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Abstract
To improve the operational efficiency and competitive advantage of supply chains, integrated production and distribution has 
attracted an increasing attention in recent years. This paper focuses on a novel integrated production and distribution schedul-
ing problem (IPDSP) with consideration of factory eligibility and third-party logistics (3PL). In this problem, products are 
firstly produced in a number of distributed hybrid flow shops (HFS) and then delivered to a customer in batches. To satisfy 
the production and distribution practice, some products can only be manufactured in a subset of distributed HFSs, and the 
transportation of some finished products is outsourced to a 3PL provider. Considering the NP-hardness of IPDSP, three fast 
heuristics (CR-based heuristic, SLACK-based heuristic, and EDD-based heuristic) and an adaptive human-learning-based 
genetic algorithm (AHLBGA) are proposed to minimize the sum of earliness, tardiness and delivery costs. Motivated by 
human learning behaviours, AHLBGA integrates an adaptive learning operator with traditional genetic operators to gener-
ate candidate solutions. Such learning operator performs social learning, family learning, and individual random learning 
to improve offspring individuals. The computational experiments on small-sized and large-sized test problems show the 
superiority of AHLBGA.

Keywords Production and distribution · Scheduling · Distributed hybrid flow shop · Factory eligibility · Third-party 
logistics · Genetic algorithm

1 Introduction

Production and distribution are two fundamental and inter-
related operations in supply chain management. To improve 
the operational performance of supply chains, it is critical 
to schedule these two operations in an integrated manner, 

which has received much attention from both industrial and 
academic communities [1, 29, 38]. In the integrated produc-
tion and distribution systems, the manufacturer firstly pro-
cesses the customer orders on the machines, and then timely 
distributes the finished products back to the customers [13, 
14, 20]. To reduce the transportation cost from the manu-
facturer to its customers, the finished products are generally 
grouped into batches for delivery. A batch is a set of orders 
or finished products that are delivered in the same vehicle 
[47, 49]. However, to meet customer’s requirements under 
limited warehouse capacity, products need to arrive at the 
customers within tight delivery time windows, inevitably 
requiring frequent delivery of small batches and eventually 
leading to high transportation cost [22, 42]. Therefore, a 
trade-off between customer service and delivery perfor-
mance has to be considered when integrating production 
and distribution decisions.

The hybrid flow shop (HFS) is a common manufactur-
ing system to produce identical or similar products, espe-
cially in industries such as automobile, steel, electronics, 
semiconductors, textiles and food [39, 41]. In a typical HFS, 
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machines are arranged into a number of stages in series, 
each of which has several functionally identical machines. 
All jobs released to an HFS have to pass through all stages 
in the same order [44]. To enhance competitiveness and 
responsiveness in rapidly changing markets, factories have 
shifted from a centralised to a more decentralized structure 
[5, 36]. Although an increasing research interest has recently 
focused on production scheduling in multi-factory environ-
ments, relatively few studies have been devoted to address-
ing the distributed HFS scheduling problems (DHFSSP). 
Given that the DHFSSP has been proven NP-hard in nature 
[54], integration of production and distribution schedul-
ing in distributed HFS environments further aggravates its 
complexity.

As an increasing number of manufacturers adopt the 
make-to-order (MTO) policy to response to changing market 
demand, considerable amount of research works have been 
devoted to the integrated production and distribution sched-
uling problems (IPDSP) in a variety of manufacturing envi-
ronments [11, 12, 33], mainly including single machine, par-
allel machine, and flow shop systems. The earliest research 
on IPDSP was conducted by Potts [37]. He considered a 
single machine scheduling problem with non-identical job 
release times and delivery times. Chang et al. [9] addressed a 
novel supply chain scheduling problem, in which the produc-
tion and distribution of products were modelled as an identi-
cal parallel machine scheduling problem and a capacitated 
vehicle routing problem respectively. Considering the speed 
difference between machines, Guo et al. [21] focused on an 
unrelated parallel machine scheduling problem with batch 
delivery. In this problem, several transportation modes with 
different vehicle capacities and transportation times were 
considered. Hassanzadeh et al. [24] investigated a multi-
objective supply chain scheduling problem, in which jobs are 
firstly processed in a permutation flow shop and then trans-
ported to the customers in batches with unlimited capac-
ity. More recently, to deal with IPDSP in the assembly flow 
shop environments, Kazemi et al. [30] and Basir et al. [4] 
developed effective approaches to coordinate production and 
distribution operations. A search of available literature on 
IPDSP indicates that no research works have attempted to 
integrate production and distribution scheduling in a distrib-
uted HFS environment.

Exact algorithms, heuristics and meta-heuristics are three 
commonly used approaches to address the IPDSP in the lit-
erature. Exact algorithms, such as the dynamic programming 
[9, 23], branch-and-bound approach [32, 43], and branch-
and-price approach [3], have been applied to generate the 
optimal solution for small-sized instances. However, owing 
to high complexity of IPDSP, exact algorithms are inappli-
cable to deal with medium-sized and large-sized instances 
in industrial practice. Since heuristics and meta-heuristics 
are capable of obtaining near-optimal solutions within 

reasonable computational time [2, 7, 8], recent research 
efforts have shifted from developing exact algorithms to 
efficient heuristics and meta-heuristics, mainly including 
genetic algorithm (GA) [4, 24, 28], artificial immune sys-
tem (AIS) [26], particle swarm optimization (PSO) [40], ant 
colony optimization (ACO) [13, 14, 19], imperialist com-
petitive algorithm (ICA) [30, 31], iterated greedy algorithm 
[52], and hybrid approaches [27, 46, 55].

This paper aims to address a novel IPDSP, in which 
products are first produced in a number of distributed HFSs 
and then delivered to a customer in batches. To satisfy the 
production and distribution practice, factory eligibility and 
multiple transportation modes are considered in the studied 
problem. In many real-world manufacturing systems, a job 
can only be processed on a subset of machines owing to 
some technical or physical reasons [17, 39]. This constraint, 
known as machine eligibility in the literature, has recently 
received much attention in the parallel machine and HFS 
scheduling problems [6, 56]. As the extension of machine 
eligibility, factory eligibility is considered in the studied 
IPDSP, which does not allow a job to be assigned to a fac-
tory if it cannot be processed on any parallel machines at 
some stage in the factory [53]. In addition, as many manu-
facturers have difficulty in providing sufficient transportation 
facilities to meet the customer’s demand, finished products 
are allowed to be delivered by both the manufacturer and the 
third-party logistics (3PL) provider. Therefore, two types of 
transportation modes, namely manufacturer transportation 
and 3PL transportation, are considered in the studied prob-
lem. The transportation cost by a vehicle of the manufacturer 
is fixed, whereas the transportation cost by a vehicle of the 
3PL provider consists of fixed charge cost and a load-based 
transportation cost. To our best knowledge, it is the first 
attempt to integrate production and distribution scheduling 
in distributed HFSs with consideration of factory eligibility 
and multiple transportation modes.

Owing to the NP-hardness of the studied IPDSP, three 
fast heuristics (CR-based, SLACK-based, and EDD-based 
heuristics) and an adaptive human-learning-based genetic 
algorithm (AHLBGA) are proposed to obtain sub-optimal 
solutions in this paper. Each of the three heuristics integrates 
a simple scheduling rule with a job re-assignment method 
and a vehicle selection method to generate integrated pro-
duction and distribution schedules. The uniqueness of the 
proposed AHLBGA is characterized by hybridizing GA with 
an adaptive human-learning operator. Apart from commonly 
used genetic operators of selection, crossover, and mutation, 
learning is another important evolutionary process to acquire 
new knowledge for enhancing competitive advantages of 
species. To improve the performance of offspring individu-
als after crossover and mutation, AHLBGA applies a novel 
learning operator to mimic human learning behaviours. This 
learning operator consists of three typical activities, namely 
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social learning, family learning, and individual random 
learning. Furthermore, to provide a better trade-off between 
exploration and exploitation, the selection probability of 
different learning activities is dynamically determined by 
an adaptive learning scheme. A comprehensive search of 
literature on IPDSP indicates that no research works have 
attempted to incorporate GA and human learning activities 
to generate integrated schedules. Since distributed HFSs are 
typical production systems in many MTO industries, the pro-
posed AHLBGA may help operations managers to better 
coordinate the scheduling of production and transportation.

The rest of paper is organized as follows. Considering 
factory eligibility and multiple transportation modes, Sect. 2 
formulates a novel IPDSP in a distributed HFS environment. 
Section 3 presents three fast heuristics and AHLBGA to gen-
erate integrated production and distribution schedules. To 
evaluate the performance of proposed algorithms, experi-
mental results on small-sized and large-sized problems are 
presented in Sect. 4. Finally, Sect. 5 summarises the research 
findings and identifies some future research directions.

2  Mathematical model

2.1  Problem description and assumptions

The IPDSP in distributed HFSs is a novel combinatorial 
optimization problem. As indicated in Fig. 1, this prob-
lem consists of two inter-dependent sub-problems, namely 
distributed HFS scheduling with factory eligibility in the 

production stage and batch delivery of finished products 
with two types of transportation modes in the distribution 
stage.

In the production stage, a set J = {1, 2, …, n} of n jobs 
are released to f distributed identical factories for process-
ing. Each of the factories is arranged as an HFS, which has 
a set S = {1, 2, …, t} of t stages and mk parallel machines at 
each stage k. The transportation time between stages in a fac-
tory is negligible and therefore not considered in this study. 
Owing to the technical or physical aspects, factory eligibility 
is considered in the production stage, in which some jobs 
can only be processed in a subset of distributed factories.

In the distribution stage, the finished products in each of 
the distributed factories are grouped into batches and deliv-
ered to a customer by the vehicles of the manufacturer and 
the 3PL provider. The manufacturer only provides a lim-
ited number of vehicles for transportation, whereas the 3PL 
provider offers a sufficient number of vehicles to meet the 
customer’s demand. The transportation cost by a vehicle of 
the manufacturer is fixed. The transportation cost by a vehi-
cle of 3PL provider consists of a fixed charge cost and a 
load-based variable cost, which depends on the quantity of 
products in a batch.

To address the studied IPDSP, four operational decisions 
have to be made: (1) assigning jobs to suitable factories 
with consideration of factory eligibility; (2) scheduling the 
assigned jobs for each of the factories; (3) allocating the 
finished products into an appropriate number of batches; 
(4) assigning each of the product batches to a vehicle of the 
manufacturer or 3PL provider for delivery.

Batch 1

Batch 3

Batch n

ProductA set of parallel machines at 
stage j in factory i

Production Stage Transportation Stage 

Stage 1

M11

M21

Mf1

M12

M22

Mf2

M1t

M2t

Mft

Factory 1

Factory 2

Factory f

Stage 2 Stage t
Batch 2

Batch 4

Mij Customer

Fig. 1  The distributed HFSs with batch delivery
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To simplify the integration of production and distribution, 
the following assumptions have been made: (1) all jobs are 
available for processing at time zero; (2) some jobs can only 
be handled in some specific factories; (3) factory switching 
is not allowed, that is, once a job is assigned to a certain fac-
tory, all its operations have to be performed in this factory; 
(4) each machine can process only one job at a time, and job 
preemption is not permitted; (5) the same job processed on 
any parallel machine at a stage takes equal processing time; 
(6) a batch is delivered immediately to the customer when all 
the jobs of the batch are finished; (7) the transportation time 
from different factories to the customer is fixed.

2.2  Problem formulation

Considering factory eligibility and multiple transportation 
modes, this section presents the mathematical model of the 
studied IPDSP. The parameters and decision variables used 
in the mathematical model are defined as follows:

2.2.1  Parameters

i  index of factories, 1 ≤ i ≤ f.
j  index of jobs, 1 ≤ j ≤ n.
k  index of stages in a factory, 1 ≤ k ≤ t.
l  index of parallel machines at a stage, 1 ≤ l ≤ mt.
b  index of batches, 1 ≤ b ≤ p.
f  the number of factories.
n  the number of jobs released to distributed HFSs.
ni  the number of jobs processed in the HFS of factory 

i.
t  the number of stages in an FFS.
mt  the number of parallel machines at stage t.
�
j

i
  jth job of the job sequence �i =

{
�1
i
,�2

i
, ..., �

ni
i

}
 

processed in factory i.
P(�

j

i
, k)  processing time of job �j

i
 at stage k in factory i.

TT
i
  transportation time between factory i and the 

customer.
MTC

i
  transportation cost of factory i by a vehicle of the 

manufacturer.
FTC

i
  fixed transportation cost of factory i by a vehicle 

of the 3PL provider.
VTC

i
  variable transportation cost of factory i by a vehi-

cle of the 3PL provider.
DC

b
  delivery cost of batch b.

dl
j
  the earliness due date of job �j

i
.

du
j
  the latest due date of job �j

i
.

TC  unit tardiness cost.
EC  unit earliness cost.

2.2.2  Decision variables

�iklj1j2  1 if job �j2
i
 is processed immediately after job �j1

i
 

on machine l at stage k in factory i; 0 otherwise.
�ib  1 if the products of batch b are manufactured in 

factory i; and 0 otherwise.
�ijb  1 if job �j

i
 is assigned to batch b; and 0 otherwise.

�b  1 if batch b delivered by a vehicle of the manufac-
turer; and 0 otherwise.

p  the number of batches delivered to the customer.
C(�

j

i
, k)  completion time of job �j

i
 at stage k in factory i.

DB
b
  delivery start time of batch b.

DJ
ij
  delivery start time of job �j

i
 processed in factory i.

The paper aims to generate integrated production and dis-
tribution schedules in a distributed HFS environment. Based 
on the above notations, the studied IPDSP is formulated as 
the following mathematical model:

Subject to:

(1)

Min

f∑
i=1

ni∑
j=1

TC × max
{
0,DJij − du

j

}

+

f∑
i=1

ni∑
j=1

EC × max
{
0, dl

j
− DJij

}

+

p∑
b=1

DCb

(2)C(�
j

i
, 1) ≥ P(�

j

i
, 1), i = 1,… , f ;j = 1,… ,m1

(3)

C(�
j2
i
, 1) ≥

m1∑
l=1

ni∑
j1=1

�i1lj1j2C(�
j1
i
, 1)

+ P(�
j2
i
, 1), i = 1,… , f ; j2 = m1 + 1,… , ni

(4)

C(�
j

i
, k) ≥ C(�

j

i
, k − 1) + P(�

j

i
, k),

i = 1,… , f ;j = 1,… ,m1; k = 2,… , t

(5)

C(�
j2
i
, k) ≥ max

{
mk∑
l=1

ni∑
j1=1

�iklj1j2C(�
j1
i
, k),C(�

j2
i
, k − 1)

}

+ P(�
j2
i
, k), i = 1,… , f ; j2 = m1 + 1,… , ni; k = 2,… , t

(6)
p∑

b=1

�ijb = 1, i = 1,… , f ;j = 1,… , ni
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In the presented model, the objective function (1) is to 
minimize the sum of earliness, tardiness and delivery costs. 
For the first stage in a factory, constraints (2) and (3) give 
the completion time of the first job and the successive jobs 
on any parallel machine, respectively. Similarly, for all other 
stages in a factory, constraints (4) and (5) provide the com-
pletion time of the first job and the successive jobs on any 
parallel machine, respectively. Constraint (6) guarantees that 
each job assigned to a factory is allocated to only one batch 
for delivery. Considering multiple transportation modes, 
constraint (7) determines the delivery cost of a batch using 
the vehicles of the manufacturer or the 3PL provider. Con-
straint (8) ensures that a batch is delivered immediately after 
all its jobs have been completed. Constraint (9) determines 
the delivery start time of any job processed in a factory. 
Constraint (10) guarantees that all the time-related and cost-
related decision variables are positive.

3  Algorithms for IPDSP in distributed HFSs

Considering the NP-hard nature of the studied IPDSP, it 
is infeasible to generate the optimal schedule in reason-
able time, especially for large-sized instances. Therefore, 
this section presents three simple heuristics (CR-based, 
SLACK-based, and EDD-based heuristics) and a novel adap-
tive human-learning-based GA (AHLBGA) to obtain near-
optimal solutions for integrated production and distribution 
scheduling in distributed HFSs.

(7)DCb =

f∑
i=1

�ibmax

{
�bMTCi, (1 − �b)(FTCi +

ni∑
j=1

�ijbVTCi)

}
, b = 1,… , p

(8)DBb=

f∑
i=1

�ibmax
{
�ijbC(�

j

i
, k)

}
, j = 1,… , ni; k = 1,… , t; b = 1,… , p

(9)DJij =

p∑
b=1

�ijbDBb, i = 1,… , f ; j = 1,… , ni

(10)C(𝜋
j

i
, k),DCb,DBb,DJij > 0, i = 1, 2,… , f ; j = 1,… , n; k = 1,… , t; b = 1,… , p

3.1  Heuristics

Heuristics adopt simple strategies to construct solutions 
and therefore tend to be much faster but less effective. The 
most well-known scheduling heuristics are dispatching rules. 

Among a variety of dispatching rules, the critical ratio (CR), 
minimum slack (SLACK), and earliest due date (EDD) have 
been found more effective for earliness and tardiness related 
criteria [10, 35, 57]. To address the IPDSP with factory eli-
gibility and 3PL distribution, three fast heuristics, namely 
CR-based, SLACK-based, and EDD-based heuristics, are 
developed to allocate jobs into an appropriate number of 
batches for production and distribution.

Considering factory eligibility and multiple transpor-
tation modes, each of the proposed heuristics integrates a 
simple scheduling rule with a job re-assignment method and 
a vehicle selection method. In the CR-based heuristic, the 
jobs released to the manufacturer are firstly sequenced in 
ascending order of CR, which is defined as the ratio of the 
remaining time until the due date to the total processing time 
in a factory. To reduce the search space of feasible solutions, 
the jobs are then evenly grouped into a number of batches 
(p) for production and distribution. As a batch contains at 
least one job, the maximum number of batches is limited to 
be the number of jobs n. Therefore, all possible numbers of 
batches, i.e.1 ≤ p ≤ n , need to be examined in this heuristic. 
Following the obtained job sequence, each of the batches is 
assigned to a factory with the minimum completion time. 
For the jobs that cannot be processed in the assigned fac-
tory, a job re-assignment method is applied to re-allocate 
them to eligible factories. In addition, to reduce the trans-
portation cost to the customer, a vehicle selection method is 
employed to allocate each of the finished batches to a vehicle 
of the manufacturer or 3PL provider for delivery. Owing to 
the limited number of manufacturer’s vehicles, this method 
applies the transportation cost difference under multiple 
transportation modes to determine the batches delivered by 
the manufacturer’s vehicles.
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The proposed CR-based heuristic, the job re-assignment 
method, and the vehicle selection method are detailed as 

follows. In the CR-based heuristic, ⌊x⌋ indicates the greatest 
integer that is not more than x.
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Fig. 2  Framework of AHLBGA

Evaluate the current population and apply the roulette wheel 
method to select good individuals for reproduction 

Is the predefined
computation time reached?

No

Yes

Output the best integrated  
schedule

Apply an adaptive learning operator to improve the offspring 
individuals  
1. Dynamically adjust the selection probability of a learning    

operation.
2. Perform social learning, family learning, and individual 

random learning to improve the offspring individuals.

Apply the two-point crossover and insertion mutation operators 
to produce the offspring

Start

Randomly generate an initial population of individuals using a 
matrix encoding scheme

Define the initial parameters of AHLBGA
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4 1 8 6 2 9 3 10 7 5

2 2 3 1 3 3 2 1 1 1

Job

Batch

Batch 1

Batch 2

Batch 3

Job 6 Job 10 Job 7

Job 4 Job 1 Job 3

Job 5

Job 8 Job 2 Job 9

Fig. 3  A chromosome of proposed AHLBGA

Fig. 4  An example of the 
decoding procedure

4 1 8 6 2 9 3 10 7 5

2 2 3 1 3 3 2 1 1 1

Job

Batch

Batch assignment

Factory 1  Batch 1: {6, 10, 7, 5}
Batch 3: {8, 2, 9}

Factory 2 Batch 2: {4, 1, 3}

Job re-assignment

Factory 1  Batch 1: {6, 10, 7, 5}
Batch 3: {2, 9}

Factory 2 Batch 2: {4, 1, 8, 3}

Vehicle scheduling

Factory 1  Batch 1:{6, 10, 7, 5},Manufacturer
Batch 3: {2, 9}, 3PL provider

Factory 2 Batch 2: {4, 1, 8, 3},Manufacturer

Chromosome

Batch scheduling

Factory 1  Job sequence :{6, 10, 7, 5, 2, 9}
Factory 2 Job sequence :{4, 1, 8, 3}

To address the IPDSP with factory eligibility and 3PL dis-
tribution, the SLACK-based and EDD-based heuristics are also 
developed. These two heuristics employ the same procedure of 
the CR-based heuristic to generate the schedules, except that the 
jobs released to the distributed HFSs are processed in ascending 

order of 
�
dl
j
+du

j

�

2
−
∑t

k=1
P(j, k) and the due time respectively.

3.2  Proposed AHLBGA

3.2.1  Framework of AHLBGA

To address the IPDSP with factory eligibility and 3PL distri-
bution, AHLBGA is proposed to generate better solutions. As 
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one of the most widely used population-based meta-heuristics, 
GA has been successfully applied to generate near-optimal 
solutions to a variety of complex optimization problem [25, 
48, 51], including the HFS scheduling problem and IPDSP 
[47, 49]. It produces the offspring chromosomes by perform-
ing three genetic operators, namely selection, crossover, and 
mutation. Apart from the traditional genetic operators, learn-
ing is another crucial biological process that enables all the 
living organisms to adapt to the changing environment by 
applying their previous or newly acquired knowledge and 
skills [34, 47, 49]. However, the existing GAs in the literature 
seldom perform learning activities to improve the offspring 
individuals generated after crossover and mutation [16, 18].

Different from traditional GAs, the proposed AHLBGA 
integrates an adaptive learning operator with traditional 
genetic operators to obtain better integrated production and 
distribution schedules. In the AHLBGA, an initial popula-
tion is firstly randomly generated, and then evolves through 
selection, crossover, mutation, and adaptive learning until 
the predefined computation time is reached. To imitate the 
human learning behaviours, adaptive learning involves three 
types of learning operations, namely social learning, fam-
ily learning, and individual random learning. To enhance 
the learning performance of offspring individuals, the 
probability of selecting a learning operation is dynamically 
adjusted by an adaptive learning scheme (to be detailed in 
Sect. 3.2.5). Such scheme encourages more individual ran-
dom learning along with population evolution to help escape 
from local optimum, and therefore leads to potentially better 
solutions. It is the first attempt in integrating GA with human 
learning process for the IPDSP. The framework of AHLBGA 
is shown in Fig. 2 and each part of AHLBGA is detailed in 
the following subsections.

3.2.2  Encoding and decoding scheme

The encoding scheme plays an important role in design-
ing an effective and efficient meta-heuristic. Different from 

traditional flow shop scheduling problems, the IPDSP needs 
to be solved by integrating the decisions of production and 
distribution. Based on the commonly used permutation 
encoding scheme for production scheduling, a matrix of 
two rows and n columns is employed to represent a solution 
(chromosome) of the IPDSP. In the matrix, the first row is 
a permutation of n jobs that indicates the processing order 
in a distributed HFS environment, whereas the second row 
shows the assigned batches of all jobs for production and 
distribution. Since a batch contains at least one job, each of 
the rows is a string of integer numbers from 1 to n.

Figure 3 presents a chromosome of an IPDSP with 10 
jobs to be scheduled in the HFSs of two distributed factories. 
As described in the first row of the chromosome, jobs are 
suggested to be processed according to the order of {4, 1, 8, 
6, 2, 9, 3, 10, 7, 5}. According to the batch numbers in the 
second row of the chromosome, these jobs are grouped into 
three batches, namely jobs {6, 10, 7, 5} in batch 1, jobs {4, 
1, 3} in batch 2, and jobs {8, 2, 9} in batch 3.

Considering factory eligibility and multiple transporta-
tion modes, a new decoding procedure is employed to con-
vert the matrix of a solution into a feasible integrated sched-
ule. As shown in Fig. 4, this decoding procedure mainly 
consists of four steps: (1) apply the ECT rule to assign each 
of the batches to a factory with the minimum completion 
time; (2) identify the jobs that cannot be processed in the 
assigned factories, and re-assign them to other suitable 
batches using the job re-assignment method; (3) the batches 

Fig. 5  An example of two-point 
crossover

4 1 8 6 2 9 3 10 7 5

2 2 3 1 3 3 2 1 1 1
Parent 1 Parent 2

6 3 10 1 8 4 2 5 9 7
1 2 1 1 3 1 3 2 2 3

Child 2Child 1
4 3 10 1 8 4 2 10 7 5

2 2 1 1 3 1 3 1 1 1

6 1 8 6 2 9 3 5 9 7
1 2 3 1 3 3 2 2 2 3

cut1 cut2 cut2cut1

Child 1
6 3 10 1 8 4 2 9 7 5

1 2 1 1 3 1 3 3 1 1

10 1 8 6 2 9 3 4 5 7
1 2 3 1 3 3 2 1 2 3

Child 2

After interchange:

After re-arrangement:

4 1 8 6 10 9 3 2 7 5

2 2 3 2 1 3 2 3 1 1

4 1 8 6 2 9 3 10 7 5

2 2 3 1 3 3 2 1 1 1

Single-point mutation Swap mutation

Fig. 6  An example of mutation
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assigned to the same factory are scheduled based on the 
FCFS rule, and the jobs in a batch are processed in parallel 
based on their order in the batch; (4) apply the vehicle selec-
tion method to determine the appropriate vehicles of the 
manufacturer or 3PL provider to deliver the finished batches 
in the production stage to the customer. The details of the 
job re-assignment method and the vehicle selection method 
have been presented in Sect. 3.1.

Figure 4 describes the decoding process of the chromo-
somes shown in Fig. 3. According to the ECT rule, batches 
1 and 3 are allocated to the FFS of factory 1, and batch 2 
is assigned to the FFS of factory 2. Assuming that job 8 in 
batch 3 can only be processed in the FFS of factory 2, the 
constraint of factory eligibility is violated and job 8 is there-
fore re-assigned to batch 2, which is processed in the FFS 
of factory 2. After the job re-assignment, job processing in 
factories 1 and 2 follows the job sequence {6, 10, 7, 5, 2, 9} 
and {4, 1, 8, 3}, respectively. To reduce the transportation 
cost to the customer, finished batches in the production stage 
are assigned to suitable vehicles for delivery, i.e. batches 1 
and 2 delivered by the manufacturer and batch 2 delivered 
by the 3PL provider.

3.2.3  Initialisation, evaluation, and selection

The chromosomes in the initial population are randomly 
generated to cover the entire search space.In each of the 
generations, the chromosomes are decoded by the proposed 
decoding procedure and evaluated using the following fit-
ness function:

where xi represents the ith chromosome of a population, y(xi) 
denotes the objective value of xi , and PS is the number of 
chromosomes in a population.

Based on the above fitness function, the well-known rou-
lette wheel selection method is employed to choose better 
chromosomes for reproduction. In this method, the prob-
ability of a chromosome to participate in the reproduction 
process is proportional to its fitness. To avoid the loss of the 
best chromosome, the elitist strategy is applied to preserve 
the best chromosome to the next generation. In this strategy, 
the chromosome with the lowest fitness is replaced by the 
best chromosome found so far.

3.2.4  Crossover and mutation

Once the chromosomes have been selected for reproduc-
tion, crossover and mutation are performed to generate the 
offspring by mimicking the evolution process in the nature. 

(11)f (xi) = 1
/
y(xi), i = 1, 2,… ,PS

Crossover exchanges and recombines genetic information of 
parent chromosomes to produce better offspring [15], and 
mutation slightly perturbs the genes of selected offspring to 
maintain the diversity of populations [50].

As the two-point crossover has been proven to provide 
better performance for scheduling problems, it is adopted 
in the AHLBGA to produce new offspring. As described 
in Fig. 5, two selected parents are firstly divided into three 
parts by two random cut-off points. The genes in the second 
part (middle part) of the two parents are subsequently inter-
changed. Finally, the jobs and their assigned batches in the 
first and third parts are re-arranged according to their order 
in the other parent.

Considering the matrix structure of the chromosomes, 
a new mutation method is employed to enhance the local 
search and avoid trapping into local optimum. As shown in 
Fig. 6, this proposed mutation involves two separate opera-
tions, namely the swap mutation and the single-point muta-
tion. The swap mutation chooses two random columns and 
swaps both the jobs and their assigned batches in these two 
columns, whereas the single-point mutation only select one 
random job and randomly re-assigns it to another batch.

3.2.5  Adaptive learning

To improve the offspring individuals after crossover and 
mutation, AHLBGA applies a novel adaptive learning 
operator to construct better solutions. By mimicking human 
learning behaviours, this learning operator consists of the 
following three types of learning operations.

Social learning operation

The humans in the social environment gradually accu-
mulate their knowledge and experience by direct or indirect 
interactions ([45]; Wang et al., 2017). Social learning from 
a group of knowledgeable and experienced individuals is 
an efficient way to develop the learner’s ability. To perform 
the social learning operation, an elite social set ΩS is firstly 
established by selecting the best � × 100% (� ∈ (0, 1)) of 
offspring in the current population, and two social knowl-
edge matrices are subsequently obtained by extracting the 
scheduling and distribution knowledge of ΩS as follows:

(12)

SKP =

⎡
⎢⎢⎢⎢⎢⎢⎣

J11 J12 ⋯ J1j ⋯ J1n
J21 J22 ⋯ J2j ⋯ J2n
⋮ ⋮ ⋮ ⋮

Ji1 Ji2 ⋯ Jij ⋯ Jin
⋮ ⋮ ⋮ ⋮

Jn1 Jn2 ⋯ Jnj ⋯ Jnn

⎤
⎥⎥⎥⎥⎥⎥⎦

, 1 ≤ i, j ≤ n
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where Jij denotes the number of times that job j appears 
on position i in the job sequence, Bjb represents the num-
ber of times that job j is allocated to batch b , and n is the 
number of jobs released to distributed HFSs. Therefore, 
the matrices of SKP and SKB reserve the knowledge of 
job processing and batch assignment, respectively.

According to the above two matrices extracted from Ωs , 
an offspring individual performs social learning as Eqs. 
(14) and (15) to generate better production and distribution 
schedules. In these two equations, Ωi

u
 is the set of unassigned 

jobs until the ith column of an individual, and xi and yi indi-
cate the job and its assigned batch in the ith column, which 
are determined by the job with the largest Jij in SKP and the 
batch with the largest Bjb in SKB respectively.

Family learning operation

(13)

SKB =

⎡⎢⎢⎢⎢⎢⎢⎣

B11 B12 ⋯ B1b ⋯ B1n

B21 B22 ⋯ B2b ⋯ B2n

⋮ ⋮ ⋮ ⋮

Bj1 Bj2 ⋯ Bjb ⋯ Bjn

⋮ ⋮ ⋮ ⋮

Bn1 Bn2 ⋯ Bnb ⋯ Bnn

⎤⎥⎥⎥⎥⎥⎥⎦

, 1 ≤ j, b ≤ n

(14)xi = arg max
j∈Ωi

u

Jij, 1 ≤ i, j ≤ n

(15)yi = arg max
b=1,2,…,n

Bxib
, 1 ≤ i, b ≤ n

As one important form of inter-generational learning, 
family learning has a major impact on personal develop-
ment throughout life. Therefore, it is very common that a 
person uses the knowledge and experience of their ancestors 
to avoid mistakes and improve decision-making practice. 
To mimic the family learning process, each of the offspring 
individual employs two matrices of FKP and FKB, which 
have the same structures as SKP and SKB, to store its family 
knowledge on scheduling and distribution. Different from 
the social learning operation, FKS and FKD of an offspring 
individual are established on a set of its ancestors rather 
than an elite social set ΩS of current population. Similar to 
social learning, the offspring individuals improves their per-
formance using the knowledge of job processing and batch 
assignment stored in FKS and FKD.

Individual random learning operation

A person tends to conduct a random learning for new 
problem solving, especially in the absence of priori knowl-
edge and experience. To imitate the randomness of human 
learning, an individual random learning operation is adopted 
to update an offspring as follows:

(16)xi = randsample
(
Ωi

u

)
, 1 ≤ i ≤ n

(17)yi = randint(1, n), 1 ≤ i ≤ n

Table 1  Time-related and cost-
related parameters

Parameters Values

Processing time of job �j

i
 at stage k in factory i ( P(�j

i
, k)) Unidrnd(1, 10)

Transportation time between factory i and the customer ( TT
i
) Unidrnd(10, 20)

Transportation cost of factory i by a vehicle of the manufacturer ( MTC
i
) 3

Fixed transportation cost of factory i by a vehicle of the 3PL provider ( FTC
i
) Unidrnd(4, 4 + f)

Variable transportation cost of factory i by a vehicle of the 3PL provider ( VTC
i
) 1

The earliness due date of job �j

i
 ( dl

j
) Unidrnd(60,P)-

Unidrnd(10,100)/2, 
where 

P =
n∑
j=1

t∑
k=1

P(j, k)

The latest due date of job �j

i
 ( du

j
) Unidrnd(60,P) 

+ Unidrnd(10,
100)/2, where 

P =
n∑
j=1

t∑
k=1

P(j, k)

Unit earliness cost (EC) 1

Unit tardiness cost (TC) 1
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where randsample(Ωi
u
) is a function that returns a random 

job from the unsigned job set Ωi
u
 , randint(min,max) is a 

function that returns an integer uniformly distributed in the 
range of min and max.

To improve the offspring generated by crossover and 
mutation, each of the genes in a chromosome performs one 
type of learning. Based on two predefined parameters P1 
and P2 , the selection probability of social learning, family 
learning, and individual random learning is determined by 
the values of P1 , P2 − P1 , and 1 − P2.

Since P1 and P2 greatly affect the learning performance of 
offspring individuals, an adaptive learning scheme is applied 
as Eqs. (18) and (19) to adjust these two parameters through-
out the evolution process.

where Pmin

1
 and Pmax

1
 indicate the minimum and maximum 

values of P1 , Pmin
2

 and Pmax
2

 represent the minimum and maxi-
mum values of P2 , and Tcur and Tmax are the current time and 
the maximum computation time of AHLBGA respectively. 
According to the above two equations, the adaptive learning 
scheme allows more individual random learning along with 
population evolution to avoid getting trapped into local opti-
mum, and eventually generates potentially better solutions.

Based on the above details of adaptive learning operator, 
the complete learning process of an offspring individual is 
summarised as follows:

(18)P1 = Pmin
1

+

(
Pmax
1

− Pmin
1

)
Tcur

Tmax

(19)P2 = Pmax
2

−

(
Pmax
2

− Pmin
2

)
Tcur

Tmax

Table 2  Factors and their levels 
of AHLBGA

Param-
eter 
level

Parameters

PS P
c

P
m

�

1 50 0.5 0.05 10%

2 100 0.6 0.10 20%

3 150 0.7 0.15 30%

4 200 0.8 0.20 40%

Table 3  Combinations of different factor levels using an Orthogonal 
array  L16  (44)

Trial Parameter ARE

PS P
c

P
m

�

1 50 0.5 0.05 10 0.1238
2 100 0.5 0.10 20 0.1235
3 150 0.5 0.15 30 0.1241
4 200 0.5 0.20 40 0.1229
5 100 0.6 0.05 30 0.1241
6 50 0.6 0.10 40 0.1254
7 200 0.6 0.15 10 0.1256
8 150 0.6 0.20 20 0.1249
9 150 0.7 0.05 40 0.1258
10 200 0.7 0.10 30 0.1239
11 50 0.7 0.15 20 0.1231
12 100 0.7 0.20 10 0.1241
13 200 0.8 0.05 20 0.1222
14 150 0.8 0.10 10 0.1246
15 100 0.8 0.15 40 0.1238
16 50 0.8 0.20 30 0.1240



197Memetic Computing (2021) 13:185–202 

1 3

4  Experimental results and discussion

To validate the effectiveness of proposed heuristics and 
AHLBGA for addressing the IPDSP in distributed HFSs, 
this section compares them with some competitive algo-
rithms. All the algorithms were developed using C++ in 
CodeBlocks 16.01 and ran on a PC with Intel® Core™ 
i5-5200U 2.20 GHz CPU and 4 GB RAM under Microsoft 
Windows 10 environment. The following subsections pre-
sent the experiment design, parameter tuning, and experi-
ment results of the compared algorithms, respectively.

4.1  Experiment design

The IPDSP with factory eligibility and 3PL distribution is 
a new combinatorial scheduling problem and therefore no 
benchmark instances have been found in the literature. To 
evaluate the performance of proposed heuristics and AHL-
BGA, two sets of test problems are randomly generated, 
namely small-sized problems with f = {2, 3, 4, 5}, n = {20, 
50}, t = {5, 10}and large-sized problems with f = {2, 3, 4, 
5}, n = {100, 200}, t = {15, 20}. For each of the test prob-
lems, the number of parallel machines in a stage is randomly 
selected in the range [2, 5]. The time-related and cost-related 
parameters of test problems are shown in Table 1. In this 
table, Unidrnd(a, b) returns a uniform random integer in 
the interval [a, b].

Table 4  Average ARE at each factor level

Level Parameter

PS P
c

P
m

�

1 0.1241 0.1236 0.1240 0.1245
2 0.1239 0.1250 0.1243 0.1234
3 0.1249 0.1242 0.1242 0.1241
4 0.1236 0.1236 0.1240 0.1245
Delta (max–min) 0.0012 0.0014 0.0004 0.0011
Rank 2 1 4 3

Fig. 7  Factor level trend of AHLBGA

Table 5  Computation results of SLACK, EDD, CR, GA, HLBGA, and AHLBGA for small-sized problems

f n t SLACK EDD CR GA HLBGA AHLBGA

RE RE RE BRE ARE WRE BRE ARE WRE BRE ARE WRE

2 20 5 20.32 20.32 20.32 9.38 13.46 18.22 1.56 4.88 9.30 0.00 1.56 3.04
2 20 10 36.33 26.63 24.31 10.12 13.03 18.32 0.00 4.06 8.73 0.00 0.66 2.11
2 50 5 22.99 23.60 21.97 10.56 15.40 17.50 0.90 5.22 14.29 0.00 1.05 2.41
2 50 10 27.09 24.31 21.97 9.42 13.80 16.68 0.00 5.41 13.19 0.00 1.55 4.86
3 20 5 18.31 18.31 18.31 3.16 8.33 14.30 1.05 5.93 11.15 0.00 1.97 5.74
3 20 10 21.66 19.33 17.70 2.68 8.42 13.87 0.00 4.63 9.05 0.00 1.00 2.41
3 50 5 19.73 17.49 16.78 1.57 8.47 13.68 0.00 4.00 7.87 0.00 2.45 7.24
3 50 10 26.92 22.45 22.45 9.44 12.70 18.58 0.30 5.28 9.70 0.00 1.02 4.54
4 20 5 20.42 20.42 21.04 9.13 13.13 16.25 1.17 4.51 9.26 0.00 1.98 7.83
4 20 10 22.88 22.27 22.88 9.93 13.44 17.52 0.00 2.66 7.28 0.00 1.42 3.28
4 50 5 16.17 17.09 15.56 10.46 12.82 13.76 0.00 5.32 11.21 0.00 0.74 1.63
4 50 10 22.78 16.07 16.07 4.85 9.20 14.74 0.00 5.49 12.42 0.00 1.50 2.71
5 20 5 22.99 23.60 21.97 11.53 14.95 20.60 1.91 5.16 8.02 0.00 2.46 5.82
5 20 10 22.88 24.31 22.68 12.34 15.22 17.52 0.00 4.41 9.47 0.00 1.67 3.12
5 50 5 24.71 17.21 18.92 11.53 14.14 16.89 0.00 4.57 15.90 0.00 1.01 2.68
5 50 10 26.92 22.45 22.45 7.52 12.35 20.47 1.12 5.49 10.44 0.00 0.97 1.81
Average 23.32 20.99 20.34 8.35 12.43 16.81 0.50 4.81 10.46 0.00 1.44 3.83
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As a new combinatorial optimization problem, there 
are no scheduling algorithms specifically designed for the 
IPDSP with factory eligibility and 3PL distribution. Instead 
of using some existing algorithms, the proposed three fast 
heuristics (CR-based, EDD-based, and SLACK-based heu-
ristics) and AHLBGA are compared with the following two 
competitive algorithms:

• GA: As a standard GA, this algorithm does not employ 
the proposed learning operator to improve the offspring 
individuals. It starts with a random initial population, and 
adopts the same selection, crossover and mutation opera-
tors as used in the proposed AHLBGA for reproduction.

• Human-learning-based GA (HLBGA): This algorithm is 
the same as AHLBGA, except for determining the selec-
tion probability of learning activities using P1 = 1∕3 and 
P2 = 2∕3 throughout the evolution process.

As a commonly used performance measure, the relative 
error (RE) is applied to evaluate the effectiveness of schedul-
ing algorithm as follows:

where Cmin represents the minimum total cost of earli-
ness, tardiness and delivery obtained by all the compared 

(20)RE =
Ci − Cmin

Cmin

× 100

Table 6  Computation results of SLACK, EDD, CR, GA, HLBGA, and AHLBGA for large-sized problems

f n t SLACK EDD CR GA HLBGA AHLBGA

RE RE RE BRE ARE WRE BRE ARE WRE BRE ARE WRE

2 100 15 29.94 27.34 25.92 15.36 21.02 25.49 2.21 16.51 23.90 0.00 2.69 7.32
2 100 20 30.86 32.71 26.85 4.85 18.32 24.10 0.00 6.10 15.78 0.00 2.74 6.45
2 200 15 42.64 34.98 29.93 17.70 22.15 28.21 11.68 18.50 23.98 0.00 4.00 8.38
2 200 20 48.71 51.49 39.12 11.17 18.64 23.49 2.61 11.08 20.92 0.00 3.02 7.17
3 100 15 68.02 58.45 55.30 16.78 27.39 38.91 7.66 10.72 12.57 0.00 7.33 9.95
3 100 20 35.74 36.33 26.63 11.17 19.08 24.31 5.08 8.87 18.11 0.00 3.89 5.32
3 200 15 28.52 29.94 30.29 15.26 20.55 26.77 11.24 16.35 19.55 0.00 5.41 10.38
3 200 20 35.68 30.41 26.03 11.80 19.42 24.92 4.12 10.56 20.46 0.00 2.88 5.90
4 100 15 48.71 51.49 39.56 16.99 27.66 39.49 12.63 15.20 20.82 0.00 6.09 9.91
4 100 20 36.21 35.74 32.90 9.71 23.50 31.15 0.00 6.44 18.06 0.00 6.09 9.85
4 200 15 36.33 36.33 35.74 16.17 25.48 33.83 10.32 14.42 21.91 0.00 4.43 9.63
4 200 20 32.02 30.17 28.97 11.36 17.25 24.92 10.77 13.44 19.35 0.00 3.67 7.27
5 100 15 58.45 51.49 39.12 16.78 28.07 38.86 2.83 15.81 22.35 0.00 8.07 12.03
5 100 20 29.94 27.34 25.92 11.36 19.05 23.60 0.53 8.48 23.23 0.00 2.88 9.07
5 200 15 31.60 35.03 34.32 16.27 22.60 30.66 9.12 12.04 15.90 0.00 4.94 10.74
5 200 20 25.68 30.41 26.03 15.36 18.01 24.10 3.06 13.61 18.04 0.00 4.10 7.45
Average 38.69 37.48 32.66 13.63 21.76 28.93 5.87 12.38 19.68 0.00 4.51 8.55

Fig. 8  Means plot and LSD intervals of different algorithms for 
small-sized problems

Fig. 9  Means plot and LSD intervals of different algorithms for large-
sized problems
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algorithms, and Ci indicates the total cost of earliness, tardi-
ness and delivery obtained by a specific algorithm i.

Among all the compared algorithms, RE is directly used 
to evaluate the performance of CR-based, EDD-based, and 
SLACK-based heuristics. To obtain more reliable experi-
mental results of GA, HLBGA, and AHLBGA, we ran these 
three meta-heuristics 20 independent times for each of the 
test problems and measured their performance by the best 
RE (BRE), the average RE (ARE), and the worst RE (WRE). 
Accordingly, a meta-heuristic with lower BRE, ARE, and 
WRE is capable of generating better integrated production 
and distribution schedules. For all the compared meta-heu-
ristics, the maximum computation time required to solve 
each of the test problems is set to 0.1 × n × t (s).

4.2  Parameter tuning with Taguchi method

The appropriate parameter setting plays a significant role 
in the effectiveness of meta-heuristics. The performance of 
AHLBGA greatly depends on four key parameters, namely 
population size ( PS ), crossover rate ( Pc ), mutation rate ( Pm ), 
and the population ratio to establish the social knowledge 
matrices ( � ). The Taguchi method provides a systematic 
and efficient way to determine near optimum design param-
eters. Compared with a full factorial design, this method can 
significantly reduce the number of required experiments by 
using an orthogonal array and is therefore adopted to tune 
the parameters of AHLBGA.

The Taguchi method is implemented on a moderate-sized 
IPDSP with f  = 4, n = 50 and t  = 10. Table 2 describes the 
key parameters and their levels considered in the Taguchi 
method. Based on an orthogonal array  L16  (44), different 
parameter combinations shown in Table 3 are examined. 
AHLBGA with a specific parameter combination firstly runs 
10 times to address the selected IPDSP, and ARE is sub-
sequently obtained as the responsible variable (RV) value. 
Instead of conducting  44 = 256 experiments in the full fac-
torial design, the Taguchi method only performs 16 experi-
ments to determine the parameters of AHLBGA.

According to the ARE of Table 3, Table 4 ranks the four 
factors based on their Delta statistics, each of which is the 
difference of maximum and minimum values of average 
ARE for a specific factor. From the ranks in this table, it is 
clear that Pc has the most significant effect on the perfor-
mance of AHLBGA.

Based on the results of Table 4, the trend of each param-
eter is depicted in Fig. 7. Since the studied IPDSP is a mini-
mization type problem, AHLBGA tends to perform better 
when these parameters are set to the values with the mini-
mum average ARE. A larger value of PS allows to explore 
more solutions of the search space and the value of PS is 
set to 200 according to Fig. 7. In addition, a moderate is 
capable of maintaining a better balance between population 
diversity and convergence performance, and therefore the 
best 20% of offspring individuals are chosen to extract social 

Fig. 10  ARE with different numbers of factories (f)

Fig. 11  ARE with different numbers of jobs (n)

Fig. 12  ARE with different stages in a factory (t)
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knowledge in this study. Furthermore, the values of and can 
be easily determined by Fig. 7. From the above analysis, a 
good choice of parameter setting is suggested as,,, and. For 
a fair performance comparison among the scheduling algo-
rithms,,, and of GA and HLBGA are set to the same values 
as used in AHLBGA.

4.3  Experiment results and discussion

To evaluate the performance of the proposed fast heuristics 
and AHLBGA, both small-sized and large-sized test prob-
lems shown in Tables 5 and 6 are tested. In these two tables, 
f, n, and t indicate the numbers of factories, jobs, and stages 
in the distributed FFS environment, respectively. For each of 
the compared meta-heuristics, the maximum running time 
is set to 0.1 × n × t (s) in this study and the CPU time is 
therefore in the range between 10 and 400 s. Compared with 
the meta-heuristics, the three heuristics are much faster and 
give a solution within less than 1.9 s. For better performance 
comparison, the best BRE, ARE, and WRE for each of the 
test problems in these two tables are highlighted in bold.

According to the experiment results on the two sets of test 
problems, the following are observed:

1. Among of the six scheduling algorithms, ARE of GA, 
HLBGA, and AHLBGA is much less than RE of the 
three fast heuristics. The better performance of the 
three meta-heuristics results from the stochastic search 
of solution space, which is capable of offering a good 
balance between exploration and exploitation.

2. Compared with the SLACK and EDD heuristics, the CR 
heuristic provides better results on average, indicating 
that the CR rule is more effective to reduce the total cost 
of earliness, tardiness and delivery.

3. Since HLBGA and AHLBGA further improve the off-
spring individuals by a learning operator after crossover 
and mutation, they perform better than GA in terms of 
BRE, ARE, and WRE over all the test problems. Fur-
thermore, AHLBGA outperforms HLBGA when gener-
ating integrated production and distribution schedules. 
The superiority of AHLBGA lies in the effectiveness 
of the adaptive learning operator to guide the learning 
process of offspring individuals.

Based on the experiment results of the above two tables, 
the analysis of variance (ANOVA) and the least significant 
difference (LSD) test are conducted to validate whether the 
performance differences among the compared algorithms 
are statistically significant. With regard to small-sized and 
large-sized test problems, Figs. 8 and 9 show the means plots 
with LSD intervals (95% confidence level), respectively. As 
shown in these two figures, AHLBGA provides the statis-
tically best performance when generating the integrated 

production and distribution schedules in distributed HFS 
environments.

To further evaluate the performance of SLACK, EDD, 
CR, GA, HLBGA, and AHLBGA, the trends of ARE for 
different sizes of f, n, and t are presented in Figs. 10, 11 
and 12, respectively. From these figures, AHLBGA provides 
the least ARE with slight fluctuation for all sizes of f, n, 
and t, indicating its effectiveness and robustness for solving 
the IPDSP with factory eligibility and 3PL distribution. As 
described in Fig. 10, ARE obtained using these six algo-
rithms is not significantly changed, implying that the number 
of factories (f) has little influence on the performance of 
all the compared algorithms. In addition, the overall ARE 
values of the six algorithms in Figs. 11 and 12 show an 
increasing trend when addressing large-sized test problems 
(n = 100, 200; t = 15, 20).

5  Conclusion

This paper focuses on a new integrated production and dis-
tribution scheduling problem (IPDSP), in which jobs are 
firstly processed in distributed hybrid flow shops (HFS) and 
subsequently delivered to a customer in batches. To sat-
isfy the industrial practice of production and distribution, 
both factory eligibility and multiple transportation modes 
are considered. Accordingly, in the studied IPDSP, some 
products can only be manufactured in a subset of distributed 
factories, and the transportation of finished products is con-
ducted by the manufacturer or the 3PL provider.

To minimize the sum of earliness, tardiness and delivery 
costs, three fast heuristics (CR-based, SLACK-based, and 
EDD-based heuristics) and an adaptive human-learning-
based genetic algorithm (AHLBGA) are developed to gen-
erate integrated production and distribution schedules. These 
three heuristics employ simple scheduling rules to sequence 
the released jobs and evenly group them into batches for 
production and distribution. Different from the traditional 
GA, AHLBGA hybridizes an adaptive learning operator 
with crossover and mutation to enhance the global and local 
search ability. Motivated by human learning behaviours, the 
learning operator involves social learning, family learning, 
and individual random learning operations. To provide a 
better trade-off between search exploration and exploitation, 
the selection probability of a learning operation is dynami-
cally adjusted throughout the evolution process. To evalu-
ate the effectiveness of proposed algorithms, two sets of 
randomly generated IPDSPs are established. Experimental 
results indicate that AHLBGA offers the best performance 
among all the compared scheduling algorithms. The superi-
ority of AHLBGA results from incorporating three types of 
human learning operations into the evolution process of GA. 
Accordingly, AHLBGA has the potential to provide MTO 
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manufacturers with better operational decisions in distrib-
uted HFS environments.

Future research may focus on integrated production and 
distribution scheduling in more realistic industrial environ-
ments. It would be interesting to extend the proposed algo-
rithms to solve the IPDSP with batch delivery to multiple 
customers at different locations, such that vehicle routing 
decisions have to be made. Since inventory buffers exist 
between the production and distribution stages, another 
interesting extension of IPDSP is to take into account 
inventory characteristics, such as holding cost and inven-
tory capacity. Furthermore, apart from the proposed three 
simple learning operations of AHLBGA, more sophisticated 
human learning mechanisms may be developed to enhance 
the search ability of GA.
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