate evolutionary behaviours
and uses a local search to improve new behaviours in the evo-
lution. Section 4 presents a full set of experimental results
to demonstrate the performance of I-DID upon using evolu-
tionary behaviours. Section 5 reviews the relevant research
on modelling other agents. Finally, we conclude this work in
Sect. 6.

2 Background knowledge: I-DIDs

The ultimate objective of modelling other agents is to pre-
dict their behaviours based on which a subject agent could
optimise its own decisions in their interactions. Hence, we
need to resort to a multiagent decision making framework
that can accommodate behaviours of other agents so that the
modelling effect can be measured from the perspective of the
subject agent.

Currently, twowell recognized frameworks, namely inter-
active POMDPs [9] and interactive dynamic influence dia-
grams (I-DIDs) [6], have appeared as a general sequential
decision model for multiple agents who are either coopera-
tive or competitive and share a common environment. As a
graphical counterpart of interactive POMDPs, I-DIDs exploit
relations of variables in a problem domain and structure them
explicitly in the models, which generates computational ben-
efits in solving a more complex decision problem [6]. In this
article, we choose the I-DID model as the representation of
multiagent decision making and show how modelling other
agents and its challenges are embedded in I-DID. We pro-
ceed to elaborate the background knowledge of I-DID in this
section.

2.1 Interactive dynamic influence diagrams

Interactive dynamic influence diagrams (I-DIDs) extend a
probabilistic graphical model, namely dynamic influence
diagrams [18], to solve amultiagent sequential decision prob-
lem under uncertainty. Figure 1 shows a dynamic influence
diagram (DID) for a single agent decision making prob-
lem over three time steps. In the DID model, a chance
node (denoted by a circle/oval shape) represents environmen-
tal states (S) and observations (O) received by the agent, a
decision node (denoted by a rectangular shape) represents the
agent’s decisions (A) and a utility node (denoted by a dia-
mond shape) models the agents rewards (R) upon the states
and decisions. The arcs associated with conditional proba-
bilities (Pr(·|·)) model the strength of relations between the
variables. The arcs across different time steps (from t to t+1)
represent the probabilistic relations over time. For example,
Pr(S2|S1, A1) is a transition function from S1 to S2 given
the effect of the action A1 at time t = 1.

Once we build a DID model, we can solve the model
through a well-developed algorithm, e.g. dynamic program-
ming [18], and obtain time-series decisions for decision
makers. In general, we can represent a sequence of observa-
tions and decisions as a policy tree as shown in the right-hand
side of Fig. 1, where an observation is denoted by a circle
node while an action is with the directed arc in a tree. For
example, the policy tree tells that an agent has the best action
a1 at t =1 and it shall take the action a1 given its observa-
tion o1 at t =2; otherwise, the agent shall take the action a2
if it receives the observation o2. In summary, a policy tree
represents the optimal policy from solving a DID model.
Generally speaking, a DID model is termed as an intentional
or decision model while a policy tree is a behavioural model
for an agent.

Based on a single-agent DID model, I-DID (from the per-
spective of a subject agent) represents decision models of
the other agent through a Model node denoted by a hexagon
node in the model. Figure 2 shows an I-DID (for the sub-
ject agent i) with three time steps in which the model node
Mj contains a set of candidate models for the other agent j
and each model could be one DID that represents how the
agent j makes decisions over time. By solving all the j’s
candidate models and weighting the optimal decisions from
all the models, the subject agent i can get the probability
of optimal decisions to be made by the agent j , which is
denoted by the chance node A j in the I-DID model. Subse-
quently, the agent i can optimise his own decisions over time
given the predicted decisions of the agent j . We could use
either an exact or approximate algorithm to solve the I-DID
model [23], which provides an optimal policy to the agent i .
Similarly, the policy could be represented by a policy tree as
shown in Fig. 1.
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Fig. 1 a TheDIDmodel with three time steps (consisting of three types
nodes: chance nodes—circle with a conditional probability Pr(·|·),
decision nodes—rectangle with a set of actions, and utility nodes—

diamond with a reward funciton R(·)) for agent decision making; b A
policy tree describes agent’s behaviour that is a solution to the DID
model

Fig. 2 A generic three time
steps I-DID for the subject agent
i modelling he other agent j

From the viewpoint of the subject agent i , an I-DIDmodel
optimises its decisions by simultaneously predicting deci-
sions of the other agent j whose behaviours have impact in
their common environment. As it does not make any assump-
tion (e.g. common knowledge) about relations between the
agents, the I-DID model could be an ideal model to be used
for assessing the utility of modelling other agents in the con-
text of multiagent decision making.

2.2 Candidate models of other agents in I-DIDs

As a subject agent i does not know the truemodel of the other
agent j , it has to count on a large number of candidatemodels
of the agent j in a model node M j in an I-DID. Most of the
current I-DID research assumes that the candidate models,
e.g. influence diagrams for modelling other agents, exist and
can be solved to obtain behaviours of other agents. It focuses
on compressing the model space so as to solve a complex
multiagent decision problem particularly for a large number
of decisionmaking time steps [24]. The compression process
involves removing similar candidatemodels in amodel node.
The similarity is identified by finding equivalent solutions of
DID models (modelling the other agent) and then clustering

the models into a number of model categories for the other
agent.

With the increasing complexity of problem domains, the
candidate models that are manually specified by a number
of parameters often yield monotonic behaviours so that the
model node can not well represent other agents. This directly
reduces the decision quality of a subject agent. We need to
find a new way of generating more diverse behaviours for
other agents in I-DIDs.

3 Evolutionary behaviour generation

Given a set of candidate models for other agents, we can
solve the models and obtain an initial set of behaviours or
behavioural models. Subsequently, we will focus on how to
expand the initial behaviours so that the expanded set would
bemore presentative of other agents’ behaviours. Inspired by
an imagination mechanism that human exhibits in handling
different tasks, we proceed to adopt an evolutionary compu-
tation based approach to expand a good set of imaginative
behaviours for other agents. This is attributed to randomness
of evolutionary computation while the randomness could
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Fig. 3 A genetic algorithm drives evolution of individuals and generates an expanded set of behaviours for the other agent

be controlled under a rational evaluation. In this paper, we
use the popular evolutionary computation approach, namely
genetic algorithm, to generate imaginative behaviours, which
is easily to be implemented in our initial investigation into
this new line of research. In addition, the genetic algorithm
is generally considered to be rather effective in generating
a population of diverse individuals over generations. This
directly facilitates the generation of diverse behaviours for
other agents in I-DIDs.

We use a policy tree as the representation of the other
agent’s behaviour as shown in Fig. 1 (b), and adopt a genetic
algorithm [21] to generate an expanded set of newbehaviours
over iterations. The genetic algorithm enables the evolution
of individuals (the other agent’s behaviour) through a number
of generations by having them interact with other individuals
in a population. Figure 3 shows a general framework of how
individual behaviours evolve under a number of operators,
e.g. crossover, mutation and selection, and finally compose
the population. One important operator is to evaluate the fit-
ness of individuals, which is equivalent to solving candidate

decision models ascribed to the other agent in I-DID. We
will elaborate the genetic operations and evaluation in the
following subsections.

3.1 Genetic operators

Given a depth-T policy tree that is composed of a set of
policy paths, HT = ⋃

hT , where the policy path hT is a
sequence of action a (∈ A) and o (∈ Ω) attached to the
tree vertices and edges respectively over the T time steps,
we proceed to generate a set of new policy trees through a
number of genetic operators.We encode a policy tree through
a width search from the top node with actions, the edges
with observations to the leaf nodes with last actions, e.g.
[a1, o1, . . . , o|Ω|, a2, o2, . . . , aT ], which is further encoded
through a digital code [1, . . . , N ]. The encoded individuals
compose an initial population. We shall note that we use
the layer-wise method to encode all action-and-observation
sequences in the tree, which is equivalent to a branch-wise
encoding technique.
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Following an elite selection strategy, we choose a num-
ber of behaviours that have the best fitness in terms of their
expected utilities in the corresponding decision models. The
behaviours are the optimal decisions of other agents given
their initial beliefs on external environments (probability dis-
tributions in the chance node S1 in an influence diagram). The
optimality evaluation will be detailed in the next section.

Subsequently, we proceed to select a set of behaviours
that will act as parental individuals and conduct a crossover
operation to generate offspring behaviours. This results in
the first set of new behaviours that are different from initial
behaviours generated from the given decision models. As a
set of observations are constant, the crossover only occurs
in the targeted actions given their observations at each time
step. The crossover rate is determined by a randomised prob-
ability number r . We use the two-point crossover operation
to generate offspring individuals.

Similarly, we conduct a mutation operation in a num-
ber of behaviours (individuals) and generate another set of
new behaviours. The mutation changes actions given spe-
cific observations at some time steps. We generate random
numbers to decide which time step, what observations and
what alternative actions would be changed in the original
behaviours. We adopt the one-point mutation strategy in this
operation.

The two sets of new behaviours are to be aggregated with
the original behaviours and all of them compose the candi-
dates of a new set of behaviours (population). We then refine
the population by evaluating the individual behaviours. We
conduct the operations in every generation of individuals and
complete the iterations until the average fitness of the pop-
ulation does not have significant change. Using the average
fitness to terminate the evolution is driven by our objective
of complementing monotonic and rational behaviours from
the original decision models. Once we get the final set of
behaviours from the complete evolution, we choose K num-
ber of behaviours (by ranking the individual fitness) to be
considered in the model node in I-DIDs.

We describe the general framework of expanding the ini-
tial set of behaviours through a set of plain genetic operators
in Algorithm 1. The framework receives the initial set of
behaviours and encodes the behaviours (line 1-2) so that the
algorithm can conduct the crossover andmutation operations
as well as do the selection and refinement of the intermediate
populations (line 5-13). Once the evolution converges, we
decode the individuals into a set of policy trees (line 19-20).
The expanded behavioural set provides inputs to an I-DID
model. The pseudo-codes of the main set of genetic opera-
tors are provided in the Appendix.

Data: Policy trees set T of agent j , a DID model did , size of
population m, crossover rate pc, mutation rate pm ,
iteration steps N .

Result: Expanded policy trees set T
1 C ← TreeEncoding(T );
2 pop ← GeneticEncoding(C);
3 foreach n ∈ {1, 2, . . . N } do
4 pop, f i tness, prob ← Evaluation(pop, did);
5 parents ← Selection(pop,prob,m);
6 while |pop′| < m do
7 of f spring ← Parents(parents);
8 if random number r ≤ pc then
9 of f spring ← Crossover(of f spring)

10 end
11 if random number r ≤ pm then
12 of f spring ← Mutation(of f spring)
13 end
14 pop′ ← Membership(pop,pop′,of f spring)
15 end
16 pop′, f i tness′, prob′ ← Evaluation(pop′);
17 pop ← Elite(pop, f i tness,pop′, f i tness′,m);
18 end
19 C ← GeneticDecoding(pop);
20 T ← TreeDecoding(C);

Algorithm 1:A genetic algorithm drives evolution of indi-
viduals and generate an expanded set of behaviours for the
other agent

3.2 Local search for evaluating behaviour

Theevolution involves the evaluationof individual behaviours
in a population. The behavioural evaluation is used to select
an elite set of individuals and refine the population when two
new sets of behaviours are to be added into the population.

Given an initial belief in the model, e.g. a probability
distribution in the chance node S1, we can calculate the
expected utility value of individual behaviours by plugging
the behaviours into the model. In an influence diagram, we
transform the model into a Bayesian network by converting
decision nodes into chance nodes and inserting the policy
paths (representing the behaviours) into the chain of nodes
{A1, O2, A2, . . . , OT , AT } in the model. The calculation
follows the utility theory in decision analysis and can be done
automatically in a probabilistic graphical model tool, e.g.
HUGIN,1 GeNie,2 etc. Algorithm 2 solves the DID model
to get the expected rewards which are used as the fitness
function in the individual evaluation.

The evaluation difficulty arises from the calculation of
expected utilities of the new behaviours that are generated
from the crossover and mutation operations in the evolution.
Since there are unknown initial beliefs linked to the new
behaviours, we can not directly evaluate their expected utili-
ties. We need to search a potential belief based on which the

1 https://www.hugin.com.
2 https://www.bayesfusion.com.
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Data: A genetic individual g, a DID model did.
Result: Expected reward as the fitness value f

1 c ← translate(g)
2 t ← construct(c)
3 did ← Expand(did,t) � expand policy tree t to DID model did
4 f ← Solve(did) � solve DID model did and get expected
reward through GeNie

Algorithm 2: A reward function (@evaluate) for the
genetic algorithm in Algorithm 1

behaviour achieves the best evaluation result. As there are an
infinite number of beliefs that could be assigned to a deci-
sion model, we use a grid search in the belief space and find
the one that provides the maximum expected utility to the
evaluated behaviour. The grid search iterates a large number
of belief points that initialise a decision model by having the
probability distribution in the chance node S1.

If such an initial belief can not be found, e.g. a number
of beliefs provide similar values of expected utilities for the
evaluated behaviour, we conduct a local search of the adja-
cent behaviours from the evaluated ones and identify a new
behaviour from the search. The adjacent behaviour is the one
obtained by changing an action given a specific observation
at a time step. As the current actions have more impact than
the future ones, we iterate the actions from t =1 to T in a
policy tree. This approximation follows the similar idea of
solving dynamic influence diagrams through limitedmemory
[11] that iterates behaviours given a specific initial belief.

Due to the approximation of belief and behaviour search in
the evaluation, we may get different behaviours for the same
belief. We refine the population by removing the duplicated
behaviours without compromising the population diversity.

4 Experimental results

We implement the new framework in Algorithm 3 and solve
I-DIDs through using the genetic algorithm in the generation
of new behaviours for other agents.

We conduct a set of experiments to demonstrate the perfor-
mance of using evolutionary behaviours in modelling other
agents in I-DIDs. The parameters form, pc and pm are set as
10, 0.8 and 0.1 respectively in the experiments. We show that
the expanded set of behaviours can enable a good prediction
of other agents’ behaviours from the viewpoint of a subject
agent. The experiments are carried out in two well-defined
problem domains, namely the T iger and Unmanned Aerial
Vehicle (UAV)—commonly used in the fields of modelling
other agents research [24]. All the techniques are imple-
mented in Python and the simulation is conducted inWindow
10 with CPU(Intel(R) Core(TM) i7-10510U 4-core CPU @
1.80GHz) and 16 GB RAM.

Data: Horizon h, a DID model did ,a IDID model did , a DID
model did , size of population m, crossover rate pc,
mutation rate pm , iteration steps N .

Result: Policy trees set t of agent i , Policy trees set Tj of agent j
1 idid ← Extend(idid, h) � extend IDID model idid with specific
horizon h

2 did ← Extend(did, h)
3 Tj ← Solve(did) � solve DID model did and get policy tree Tj
4 Tj ← GA(Tj , did,m, pc, pm , N ) � expand agent j’s policy trees
Tj via GA method

5 idid ← Expand(idid,Tj ) � expand agent j’s policy trees Tj to
IDID model idid

6 t ← Solve(idid)

Algorithm 3: A GA-based algorithm (IDID-GA) for solv-
ing I-DIDs

Fig. 4 The multiagent Tiger problem domain requires the two agents
to collaborate for winning the gold without being eaten by the tiger

4.1 The Tiger problem domain

TheTigerproblemof a two-agent version (inFig. 4) considers
a sequential decision making scenario where two agents face
doors behind of which could be either a tiger or a plot of gold
[9]. The tiger and gold are randomly put behind the doors.
Both agents can decide to open either of door or just listen
possible growl from the tiger or creaks if the other agent
opens the door. If a single agent opens the door that has the
tiger behind, both will be eaten due to the lacking strength to
defeating the tiger; otherwise, theywill share the prize behind
the door. The tiger is randomly put behind the door if its
position was revealed during the process. The agent has three
decision options and can receive five possible observations.
We build a I-DID model for the subject agent i who needs to
cooperate with the other agent j in order to achieve the best
rewards in dealing with the tiger challenge.

We build three I-DID models with 3, 4 and 4 time steps
respectively for modelling the agent i and use Algorithm 1
to generate new behaviours for the agent j given the initial
set of ten models of the agent j . We compare the I-DID with
new behaviours generated by Algorithm 3 (IDID-GA) with
the original I-DID solutions that use random behaviours for
the agent j . Figure 5(a), (c) and (e) show the convergence of
the individual maximum and minimum fitness values as well
as the mean values of the entire population over the genera-
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Performance of the new framework compared to the original I-DID solutions in the two-agent T iger problem domain with the horizon @
3,4 and 5
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Fig. 6 Themulti-UAVproblemdomain contains two competitiveUAVs
in a grid-world

tion. The evolution of new behaviours converges within 50
generations for all three I-DID models.

Once we have built and solved the I-DIDs models, we let
the agent i play with the agent j where i uses the I-DID
solutions and j acts according to its true model. In Fig. 5(b),
(d) and ( f ) , we report the average rewards i receives when
j chooses a specific true model from the candidate set (m1,
. . .,m20). The candidate models have different initial beliefs.
The coloured bars are the average rewards while the bounded
sticks are the standard deviations over 10 runs in the exper-
iments. As the coloured bars are always drawn from the
original point of zero, the mean values are the ending points
in the bars. For example, in Fig. 5(b), the agent i receives
the average rewards of around -7 and -20 by using IDID-GA
and IDID respectively. Hence, the new framework performs
much better than the original I-DID solutions, which can be
observed when the agent j chooses different true models in
different I-DID models (in Fig. 5d, f) in the experiments.

4.2 The UAV problem domain

The UAV problem domain (in Fig. 6) is one of the largest
competitive multiagent decision making problems under
study [24]. It involves two agents in a 5×5 grid-world. A
subject agent i models a surveillance UAV that is planning
to intercept a fugitive UAV (the other agent j) on its way
to a safe-house. Both agents maintain beliefs over their own
and the other’s positions in the environment although they
know the safe-house location. They can move in four direc-
tions or keep still in its current grid once they receive any

Table 1 Running times of the two frameworks in the Tiger and UAV
domains

Domain Horizon Modeling|Test Algorithms

IDID IDID-GA

Tiger 3 Modeling 1.25 s 18.16 s

Test 1.03 s 2.09 s

4 Modeling 23.25s 80.04s

Test 19.30 s 43.42 s

5 Modeling 682.33 s 1080.48 s

Test 384.31 s 725.21 s

UAV 3 Modeling 7.21 s 82.30 s

Test 3.15 s 7.01 s

4 Modeling 466.13 s 1561.20 s

Test 111.23 s 241.45 s

of four observations about its relative positions to the safe-
house and the other agent. We build the I-DID model from
the viewpoint of the surveillance UAV (agent i) that aims to
maximise its own rewards in a T -time-step plan (T = 3 and
4 in our experiments) to intercept the fugitive UAV (agent j)
who simultaneously navigates towards the safe-house.

We report the similar comparative performance in Fig. 7.
As expected, the generation of new behaviours converges
within a short of periods. The average rewards that the agent
i receives is above zero and the new IDID-GA framework
still performs better than the original I-DID solutions. We
notice that the standard deviations are rather large. This is
due to a significant loss for the agent i when it loses the track
of the agent j .

In addition, we show the running times of the two frame-
works in Table 1. IDID-GA spends more time than IDID
in both the modelling and test (when the two agents play
with each other) procedures as it expands the model space
involving the GA-based iterations. Both demand more time
when the horizon increases since the I-DID models become
very complicated.Wewill explore any chance to improve the
efficiency of this new framework in the future work.

In summary, the new I-DID framework empowered by the
evolutionary behaviours achieves better performance com-
pared to the original I-DID solutions. It is mainly attributed
to the new set of behaviours that are generated by the evolu-
tion process and may provide the better coverage of possible
behaviours of other agents.

5 Related works

Research on modelling other agents has attracted growing
interests in the fields of artificial intelligence, decision sci-
ence and general intelligent systems [2]. It mainly explores
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(a) (b)

(c) (d)

Fig. 7 Performance of the new framework compared to the original I-DID solutions in the two-agent UAV problem domain with the horizon at @
3 and 4

different types of modelling languages to represent decision
making, behaviour reasoning and learning problems in differ-
ent types of environments [1]. For example, a representation
could be from a concisemodel of deterministic finite automa-
tons [4] and decision trees [3], to amore sophisticated formof
artificial neural networks [16] and influence diagrams [17].
This series of work focuses on addressing the challenge in
learning such models from available data of sufficient or
limited amount. However, the model insufficiency for other
agents still poses a serious issue in correctly predicting their
actual actions particularly in an uncertain environment where
environmental states can’t be fully observed and their actions
are stochastic.

A commonly used technique for addressing the model
insufficiency is to hypothesise a significantly large number of
models for other agents; however, it leads to intensive compu-
tations in predicting other agents’ behaviours. Subsequently,
several pieces of work develop a number of approaches to
compressing the large model space. Pynadath and Marsella
[12] proposed the concept of minimal mental models to
reduce candidate models of other agents by exploiting the
model similarity from the perspectives of a subject agent.
Bharaneedharan et al [14] developed a behavioural equiva-
lence principle tomerge POMDPmodels that represent other
agents’ decision making problem and have the same solu-
tions. Conroy [5] used value equivalence to cluster influence
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diagrams thatmodel other agents andbrings the same rewards
to a subject agent in their interactions. However, due to the
difficulty in calculating the model rewards, the value equiv-
alence is implemented approximately through grouping the
models. In parallel, a line of research conducts an online
detection to reconstruct other agents’ models upon receiv-
ing new observations when a subject agent interacts with the
other agents in a real-timemanner. Foster andYoung [8] com-
puted frequency of actions in past windows based to measure
correctness of hypothesisedmodels of other agents. Albrecht
and Stone [19] employed statistical tests to adapt the model
parameters fitting into actual behaviours of other agents.

There has seen some work of mutating agents in com-
petitive swarm optimizer where the diversity of agents are
maintained [25]. Memetic computation were also used to
enhance decision making capability of multiple agents [22]
and even for general agent-based computing [10]. Little
research has been conducted to expand behavioural mod-
els of other agents given their known behaviours. There has
seen research on using evolutionary computation approaches
to solve decisionmodels of single agents [20], e.g. POMDPs,
and their improved versions to solve decentralised POMDPs
[7]. However, they focus on developing efficient genetic
algorithms for optimising decision models. In contrast, we
concentrate on generating new behaviours through genetic
operators and develop diversity of behavioural models for
other agents. Theworkwill be complementedwith each other
and compose a good line of research on using evolutionary
computation in solving complicated decisionmodels formul-
tiple agents.

6 Conclusion and future work

Modelling other agents’ behaviours requires a creative
approach to generate a new set of behaviours from the
viewpoint of a subject agent. In this paper, we develop an
evolutionary process to expand other agents’ behaviours by
implementing a GA-based framework. The new framework
uses a number of genetic operators to evolve the initial
behaviours of the other agents and choose a top set of
behaviours to expand the model space in an I-DID model.
The experiments demonstrate the expected performance of
the new framework for generating the expanded behaviours
in the I-DIDs.

Although the simple GA-based framework shows promis-
ing performance on generating imaginative behaviours, it
does not evaluate the diversity of the entire behavioural set in
each iteration. This may lead to duplicated behaviours in the
final set, which is currently checked in the individual evalua-
tion.Meanwhile, theGAapproach still lacks the capability of
discriminating effect of actions at different time steps since
it conducts mutation and crossover operations in a random
way.

Our research opens a new way of modelling other agents’
behaviours in multiagent decision models. Several improve-
ments could be developed to enhance the capability and
efficiency of the new framework. For example, more sophis-
ticated genetic operators would be used to improve the
evolution process. In particular, a different type of fitness
function could be used measure individuals in a population
without evaluating a decision model. We will follow this
basic framework to continuously improve the proposed algo-
rithms.
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Appendix

The appendix contains the pesudocodes of the genetic oper-
ators, encoding and decoding functions in Algorithm 1.

Algorithm 4 lists the set of genetic operators that develop
the framework for generating newbehaviours inAlgorithm1.

Algorithm 5 provides the list of encoding and decoding
functions that convert decision trees into genetic repre-
sentation and vice versa. We shall notice that alternative
behavioural models could be used and a policy tree repre-
sentation is the one suitable for representing the sequence of
observations-and-actions under uncertainty.
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Function Evaluation(pop, did):
F ← ∅

for g ∈ pop do
f ← evaluate(g, did) �evaluate individual g via fitness
function (Algori thm 2)
f i tness ← f i tness ∪ f

end
prob ← normilise( f i tness) � caculate the probability for
selection

return pop, f i tness, prob
Function Selection(pop,prob,m):

parents ← ∅

pop, prob ← sort(pop, prob)
pop, aprob ← accumulate(pop, prob)
while |parents| < m do

� select m individuals from the population pop
for (g, p) ∈ (pop, aprob) do

if random number r ≥ p then
parents ← parents ∪ g
break

end
end

end
return parents
Function Parents(parents):

of f spring ← ∅

indexes ← random(|parents|,2) � select two individuals
from parents
o f f spring ← parents(indexes)

return of f spring
Function Crossover(of f spring′):

parent ← of f spring′[2]
of f spring ← of f spring′[1]
p1, p2 ← random(|of f spring|,2) �generate crosssover
points of o f f spring
of f spring[min(p1, p2) : max(p1, p2)] ←
parent[min(p1, p2) : max(p1, p2)]

return of f spring
Function Mutation(of f spring):

p ← random(|of f spring|) �generate mutation point of
o f f spring
of f spring[p] ← random(of f spring[p])

return of f spring
Function Membership(pop,pop′,o f f spring):

if of f spring Not in pop ∪ pop′ then
pop′ ← pop′ ∪ of f spring �check the memership status
of o f f spring

end
return pop′
Function Elite(pop, f i tness,pop′, f i tness′,m):

pop′ ← pop ∪ pop′ �union sets of pop
f i tness′ ← f i tness ∪ f i tness′ �union sets of f i tness
pop, f i tness ← sort(pop′, f i tness′,m, descending)
�descending sort by f i tness,and select top-m elements

return pop

Algorithm 4: A main set of operators are contained in the
aforementioned framework(in Algorithm 1) that generates
new behaviours

Function TreeEncoding(T):
C ← ∅

for t ∈ T do
c ← extract(t) �extract action sequence from t
C ← C ∪ c

end
return C
Function GeneticEncoding( C):

pop ← ∅

for c ∈ C do
g ← translate(c) � translate code c via action
dictionary
pop ← pop ∪ g

end
return pop
Function GeneticDecoding(pop):

C ← ∅

for g ∈ pop do
c ← translate(g) � translate to code c via action
dictionary
C ← C ∪ c

end
return C
Function TreeDecoding( C):

T ← ∅

for c ∈ C do
t ← construct(c) � construct policy tree t from action
sequence c
T ← T ∪ t

end
return T

Algorithm 5: The encoding and decoding functions con-
duct the transformation between a policy tree and a genetic
individual in the evolution
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