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Abstract
Multi-objective evolutionary algorithms (MOEAs) have been the choice for generating a set of Pareto-optimal (PO) solutions
in one run. However, these algorithms sometimes suffer slow and poor convergence toward the PO front. One of the remedies
to improve their convergence is to couple global search of MOEAs with local search. However, such coupling brings other
implementation challenges, such as what, when, and howmany solutions can be chosen for local search with MOEAs? In this
paper, these challenges are addressed by developing a local search module that can choose solutions for local search using a
set of reference lines. The heuristic strategies are also developed with the module for determining the frequency of executing
local search and for terminating MOEA adaptively using a statistical performance indicator. The proposed algorithm, which
is referred to as RM2OEA, is tested on 2-objective ZDT and 3-objective DTLZ test problems. Results demonstrate faster and
improved convergence of RM2OEA over a benchmark MOEA from the literature.

Keywords Multi-objective optimization · Hybrid evolutionary algorithm · Memetic evolutionary algorithm · Reference
lines · Adaptive termination condition

1 Introduction

A multi-objective optimization problem (MOOP) can be
written as

Minimize FMOOP(x) = ( f1(x), f2(x), . . . , fM (x))T ,

subject to x ∈ S ⊂ Rn,
(1)

where FMOOP(x) is the vector of conflicting objectives
( f j (x),∀ j = 1, . . . , M), x is the vector of decision vari-
ables, and S is the feasible search space. Such MOOP can
be solved efficiently by using multi-objective evolutionary
algorithms (MOEAs) because these algorithms can generate
a set of Pareto-optimal (PO) solutions in one run. Therefore,
MOEAs have been successfully used for theoretical [8,29]
and engineering optimization problems [1,19,23,24].

Despite of showing success in solving MOOP, MOEAs
still suffer slow and poor convergence for some prob-
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lems [12,26]. It generally occurs when many solutions of
MOEAbecomenon-dominated. In this case, the environmen-
tal selection of MOEA cannot differentiate such solutions,
thereby reducing the selection pressure [18]. Moreover, the
variation operators such as crossover and mutation opera-
tors are also becoming ineffective. One of the remedies to
address this challenge is to develop the hybrid or memetic
MOEAs [12,15,25]. These memetic algorithms are devel-
oped by coupling global search of MOEA with the local
search techniques by converting a MOOP into a single-
objective optimization problem (SOOP).

In the literature, many attempts have been made to imple-
ment local search with global search of MOEAs. First of
all, a MOOP is converted into a SOOP using the weighted-
sum method [10,11], the ε−constraint method [15,25], or
the scalarizing functions [7,26]. After this conversion, a set
of solutions for performing local search is chosen. In this
case, either an appropriate solution [26] or a set of solutions is
selected. The set either consists of the current non-dominated
solutions [13,17], or offspring solutions after crossover and
mutation [2]. The selection of the appropriate non-dominated
solutions is also made heuristic when any solution can be
selected with some probability [11,12]. Moreover, the local
search is executed at the beginning on the initial population,
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during the generations, after finishing the fixed number of
generations, or combination of two or more such strategies
[11,12]. These memetic algorithms mostly get terminated
after a fixed number of generations [10] or function evalua-
tions [15,25]. A little focus has been made to terminate these
algorithms adaptively such as in [6,7].

From the literature, it is found that when local search is
coupled with MOEAs, a set of implementation challenges
emerges that need to be addressed for effective working of
memetic MOEAs [11,26]. The first challenge is the crite-
rion for choosing a solution or a set of solutions for local
search. Since MOEAs work on a population, the effective-
ness of memetic MOEAs depends on this challenge. The
second challenge is the number of solutions for local search
since limited local searches on few solutions may not be
effective or too much local searches on many solutions can
become computationally expensive. The third challenge is
when to execute local search? Since MOEAs are generation
or iteration-based algorithms, it is important to know the right
time for executing local search.Otherwise,many local search
computations can be wasted without improving the conver-
gence. The fourth challenge is the termination condition for
memeticMOEAs. A fixed number of generations or function
evaluationsmay not be needed since amemeticMOEAmight
have converged earlier or more number of generations may
be needed for better convergence. Addressing all these chal-
lenges ensures a balance between local and global searches
for better convergence of any memetic algorithm.

This papers focuses on the above challenges bydeveloping
a local search module that can be coupled with the existing
MOEAs. The following are the contributions of the proposed
local search module.

– Selection of solutions for local search using a set of refer-
ence lines: In this procedure, a single solution closest to
each reference line is chosen for local search. The num-
ber of local search solutions is calculated using Das and
Denis method [4].

– A heuristic strategy for the frequency of executing local
search using the statistical performance indicator called
modified inverse generalized distance (IGD+) indicator.

– A heuristic strategy for an adaptive termination criterion
for the proposed MOEA using IGD+ indicator.

– Comparative analysis of the proposed MOEA over a set
of 2- and 3-objective test problems with the existing
MOEA.

The remaining paper is organized in five sections. Sec-
tion 2 presents the relevant literature survey of hybrid or
memetic MOEAs and their strategy for balancing local and
global searches. Section 3 presents the proposed reference-
lines-steeredmemeticMOEAwith implementation details of
the local search module. The proposed MOEA is tested and

its results are presented in Sect. 4. The paper is concluded in
Sect. 5 with note on the future work.

2 Related literature survey

Multi-objective genetic local search algorithm (MOGLS)
[10] is one of the earliest implementations for solving a com-
binatorial optimization problem. In MOGLS, the weighted-
sum method is used to convert a MOOP into a SOOP. All
new solutions after crossover and mutation are chosen, and
the local search is applied to them after assigning weights.
MOGLS is then modified to perform local search on a set of
solutions by using tournament selection operator [12]. The
solutions for local search are selected using a probability for
reducing the number of computations. The algorithm is fur-
ther extended to S-MOGLS [11] in which the Pareto-ranking
for MOEA and the weighted-sum method for local search
are used. The selection of solutions for local search is done
with a probability using binary tournament selection opera-
tor. Another variant called cellularMOGLS is also developed
[17] in which local search is applied to all non-dominated
solutions in every generation. In another attempt, local search
is coupled with the recombination operators [13] in which all
offspring solutions are chosen for local search.APareto-local
search (PLS) is developed [14] for combinatorial MOOPs,
which is coupled with MOEA/D [28]. Three population sets
are stored, and PLS is applied to one set so that other sets can
be updated. During local search, the solutions are perturbed,
and a SOOP is formulated using the weight-sum method.

Apart from the weighted-sum method, the ε−constraint
method is also used for converting a MOOP into a SOOP
[15,25]. The non-dominated solutions in every generation
are selected for performing local search using the sequen-
tial quadratic programming (SQP) method. The local search
solutions are mixed with the current solutions, and the
best solutions are chosen. The hybrid MOEAs get termi-
nated using a fixed number of function evaluations. Local
search is also implemented by determining all promising
non-dominated directions and coupled with MOEA [2]. In
another attempt, a local search strategy called hill-climbing
sidestep is proposed [16] for MOEAs. The direction for local
search is found using the geometry of directional cones. The
sidestep is performed when the new solution is closer to the
(local) PO solution. The local search is executed on every
solution of the offspring population. A hybrid framework for
MOEAs is proposed [26] in which a local search solution in
every generation is selected from the clusters that are made
after projecting the solutions on a hyperplane. A scalarizing
function is used for performing local search using the SQP
method. In another attempt, local search via perturbation of
variables of a solutionwith respect to its neighborhood is cou-
pledwithMOEA [3]. TheGaussianmutation operator is used
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for perturbing local search solutions. The farthest-candidate
solution method is used to include better local search solu-
tion in a population. A memetic version of MOEA/D [28] is
also developed by coupling a heuristic sequential quadratic
approximation method. For each sub-problem, local search
using Tchebycheff function is executed in every generation.

Nadir point estimation is another area in which local
search is used [6,7]. Since the Nadir point needs to be esti-
mated, only the worst points in each objective from the
current population or the extreme solutions of the current
non-dominated solutions are found, and local search is exe-
cuted using the augmented achievement scalarizing function.
The SOOP is solved using the SQP method.

The local search has also been used with MOEAs for
solving engineering optimization problems. For example,
the multi-objective elastic structural topology optimization
problem is solved using hybrid or customized MOEA [21–
24]. The current non-dominated solutions are clustered, and
the best representative solution from each cluster is chosen
for local search in every generation. A problem-specific local
search is executed, and the solutions after local search replace
its parent solution in the current population. Another exam-
ple is the optimal soil cutting by bulldozer and its blade
[1] in which local search is executed on the obtained non-
dominated solutions of MOEA after termination.

From the above literature survey, it can be seen that the
studies focused on choosing an appropriate set of local search
solutions. The number of local search solutions was decided
either heuristically or deterministically. The frequency of
executing local search was determined either in every gen-
eration or using some functions. The termination of hybrid
MOEAswasmostly on a number of generations or functional
evaluations. The challenges mentioned in Sect. 1 have been
handled uniquely by these studies in order to make a balance
between local and global searches. In the following section,
the proposed algorithm is described, and details are given for
addressing the challenges of implementing local search with
MOEA.

3 Proposedmemetic multi-objective
evolutionary algorithm

The proposed memetic MOEA is developed using a com-
monly used framework of generationalMOEAs, as presented
in Algo. 1. It can be seen that a set of input parameters needs
to be set at the beginning in Step 1. Thereafter, a random
population P0 of size N is generated in Step 2. The objec-
tive functions and constraints are evaluated in Step 3, and the
fitness is assigned to each solution. In the standard loop of
the generations, a mating pool (Ptmp) is created in Step 5 by
using a selection operator to select good and above average
solutions. The solutions in the mating are then used for cre-

ating an offspring population (Qt ) in Step 6 using variation
operators, such as crossover and mutation. Both the parent
and offspring populations are combined in Step 7. The pur-
pose of combining and evaluating the populations is to select
the N best solutions, which is done in Step 8. In this step,
the fitness is given to each solution, and the best N solu-
tions are selected for the next generation population (Pt+1).
At last, the generation counter is increased by one. The loop
over generation gets terminated when the counter reaches the
maximum number of generations (Tmax).

3.1 The local searchmodule

The local search module is proposed to address challenges
mentioned in Sect. 1 so that a balance can be made between
local and global searches for better convergence. In order to
implement local search, a MOOP needs to be converted into
a SOOP. The details are given in the following section.

Algorithm 1 Commonly used framework of MOEAs.
1: Set t = 0, Tmax: maximum number of generations, N : population

size and other parameters such as probabilities for variation opera-
tors, etc.

2: Generate initial population (Pt ) of size N .
3: Evaluate and assign fitness to Pt .
4: while t ≤ Tmax do
5: Ptmp : Selection of solutions from Pt for creating a mating pool.
6: Qt : Creation of offspring population from Ptmp using variation

operators such as crossover and mutation.
7: Evaluate Qt and assign fitness to the combined population (Rt =

Pt ∪ Qt ).
8: Pt+1 : Environmental selection for selecting the N best solutions

from Rt .
9: t + +;
10: end while

3.1.1 Formulation for local search

The ε−constraint method [20] is used for converting a
MOOP to a SOOP, which is given as

Minimize fM (x),
subject to g1(x) = ε1 − f1(x) ≥ 0,

g2(x) = ε2 − f2(x) ≥ 0,
...

gM−1(x) = εM−1 − fM−1(x) ≥ 0,
x ∈ S ⊂ Rn .

(2)

Here, the parameter, ε j (∀ j ∈ {1, . . . , M − 1}), is the upper
bound on their respective objective value, f j . It can be seen
that an unconstrained MOOP is converted into a constrained
SOOP. In order to solve equation (2), themethod ofmultiplier
(MOM) [20] is used that converts the constraint SOOP into
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an unconstrained optimization problem. Using MOM, the
resulting optimization problem is given as

Minimize P(x, σ t , τ t )

= fM (x) + R ×
J∑

j=1

{(〈
g j (x) + σ

(t)
j

〉)2 −
(
σ

(t)
j

)2}

+ R ×
K∑

k=1

{(
hk(x) + τ

(t)
k

)2 −
(
τ

(t)
k

)2}
.

(3)

Here, P(x, σ t , τ t ) is the penalty function, R is the penalty
parameter, g j ’s (∀ j = 1, . . . , M − 1) are inequality con-
straints, hk’s (∀k = 1, . . . , K ) are equality constraints, and t
represents iteration counter. The σ

(t)
j and τ

(t)
k penalty param-

eters are calculated as

σ
(t)
j =

〈
g j (x) + σ

(t−1)
j

〉
,

τ
(t)
k = hk(x) + τ

(t−1)
k ,

(4)

where 〈a〉 is the bracket operator, which is equal to a when
a < 0. Otherwise, it is equal to zero. The initial values of
σ

(0)
j and τ

(0)
k are kept zero for all constraints.

The unconstrained problem given in equation (3) is solved
using the steepest descent method [20] in which a unidirec-
tional search is performed along the unit vector of the steepest
descent direction. The gradient of the penalty function is
calculated using the central difference method. The MOM
method gets terminated after (TMOM ) iterations or the dif-
ference between the new solution and the current solution
is less than or equal to a user-defined parameter (εMOM). In
each sequence of MOM, the steepest descent method gets
terminated after (TSDM ) iterations.

3.1.2 Number and choice for local search solutions

The number and choice of solutions for local search are deter-
mined using Das and Dennis method [4]. The number of
solutions for local search (NLS) is found by generating the
structured reference points on a unit hyperplane, which is
given as

NLS =
(
p + M − 1

M − 1

)
, (5)

where M is the number of objectives, and p is the number of
equal divisions on each objective axis.

The same reference points are used for choosing local
search solutions through the reference lines. These lines are
drawn from the origin and the reference points as shown in
Fig. 1.

In order to select solutions for local search from the cur-
rent population, all solutions are first normalized and then,

F
1 F2

F3

Hyperplane

Reference Point

Fig. 1 A set of 15 reference points is generated using p = 4 forM = 3-
objective case. The reference lines are drawn from the origin and the
reference points

clustered. First, each objective value f j (x) of solution (x)
is translated to f̂ j (x) = f j (x) − z∗j , where z∗j is the j−th
component of the ideal vector (z∗) found from the cur-
rent population. This translation shifts all solutions in the
first quadrant of the objective space. Thereafter, the extreme
points are found byminimizing the Achievement Scalarizing
Function (ASF(x, w j )) given in equation (6).

Minimize

{
ASF(x, w j ) = M

max
k=1

(
f̂k(x)
w j,k

)}
, (6)

where w j,k(∀k ∈ {1, . . . , M}) is a search vector for j−th
objective. It is defined as w j,k = 1 for j = k, or w j,k =
10−6, otherwise. The obtained extreme points are then used
to construct a plane to find its intercept on each objective
axis, that is, ze. Using the ideal point and the intercepts,
all solutions of the current population are normalized using
equation (7).

F̂j (x) = f̂ j (x)
zej (x)

, (7)

where F̂j (x) is the j−th normalized objective value of solu-
tion (x).

After normalization, each solution is then clustered with
a reference line that is closest to it. It is done by finding the
Euclidean distance (d1(x,w)) between the solution (x) and
each reference line (w), which is given as

d1(x,w) = ||(x − wT xw/||w||2)||. (8)

The solution (say s), which has the least d1 value to a refer-
ence line (say r), is included into the cluster of the reference
line (r). Similarly, every solution is clustered with one of the
reference lines. If any cluster for a reference line is empty,
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Fig. 2 The obtained PO solution of ZDT1 problem using θ−DEA and RM2OEA-OF
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Fig. 3 The obtained PO solution of ZDT2 problem using θ−DEA and RM2OEA-OF

the nearest solution having the least PBI fitness [28] from
the clusters of neighboring lines is selected to fill this cluster.
The PBI fitness is calculated as

FPBI (x) = d2 + θd1. (9)

The distance d2 for a solution (x) along a reference line (w)
is calculated as

d2(x,w) = xTw
||w||2 . (10)

Once the clusters are made, a solution having the least PBI
distance from each cluster is selected for local search. In this
way, the number of chosen set of local search solutions is
the same as the number of the reference lines. Since local
search is steered by a set of the reference lines, the proposed
memetic MOEA is referred to as Reference-Lines-Steered
Memetic MOEA (RM2OEA).

3.1.3 Frequency of executing local search

Apart from the number and choice of local search solutions,
the frequency of executing local search is an important chal-
lenge to address for making a balance between global and
local searches. This challenge can be addressed by using
the statistical indicator. There exist many indicators such as
R2, hypervolume, generalized distance, inverse generalized
distance, etc. Among them, hypervolume indicator is used
in various studies, which does not need any reference PO
solutions. However, it is computationally expensive as com-
pared to other indicators. In this paper, a modified inverse
generalized distance (IGD+) indicator [9] is used because its
performance is found similar to hypervolume indicator but
with less computational requirement. It is calculated as

IGD+ = 1

|P∗|
|P∗|∑

j=1

min d+(xi , a j ), (11)
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Fig. 4 The obtained PO solution of ZDT3 problem using θ−DEA and RM2OEA-OF
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Fig. 5 The obtained PO solution of ZDT6 problem using θ−DEA and RM2OEA-OF

where P is the set of the obtained non-dominated solutions
from MOEA and xi is one of its solutions, P∗ is the set of
the uniformly distributed PO solutions and a j is one of the
PO solutions, |P∗| is the cardinality of P∗, and d+(xi , a j ) is
the Euclidean distance calculated in the normalized objective
space. It is calculated as

d+(xi , a j ) =
√√√√

M∑

k=1

(max{x(k)
i − a(k)

j , 0})2, (12)

where x(k)
i and a(k)

j represent k−th objective value of solu-
tions xi ∈ P and a j ∈ P∗. A smaller value of IGD+
represents better convergence and distribution of P with
respect to P∗.

Using IGD+, the local search is executed after satisfying
the condition given in equation (13).

IGD+
max − IGD+

min − 2 × IGD+
avg < 0.05. (13)

Here, IGD+
max, IGD

+
min, and IGD+

avg represent maximum,
minimum, and average values of IGD+ from the past 20
generations of RM2OEA. From simulations, it is found that
once this condition gets satisfied in any generation, it remains
the same for subsequent generations. In order to control
many local searches, the next local search is allowed after
(0.1 × Tmax) of generations.

3.2 Selection and variation operators

In Step 5 of Algo. 1, a random selection operator is
used, which picks two solutions randomly for performing
crossover. Once a pair of solutions is considered, they are
not selected again and other pair of solutions is picked. In
this way, a random selection is used for all solutions of the
parent population Pt .

Simulated binary crossover (SBX) and polynomial muta-
tion operators [5] are used as variation operators. SBX is
performedwith a probability of pc, which is kept high.Muta-
tion is performed with a probability of pm , which is kept low.
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Fig. 6 The obtained PO solution of DTLZ1 problem using θ−DEA and RM2OEA-OF
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Fig. 7 The obtained PO solution of DTLZ2 problem using θ−DEA and RM2OEA-OF
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Fig. 8 The obtained PO solution of DTLZ3 problem using θ−DEA and RM2OEA-OF

3.3 Environmental selection

Environmental selection of θ−DEA [27] is adapted because
it is found to be efficient for a large class of MOOPs. Also, it
uses reference lines for selecting solutions from the combined
population. The θ−dominance principle is used for sorting
the solutions. First, all solutions of the combined population

are divided into clusters as defined in Sect. 3.1.2. Thereafter,
the solutions from the same cluster are compared using the
PBI distance given in equation (9). The solutions of the same
cluster are then sorted using the θ−dominance principle. In
order to select solutions for the next generation population
(Pt+1), the best rank solution from each cluster is copied.
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Fig. 9 The obtained PO solution of DTLZ4 problem using θ−DEA and RM2OEA-OF

3.4 Adaptive termination of RM2OEA

The proposed RM2OEA gets terminated using IGD+ indica-
tor defined in Sect. 3.1.3. The IGD+ values are stored from
the past few generations and an adaptive termination condi-
tion is developed, which is given as

(
IGD+

max < εmax
)
&

(
IGD+

max − IGD+
min

)
< ε. (14)

Here, IGD+
max and IGD+

min are the maximum and minimum
values of IGD+ indicator in the past 20 generations. The
terms ε and εmax are used for terminating RM2OEA. The val-
ues of these terms are generated using fluctuations in IGD+
values. It means that an increase in IGD+ value for succes-
sive generations considers a fluctuation. After experimenting
with different sets of values, the following values are used,
which are given in equation (15).

εmax =

⎧
⎪⎨

⎪⎩

5 × 10−4 if number of fluctuations = 0

1 × 10−3 0 < number of fluctuations ≤ 7

5 × 10−3 number of fluctuations > 7

ε =

⎧
⎪⎨

⎪⎩

5 × 10−5 if number of fluctuations = 0

1 × 10−4 0 < number of fluctuations ≤ 7

5 × 10−4 number of fluctuations > 7

(15)

3.5 Scope of local searches

The local search module can be applied at various steps of
RM2OEA presented in Algo. 1. Three variants of RM2OEA
are presented in this paper. For example, when local search
module is executed before Step 5 (that is, before selection),
it is referred to as RM2OEA-OP. In this implementation,
the local search solutions replace their corresponding par-
ent solutions from the population. The second variant is
RM2OEA-OF in which local search module is executed
beforeStep7 (that is, afterQt is generated). In this implemen-

tation, the local search solutions replace their corresponding
offspring solutions from the population. The third variant is
RM2OEA-ENV in which local search module is executed
before Step 9 (that is, after environmental selection). In this
implementation, the local search solutions replace their cor-
responding solutions from the next generation population
(Pt+1).

4 Results and discussion

Three variants of RM2OEA is now tested for its performance
assessment. The details are as follows.

4.1 Test problems

The performance of three variants is tested on 2-objective
ZDT1, ZDT2, ZDT3, and ZDT6 problems [29]. ZDT1 is a
30−variable problem, which has the convex PO front. ZDT2
is also a 30−variable problem but the PO front is concave.
ZDT3 is also a 30−variable problem, which has several dis-
connected PO fronts. ZDT6 is a 10−variable problem with a
concave PO front but the density of solutions along with the
PO front changes.

RM2OEA is also tested on 3-objective problems, that is,
DTLZ1, DTLZ2, DTLZ3, and DTLZ4 problems [8]. DTLZ1
is a multi-modal MOOP, which has the linear PO front.
DTLZ2 is a simple MOOP, which has the concave PO front.
DTLZ3 is a multi-modal MOOP, which has the concave PO
front. DTLZ4 is a biased MOOP, which has the concave PO
front.

4.2 Algorithm for comparison

It can be observed from the discussion in Sect. 3.3 that the
environmental selection of θ−DEA is used. Therefore, three
variants of RM2OEA are tested with θ−DEA. Moreover,
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Fig. 10 The convergence plots for ZDT problems are shown for NLS = 20, 40, 60, 80 and 100 values

θ−DEA has already shown its out-performance over other
benchmark MOEAs [27], the comparison is thus made with
this algorithm only for simplicity and clarity. It is impor-
tant to note that the variants of RM2OEA are developed
using various local search implementations in the litera-
ture. RM2OEA-OF is motivated by MOGLS and its variants
[10,11] in which local search is implemented on the off-
spring population. MOGLS implemented local search on
newly created solutions after crossover and mutation. The
weighted-sum method was used for converting the multi-
objective problem into the single-objective optimization
problem. However, RM2OEA-OF chooses a few solutions
as described earlier from the offspring population, and local
search is implemented using the ε−constraint method.

RM2OEA-ENV is motivated by the studies [15,25] in
which local search is applied to the solutions after the envi-
ronmental selection. In these studies, all non-dominated
solutions after environmental selection were selected for
performing local search using the ε−constraint method.
The solutions after local search were then combined with
the current population. However, RM2OEA-ENV chooses

few non-dominated solutions using the approach described
earlier. The solutions after local search then replace their cor-
responding solutions in the current population.

It is noted that local search is executed after every
(0.1 × Tmax) generations for RM2OEA-OP, RM2OEA-OF,
and RM2OEA-ENV. The adaptive version of any variant
signifies execution of local search as per the details given
Sect. 3.1.3.

4.3 Performance indicator

The statistical analysis of RM2OEA is performed using
IGD+ indicator, which is described in Sect. 3.1.3. A smaller
value of this indicator with respect to the PO front (P∗)
signifies better convergence and good diversity among the
obtained non-dominated solutions (P).

It is important to note that a set of the PO solutions
is needed to calculate IGD+ value. Since the above prob-
lems are mathematical MOOPs, their PO fronts are known.
For example, the PO front of ZDT1 is defined by f2 =
1 − √

f1 and f1 ∈ [0, 1]. ZDT2 has the PO front defined
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Fig. 11 The convergence plots for DTLZ problems are shown for NLS = 15, 36, 51, 72 and 91 values

by f2 = 1 − f 21 and f1 ∈ [0, 1]. ZDT3 has disconnected
PO fronts, which are defined by the ranges in f1 such as
f1 = [0, 0.0830015349] ∪ [0.1822287280, 0.2577623634]
∪ [0.4093136748, 0.4538821041] ∪ [0.61839667944,
0.6525117038] ∪ [0.8233317983, 0.8518328654], and f2 =
1 − √

f1 − f1 sin(10π f1). ZDT6 has the same PO front as
defined for ZDT2, however the range of f1 is defined as
f1 ∈ [0.2807753191, 1]. For DTLZ1 problem, the PO front
is defined by a linear plane in the first quadrant and hav-
ing the intercept on each objective axis at 0.5. It is defined
by

∑M
i=1 fi = 0.5,∀ fi ≥ 0. DTLZ2 to DTLZ4 problems

have the PO front defined by
∑M

i=1 f 2i = 1,∀ fi ≥ 0. It is a
spherical surface defined in the first quadrant.

Since a set of the reference points is generated as described
in Sect. 3.1.2, the reference lines drawn from the origin
and the reference points are used to find their points of the
intersection with the given PO front. These points of inter-
section become the PO solutions to a given problem. It can
be observed that when a set of non-dominated solutions gen-
erated by MOEA is evolved closer to these generated PO
solutions, a smaller IGD+ value will be observed. It is noted

that MOEAs are run for 30 times with different initial popu-
lations for performance assessment.

4.4 Experimental settings

In order to run RM2OEA and θ−DEA, some input parame-
ters need to be fixed. For example, Table 1 presents different
input parameters for running the MOEAs. It is noted that
RM2OEA gets terminated either by the adaptive termina-
tion condition discussed in Sect. 3.4 or by the maximum
number of allowed generations (Tmax ), whichever is satis-
fied early. The input parameters for running the local search
using MOM are given in Table 2. The MOM method gets
terminated either by TMOM or εMOM, whichever is satisfied
early. The only parameters left for θ−DEA are θ = 5 and
the neighborhood size is TNB = 20. It uses PBI function
for calculating the fitness. It is also noted that all variants
of RM2OEA and θ−DEA are run with (p = N − 1) equal
divisions for 2-objective MOOP and p = 12 equal divisions
for 3-objective MOOP for generating the reference points.
In the case of 3-objective problems, the number of reference
points becomes 91.
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Table 1 Different input parameters for running RM2OEA and θ−DEA
are presented

MOOPs N Tmax ηc ηm pc pm

ZDT1 100 150 15 20 0.9 0.033

ZDT2 100 200 15 20 0.9 0.033

ZDT3 100 1000 15 20 0.9 0.033

ZDT6 100 1000 15 20 0.9 1

DTLZ1 92 400 30 20 1 0.1428571

DTLZ2 92 250 30 20 1 0.083

DTLZ3 92 1000 30 20 1 0.083

DTLZ4 92 600 30 20 1 0.083

Here, N is the population size, Tmax is the maximum number of gener-
ations, ηc is a parameter for SBX crossover operator, ηm is a parameter
for polynomial mutation operator, pc is the probability of crossover,
and pm is the probability of mutation

Table 2 The details of input parameters for running local search using
the MOM method with the steepest descent method

Parameter Value

Maximum iterations (TMOM) 5

Maximum sequences (KSDM) 10

Penalty (R) 100

Error for termination (εMOM) 0.001

The maximum number of iterations for local search using the MOM
method is denoted by TMOM, and in each iteration, the number of
sequences for running the steepest descent method is denoted by KSDM

4.5 Comparison based on IGD+ values

Tables 3, 4, 5, and 6 presents the performance assessment
comparison of three variants of RM2OEA with θ−DEA on
2-objective MOOPs. The IGD+ values are shown for differ-
ent values of local search solutions (NLS).Meaning, a smaller
value of NLS suggests less number of local search solu-
tions, and vice-versa. Table 3 shows that RM2OEA-OP and
RM2OEA-OF variants are found to be better than θ−DEA
for any number of NLS for ZDT1 problem. Except for a few
IGD+ values, RM2OEA-ENV variant is also found to be
better. An interesting observation can be seen at the median
IGD+ values of all variants RM2OEA that the local search
module shows similar performance irrespective of different
NLS values. From Table 3, it can also be seen that RM2OEA-
OF is found to be the best among other variants. Therefore,
RM2OEA-OF ismade adaptive using the condition described
in Sect. 3.1.3. The last column of the same table suggests
that adaptive RM2OEA-OF shows better performance than
θ−DEA but unable to generate the same quality of solutions
as RM2OEA-OF.

For ZDT2 problem, Table 4 shows that RM2OEA-OP and
RM2OEA-OFvariants are found to bebetter than θ−DEAfor
any number of NLS. RM2OEA-ENV is not found competitive
as other variants. Among them, RM2OEA-OF is found to be
the best. However, its adaptive version in the last column of

the same table is not as good as RM2OEA-OF, but better
than θ−DEA. From the table, it can be seen that NLS does
not show much impact on the performance of three variants
of RM2OEA.

For ZDT3 problem, Table 5 presents a comparison among
MOEAs. Since ZDT3 has disconnected PO fronts, not a
single variant is found to be outperforming θ−DEA. With
NLS = 72, RM2OEA-OF is found to be better than θ−DEA
for all three statistical values of IGD+. The adaptive version
of RM2OEA-OF seems to be not helping RM2OEA. It can
also be seen from the table that RM2OEA-OP is unable to
generate better IGD+ values than θ−DEA.

For ZDT6 problem, Table 6 shows a better performance
of RM2OEA-OP, RM2OEA-OF and adaptive RM2OEA-OF
variants over θ−DEA. Except for NLS = 36, RM2OEA-
ENV is unable to perform better than θ−DEA. Among all
the variants, RM2OEA-OF is found to better than others.

Tables 7, 8, 9, and 10 presents the performance compari-
son of all variants of RM2OEA with θ−DEA for 3-objective
DTLZ problems. For DTLZ1 problem, RM2OEA-ENV is
found to be the best among all variants. Except for the worst
IGD+ values for all NLS, RM2OEA-OP, RM2OEA-OF and
its adaptive version are found to be better than θ−DEA.
Regarding NLS, the performance of all variants of RM2OEA
seems to be similar.

For DTLZ2 problem, Table 8 shows that RM2OEA-OF
and its adaptive version are found to be better than θ−DEA.
For this problem, adaptive RM2OEA-OF is found to be the
best. RM2OEA-OP and RM2OEA-ENV are unable to gen-
erate good IGD+ values than θ−DEA. The performance of
RM2OEAvariants seems to be quite similar for different NLS

values.
For DTLZ3 problem, Table 9 shows better performance of

all variants over θ−DEA.Among the variants, RM2OEA-OF
is found to be the best. For this example aswell, different NLS

values show the similar performanceof variants ofRM2OEA.
For DTLZ4 problem, Table 10 show that only RM2OEA-

OF shows the best performance for different values of NLS

over θ−DEA. RM2OEA-ENV is better than θ−DEA only
for NLS = 91. Other variants are unable to perform better
than θ−DEA. Since this problem is biased, this could be a
probable reason for not so good performance of other vari-
ants.

From Tables 3, 4, 5, 6, 7, 8, 9, and 10, it can be seen that
RM2OEA-OF is the best variant and shows better IGD+ val-
ues against θ−DEA in most for the problems. The adaptive
version of RM2OEA-OF does not seem to be as effective as
RM2OEA-OF, except for DTLZ2. Moreover, it can also be
observed that NLS seems to have not much impact on the per-
formance of any variants of RM2OEA. It can be due to the
selection of good solutions for local search that helps global
search of MOEA for better convergence.
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Table 3 The IGD+ values of three variants of RM2OEA and θ−DEA are presented for ZDT1 problem

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA Best 5.684e−03

Median 6.513e−03

Worst 8.709e−03

20 Best 2.319e−03 5.913e−03 2.429e−03 3.120e−03

Median 2.957e−03 6.832e−03 3.037e−03 2.960e−03

Worst 3.662e−03 8.536e−03 3.909e−03 3.399e−03

40 Best 2.504e−03 5.680e−03 2.394e−03 3.051e−03

Median 3.027e−03 6.451e−03 3.072e−03 2.707e−03

Worst 3.656e−03 8.018e−03 3.561e−03 3.625e−03

60 Best 2.773e−03 5.180e−03 2.472e−03 3.176e−03

Median 3.222e−03 6.583e−03 3.080e−03 3.125e−03

Worst 3.773e−03 8.622e−03 4.004e−03 3.400e−03

80 Best 2.294e−03 5.553e−03 2.390e−03 3.413e−03

Median 2.974e−03 6.821e−03 2.909e−03 3.017e−03

Worst 3.699e−03 8.006e−03 3.551e−03 3.446e−03

100 Best 2.799e−03 5.070e−03 2.472e−03 2.861e−03

Median 3.268e−03 6.584e−03 2.997e−03 2.717e−03

Worst 3.854e−03 8.125e−03 3.504e−03 3.624e−03

The bold colored cells show inferior IGD+ values of RM2OEA than θ−DEA

Table 4 The IGD+ values of three variants of RM2OEA and θ−DEA are presented for ZDT2 problem

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA Best 3.503e−03

Median 3.942e−03

Worst 5.063e−03

20 Best 2.160e−03 3.362e−03 2.172e−03 2.198e−03

Median 2.206e−03 4.043e−03 2.218e−03 2.273e−03

Worst 2.256e−03 5.152e−03 2.525e−03 4.811e−03

40 Best 2.116e−03 3.364e−03 2.179e−03 2.081e−03

Median 2.188e−03 4.195e−03 2.206e−03 2.219e−03

Worst 2.314e−03 5.651e−03 2.334e−03 4.811e−03

60 Best 2.107e−03 3.132e−03 2.156e−03 2.089e−03

Median 2.178e−03 4.064e−03 2.203e−03 2.266e−03

Worst 2.214e−03 4.948e−03 2.349e−03 4.811e−03

80 Best 2.161e−03 3.361e−03 2.130e−03 2.049e−03

Median 2.218e−03 4.021e−03 2.199e−03 2.248e−03

Worst 3.697e−03 9.520e−03 2.236e−03 4.811e−03

100 Best 2.149e−03 3.270e−03 2.186e−03 2.073e−03

Median 2.220e−03 4.055e−03 2.206e−03 2.234e−03

Worst 2.346e−03 4.587e−03 2.256e−03 4.811e−03

The bold colored cells show inferior IGD+ values of RM2OEA than θ−DEA
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Table 5 The IGD+ values of three variants of RM2OEA and θ−DEA are presented for ZDT3 problem

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA Best 1.351e−03

Median 1.878e−03

Worst 2.380e−03

20 Best 1.526e−03 1.311e−03 1.349e−03 1.440e−03

Median 1.937e−03 1.795e−03 1.779e−03 1.868e−03

Worst 2.550e−03 2.355e−03 2.638e−03 3.765e−03

40 Best 1.467e−03 1.485e−03 1.326e−03 1.317e−03

Median 2.017e−03 1.855e−03 1.888e−03 1.885e−03

Worst 2.815e−03 2.317e−03 2.611e−03 2.823e−03

60 Best 1.565e−03 1.410e−03 1.166e−03 1.509e−03

Median 2.236e−03 1.728e−03 1.766e−03 1.830e−03

Worst 3.394e−03 2.524e−03 2.531e−03 3.528e−03

80 Best 1.561e−03 1.206e−03 1.430e−03 1.260e−03

Median 2.555e−03 1.776e−03 1.802e−03 1.674e−03

Worst 3.586e−03 3.193e−03 2.346e−03 2.884e−03

100 Best 1.620e−03 1.399e−03 1.359e−03 1.254e−03

Median 2.404e−03 1.805e−03 1.708e−03 1.797e−03

Worst 3.322e−03 2.644e−03 2.580e−03 2.996e−03

The bold colored cells show inferior IGD+ values of RM2OEA than θ−DEA

Table 6 The IGD+ values of three variants of RM2OEA and θ−DEA are presented for ZDT6 problem

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA Best 1.763e−03

Median 1.954e−03

Worst 2.038e−03

20 Best 1.587e−03 1.741e−03 1.589e−03 1.554e−03

Median 1.600e−03 1.953e−03 1.599e−03 1.643e−03

Worst 1.614e−03 2.050e−03 1.609e−03 2.196e−03

40 Best 1.587e−03 1.752e−03 1.590e−03 1.589e−03

Median 1.596e−03 1.947e−03 1.600e−03 1.670e−03

Worst 1.628e−03 2.027e−03 1.608e−03 1.957e−03

60 Best 1.584e−03 1.864e−03 1.587e−03 1.601e−03

Median 1.598e−03 1.982e−03 1.600e−03 1.664e−03

Worst 1.622e−03 2.067e−03 1.611e−03 1.978e−03

80 Best 1.600e−03 1.834e−03 1.587e−03 1.563e−03

Median 1.631e−03 1.974e−03 1.600e−03 1.626e−03

Worst 1.687e−03 2.052e−03 1.611e−03 1.808e−03

100 Best 1.600e−03 1.848e−03 1.592e−03 1.565e−03

Median 1.627e−03 1.967e−03 1.602e−03 1.631e−03

Worst 1.679e−03 2.023e−03 1.611e−03 1.829e−03

The bold colored cells show inferior IGD+ values of RM2OEA than θ−DEA
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Table 7 The IGD+ values of three variants of RM2OEA and θ−DEA are presented for DTLZ1 problem

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA Best 4.560e−04

Median 1.416e−03

Worst 3.250e−03

15 Best 2.940e−04 1.310e−04 1.770e−04 2.180e−04

Median 4.770e−04 3.910e−04 3.760e−04 4.230e−04

Worst 2.444e−03 1.569e−03 1.592e−03 2.170e−02

36 Best 3.540e−04 1.620e−04 1.710e−04 2.110e−04

Median 7.010e−04 3.400e−04 3.650e−04 3.680e−04

Worst 3.353e−02 1.357e−03 1.266e−02 1.402e−02

51 Best 2.630e−04 1.450e−04 1.320e−04 2.000e−04

Median 4.600e−04 3.070e−04 3.320e−04 3.550e−04

Worst 1.954e−02 1.183e−03 3.657e−03 4.537e−03

72 Best 2.790e−04 1.960e−04 1.540e−04 1.980e−04

Median 4.690e−04 2.890e−04 2.890e−04 3.450e−04

Worst 2.800e−03 1.053e−03 7.276e−03 1.051e−02

91 Best 3.350e−04 1.500e−04 1.370e−04 2.120e−04

Median 4.660e−04 3.680e−04 2.780e−04 3.290e−04

Worst 8.611e−02 1.508e−03 1.799e−03 9.708e−03

The bold colored cells show inferior IGD+ values of RM2OEA than θ−DEA

4.6 Obtained PO solutions

From Sect. 4.5, it can be seen that RM2OEA-OF is found to
be the best among three variants. In this section, the solutions
corresponding to themedian value of IGD+ for both θ−DEA
and RM2OEA-OF are shown. Since the performance of all
variants is similar for different values of NLS, the obtained
PO solutions for the least NLS are shown, that are, NLS =
20 for 2-objective problems and NLS = 15 for 3-objective
problems.

Figure 2 shows the obtained PO solutions of ZDT1 prob-
lem. The PO front of this problem is non-convex. It can
be seen that θ−DEA is unable to reach the corner along
the f2−axis as compared to RM2OEA-OF. This observa-
tion is similar to the outcome of IGD+ comparison. Figure 3
shows the obtained PO solutions for ZDT2 problem. The PO
front of this problem is convex. For this problem as well,
RM2OEA-OF generates solutions throughout the range of
both objectives, which is not visible with θ−DEA. Figure 4
shows the obtained PO solutions for ZDT3 problem. This
problem has disconnected PO front. The figures shows a bet-
ter distribution of solutions of RM2OEA-OF over θ−DEA.
Figure 5 shows distribution of solutions of both MOEAs for
ZDT6 problem. It is noted that this problem has convex PO
front. It can be seen from the figure that both MOEAs show
similar distribution of solutions.

Figure 6 shows obtained PO solution for DTLZ1 problem
which has linear PO front. This problem is difficult to solve

because it has many local PO fronts before reaching to the
true PO front. It can be seen from the figure that bothMOEAs
show similar distribution of solutions for DTLZ1 problems.
It can be observed that RM2OEA-OF shows a better per-
formance based on IGD+ values, however, the difference
among these values is small. Figure 7 shows the obtained PO
solutions of both MOEAs for convex DTLZ2 problem. For
this problem as well, the distribution of solutions is found
similar for both MOEAs. Figure 8 shows the obtained PO
solutions for convexDTLZ3problem.However, this problem
is difficult to solve since there exists many local PO fronts.
The distribution of solutions is again found similar for both
MOEAs. Figure 9 shows the obtained PO solutions for con-
vex DTLZ4 problem. The figure shows similar distribution
of solutions of RM2OEA-OF and θ−DEA.

4.7 Convergence details

From Sects. 4.5 and 4.6, it can be observed that RM2OEA
was effective and generated better PO solutions and IGD+
values. In this section, the convergence of RM2OEA-OF is
compared with θ−DEA. Figure 10 shows the convergence
plots for ZDT problems. For ZDT1 problem, RM2OEA-OF
with different NLS values shows quicker convergence than
θ−DEA. In fact, the convergence plots of RM2OEA-OF get
flatten at around 60 generations and are converged after 100
generations as compared to the fixed number of generations,
that is 150, for θ−DEA. It seems that RM2OEA-OF with
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Table 8 The IGD+ values of three variants of RM2OEA and θ−DEA are presented for DTLZ2 problem

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA Best 5.630e−04

Median 7.890e−04

Worst 2.023e−03

15 Best 4.410e−04 5.790e−04 4.570e−04 4.030e−04

Median 5.730e−04 7.760e−04 5.400e−04 5.060e−04

Worst 7.540e−04 1.644e−03 6.980e−04 6.480e−04

36 Best 1.747e−03 6.300e−04 3.900e−04 4.040e−04

Median 2.158e−03 8.150e−04 4.980e−04 4.730e−04

Worst 2.672e−03 1.844e−03 5.950e−04 9.920e−04

51 Best 2.926e−03 6.220e−04 3.790e−04 3.930e−04

Median 3.384e−03 7.670e−04 5.010e−04 4.640e−04

Worst 3.802e−03 7.061e−03 6.280e−04 1.134e−03

72 Best 4.629e−03 5.790e−04 4.130e−04 3.700e−04

Median 5.447e−03 7.910e−04 5.000e−04 4.740e−04

Worst 6.461e−03 1.248e−03 6.850e−04 6.280e−04

91 Best 5.232e−03 5.880e−04 3.960e−04 4.090e−04

Median 6.018e−03 7.840e−04 4.850e−04 4.880e−04

Worst 6.962e−03 1.242e−03 6.270e−04 6.340e−04

The bold colored cells show inferior IGD+ values of RM2OEA than θ−DEA

Table 9 The IGD+ values of three variants of RM2OEA and θ−DEA are presented for DTLZ3 problem

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA Best 8.560e−04

Median 3.708e−03

Worst 1.117e−02

15 Best 6.520e−04 7.920e−04 1.740e−04 3.200e−04

Median 1.459e−03 2.960e−03 2.430e−04 4.600e−04

Worst 4.202e−02 8.296e−03 1.207e−03 3.578e−03

36 Best 7.660e−04 7.880e−04 1.610e−04 2.450e−04

Median 1.757e−03 3.498e−03 2.350e−04 4.260e−04

Worst 9.226e−03 9.010e−03 4.626e−03 1.443e−03

51 Best 7.610e−04 6.570e−04 1.810e−04 2.670e−04

Median 1.584e−03 3.153e−03 2.170e−04 3.840e−04

Worst 2.042e−02 9.048e−03 5.490e−04 1.611e−03

72 Best 7.180e−04 8.370e−04 1.380e−04 2.460e−04

Median 1.371e−03 3.208e−03 1.980e−04 4.010e−04

Worst 8.303e−03 9.505e−03 3.850e−04 8.080e−04

91 Best 7.990e−04 5.930e−04 1.470e−04 2.930e−04

Median 1.773e−03 3.523e−03 2.040e−04 4.100e−04

Worst 2.269e−02 1.784e−02 1.052e−03 1.355e−03

The bold colored cells show inferior IGD+ values of RM2OEA than θ−DEA
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Table 10 The IGD+ values of three variants of RM2OEA and θ−DEA are presented for DTLZ4 problem

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA Best 1.460e−04

Median 1.810e−04

Worst 2.460e−04

15 Best 1.250e−04 1.500e−04 1.440e−04 2.080e−04

Median 1.710e−04 1.860e−04 1.680e−04 3.230e−04

Worst 2.360e−04 2.420e−04 2.270e−04 8.230e−04

36 Best 2.190e−04 1.470e−04 1.400e−04 2.220e−04

Median 5.740e−04 1.880e−04 1.750e−04 2.980e−04

Worst 6.370e−04 2.350e−04 4.270e−04 1.362e−03

51 Best 1.970e−04 1.410e−04 1.390e−04 2.220e−04

Median 2.340e−04 1.900e−04 1.730e−04 3.030e−04

Worst 2.990e−04 2.340e−04 2.180e−04 6.840e−04

72 Best 3.970e−04 1.450e−04 1.280e−04 1.870e−04

Median 8.530e−04 1.840e−04 1.720e−04 3.370e−04

Worst 9.280e−04 2.340e−04 2.170e−04 2.352e−01

91 Best 8.270e−04 1.410e−04 1.400e−04 2.150e−04

Median 1.184e−03 1.790e−04 1.730e−04 3.050e−04

Worst 1.321e−03 2.460e−04 2.380e−04 5.390e−04

The bold colored cells show inferior IGD+ values of RM2OEA than θ−DEA

NLS = 80 has the quickest convergence. For ZDT2 prob-
lem, RM2OEA-OF with different NLS values again shows
quicker convergence. The quickest convergence is observed
with NLS = 80 local search solutions, which has converged
in 86 generations as compared to the fixed number of gen-
erations of θ−DEA, that is, 200. For ZDT3 problem again,
a quicker convergence of RM2OEA-OF with different NLS

values can be seen, which has converged in less than 200
generations against the maximum number of generations
allotted, that is, 1000. For ZDT6 problem, RM2OEA-OF has
converged in less than 400 generations.A sharp improvement
can be seen after 220 generations. For the above 2-objective
ZDT problems, RM2OEA-OF with NLS = 80 local search
solutions is found to be the best for the quickest convergence.

Figure 11 shows the convergence plots for 3-objective
DTLZ problems. For DTLZ1 problem, local search seems
to be effective after 150 generations. Therefore, RM2OEA-
OF with NLS = 36, 91 values has converged in less than 350
generations as compared to thefixedgenerations for θ−DEA,
that is, 400. ForDTLZ2problem,RM2OEA-OF and θ−DEA
show similar convergence. For DTLZ3 problem, RM2OEA-
OF with different NLS values shows quicker convergence
than θ−DEA. The quickest convergence is observed with
NLS = 91, which has converged in 658 generations. For
DTLZ4 problem, RM2OEA-OF and θ−DEA show a simi-
lar convergence. However, RM2OEA-OF gets terminated in
less than 370 generations because of the adaptive termination
condition described in Sect. 3.4.

Table 11 presents generations required, functional evalua-
tions, and computational time of RM2OEA and θ−DEA for
the convergence. For ZDT1 problem, hybridizing RM2OEA-
OF with the given set of local search solutions (NLS) has
reduced the number of generations. RM2OEA-OF with
NLS = 80 requires the least number of generations that saves
more than 50% against θ−DEA. However, since several
local searches are involved with RM2OEA-OF, it requires
more number of function evaluations and computational
time than θ−DEA. For ZDT2 problem, RM2OEA-OF with
NLS = 80 requires the least number of generations that
saves around 57% of generations than θ−DEA. Although
the number of function evaluations required by RM2OEA-
OF is more, computational time required by it is relatively
less than θ−DEA. For ZDT3 problem, RM2OEA-OF with
different NLS values requires quite fewer generations than
θ−DEA that saves the computational time. However, more
number of function evaluations is needed by RM2OEA-
OF. For ZDT6 problem, RM2OEA-OF is needed quite a
less number of generations. Therefore, RM2OEA-OF needs
fewer function evaluations for convergence, and computa-
tional time is also reduced. For DTLZ1 problem, almost
a saving of 50 generations can be seen for RM2OEA-OF
with NLS = 36, 91 values against θ−DEA. The number
of function evaluations and computation time is more than
θ−DEA. For DTLZ2 problem, RM2OEA-OF and θ−DEA
need all allotted generations. The same observation can be
seen in Fig. 10 in which both MOEAs have a similar trend.

123



Memetic Computing (2021) 13:49–67 65

Table 11 Number of generations required (Treq), function evaluations (NLS), and computational time of θ−DEA and RM2OEA-OF are presented

Parameters↓/NLS → θ−DEA 20 40 60 80 100

ZDT1

Treq 150 109 107 114 103 121

NF 15,600 134,654 253,338 321,944 497,256 555,636

Time (s) 0.27541 0.24401 0.27851 0.30444 0.33711 0.41222

ZDT2

Treq 200 158 168 109 86 113

NF 20,800 50,690 83,752 210,772 429,722 349,840

Time (s) 0.39121 0.28887 0.35138 0.25822 0.28311 0.30487

ZDT3

Treq 1000 136 162 148 182 158

NF 100,000 64,592 136,896 187,596 278,834 315,794

Time (s) 1.80315 0.25417 0.31872 0.31262 0.40621 0.36356

ZDT6

Treq 1000 344 312 377 325 331

NF 100,000 44,528 39,992 60,684 48,052 52,334

Time (s) 1.49738 0.53585 0.46524 0.59838 0.51058 0.49767

Parameters↓/NLS → θ−DEA 15 36 51 72 91

DTLZ1

Treq 400 400 349 400 400 349

NF 36,800 52,128 55,234 72,414 98,476 125,446

Time (s) 0.74954 0.79902 0.67349 0.77894 0.81808 0.72023

DTLZ2

Treq 250 250 250 250 250 250

NF 23,000 94,842 226,414 362,314 555,782 644,554

Time (s) 0.53868 0.58229 0.63465 0.70363 0.81148 0.84365

DTLZ3

Treq 1000 809 814 1000 804 658

NF 92,000 85,778 98,568 139,074 137,810 143,622

Time (s) 1.92902 1.55781 1.56201 2.04005 1.59781 1.33415

DTLZ4

Treq 600 335 342 370 358 346

NF 55,200 41,742 61,342 66,236 90,950 98,486

Time (s) 1.29538 0.74872 0.76548 0.83021 0.82583 0.83276

In this case, RM2OEA-OF needs more number of func-
tion evaluations and computational time than θ−DEA. For
DTLZ3 problem, except for NLS = 51 case, RM2OEA-
OF requires less number of generations than θ−DEA that
saves its computational time. However, the number of func-
tion evaluations of RM2OEA-OF is more than θ−DEA. For
DTLZ4 problem, a good number of generations is saved by
RM2OEA-OF against θ−DEA that reduces computational
time. However, RM2OEA-OF needs more function evalua-
tions than θ−DEA.

From the above discussion, it can be seen that a larger
number of local search solutions always helps RM2OEA-OF
in quicker convergence in most of the problems. Since the

number is large, it requires many function evaluations. How-
ever, fewer number of local search solutions is equally good
in helping RM2OEA-OF for better convergence, which fur-
ther reduces functional evaluations and computational time.
Although a clear and distinct trend cannot be seen between
the convergence and NLS, this study brings out the fact that
fewer number of local search solutions can be useful for bet-
ter and quicker convergence unless a good and effective set
of solutions is selected for local search.
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5 Conclusion

The local search module has been proposed, which was
steered by the reference lines. It was coupled with a
commonly used MOEA framework, and three variants of
RM2OEA were proposed. After solving 2-objective ZDT
problems and 3-objective DTLZ problems, it was found
that the performance of RM2OEA-OF variant generated the
best values of IGD+ indicator for most of the problems.
Since their IGD+ values were quite close for RM2OEA-OF
and θ−DEA, the obtained PO solutions were qualitatively
found similar. However, the convergence plots suggested
that RM2OEA-OF required fewer generations than θ−DEA.
Since the local search module involved extra computations
for the MOM method, the number of function evaluations
and computation time were relatively more for RM2OEA-
OF than θ−DEA. In some problems, however, RM2OEA-OF
outperformed θ−DEA in terms of a number of generations
required, which was even less than 50%. One limitation
observed from the results of ZDT3 problem is that RM2OEA
and its variants may not be suitable for disconnected PO
fronts. From the results, it can be concluded that a fewer
local search solutions can also be useful for better and quicker
convergence unless a good and effective set of solutions is
selected for local search. In future work, the local search
module can be extended for constraint MOOPs. The same
module can be tested on engineering optimization problems
for better convergence. The proposed algorithm can also be
extended for solving many-objective optimization problems
when the number of objectives is more three.
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