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Abstract
Many multimodal multiobjective optimization algorithms aim to find as many Pareto optimal solutions as possible while
the performance in the objective space is despised. More seriously, some algorithms even overemphasize the diversity of
solution set in the decision space at the cost of convergence. How to improve convergence and diversity simultaneously is an
important issue when solving multimodal multiobjective optimization problems. In this paper, we propose an evolutionary
multiobjective optimization algorithm with a decomposition strategy in the decision space (EMO-DD). A decision subregion
allocation and diversity archive preservation methods are proposed to promote the diversity of solutions in the decision
space. Meanwhile, a bi-objective optimization problem is formulated for screening for solutions with great convergence and
diversity. Combining a modified mating selection method, well-performed solutions both on the convergence and diversity
are preserved and inherited. The performance of EMO-DD is compared with five state-of-the-art algorithms on fifteen test
problems. The experimental results show that EMO-DD can solve multimodal multiobjective optimization problems, and can
improve the performance of the solution set in both the decision and objective spaces.

Keywords Multimodal optimization · Multiobjective optimization · Decomposition · Evolutionary algorithm

1 Introduction

Real-world problems usually involve multiple conflicting
objectives, which are known as multiobjective optimization
problems (MOPs) [1–5].AminimizationMOPwithm objec-
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tives can be described as:

minimize f(x) = ( f1(x), f2(x), . . . , fm(x)),
subject to x ∈ Ω.

(1)

where Ω is the decision space, x = (x1, . . . , xn) ∈ Ω is a
candidate solution; f : Ω → Rm constitutes m real-value
objective functions; Rm denotes the objective space. Usually
there is no unique optimal solution which simultaneously
optimizes all them objective functions. Instead, there is a set
of trade-off solutions called Pareto optimal solutions. The
identification of the Pareto optimal solution is based on the
Pareto dominance relationship. Given two solutions x
and y, x is said to Pareto dominate y (x � y) if fi (x) ≤ fi (y)
for ∀ i ∈ {1, . . . ,m} and ∃ j ∈ {1, . . . ,m} satisfies f j (x) <

f j (y). A solution is said to be the Pareto optimal solution
if it cannot be dominated by any other solution. The set of
all Pareto optimal solutions is called the Pareto set (PS), and
the set of their corresponding objective vectors is called the
Pareto front (PF).

The multimodal multiobjective optimization problem
(MMOP) is a special kind of MOP whose PF corresponds
to multiple PSs. That is, multiple Pareto optimal solutions
are corresponding to the same objective vector [6–8]. These
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Fig. 1 Illustration of MMOP

Pareto optimal solutions are equivalent to each other. In fact,
the MMOP is often encountered in real-world applications,
such as engine design [9–11], game map generation [12] and
distillation plant layout [13]. For example, a product engi-
neer is mainly interested in a solution set through covering
the whole PSs since it can help to know if a certain design can
be realized by different parameters setting of the production
process.

Figure 1 illustrates an example of the MMOP problem.
Two PSs, PS1 and PS2 in the decision space correspond to
the same PF in the objective space. A1 and A2 are two equiv-
alent Pareto optimal solutions corresponding to A∗ in the
objective space. B is an approximate solution correspond-
ing to B∗ in the objective space. Suppose that there are two
solutions A1 and B in the current population, then B will be
abandoned by general MOEAs since its objective vector B∗
is too close to A∗ and dominated by A∗. In the multimodal
multiobjective optimization scenario, the preservation of B
may be helpful to find A2 or other Pareto optimal solutions on
PS2. Furthermore, it is also beneficial to improve the diversity
of the whole solution set.

In recent decades, various promising multiobjective evo-
lutionary algorithms (MOEAs) [14–19] have been proposed.
These algorithms can search for a well-converged solution
set with great diversity in the objective space but do not con-
sider the diversity in the decision space at all. Nevertheless,
M. Preuss gave two conjectures in [20], in which one is that:
diversity maintenance is not only needed in the objective
space but also the decision space. To obtain a solution setwith
better diversity in the decision space when solving MMOPs,
many algorithms have been proposed based on heuristic algo-
rithms in recent years, including Omni-optimizer [21] and
DN-NSGA-II [22]. But these algorithms still have some
limitations. For example, too much attention is paid to the
diversity of the solution set in the decision space but the
performance in the objective space is neglected. A solution
set with insufficient convergence is meaningless, even if its
diversity is very good. The abilities that an algorithm needs
for solving MMOPs were illustrated in [23]. Firstly, it can
find solutionswith good convergence. Then it should have the
ability to find diverse solutions in the decision and objective

spaces. How to make the solution set as diverse as possi-
ble and improve its convergence at the same time is a very
significant issue.

This paper proposes an evolutionary optimization algo-
rithm with decomposition in the decision space (EMO-DD)
to solve MMOPs. In EMO-DD, a local optimization method
is adopted within an evolutionary framework. This paper
aims to explore the relationship of the solution set between its
convergence and diversity in both the decision and objective
spaces, and promote these two performances simultaneously.

Uniform reference vectors have an inherent property of
reflecting great diversity. There are already a lot of MOEAs
using predefined reference vectors to maintain the diver-
sity of the solution set in the objective space. However, the
advantage of reference vectors in diversity maintenance in
the decision space is not utilized. Inspired by the great per-
formance in the objective space, we attempt to utilize the
property of uniform reference vectors in the decision space
for solving MMOPs. In this paper, a well-distributed ref-
erence vector set is predefined in the decision space and
decomposes it into several subregions. In each subregion,
the solutions with excellent diversity in the decision space
are retained.

Considering themaintenance of convergence anddiversity
in the decision space simultaneously, we attempt to quan-
tify them into two different objectives and formulate them
into a new bi-objective optimization problem. By optimizing
this problem, well-converged solutions with good diversity
in the decision space can be screened out. In each subregion,
a special local optimization method is constructed, and the
optimal solutions to the bi-objective problem are seemed as
ones with good convergence and diversity in the decision
space, and retained for the next generation evolution. It is
well-known that the search ability of evolutionary algorithms
can be improved by local optimization, which is one of the
commonly used techniques in memetics. After maintaining
the diversity of solution set in the decision space as much
as possible, we select the solutions with better diversity in
the objective space to achieve the balance between the two
spaces.

The main contribution of this paper can be summarized as
follows:

1. A decomposition method in the decision space is intro-
duced to maintain the diversity of solution set in the
decision space.

2. A bi-objective optimization problem is formulated to
construct the relationship of solution set between its con-
vergence and diversity.

3. Adiversity archive andmodifiedmating selectionmethod
are proposed to preserve and inherit solutions that per-
form better in both the decision and the objective space.
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Systematic experiments are carried out on fifteen test
problems. Compared with four other state-of-the-art mul-
timodal multiobjective optimization algorithms, the exper-
imental results show that the solution set obtained by
EMO-DD has good diversity as well as great convergence.

The remainder of this paper is organized as below. Sec-
tion 2 gives the related works on multimodal multiobjective
optimization. Then the details of EMO-DD are described in
Sect. 3. Section 4 presents the experimental study. Section 5
concludes this paper.

2 Related work

2.1 Prior works onmultimodal multiobjective
optimization

Most MOEAs paid attention to approximate the PF in the
objective space rather than the diversity of PSs in the deci-
sion space. However, convergence and diversitymaintenance
in both the decision and objective spaces are very impor-
tant for a good solution set. In recent years, a lot of works
have been done on promoting the diversity of solutions in
the decision space. Deb [21] proposed an algorithm called
Omni-optimizer to solveMMOPs, inwhich the crowding dis-
tance in the decision space was used to maintain the diversity
of solutions. Liang proposed an algorithm based on niching
multiobjective optimization called DN-NSGA-II to locate
the multiple PSs in the decision space. At the same time, two
newmultimodalmultiobjective optimization problems called
SS-UF1 and S-UF3 were proposed, which were the precur-
sors of MMF [24]. Apart from these, many niching-based
methods [25–28] have been proposed for solving MMOPs
recently, such as fitness sharing [29] and crowding [30]. Lin
[31] proposed an algorithm (MMOEA/DC) with dual clus-
tering in the decision and objective spaces, in which both
the global PSs and some good local PSs with acceptable
quality were maintained. Liu et al. [32] proposed a gen-
eral framework using two archives to guide the evolutionary
search (TriMOEA-TA&R). The diversity archive simultane-
ously employed a clustering strategy to guarantee diversity
in the objective space, and a niche-based clearing strategy
to promote the same in the decision space. Xia [33] sug-
gested a framework which included two crowding estimation
methods, multiple selection methods for mating and search
strategy for variation, to improve theMOEA’s searching abil-
ity and the diversity of its solutions. In [34], a niching sharing
method was proposed for maintaining diversity in both the
decision and objective spaces. However, these niching-based
algorithms have potential problems. Firstly, they need extra
niche parameters provided by decision-makers, and the value
of these parameters has a great impact on the performance
of algorithms. In addition, some niching-based algorithms

even need extra fitness evaluations to maintain niche detec-
tion accuracy [35].

There are also many other MOEAs proposed for MMOPs
in recent years. In [36], a new crossover method and two
archives were adopted for maintaining the diversity of solu-
tion set in the objective and decision space. Liang et al.
[37] proposed a new differential evolution optimization algo-
rithm (MMODE) for MMOPs. A new decision-variable
pre-selection mechanism and mutation-bound process were
introduced for promoting the diversity of solutions. Tan-
abe and Ishibuchi [38] proposed a new decomposition-based
MOEA, in which each decomposed subproblem can be
assigned more than one solution to diversity.

In addition to the above studies, there are some researches
on multimodal multiobjective optimization based on particle
swarm optimization (PSO) [39–42]. PSO is a population-
based optimization algorithm that simulating the swarm
behaviour of insects and birds. These groups search for food
in a cooperative way. Each member of the swarm changes
its search mode by learning its own and other members’
experiences. To solve MMOPs, Yue proposed a multiob-
jective particle swarm optimizer using ring topology and
special crowding distance (MO_Ring_PSO_SCD), in which
the ring topology helps to induce stable niches to locate
much more Pareto optimal solutions, and the special crowd-
ing distance considers the crowding distance in both the
decision and objectives spaces to maintain multiple PSs.
Qu proposed a self-organized speciation based multiobjec-
tive particle swarm optimizer [43] to locate multiple Pareto
optimal solutions for solving MMOPs, in which the self-
organized mechanism is used for improving the efficiency
of the species formulation as well as the performance of the
algorithm. Liang et al. [44] proposed a new multiobjective
PSO with a self-organizing mechanism called SMPSO-MM,
in which a self-organizing map network is used to find the
diversity structure of the population and build the neighbour-
hood in the decision space. PSOalgorithm is indeed a suitable
choice to optimize the MMOPs. But the particles in PSO
share information through the current search to the best, and
the whole search and update process is following the current
optimal solution. So it is a single sharing mechanism to a
large extent, which may fall into local optimum.

2.2 Decomposition of multiobjective optimization

The idea of decomposition has been used in many methods
for solving MOPs [45–47], in which the most representative
areMOEA/D [48] and NSGA-III [49]. By specifying a set of
reference vectors in the objective space, MOEA/D decom-
poses the MOP into several single-objective optimization
subproblems and solves them in a collaborative manner. At
each generation, the population is composed of the best solu-
tions to each subproblem.Many scalar aggregation functions
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can be used as decomposition methods for converting MOPs
into several scalar optimization problems. Weighted Sum
Approach, Tchebycheff Approach (TCH) [50], and Bound-
ary Intersection Approach are three representatives used in
MOEAs with decomposition. In this paper, we use the TCH
approach for decomposing a MOP if necessary. The TCH is
formed as:

minimize gtch(x|w, z∗) = max
1≤i≤m

{ωi | fi (x) − z∗i |},
subject to x ∈ Ω. (2)

where z∗ = (z∗1, . . . , z∗m) is the reference point. w =
(ω1, . . . , ωm) is a reference vector in the objective space,
ωi ≥ 0 for ∀ i ∈ {1, . . . ,m} and ∑m

i=1 ωi = 1.
The above approaches all have the ability to decompose

the approximation of the PF into several scalar optimization
problems. Based on a large number of predefined evenly dis-
tributed reference vectors, solutions are guided to converge
to the scaler problem corresponding to its bounded reference
vector. All optimized scalar problem solutions can compose
into a well-distributed set. This decomposition method does
have great performance both on convergence and diversity
in the objective space, while the diversity of solution set in
the decision space is rarely considered. This makes it possi-
ble that the obtained solutions are only a local set but cannot
represent the whole PSs.

3 Proposed algorithm

In this section, we present the details of our proposed algo-
rithm, EMO-DD. It is composed of four main components:
the decision subregion allocation, the update mechanism of
the diversity archive, the environmental selection, and the
mating selection. The details are shown in the following sub-
sections.

3.1 General framework

To maintain the diversity of solutions in the decision space,
we borrow the idea from decomposition-based MOEAs to
divide the decision space into several subregions and opti-
mize the solutions in different subregions collaboratively. To
make sure the solutions with good convergence and diversity
can be preserved and inherited, we propose a new diversity
archive to store them, and use a modified mating selection
method to select parents from them.

The overall flowchart of EMO-DD is presented in Fig. 2.
The EMO-DD starts with an initial parent population P and
diversity archive DA. Then the offspring population is repro-
duced by P and DA while the stopping criterion is not met.
After the offspring population reproduction, all solutions are

Fig. 2 Flowchart of EMO-DD

allocated into different decision subregions (Sect. 3.2), and
both DA and P are updated based on it (Sects. 3.3 and 3.4).
The population P will be reported in the last generation.

3.2 Decision subregion allocation

Before the decision subregion allocation, we need to nor-
malize each solution x to make sure it has reached the
requirement to be assigned subregion. Normalization can
eliminate the effects of different ranges or scales. The nor-
malized solution x̂ = (x̂1, . . . , x̂n) is defined as:

x̂i = xi − li + ϕ

ui − li + ϕ
, i ∈ {, 2, . . . , n}. (3)

where li and ui are respectively the minimum and maximum
values of the i-th variable among all solutions. To meet the
case where li = ui , a minimal positive number ϕ is used here.
In this paper, we set it to 10−5. After normalization, x̂ is in
(0, 1]n .

To allocate each solution into different decision subre-
gions, we use N well-distributed reference vectors WX =
{wx1, . . . ,wxN } on the canonical simplex to divide the deci-
sion space into N subregions. The reference vectors can be
generated by the same method used in decomposition-based
MOEAs, i.e., the two-layer weight vector generation method
[51]. Specifically, for each reference vector wxi , we assign
it a subregion Δi in decision space as follows:

Δi = {x ∈ Ω|〈x̂,wxi 〉 ≤ 〈x̂,wx j 〉}, j ∈ {1, . . . , N } (4)

where 〈x̂,wx〉 is the acute angle between x̂ andwx. By using
this definition, each solution x of a population can easily be
resided in its unique subregion Δk , whose index k is defined
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as:

k = argmin
i∈{1,...,N }

〈x̂,wxi 〉 (5)

The pseudo-code of decision subregion allocation mech-
anism is given in Algorithm 1.

Algorithm 1 Decision Subregion Allocation (P , WX )
Input: population P , reference vector set WX
Output: solutions in the i th subregion Δi

1: for each x ∈ P do
2: for each wx ∈ WX do
3: Compute the acute angle 〈x̂,wx〉;
4: end for
5: k = argmin

i∈{1,...,N }
〈x̂,wxi 〉;

6: Δk = Δk ⋃{x};
7: end for
8: return Δ1, . . . , ΔN ;

3.3 Updatemechanism of the DA

To keep solutions with good diversity in the decision space
when searching for the Pareto optimal solutions in MMOPs,
we introduce a temporary diversity archive DA. The DA
aims at preserving solutions as much convergent and diversi-
fied as possible in the decision space. Algorithm 2 is the
pseudo-code of the update mechanism of the DA. After
the reproduction mechanism, the offspring population Q is
incorporated into the diversity archive DA. Then solutions
in DA reside in the corresponding decision subregions (line
2). For each subregion Δi , the best solution is chosen into
a temporary archive S and deleted from it if it is not empty
(lines 3–8). In this process, the idea of MOEA/D is adopted
to decompose the objective space and TCH function is used
as the indicator of each candidate solution. Solution with
minimum TCH value is chosen as the best one in each sub-
region. Note that any other scalarizing functions or fitness
assignment can also be adopted as the indicator, i.e., the BPI
approach used in [48] or fitness assignment used in [52].

After the above selection operation, if the size of S is
less than N, then a new bi-objective optimization problem is
formulated as follows:

minimize g(x) = (g1(x), g2(x)),

where
⎧
⎨

⎩

g1(x) = 1/
(
argmin
y∈Δi ,y �=x

||x − y||)

g2(x) = gtch(x|λ, z∗)

x ∈ Δi , i = {1, . . . , N }. (6)

Algorithm 2 Update Mechanism of DA (DA, Q, WX , W )
Input: diversity archive DA, offspring population Q, reference vector

set WX , reference vector set W = {w1, . . . ,wN }
Output: updated DA
1: S = ∅, DA = DA

⋃
Q;

2: Decision Subregion Allocation(DA,WX );
3: for each i ∈ {1, . . . , N } do
4: if Δi �= ∅ then
5: find best solution x in Δi ;
6: S = S

⋃{x}, Δi = Δi \ {x}, DA = DA \ {x};
7: end if
8: end for
9: if |S| < N then
10: for each i ∈ {1, . . . , N } do
11: for each x ∈ Δi do
12: g1(x) = 1/

(
argmin
y∈Δi ,y�=x

||x − y||);
13: g2(x) = gtch(x|w, z∗);
14: end for
15: end for
16: Use non-dominated sorting to divide DA into {F1, F2, · · · } based

on g1 and g2 defined in Eq. (6);
17: i = 0;
18: while |S| < N do
19: i = i + 1, S = S

⋃
Fi ;

20: end while
21: while |S| > N do
22: find worst solution x in Fi ;
23: S = S \ {x}, Fi = Fi \ {x};
24: end while
25: end if
26: DA = S;
27: return DA;

In Eq. (6), g1(x) quantifies the distribution density of solu-
tion x in the decision space, and g2(x) reflects its convergence
degree. The optimal solutions to this bi-objective problem
represent the most decentralized and best convergent ones.
Wedonotmention the diversity of solution set in the objective
space here does not mean it is unimportant. A solution set,
which is widely distributed in the decision space and reflects
the whole PSs, will not have a bad diversity in the objective
space. In other words, the optimal solutions to Eq. (6) are also
widely distributed in the objective space to a certain extent.

Same as the best solution selection indicator mentioned
above, g2(x) can also be defined in more than one way.
Based on Eq. (6), all solutions in each subregion are reformu-
lated (lines 10–15). Then the non-dominated sorting is used
to divide all solutions into several fronts (line 16). Starting
from the first front, non-dominated solutions are chosen into
S front by front until |S| ≥ N (lines 17–20). Then exceeded
solutions in S are abandoned. In this paper, we choose solu-
tions with the largest g2(x) as the worst ones and delete them
from S (lines 21–24). Finally, DA is updated by assigning S
to it.
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Fig. 3 Environmental selection

3.4 Environmental selection

After the update mechanism of diversity archive DA, we
choose solutions with great diversity in the objective space
as well as good convergence from the offspring population
Q and DA. Figure 3 gives an illustration diagram about the
environmental selection procedure. Firstly, a combined pop-
ulation of size 2N is formed based on DA and Q. Then we
use the non-dominated sorting and crowding distance sorting
procedure to select N best solutions into the next generation
population P . Algorithm 3 gives the pseudo-code of the envi-
ronmental selection procedure.

Algorithm 3 Environmental Selection (DA, Q, WX )
Input: diversity archive DA, offspring population Q, reference vector

set WX
Output: updated population P
1: P = ∅, Q = Q

⋃
DA;

2: if |Q| = N then
3: P = Q;
4: else
5: Use non-dominated sorting to divide Q into {F1, F2, · · · };
6: i = 0;
7: while |P| < N do
8: i = i + 1, P = P

⋃
Fi ;

9: end while
10: CrowDis = Crowding Distance Assignment (Fi );
11: while |P| > N do
12: x = argmin

x∈Fi
CrowDis;

13: P = P \ {x}, Fi = Fi \ {x};
14: end while
15: end if
16: return P;

3.5 Mating selection

Mating selection plays an important role in the offspring
reproduction process. It is usually implemented by select-
ing promising solutions from the current population to form
a mating pool [53]. In this paper, we adopt the mating selec-

tion method derived from Li et al. [54] by selecting parents
from both the diversity archive DA and the current popula-
tion P . Algorithm 4 is the pseudo-code of mating selection
procedure. Firstly, the proportions of non-dominated solu-
tions in the DA (ρda) and P (ρp) are evaluated (lines 1 to
2). ρda > ρp means the convergence of DA is better than
P , then the first parent p1 is randomly selected from DA;
Otherwise it is selected from P (lines 3 to 7). The selection
of the second parent p2 depends on ρda . A random decimal
between 0 and 1 is generated, andp2 comes from DA ifρda is
larger than it; or p2 is selected from P (lines 8 to 12). By this
mating selection, solutions with good diversity in DA can
have a greater probability to be inherited without neglecting
the convergence.

Algorithm 4Mating Selection (DA, P)
Input: DA, population P
Output: Mating parents p1, p2
1: ρda = proportion of non-dominated solutions in DA;
2: ρp = proportion of non-dominated solutions in population P;
3: if ρda > ρp then
4: p1 = Tournament Selection from DA;
5: else
6: p1 = Tournament Selection from P;
7: end if
8: if rand < ρda then
9: p2 = Tournament Selection from DA;
10: else
11: p2 = Tournament Selection from P;
12: end if
13: return p1, p2;

4 Experimental study

In this section, contrast experiments are conducted to inves-
tigate the performance of the proposed algorithm. At first,
test benchmark problems are given. Then the pros and cons
of the three metrics used in the experiments are illustrated.
Comparative experimental results and analyses are given in
the last subsection.

4.1 Test problems

In this paper, we used the following fifteen multimodal
multiobjective test problems to test the performance of our
proposed algorithm including eightMMFproblems (MMF1-
8), four IDMPproblems [55], twoSYM-PARTproblems [56]
and two-objective Omni-test problem [21]. Table 1 shows
their different geometric characteristics, including the num-
ber of decision variables, objectives, and PSs. Among these
test problems, MMF suit is simpler than others. It is worth
noting that the PSs of MMF3 and MMF6 are overlapped
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Table 1 Characteristics of
fifteen multimodal
multiobjective test problems

Test problem Number of objectives Number of decision variables Number of Pareto sets

MMF1 2 2 2

MMF2 2 2 2

MMF3 2 2 2

MMF4 2 2 4

MMF5 2 2 4

MMF6 2 2 4

MMF7 2 2 2

MMF8 2 2 4

Onmi-test 2 3 27

SYM-PART-simple 2 2 9

SYM-PART-rotated 2 2 9

IDMP-T1 2 2 2

IDMP-T2 2 2 2

IDMP-T3 2 2 2

IDMP-T4 2 2 2

in every dimension. The difficulty of Omni-test stems from
its large number of PSs. SYM-PART-rotated is a variant of
SYM-PART-simple by simply rotating all the PSs. Rather
than others, the complexity of finding equivalent PSs are
different on IDMP test problems. So it is hard for those
convergence-first MOEAs to find all PSs on IDMP.

4.2 Performancemetrics

HV [57] and IGD [58] are two main metrics used in MOEAs
since they can reflect the diversity and convergence of the
obtained solution set in the objective space simultaneously.
But they do not apply tomultimodal multiobjective problems
because they evaluate the performance of algorithms that
focuses on the objective space while the decision space is
ignored [59].

IGDX [60] is a variant of IGD, and it represents the aver-
age Euclidean distance between the obtained solutions and
Pareto optimal solutions in the decision space. By measur-
ing this distance, IGDX can evaluate both the convergence
and the diversity in the decision space of the approximate
solution set.

However, it is worth noting that the other one of the two
conjectures [20] mentioned in Sect. 1 is: there are situations
where the PS does not share the aspired nice properties of
the received PF the user normally pay the attention to. This
means a solution set well-performed in the decision space
does not imply a well-performance in the objective space.
According to the example given in [23], a solution set uni-
formly distributed on all may correspond to a few objective
vectors. This example gave us a hint, that a solution set with
very bad diversity in the objective space may still get a great

IGDX value. So IGDX is not an applicable metric used alone
in multimodal multiobjective optimization.

Recently, Liu et al. [32] proposed a new metric for multi-
modal multiobjective optimization called IGDM. IGDM is a
metric that integrating IGD and IDX, and considering perfor-
mance not only in the objective space but also in the decision
space. The smaller the IGDM value is, the more diverse and
convergent the solution set performs in both the objective and
decision spaces. This implies that IGDM is a comprehensive
performance metric, which reflects the global performance
in the two spaces by a numerical value. Per contra, IGDM
cannot explain the specific quality of the solution set in any
single space. In order to explore the specific performance of
the algorithms in dealing with MMOPs, we use IGD, IGDX
and IGDM metrics for assessing the performance, respec-
tively.

Considering F∗ = {f∗1, . . . , f∗q} is a set of well distributed
reference points on the true PF,whereq is the number of these
points. Then the corresponded set of Pareto optimal solu-
tions is X∗ = {x∗

1,1, x
∗
1,2, . . . , x

∗
1,a1

, x∗
2,1, . . . , x

∗
q,aq }, where

ai , i = 1, 2, . . . , q is the number of Pareto optimal solu-
tions to each point in F∗. For an approximate solution set
P = {x1, x2, . . . , xN } obtained by an optimization algo-
rithm, the IGD is defined as:

IGD(P, F∗) = 1

|F∗|

⎧
⎨

⎩

∑

f∗∈F∗
min
x∈P

(ed f (f(x), f∗))

⎫
⎬

⎭
, (7)

where ed f (f(x), f∗) is the Euclidean distance between f(x)
and f∗ in the objective space.
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The IGDX is defined as:

IGDX(P, X∗) = 1

|X∗|

{
∑

x∗∈X∗
min
x∈P

(edx (x, x∗))
}

, (8)

where edx (x, x∗) is the Euclidean distance between x and x∗
in the decision space.

The IGDM is defined as:

IGDM(P, F∗, X∗) = 1

|X∗|

⎧
⎨

⎩

∑

f∗i ∈F∗

∑

j=1,...,ai

d(f∗i , x∗
i, j , P)

⎫
⎬

⎭
,

(9)

where

d(f∗i , x∗
i, j , P) =

{
dmax , if Pi, j = ∅,

min{dmax , ed(f∗i , Pi, j )}, if Pi, j �= ∅;
Pi, j = {xk : j = argmin

l=1,...,ai
edx (x∗

i,l , xk), xk ∈ P}. (10)

The ed(f∗i , Pi, j ) in Eq. (10) is the minimal Euclidean dis-
tance between f∗i and Pi, j . dmax is a parameter defined by the
user, and is set to 1 in this paper.

4.3 Comparison results with other algorithms

To demonstrate the effectiveness of EMO-DD, four state-of-
the-art multimodal multiobjective optimization algorithms
are chosen as comparative algorithms: Omni-optimizer [21],
DN-NSGA-II,MO_Ring_PSO_SCD, andTriMOEA-TA&R
[32]. In addition, MOEA/D-TCH is adopted for comparing
their performance in the objective space. Simulated binary
crossover [61] and polynomial mutation [62] operators are
used (except in MO_Ring_PSO_SCD) with a distribution
index of 20. The crossover probability is 1.0, and themutation
probability is 0.2. The generation of each run is set to 100, and
the population size is set to 800. The crowding factor in DN-
NSGA-II is set to half of the population size according to [22].
In TriMOEA-TA&R, pcon , σniche and εpeak are 0, 0.5 and
0.01, respectively. For each test problem, 30 independent runs
are implemented on PlatEMO [63] with Matlab code. The
experimental results of IGD, IGDX and IGDM are shown
in Table 2, 3 and 4, respectively, where the best mean and
standard deviation are highlighted in bold and the second
best are colored in italic.

Table 2 shows that all IGD results obtained by EMO-DD
are highlighted in bold and italic. Other algorithms except
MOEA/D-TCH have significantly worse IGD results than
EMO-DD. This means that the solution sets obtained by
EMO-DD are more convergent and diverse in the objective
space than other compared multimodal multiobjective opti-
mization algorithms. Comparing with MOEA/D-TCH, we

can see EMO-DD is not worse in convergence, even bet-
ter on some problems. The evaluations of IGD are not very
ideal for the remaining four algorithms, extremely on Omni-
optimizer, DN-NSGA-II and MO_Ring_PSO_SCD.

Table 3 shows that EMO-DD and MO_Ring_PSO_SCD
are the top two algorithms on the IGDX metric. Most of
the IGDX values obtained by these two algorithms are high-
lighted in bold and italic, in which MO_Ring_PSO_SCD
prefers MMF and EMO-DD prefers others. The other three
multimodal multiobjective optimization algorithms perform
similarly, though TriMOEA-TA&R gets the best IGDX val-
ues on two problems.

Table 4 shows that more than half of the IGDM results
(11/15) obtained by EMO-DD are highlighted in bold, and
the others are in italic (except on MMF3), which means that
the solution sets searched by EMO-DD can have good per-
formance in both the decision and objective spaces. The
second best is TriMOEA-TA&R, on which most of the
IGDM results are highlighted except IDMP. The third one,
MO_Ring_PSO_SCD, also gets good IGDM values on sev-
eral problems, especially on IDMP.

To further analyze the results mentioned above, the rank
frequencydistribution [64] is used for reorganizing the results
of the three performance metrics. Tables 5, 6 and 7 are
the rank frequencies for the IGD, IGDX and IGDM cases,
respectively. The number in Rank i (i = 1,2, . . . ,m) under an
algorithm indicates the times of the algorithm’s performance
ranked as i, where Rank 1 represents the best one, Rank 2
the second and so on. The rank score shown on the last row
is calculated by formula

∑5
i=1

(
i · (Rank i)

)
, which is an

overall evaluation of the algorithms’ performance. In gen-
eral, a lower rank score represents a better performance the
algorithm has.

We synthesize the rank information of the three tables.
In Table 5, MO_Ring_PSO_SCD gets a much larger IGD
rank score than others. Then in Table 6, the lowest IGDX
rank score is marked under MO_Ring_PSO_SCD, and
the gap between others is very obvious except EMO-DD.
These mark scores indicate that the solution set obtained
by MO_Ring_PSO_SCD has a great performance in the
decision space but not the objective space. By contrast,
MOEA/D-TCH gets a very low IGD rank score but the
highest IGDX rank score. This indicates that MOEA/D-
TCH is good at finding solutions with good performance
in the objective space while ignoring the decision space.
The IGD and IGDX rank scores obtained by the remain-
ing four algorithms are not polarized like MOEA/D-TCH
or MO_Ring_PSO_SCD. Two of the most noteworthy are
TriMOEA-TA&R and EMO-DD. The former gets not bad
rank scores on both IGD and IGDX cases but is not much
better when compared with the latter. From the rank fre-
quency distribution analysis, we can see EMO-DD has the
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Table 5 Rank frequency distribution analysis on IGD case

Algorithm MOEA/D-TCH Omni-optimizer DN-NSGA-II MO_Ring_PSO_SCD TriMOEA-TA&R EMO-DD

Rank 1 8 0 0 0 0 7

Rank 2 4 0 0 0 3 8

Rank 3 1 5 1 0 8 0

Rank 4 0 8 7 0 0 0

Rank 5 0 2 7 5 1 0

Rank 6 2 0 0 10 3 0

Rank score 31 57 66 85 53 23

Table 6 Rank frequency distribution analysis on IGDX case

Algorithm MOEA/D-TCH Omni-optimizer DN-NSGA-II MO_Ring_PSO_SCD TriMOEA-TA&R EMO-DD

Rank 1 0 0 0 9 2 4

Rank 2 0 1 1 3 1 9

Rank 3 0 5 3 3 4 0

Rank 4 0 5 7 0 2 1

Rank 5 1 3 4 0 6 1

Rank 6 14 1 0 0 0 0

Rank score 89 58 59 24 54 31

Table 7 Rank frequency distribution analysis on IGDM case

Algorithm MOEA/D-TCH Omni-optimizer DN-NSGA-II MO_Ring_PSO_SCD TriMOEA-TA&R EMO-DD

Rank 1 0 0 0 1 3 11

Rank 2 0 0 0 6 6 3

Rank 3 0 1 1 7 5 1

Rank 4 0 5 9 1 0 0

Rank 5 0 9 5 0 1 0

Rank 6 15 0 0 0 0 0

Rank score 90 68 64 38 35 20

ability to find a solution set with good performance in both
the decision and objective spaces.

In summary, from the above analysis, we can conclude
thatMO_Ring_PSO_S CD improves its diversity in the deci-
sion space at the cost of greatly sacrificing the convergence.
Such a big sacrifice may not be desirable since ensuring
the Pareto optimality of solutions is the primary aim of
solving MMOPs. TriMOEA-TA&R has considered improv-
ing the performance in both the decision and the objective
space. But when comparing it with EMO-DD, we can find
that it does not enough. EMO-DD can get a solution set
with better performance in the two spaces than TriMOEA-
TA&R simultaneously. This gives us some enlightenment,
that the performance improvement in the objective and deci-
sion spaces may not be completely conflicting when solving
MOPs. Table 7 also verifies our thought by numerical anal-
ysis. MO_Ring_PSO_SCD and TriMOEA-TA&R do have

good IGDM rank scores, but they are not better than EMO-
DD.

To demonstrate the performance of these algorithms in
both the decision and objective spaces further, the obtained
solution sets and the corresponding objective vector fronts
ontoMMF6 (Fig. 4) andOmni-test (Fig. 5) are taken as exam-
ples for analysis, where the blue asterisks arewell-distributed
reference points extracted from PSs (the upper layer) and PF
(the lower layer), and the red circles are obtained solutions
(the upper layer) and the corresponding objective vectors (the
lower layer), respectively.

In Fig. 4, the solutions obtained by MO_Ring_PSO_SCD
almost cover the whole PSs. The solution sets obtained by
the other four multimodal multiobjective optimization algo-
rithms also can distribute to all parts of the PSs, although
they are not as diverse as MO_Ring_PSO_SCD’s. But when
turn to the objective space, the other four algorithms all
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Obtained solution set and corresponded objective vectors on MMF6

converge to the PF well, while some solutions searched by
MO_Ring_PSO_SCD are even far away from it. It is worth
noting that MOEA/D-TCH is even unable to find complete
PS. That is the reason why it gets a very bad value on IGDX
metric.

Omni-test is a tough problem that has 27 PSs. In Fig. 5,
Omni-optimizer and DN-NSGA-II even cannot search out
all the PSs. That means these two algorithms are not suitable

once the problem becomes complex. The solutions found
by MOEA/D-TCH are not even on the PSs, which indicates
all the solutions are not Pareto but local optimal solutions.
However, the rest three algorithms can find the locations of
all PSs, although the distribution of solutions on each PS part
is different.

Figure 6 is presented for exploring the performance
of the three algorithms, EMO-DD, MO_Ring_PSO_SCD
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(d) (e) (f)

(a) (b) (c)

Fig. 5 Obtained solution set and corresponded objective vectors on two-objective Omni-test

and TriMOEA-TA&R, in dealing with multi-PS MMOPs.
On the SYM-PART-rotated problem, Omni-optimizer and
DN-NSGA-II cannot find the center part PS while the
other three algorithms all fit the shape of the whole PSs.
Not surprisingly, the diversity of solution set obtained by
MO_Ring_PSO_SCD is the best. As for TriMOEA-TA&R,

the proportion of solutions located on different PS part is var-
ious. Some PS parts are completely covered but some may
only spot with several solutions. When turning to EMO-DD,
it almost balances the coverage ratio of solutions on different
PS part, although is not as good as MO_Ring_PSO_SCD.
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Obtained solution set on SYM-PART-rotated

(a) (b) (c)

(d) (e) (f)

Fig. 7 Obtained solution set on IDMP-T3
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IDMP represents a type of MMOPs with different search
difficulty on each PS part. Figure 7 shows the solution set
results on IDMP-T3, whose PSs consist of two parts and
the upper right part (marked as EPS1) is more difficult to
find than the bottom left one (marked as EPS2). It can be
seen in Fig. 7 that all solutions found by MOEA/D-TCH are
on EPS1. This is because MOEA/D-TCH blindly empha-
sizes the performance in the objective space, and discards all
solutions on EPS2 after searched for EPS1. On the contrary,
Omni-optimizer, DN-NSGA-II and MO_Ring_PSO_SCD
are cheated by EPS1, though they can find EPS2. TriMOEA-
TA&R can find the location of EPS1, but diversity is not
satisfactory. Only EMO-DD finds both EPS1 and EPS2, and
give them equal distribution. This shows that EMO-DD is
better than others to jump local optimum and deal with this
kind of deceptive problem.

5 Conclusion

In this paper, we have proposed an algorithm (EMO-DD)
by using the decomposition method in the decision space
to solve MMOPs. The whole population is decomposed
and resided into several decision subregions and optimized
collaboratively. In each subregion, solutions with good con-
vergence and diversity in the decision space are screened
out by optimizing a bi-objective problem. The two objec-
tives of the problem reflect the convergence degree and
distribution density of solutions, respectively. To ensure
the well-performed solutions are preserved and inherited, a
diversity archive andmodifiedmating selection are proposed.
The performance of EMO-DDhas been analyzed and investi-
gated through a series of comparative experiments with five
state-of-the-art algorithms on fifteen problems. The exper-
imental results show that EMO-DD has the ability to find
diverse solutions with great convergence.

References

1. Deb K, Thiele L, LaumannsM, Zitzler E (2005) Scalable test prob-
lems for evolutionarymultiobjective optimization. In: Evolutionary
multiobjective optimization. Springer, London, pp 105–145

2. Mao-Guo G, Li-Cheng J, Dong-Dong Y, Wen-Ping M (2009) Evo-
lutionary multi-objective optimization algorithms

3. Wang Z, Ong Y-S, Sun J, Gupta A, Zhang Q (2018) A generator for
multiobjective test problems with difficult-to-approximate pareto
front boundaries. IEEE Trans Evolut Comput 23(4):556–571

4. Wang Z, Ong Y-S, Ishibuchi H (2018) On scalable multiobjective
test problems with hardly dominated boundaries. IEEE Trans Evo-
lut Comput 23(2):217–231

5. Da B, Ong Y-S, Feng L, Qin AK, Gupta A, Zhu Z, Ting C-K, Tang
K, Yao X (2007) Evolutionary multitasking for single-objective
continuous optimization: Benchmark problems, performance met-
ric, and baseline results. arXiv preprint arXiv:1706.03470

6. Yue C, Qu B, Yu K, Liang J, Li X (2019) A novel scalable test
problem suite for multimodal multiobjective optimization. Swarm
Evolut Comput 48:62–71

7. Li X, Epitropakis MG, Deb K, Engelbrecht A (2016) Seeking mul-
tiple solutions: an updated survey on niching methods and their
applications. IEEE Trans Evolut Comput 21(4):518–538

8. Ishibuchi H, Peng Y, Shang K (2019) A scalable multimodal multi-
objective test problem. In: International conference on evolutionary
computation. IEEE, pp 310–317

9. Kudo F, Yoshikawa T, Furuhashi T (2011) A study on analysis of
design variables in pareto solutions for conceptual design optimiza-
tion problem of hybrid rocket engine. In: International conference
on evolutionary computation. IEEE, pp 2558–2562

10. Hiroyasu T, Nakayama S, Miki M (2005) Comparison study of
SPEA2+, SPEA2, and NSGA-II in diesel engine emissions and
fuel economy problem. In: International conference on evolution-
ary computation, vol 1. IEEE, pp 236–242

11. Sebag M, Tarrisson N, Teytaud O, Lefevre J, Baillet S (2005) A
multi-objective multi-modal optimization approach for mining sta-
ble spatio-temporal patterns. In: IJCAI, pp 859–864

12. Togelius J, Preuss M, Yannakakis GN (2010) Towards multiob-
jective procedural map generation. In: International workshop on
procedural content generation in games, pp 1–8

13. Preuss M, Kausch C, Bouvy C, Henrich F (2010) Decision space
diversity can be essential for solving multiobjective real-world
problems. In: Multiple criteria decision making for sustainable
energy and transportation systems. Springer, pp 367–377

14. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut
Comput 6(2):182–197

15. Li H,Wang L, Hei X, LiW, JiangQ (2018) A decomposition-based
chemical reaction optimization for multi-objective vehicle routing
problem for simultaneous delivery and pickup with time windows.
Memet Comput 10(1):103–120

16. Hammami M, Bechikh S, Hung C-C, Said LB (2019) A multi-
objective hybrid filter-wrapper evolutionary approach for feature
selection. Memet Comput 11(2):193–208

17. Zou J, Yang Q, Yang S, Zheng J (2020) Ra-dominance: a new
dominance relationship for preference-based evolutionary multi-
objective optimization. Appl Soft Comput 106192

18. Bui LT, Liu J, Bender A, Barlow M, Wesolkowski S, Abbass HA
(2011)DMEA: a direction-basedmultiobjective evolutionary algo-
rithm. Memet Comput 3(4):271–285

19. Wang S, Liu J, Jin Y (2020) Robust structural balance in signed
networks using a multiobjective evolutionary algorithm. IEEE
Comput Intell Mag 15(2):24–35

20. Preuss M, Naujoks B, Rudolph G (2006) Pareto set and EMOA
behavior for simple multimodal multiobjective functions. In: Inter-
national conference on parallel problem solving from nature.
Springer, pp 513–522

21. Deb K, Tiwari S (2005) Omni-optimizer: a procedure for single
and multi-objective optimization. In: International conference on
evolutionary multi-criterion optimization. Springer, pp 47–61

22. Liang J, Yue C, Qu B-Y (2016) Multimodal multi-objective opti-
mization: a preliminary study. In: International conference on
evolutionary computation. IEEE, pp 2454–2461

23. Tanabe R, Ishibuchi H (2019) A review of evolutionary multi-
modal multiobjective optimization. IEEE Trans Evolut Comput
24(1):193–200

24. Yue C, Qu B, Liang J (2017) A multiobjective particle swarm opti-
mizer using ring topology for solving multimodal multiobjective
problems. IEEE Trans Evolut Comput 22(5):805–817

25. Liang JJ, Qu B-Y, Mao X, Niu B, Wang D (2014) Differential
evolution based on fitness Euclidean-distance ratio for multimodal
optimization. Neurocomputing 137:252–260

123

http://arxiv.org/abs/1706.03470


Memetic Computing (2021) 13:31–47 47

26. Qu B-Y, Suganthan PN, Liang J-J (2012) Differential evolution
with neighborhood mutation for multimodal optimization. IEEE
Trans Evolut Comput 16(5):601–614

27. Liang JJ, Ma ST, Qu B-Y, Niu B (2012) Strategy adaptative
memetic crowding differential evolution for multimodal optimiza-
tion. In: International conference on evolutionary computation.
IEEE, pp 1–7

28. Hao L, Gong M, Sun Y, Pan J (2006) Niching clonal selection
algorithm for multimodal function optimization. In: International
conference on natural computation. Springer, pp 820–827

29. Goldberg DE, Richardson J et al (1987) Genetic algorithms with
sharing for multimodal function optimization. In: Genetic algo-
rithms and their applications: proceedings of the 2nd international
conference on genetic algorithms. Lawrence Erlbaum, Hillsdale,
pp 41–49

30. Qing L, GangW, ZaiyueY, QiupingW (2008) Crowding clustering
genetic algorithm for multimodal function optimization. Appl Soft
Comput 8(1):88–95

31. LinQ,LinW,ZhuZ,GongM,Li J, CoelloCAC (2020)Multimodal
multi-objective evolutionary optimization with dual clustering in
decision and objective spaces. IEEE Trans Evolut Comput

32. LiuY,YenGG,GongD (2018)Amultimodalmultiobjective evolu-
tionary algorithm using two-archive and recombination strategies.
IEEE Trans Evolut Comput 23(4):660–674

33. Xia H, Zhuang J, Yu D (2013) Combining crowding estima-
tion in objective and decision space with multiple selection and
search strategies for multi-objective evolutionary optimization.
IEEE Trans Cybern 44(3):378–393

34. Liu Y, Ishibuchi H, Nojima Y, Masuyama N, Shang K (2018) A
double-niched evolutionary algorithm and its behavior on polygon-
based problems. In: International conference on parallel problem
solving from nature. Springer, pp 262–273

35. Wang Z-J, Zhan Z-H, Lin Y, Yu W-J, Wang H, Kwong S, Zhang
J (2019) Automatic niching differential evolution with contour
prediction approach for multimodal optimization problems. IEEE
Trans Evolut Comput 24(1):114–128

36. KimM,Hiroyasu T,MikiM,Watanabe S (2004) SPEA2+: improv-
ing the performance of the strength pareto evolutionary algorithm
2. In: International conference on parallel problem solving from
nature. Springer, pp 742–751

37. Liang J, Xu W, Yue C, Yu K, Song H, Crisalle OD, Qu B (2019)
Multimodal multiobjective optimization with differential evolu-
tion. Swarm and Evolut Comput 44:1028–1059

38. Tanabe R, Ishibuchi H (2018) A decomposition-based evolution-
ary algorithm for multi-modal multi-objective optimization. In:
International conference on parallel problem solving from nature.
Springer, pp 249–261

39. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
International conference on neural networks, vol 4. IEEE, pp 1942–
1948

40. Nguyen HB, Xue B, Andreae P (2018) Pso with surrogate models
for feature selection: static and dynamic clustering-based methods.
Memet Comput 10(3):291–300

41. Reyes-Sierra M, Coello CC et al (2006) Multi-objective particle
swarm optimizers: a survey of the state-of-the-art. Comput Intell
Res 2(3):287–308

42. Kumar S, Kumar P, Sharma TK, Pant M (2013) Bi-level threshold-
ing using PSO, artificial bee colony and MRLDE embedded with
otsu method. Memet Comput 5(4):323–334

43. Qu B, Li C, Liang J, Yan L, Yu K, Zhu Y (2020) A self-organized
speciation based multi-objective particle swarm optimizer for mul-
timodal multi-objective problems. Appl Soft Comput 86:105886

44. Liang J, GuoQ, Yue C, QuB, YuK (2018) A self-organizingmulti-
objective particle swarm optimization algorithm for multimodal
multi-objective problems. In: International conference on swarm
intelligence. Springer, pp 550–560

45. Jin Y, Okabe T, Sendho B (2001) Adapting weighted aggregation
formultiobjective evolution strategies. In: International conference
on evolutionary multi-criterion optimization. Springer, pp 96–110

46. Jaszkiewicz A (2002) On the performance of multiple-objective
genetic local search on the 0/1 knapsack problem-a comparative
experiment. IEEE Trans Evolut Comput 6(4):402–412

47. Paquete L, Stützle T (2003) A two-phase local search for the biob-
jective traveling salesman problem. In: International conference on
evolutionary multi-criterion optimization. Springer, pp 479–493

48. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary
algorithm based on decomposition. IEEE Trans Evolut Comput
11(6):712–731

49. Deb K, Jain H (2013) An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach, part i: solving problemswith box constraints. IEEETrans
Evolut Comput 18(4):577–601

50. Miettinen K (2012) Nonlinear multiobjective optimization, vol 12.
Springer, Berlin

51. Li K, Deb K, Zhang Q, Kwong S (2014) An evolutionary
many-objective optimization algorithm based on dominance and
decomposition. IEEE Trans Evolut Comput 19(5):694–716

52. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the
strength pareto evolutionary algorithm. TIK-report, vol 103

53. Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolution-
ary algorithm for many-objective optimization. IEEE Trans Evolut
Comput 17(5):721–736

54. Li K, Chen R, Fu G, Yao X (2018) Two-archive evolutionary
algorithm for constrained multiobjective optimization. IEEE Trans
Evolut Comput 23(2):303–315

55. Liu Y, Ishibuchi H, Yen GG, Nojima Y, Masuyama N (2019) Han-
dling imbalance between convergence and diversity in the decision
space in evolutionary multi-modal multi-objective optimization.
IEEE Trans Evolut Comput

56. Rudolph G, Naujoks B, Preuss M (2007) Capabilities of EMOA
to detect and preserve equivalent pareto subsets. In: International
conference on evolutionary multi-criterion optimization. Springer,
pp 36–50

57. Li M, Yang S, Liu X (2015) Pareto or non-pareto: bi-criterion evo-
lution in multiobjective optimization. IEEE Trans Evolut Comput
20(5):645–665

58. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG
(2003) Performance assessment of multiobjective optimizers: an
analysis and review. IEEE Trans Evolut Comput 7(2):117–132

59. Zhang W, Li G, Zhang W, Liang J, Yen GG (2019) A cluster based
PSO with leader updating mechanism and ring-topology for mul-
timodal multi-objective optimization. Swarm and Evolut Comput
50:100569

60. Zhou A, Zhang Q, Jin Y (2009) Approximating the set of pareto-
optimal solutions in both the decision and objective spaces by an
estimation of distribution algorithm. IEEE Trans Evolut Comput
13(5):1167–1189

61. Deb K, Agrawal RB et al (1995) Simulated binary crossover for
continuous search space. Complex Syst 9(2):115–148

62. Deb K, Goyal M (1996) A combined genetic adaptive search
(GeneAS) for engineering design. Comput Sci Inf 26:30–45

63. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: a MATLAB
platform for evolutionarymulti-objective optimization. IEEECom-
put Intell Mag 12(4):73–87

64. Wimmer G, Šidlík P, Altmann G (1999) A new model of rank-
frequency distribution. J Quant Linguist 6(2):188–193

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Balancing performance between the decision space and the objective space in multimodal multiobjective optimization
	Abstract
	1 Introduction
	2 Related work
	2.1 Prior works on multimodal multiobjective optimization
	2.2 Decomposition of multiobjective optimization

	3 Proposed algorithm
	3.1 General framework
	3.2 Decision subregion allocation
	3.3 Update mechanism of the DA
	3.4 Environmental selection
	3.5 Mating selection

	4 Experimental study
	4.1 Test problems
	4.2 Performance metrics
	4.3 Comparison results with other algorithms

	5 Conclusion
	References




