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Abstract
Two-sided assembly lines are widely utilized to assemble large-sized products such as cars and trucks. Recently, these types 
of assembly lines have been applied to assemble different types of products due to a large variety of customer demands and 
strong market competition. This paper presents two simple local search methods, the iterated greedy algorithm and iterated 
local search algorithm, to deal with type I mixed-model two-sided assembly line balancing problems. These two algorithms 
utilize new precedence-based local search functions with referenced permutation and two neighborhood structures to empha-
size intensification while preserving high search speed. Additionally, these local search methods are enhanced by utilizing the 
best decoding scheme amongst nine candidates and a new station-oriented evaluation to guide the search direction. New lower 
bound calculations are also presented to check the optimality of the achieved solutions. Eleven recent and high-performing 
metaheuristic algorithms are re-implemented to test the performance of the proposed algorithms. A comprehensive study 
on a set of benchmark problems demonstrates the advantages of the improvements and the superiority of the two proposed 
methods. Experimental results show that the proposed algorithms obtain 23 new upper bounds compared with two recently 
published algorithms, among which 19 cases are proven to be optimal for the first time.

Keywords Metaheuristics · Assembly line balancing · Two-sided assembly line · Mixed-model production · Local search

1 Introduction

Assembly lines are of great importance to several industries 
such as the automotive and consumer electronics industries 
[3]. These types of production systems are mainly designed 
for producing high-quality and standardized products. In this 
type of line, a set of tasks is allocated to and operated on a 
set of workstations. Each task has a deterministic and non-
negative operation time, and each workstation is connected 
using a transportation system such as a conveyor belt. The 
total operation time of the tasks in a workstation is less than 
a limited time referred to as the cycle time. The assembly 
line balancing problem aims at determining the best alloca-
tion of tasks to the workstations with the optimization of one 
or several objective functions.

The simple assembly line balancing problem has been 
criticized for being too theoretical, as most real industrial 
settings are much more complex. Further, variants of this 
problem have attracted significant attention with the goal 
of reducing the gap between real-world application and 
research. Among the more complex real-world assembly 
line configurations, the two-sided variant is a good choice 
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for manufacturing large products such as trucks and cars. 
In a two-sided assembly line, unlike the traditional one-
sided assembly line, a set of tasks are allocated to a set of 
mated-stations, and each mated-station is composed of two 
opposite-facing workstations. There are three types of tasks 
on this line: L-type tasks that must be allocated to the left 
side, R-type tasks that must be allocated to the right side, 
and E-type tasks that can be allocated to either side. This 
type of assembly line has several advantages when compared 
with traditional one-sided assembly lines: shorter length, 
reduced setup time, and the ability for increased sharing of 
tools [2]. The two-sided assembly line balancing problems, 
referred to as TALBP, are highly complex due to the utiliza-
tion of two sides of mated-stations and the existence of three 
types of tasks.

Mixed-model assembly lines are capable of assembling 
more than one product with similar characteristics simul-
taneously. Assembly lines of this type can be found in the 
automotive industry, furniture factories, and so forth. The 
major goal of the mixed-assembly line balancing is to handle 
diverse products while achieving high line efficiency. From 
the literature, it can be seen that both two-sided assembly 
line balancing and mixed-model assembly lines have been 
separately and thoroughly studied. However, studies of 
mixed-models in a two-sided assembly line balancing prob-
lem (MTALBP) have been limited, even though these types 
of assembly lines are widely used in the automotive industry. 
Hence, this paper focuses mainly on the type I mixed-model 
two-sided assembly line balancing problem (MTALBP-I) 
with the objective of minimizing the number of mated-sta-
tions and the number of workstations.

As the well-known simple one-sided assembly line bal-
ancing is already NP-hard in the strong sense [3], the con-
sidered MTALBP-I is also NP-hard, and it is more complex 
due to the utilization of two sides and the consideration 
of a mixed-model. To the authors’ best knowledge, most 
researchers have focused on the single-model TALBP and 
the research results reported with regard to the MTALBP 
are limited. Moreover, published research focuses on utiliz-
ing different heuristic methods to select the appropriate side 
for E-type tasks in their decoding procedures, and there has 
been no detailed comparison of such decoding schemes to 
identify the most effective one. Furthermore, the reported 
objectives might be ineffective in solving the MTALBP-I. 
In practice, many of the obtained solutions have the same 
number of workstations. Hence, the objective of minimiz-
ing the number of workstations cannot readily be reached 
as there exist a very large number of similar solutions. The 
weighted method of maximization of the line efficiency and 
minimizing the smoothness proposed by Özcan and Toklu 
[18] is also not effective in minimizing the workstation num-
ber since it might lose the ability to find the optimal solution, 
which is further discussed in Sect. 6.2.

To overcome the aforementioned drawbacks, this paper 
presents four major contributions. (1) Six new decoding 
schemes are developed for the first time to solve MTALBP-
I and a comparative study of nine decoding procedures is 
also carried out to test their performance, where most of 
the reported decoding methods are covered. (2) An iterated 
greedy algorithm and iterated local search algorithm are 
extended and improved to solve the MTALBP for the first 
time. A new local search with two neighborhood structures 
is developed to enhance their performance. A two-stage 
evaluation procedure is developed to guide the search pro-
cess, where the first stage with a station-oriented evaluation 
is applied to find the solutions with the fewest workstations, 
and the second stage attempts to find balanced solutions on 
the basis of the solution obtained in the first stage. (3) A set 
of 11 other algorithms is also implemented for the consid-
ered problem, among which nine algorithms are developed 
for the first time to solve the considered problem. A com-
prehensive study is conducted to evaluate all 13 algorithms. 
The computational results demonstrate the superiority of the 
proposed local search methods, and the proposed methods 
are able to obtain 23 new upper bounds. (4) A new lower 
bound calculation is presented to check the optimality of the 
obtained solutions. This method achieves 19 better lower 
bounds and confirms the optimality of 14 large-sized cases 
for the first time.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of the reported literature. Sec-
tion 3 presents the problem description and formulation. 
Section 4 introduces the decoding schemes, and Sect. 5 
presents the two proposed algorithms with new local search 
strategies. Section 6 discusses the computational results of 
the new algorithms, and finally Sect. 7 presents the conclu-
sions and provides future research directions.

2  Literature review

Assembly line balancing problems have been widely stud-
ied since the first study by Salveson in 1955 [3]. This sec-
tion first introduces the heuristic techniques used to solve 
the TALBP and later discusses the recent research on the 
MTALBP.

TALBP was first introduced by Bartholdi [2], and a 
modified “first fit” heuristic was developed to solve this 
problem. Lee et al. [13] developed a group assignment 
procedure, and Özcan and Toklu [20] presented a new 
heuristic-based approach for balancing two-sided assembly 
lines with sequence-dependent setup times. As exact meth-
ods cannot solve the large-sized instance in an acceptable 
time, metaheuristics are widely employed. Kim et al. [8] 
developed a genetic algorithm to solve the TALBP with 
positional constraints, and the genetic algorithms were 
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later proposed by Kim et al. [9] and Purnomo et al. [22] 
for solving the TALBP with a cycle time minimization cri-
terion. Other algorithms such as the tabu search algorithm 
[19] and ant colony algorithm [4] were later developed to 
solve the TALBP. Khorasanian et al. [7] utilized a simu-
lated annealing algorithm which thus far outperforms all 
other published methods. The higher performance of the 
method is partly attributed to the new decoding scheme 
and the new objective function. More recently, Li et al. 
[16] developed an iterated greedy algorithm to tackle 
the TALBP with a cycle time minimization criterion. A 
detailed summary of different algorithms which have been 
applied can be found in Li et al. [15].

Regarding the MTALBP, Simaria and Vilarinho [24] 
introduced the MTALBP, and proposed a mathematical 
programming model. Thereafter, Özcan and Toklu [18] 
developed a new mixed-integer programming model, 
and also developed a simulated annealing algorithm to 
solve the large-sized problems. Delice et al. [5] improved 
this algorithm, and also improved the decoding proce-
dure reported in Özcan and Toklu [18] by allocating the 
E-type task to the side which can start the task earlier. This 
improved algorithm has been proven to outperform the 
results obtained using a simulated annealing algorithm, 
however the decoding procedures are not compared in 
detail. Aghajani et al. [1] considered the robotic mixed-
model two-sided assembly line with robot setup times. 
Yuan et al. [27] improved Özcan and Toklu [18] decoding 
procedure by allocating E-type tasks to the side with a 
larger capacity. They also developed a hybrid honey bee 
mating optimization algorithm to maximize line efficiency 
and minimize weighted smoothness index. This new algo-
rithm can find better results than the reported results, but 
decoding procedures have again not yet been compared. 
More recently, Li et al. [14] proposed a hybrid imperi-
alist competitive algorithm to tackle a multi-objective 
MTALBP-I. Several other researchers have reported stud-
ies concerning the mixed-model parallel TALBP [12], 
MTALBP with underground workstations [10], MTALBP 
with setup time [26], and the mixed-model two-sided 
assembly line balancing and sequencing problem [11].

Based on the above literature review, it can be seen that 
the literature on the MTALBP is limited and the improve-
ments on the results of the MTALBP are mainly related 
to the new objectives or decoding schemes. Moreover, 
no work has reported a detailed comparison of different 
applied decoding schemes. To overcome the aforemen-
tioned gaps in the literature, this paper presents several 
new decoding schemes, a new station-oriented evalua-
tion, and two local search algorithms. A comprehensive 
study is also carried out to test the performance of these 
improvements.

3  Problem description and formulation

This section first introduces the problem description in 
Sect. 3.1 and then presents the mathematical formulation 
in Sect. 3.2.

3.1  Problem description

Mixed-model two-sided assembly lines assemble a set of 
similar product models according to the operators on a set 
of Nm mated-stations. Each model has its specific prec-
edence relation and the operation times of different models 
can differ from one other. All the precedence graphs of the 
product models can be merged into a combined precedence 
diagram [18]. In this combined precedence diagram, the 
operation time of task i of model m can be equal to zero, 
denoting that model m does not process task i. The basic 
assumptions of the MTALBP, based on Özcan and Toklu 
[18], are summarized as follows.

(1) All products have similar characteristics, and the prec-
edence relations of the models can be merged into a 
combined precedence diagram.

(2) Operators assemble the products in parallel on both 
sides of the mated-stations.

(3) The task times of models can differ from each other, but 
they are all deterministic.

(4) The tasks of each model must be finished within a pre-
determined cycle time in their workstations and differ-
ent models have the same cycle time.

(5) The parallel workstation, travel time of operators, 
and the work-in-process inventory are not taken into 
account.

To highlight the features of the considered MTALBP, 
a typical example with 12 tasks and a cycle time of 6 is 
here provided. Table 1 illustrates the combined precedence 
relations, task directions, and task times. As can be seen, 
two types of products, model A and model B, are assem-
bled and the operation time of a task completed on model 
B can differ from that of model A. For instance, there is no 
task 3 in model B whereas the operation time of task 3 in 
model A is 2. Figure 1 depicts the detailed task assignment 
in a mixed-model two-sided assembly line.

During the allocation of tasks to mated-stations there 
are three constraints which need to be satisfied. (1) Prec-
edence constraint: the predecessor of one task must be 
allocated to the former mated-station or be operated before 
this task when the predecessor and this task are allocated 
to the same mated-station. As can be seen in Fig. 1, prec-
edence constraint is satisfied as all the predecessors of 
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a given task is completed before operating the task. For 
instance, task 1 is the predecessor of task 4 and hence task 
1 is completed before operating task 4. (2) Direction con-
straint: the L-type tasks must be allocated to the left side, 
R-type tasks must be allocated to the right side, and E-type 
tasks can be allocated to either side. For instance, task 1 
is an L-type task and hence it is assigned to the left side. 
(3) Cycle time constraint: Tasks of each model on work-
stations must be finished within a pre-determined cycle 
time. Clearly, all the tasks of all models are completed 
within the given cycle time of 6 in this example, which 
can be achieved by considering the models separately in 
the decoding procedure. Notice that there are two types 
of idle times in the MTALBP: the idle time behind the 
workstation and the idle time in the middle of a worksta-
tion. The second idle time is the special idle time resulting 
from precedence constraint and is referred to as sequence-
depended idle time. For instance, the idle time behind task 
8 is the sequence-depended idle time for model B.

3.2  Mathematical formulation

The notations utilized in the model formulation are pre-
sented as follows.

Indices
i, h, p Task index
j, g Mated-station index
m Product model index
k, f The side of the line; 

k, f =

{
1 if the side is left

2 if the side is right

(j, k) The k side workstation of the 
mated-station j

Parameters
I Set of tasks in the com-

bined precedence diagram; 
I = {1, 2,… , i,… ,Nt}

J Set of mated-stations; 
J = {1, 2,… , j,… ,Nm}

M Set of product models; 
M = {1, 2,… ,m,… ,Np}

AL Set of tasks which should be oper-
ated at a left-side workstation; 
AL ⊆ I

AR Set of tasks which should be per-
formed at a right-side worksta-
tion; AR ⊆ I

AE Set of tasks which can be per-
formed on the left or right side 
of a mated-station; AE ⊆ I

P0 Set of tasks that have no immedi-
ate predecessors

Pa(i) Set of all predecessors of task i
P(i) Set of immediate predecessors of 

task i
Sa(i) Set of all successors of task i
S(i) Set of immediate successors of 

task i
K(i) Set of integers indicating the pre-

ferred operation direction of task 

i ; 

C(i) =

⎧⎪⎨⎪⎩

{1} if i ∈ AL

{2} if i ∈ AR

{1, 2} if i ∈ AE

Table 1  Precedence relation, task directions, and task times

Task Successors Preferred 
direction

Task times

Model A Model B

1 4 L 2 3
2 5 R 3 3
3 6 E 2 0
4 7 L 3 2
5 7, 8, 9 E 1 2
6 9 L 1 0
7 10 E 3 2
8 10 R 3 1
9 11 E 2 0
10 – E 2 3
11 12 E 0 2
12 – R 0 1

Fig. 1  Task allocation in a 
mixed-model two-sided assem-
bly line
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C(i) Set of tasks whose operation 
directions are opposite to that of 

task i ; 

C(i) =

⎧⎪⎨⎪⎩

AL if i ∈ AR

AR if i ∈ AL

� if i ∈ AE

tim Operation time of task i of model 
m

� A very large positive number
CT Cycle time
w1,w2 The weights of an opened mated-

station and an opened worksta-
tion

Decision variables
xijk 1, if task i is assigned to side k of 

mated-station j ; 0, otherwise
tfim Completion time of task i of 

model m
Gj 1, if one side of mated-station j is 

utilized; 0, otherwise
Fj 1, if both sides of mated-station j 

are utilized; 0, otherwise
vjk 1, if workstation (j, k) is utilized; 

0, otherwise
Indicator variables
zip 1, if task i is assigned earlier than 

task p at the same workstation; 
0, if task p is assigned earlier 
than task i at the same worksta-
tion

On the basis of Özcan and Toklu [18], the mathematical 
model is formulated utilizing expressions (1–10). The objective 
in expression (1) minimizes the number of mated-stations and 
the number of workstations. Constraint (2) is the occurrence 
constraint, indicating that each task must be allocated to exactly 
one side of a mated-station. Constraint (3) and (4) deal with the 
cycle time constraint: constraint (3) indicates that the comple-
tion time of each task for each model must be less than or equal 
to the cycle time; constraint (4) indicates that the completion 
time of each task for each model must be larger than or equal 
to the corresponding operation time. Constraint (5) and (6) deal 
with the precedence constraint: constraint (5) indicates that the 
predecessors of one task must be allocated to the former or the 
same mated-station; constraint (6) denotes that the predecessor 
of one task must be completed before operating this task when 
the predecessor and this task are allocated to the same mated-
station. Constraint (7) and (8) regard the situation when two tasks 
have no precedence relationship and they are allocated to the 
same workstation: constraint (7) is reduced to tfpm − tfim ≥ tpm 
when task i is operated before task p ; constraint (8) is reduced to 
tfim − tfpm ≥ tim when task p is operated before task i . Constraint 
(9) indicates that vjk is equal to 1 when there is at least one task in 
the combined precedence relation allocated to workstation (j, k) . 
Lastly, constraint (10) determines the values of Gj and Fj.

4  Encoding and decoding

This section introduces the encoding schemes in Sect. 4.1 
and the decoding schemes in Sect. 4.2, and thereafter com-
pares the tested decoding schemes in Sect. 4.3.

4.1  Encoding schemes

The encoding schemes for the MTALBP-I are similar 
to that for the TALBP-I, and this study mainly tests two 
encoding schemes: (1) permutation-oriented encoding 
where only task permutation is employed and (2) permu-
tation-oriented and side-oriented encoding where task per-
mutation and side vector are employed. In the first method, 
directions of E-type tasks are determined in the decoding 

(1)Minimize w1 ⋅

∑
j∈J

(
Fj + Gj

)
+ w2 ⋅

∑
j∈J

∑
k=1,2

vjk

(2)
∑
j∈J

∑
k∈K(i)

xijk = 1∀i ∈ I

(3)tfim ≤ CT ∀i ∈ I,m ∈ M

(4)tfim ≥ tim∀i ∈ I,m ∈ M

(5)

∑
g∈J

∑
k∈K(h)

g ⋅ xhgk ≤
∑
j∈J

∑
k∈K(i)

j ⋅ xijk ∀i ∈ I − P0, h ∈ P(i)

(6)

tfim − tfhm + �

(
1 −

∑
k∈K(h)

xhjk

)
+ �

(
1 −

∑
k∈K(i)

xijk

)
≥ thm,

∀i ∈ I − P0, h ∈ P(i), j ∈ J,m ∈ M

(7)

tfpm − tfim + 𝜓
(
1 − xijk

)
+ 𝜓

(
1 − xpjk

)
+ 𝜓

(
1 − zip

)
≥ tpm ∀i ∈ I,m ∈ M,

p ∈
{
r|r ∈ I −

(
Pa(i) ∪ Sa(i) ∪ C(i)

)
and i < r

}
, j ∈ J, k ∈ K(i) ∩ K(p)

(8)

tfim − tfpm + 𝜓
(
1 − xijk

)
+ 𝜓

(
1 − xpjk

)

+ 𝜓 ⋅ zip ≥ tim ∀i ∈ I,m ∈ M,

p ∈
{
r|r ∈ I −

(
Pa(i) ∪ Sa(i) ∪ C(i)

)
and i < r

}
,

j ∈ J, k ∈ K(i) ∩ K(p)

(9)

∑
i∈I

xijk − � ⋅ vjk ≤ 0 ∀j ∈ J, k ∈ {1, 2}

(10)
∑
k=1,2

vjk − 2 ⋅ Fj − Gj = 0 ∀j ∈ J
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process utilizing the heuristic method. The second method 
utilizes the task side vector to determine the directions 
before the decoding. For the first permutation-oriented 
encoding, a task permutation is utilized to encode all the 
tasks. The tasks in the former positions of the task permu-
tation are allocated first. A possible task permutation, for 
the example in Fig. 1, is {1, 3, 2, 4, 5, 6, 8, 7, 9, 10, 11, 
12}. For instance, task 1 is in the first position of the task 
permutation and has the highest priority, and it should thus 
be allocated first when all the constraints are satisfied. The 
task permutation does not provide detailed information 
about the allocated sides of E-type tasks, and the direc-
tions of E-type tasks are determined in the decoding pro-
cess. For the second method, a side vector is applied, and 
the example corresponding to Fig. 1 is {L, R, R, L, R, L, 
L, R, R, L, R, R}. The first position is L or left, denoting 
that task 1 is allocated to the left side.

4.2  Decoding schemes

The decoding procedures for the MTALBP-I are quite dif-
ferent from those utilized in solving the TALBP-I, as all the 
tasks for the models in the MTALBP-I must be completed in 
the given cycle time. The general decoding procedure for the 
MTALBP-I is presented in Algorithm 1. It is to be noted that 
the detailed information for dealing with the MTALBP-I is 
omitted due to space constraints, however, in the MTALBP-I 
the models need to be considered separately. For instance, 
a task is assignable in Step 2 when the completion time of 
this task for each model is less than or equal to the cycle 
time. In Step 5, the tasks of the last mated-station can be 
removed to one workstation only when the total operation 
time for each model on the last mated-station is not larger 
than the cycle time.

All the reported research on this topic have the same Step 
1, Step 2, and Step 4, though the methods for selecting a task 
and a side in Step 3 are different. All the reported methods 
for the selection of tasks and sides, along with the proposed 
new method, are summarized here. Among them, the first 
eight methods utilize only task permutation for decoding 
whereas the ninth method utilizes both task permutation and 
task side vector.

(1) Task-to-workstation decoding 1 or TSD1 An assign-
able task in the former position is first selected. If this 
task can be allocated to only one side, the correspond-
ing side is selected. Namely, the L-type/R-type tasks 
are allocated to the left/right side respectively. If the 
selected task can be allocated to either side, a side is 
randomly selected as the current workstation.

(2) Task-to-workstation decoding 2 or TSD2 An assignable 
task in the former position is first selected. If this task 
can be allocated to only one side, the corresponding 
side is selected. If the selected task can be allocated 
to either side, the left side is selected by default as the 
current workstation.

(3) Task-to-workstation decoding 3 or TSD3 An assignable 
task in the former position is first selected. If this task 
can be allocated to only one side, the corresponding 
side is selected. If the selected task can be allocated to 
either side, the side with a larger capacity is selected 

Algorithm 1. Decoding procedure for the MTALBP-I
Step 1: If some tasks are still unallocated, open a new mated-station. Otherwise, go to Step 5.
Step 2: Check whether assignable tasks exist. If no tasks are assignable, go to Step 1. 
% A task is assignable when it has not been allocated and it satisfies the precedence constraint, cycle 
time constraint, and direction constraint.
Step 3: Select an assignable task and a side of the current mated-station and allocate this task to the 
selected side.
Step 4: Update the remaining capacities for the two sides of the current mated-station and go to Step 1.
Step 5: Remove the tasks of the two sides of the last mated-station to one side when satisfying the 
following conditions: 1) the two sides are both utilized; 2) the total operation time is smaller than or 
equal to the cycle time; 3) the tasks’ directions are not conflicted.
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as the current workstation or a random side is selected 
when the capacities for both sides are equal.

(4) Task-to-workstation decoding 4 or TSD4 An assignable 
task in the former position is first selected. If this task 
can be allocated to only one side, the corresponding 
side is selected. If the selected task can be allocated to 
either side, the side with a larger capacity is selected as 
the current workstation or the left side is selected when 
the capacities for both sides are equal.

(5) Workstation-to-task decoding 1 or STD1 Both sides of 
the current mated-station are checked for whether it is 
possible to allocate the tasks to them. If only one side 
is available for allocated tasks, this side is selected. If 
both sides are available, the side with a larger capacity 
is selected or a random side is selected when both sides 
have the same capacities. Subsequently, an assignable 
task in the former position of the task permutation is 
selected to be allocated to this selected side.

(6) Workstation-to-task decoding 2 or STD2 Both sides of 
the current mated-station are checked for whether it is 
possible to allocate the tasks to them. If only one side 
is available for allocated tasks, this side is selected. If 
both sides are available, the side with a larger capacity 
is selected or the left side is selected by default when 
both sides have the same capacities. Subsequently, an 
assignable task in the former position of the task per-
mutation is selected to be allocated to this selected side.

(7) Workstation-to-task decoding 3 or STD3 Both sides of 
the current mated-station are checked for whether it is 
possible to allocate the tasks to them. If only one side 
is available for allocated tasks, this side is selected. If 
both sides are available, the side with a larger capac-
ity is selected or a random side is selected when both 
sides have the same capacities. During the task selec-
tion process, we first obtain all the assignable tasks and 
check whether the tasks which can be operated at the 
earliest possible time of the selected workstation exist. 
If so, the tasks which cannot be operated at the earliest 
possible time are deleted from the assignable task set. 

Lastly, a task in the former position of the task permu-
tation is selected.

(8) Workstation-to-task decoding 4 or STD4 Both sides of 
the current mated-station are checked for whether it 
is possible to allocate tasks to them. If only one side 
is available for allocated tasks, this side is selected. If 
both sides are available, the side with a larger capacity 
is selected or the left side is selected by default when 
both sides have the same capacities. During the task 
selection process, we first obtain all the assignable 
tasks and check whether the tasks which can be oper-
ated at the earliest possible time of the selected work-
station exist. If so, the tasks which cannot be operated 
at the earliest possible time are deleted from the assign-
able task set. Lastly, a task in the former position of the 
task permutation is selected.

(9) Two vector decoding or TVD The assignable sides for 
all E-type tasks are obtained on the basis of the side 
vector. Then, an assignable task in the former position 
is first selected and allocated to the corresponding side. 
It is to be noted that in the former eight decoding pro-
cedures, E-type tasks can be allocated to either side, 
but in this decoding scheme the side for a task is deter-
mined in advance.

Note that the detailed information for dealing with the 
MTALBP-I is not exhibited here due to space constraints, 
though the detailed decoding procedures of TSD4 is pre-
sented in “Appendix A” as an example. However, all the 
detailed decoding procedures and corresponding informa-
tion are available upon request, where the models must be 
considered separately. Among these decoding methods, only 
three methods have been utilized in the literature (TSD1, 
TSD3, and TSD4), and the remaining six decoding schemes 
are developed to solve the MTALBP for the first time. Notice 
that, as can be seen in Sect. 6.2, the different decoding 
schemes have a great impact on the final performance of 
the algorithms. However, the above finding does not receive 
enough attention and a comparative study to evaluate these 
decoding schemes has not yet been undertaken. Hence, this 

Table 2  The complexity 
comparison among decoding 
schemes

Decoding scheme Number of possible solutions Source

TSD1
[
Nt!, 2Ne ⋅ Nt!

]
Özcan and Toklu [18]

TSD2 Nt! Developed for the first time in this paper
TSD3

[
Nt!, 2Ne ⋅ Nt!

]
Delice et al. [5]

TSD4 Nt! Yuan et al. [27]
STD1

[
Nt!, 2Ne ⋅ Nt!

]
Developed for the first time in this paper

STD2 Nt! Developed for the first time in this paper
STD3

[
Nt!, 2Ne ⋅ Nt!

]
Modified from Khorasanian et al. [7]

STD4 Nt! Modified from Li et al. [16]
TVD 2Ne ⋅ Nt! Developed for the first time in this paper
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study presents all the decoding schemes here and conducts 
the comparative study in Sect. 6.2 in order to evaluate these 
decoding schemes for the first time, with the purpose of pro-
viding useful information and guidance for future research.

4.3  Decoding scheme comparisons

Based on the literature, it can be seen that there are Nt! pos-
sible task permutations for a type I one-sided assembly line 
if the task permutation-oriented encoding is utilized, where 
Nt is the number of tasks and each task permutation cor-
responds to a solution and there are Nt! possible solutions. 
However, in the case of the MTALBP-I, there will be Nt! 
possible task permutations, where each task permutation 
might correspond to many solutions due to the existence 
of E-type tasks. This situation results in 2Ne × NT! possible 
solutions, where Ne is the number of E-type tasks.

The nine decoding procedures have different search 
spaces due to different approaches to handling E-type tasks, 
and are summarized in Table 2. For TVD, the number of all 
possible task permutations is Nt! , though the E-type tasks 
need to be tested on both the sides, which results in 2Ne ⋅ Nt! 
possible solutions. For the remaining methods, TSD2 allo-
cates the E-type task to the left side by default. In this case, 
E-type tasks are not required to be tested on both sides, 
which reduces the number of solutions of Nt! . This situa-
tion also suits TSD4, STD2, and STD4, which utilize heuris-
tic methods to determine the selected side for E-type tasks. 
TD1 selects a side randomly for E-type tasks, and each task 

permutation might correspond to many solutions. However, 
in some instances E-type tasks can be allocated to only one 
side and thus the number of possible solutions is less than or 
equal to 2Ne ⋅ Nt! . This situation also suits TSD3, STD1, and 
STD3, where a random side is selected in some situations. 
In addition, this paper provides only the ranges for TSD1, 
TSD3, STD1, and STD3 since, to the authors’ best knowl-
edge, the real number of possible solutions is still unknown. 
It is worth noting that the search space of TSD3 is much 
smaller than that of TSD1, since TSD3 allocates the E-type 
tasks to the side with a larger capacity when both sides have 
different capacities.

Table 2 presents the sources of these decoding schemes, 
and these decoding schemes cover all the reported instances 
for the MTALBP-I. TSD1 is the first decoding reported, 
and it ignores the balance of workloads and reduction of 
sequence-dependent idle time. TSD3 and TSD4, on the con-
trary, allocate the tasks to the side with a larger capacity so 
as to obtain a well-balanced solution. STD1 and STD2 also 
improve the balance of the obtained solutions by allocating 
tasks to the side with a larger remaining capacity. STD3 and 
STD4 take into account the sequence-dependent idle time 
during the decoding process. These methods prioritize the 
tasks which can be operated at the earliest possible time 
of the selected workstation and aim at reducing sequence-
dependent idle time. TVD determines a solution on the basis 
of task permutation and task side vector, and the final solu-
tion depends only on the update of these two vectors. It is 
worth pointing out that the optimality may not be achievable 

Fig. 2  Pseudo-code of the 
presented IG

Procedure of IG ( d, T )
:= Modified NEH-based initialization;                    %Initialization
:=Local search(   )                                                    %Local search

;                                                                      %Update best solution
While (termination criterion is not satisfied) do

;                                                                      %Destruction phase
For i:=1 to d do

:= remove  one task of     randomly to position Nt-d+i ;
Endfor
For i:=1 to d do %Construction phase

:=best permutation by inserting task              in all possible position;
Endfor

:=Local search(   )                                                 %Local search
If then                                           % Acceptance criterion

;
If then                                    %Update best solution

;
Endif

Elseif                                                                                        then
;         

Endif
Endwhile
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if one uses the first eight decoding schemes in some cases, 
since they all utilize heuristic methods to determine the sides 
of E-type tasks. Notice that this paper considers allocating 
the E-type tasks to the left side by default for TSD2, TSD4, 
STD2, and STD4, though allocating the E-type tasks to the 
right side is also practical. Actually, the left and the right 
side are both tested in the preliminary experiments, and they 
show similar performance. A detailed comparison campaign 
of the nine decoding schemes is presented in Sect. 6.2.

5  Local search methods

Different optimization algorithms have been applied to 
solve the TALBP, but some are too complex or difficult to 
extend to solve other variants of the TALBP. To overcome 
this concern, the main focus of this paper is to develop sim-
ple methods with high performance. The simple and effec-
tive iterated greedy (IG) algorithm [23] and iterated local 
search (ILS) algorithm [21] are employed and modified to 
solve the proposed MTALBP-I. Both IG and ILS are sim-
ple stochastic methods that have demonstrated good perfor-
mance in optimization problems despite their simplicity of 
implementation.

5.1  Iterated greedy algorithm

The proposed IG starts with constructing a high-quality ini-
tial solution and improving this initial solution using a local 
search. Then, the following four steps repeat interactively: 
the destruction, construction, local search, and accept-
ance. The procedure of the implemented IG algorithm is 
depicted in Fig. 2. This paper utilizes a modified NEH-based 

initialization for the initialization process presented in Li 
et al. [17], which can obtain a high-quality solution. The 
local search is employed to emphasize intensification, which 
is presented in detail in Sect. 5.3. Within the iteration, the 
destruction phase destructs the current individual by mov-
ing d randomly selected tasks to the ending positions of the 
current permutation � . The construction phase is applied to 
improve the new permutation �′ by inserting these d tasks 
into all the possible positions. It is to be noted that the pro-
posed destruction phase and construction phase are different 
from those used in Ruiz and Stützle [23]. d random tasks are 
not removed from permutation �′ but are inserted into the 
backward positions, guaranteeing that each task permutation 
is able to acquire a feasible solution. This modification is 
carried out due to the difficulty in evaluating part of the task 
permutation. Subsequently, a local search is also applied to 
enhance this new task permutation �′ . Finally, the accept-
ance criterion is utilized to determine whether this new per-
mutation �′′ can replace the incumbent permutation � . If the 
new permutation outperforms the incumbent one, it replaces 
the incumbent one. Otherwise, it replaces the incumbent one 
with a possibility of exp{−(Fit(���)) − Fit(�)∕Temperature} . 
This acceptance criterion allows the acceptance of a worse 
solution. Both d and Temperature are important parameters 
to select, and they need to be carefully calibrated to achieve 
good results.

5.2  Iterated local search algorithm

ILS is also a simple local search algorithm proposed by Pan 
and Ruiz [21] which shows promising results for different 
types of optimization problems. It is adopted to solve this 
problem since it is easy to implement and quite effective and 

Fig. 3  Pseudo-code of the 
presented ILS

Procedure of ILS ( d, nm_move )
:= Modified NEH-based initialization;      %Initialization
:=Local search(   )                                      %Local search

Repeat    
;

For i=1 to nm_move do                             %Perturbation
For j=1 to d do

Select a random task from    and insert it into a random position; 
Endfor

End for
:= Best individual among nm_move perturbed solutions    ;
:=Local search(     )                                %Local search

If then                           % Acceptance criterion
;

Endif
Until termination criterion is met
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efficient. The procedure of the implemented ILS is presented 
in Fig. 3. Like IG, ILS starts by generating a high-quality 
initial solution and improving the initial solution using a 
local search. Then, perturbation, local search, and accept-
ance criterion application are performed in a loop which 
is executed until a termination criterion is satisfied. In the 
perturbation phase, nm_move, new permutation �′ is gener-
ated by implementing a randomly inserted operator d times 
on the current permutation � , and then the best individual is 
selected. This perturbation procedure is easier and simpler 
than the destruction phase and construction phase in the IG 
algorithm. Subsequently, a local search is applied to enhance 
the new permutation �′′ , and acceptance criterion is applied 
to decide whether this new solution can be accepted. As for 
the acceptance criterion, the ILS adopts a simpler method 
by only accepting a solution with an equal or better objective 
function value. The main idea behind this modification is to 
develop an easier method. By doing so, this modification 
does not cause a large difference in the algorithm perfor-
mance with preliminary experiments. nm_move and d are 
two important parameters that need to be calibrated. The 
proposed ILS algorithm can be considered an easier method 
than the IG algorithm.

5.3  Improved local search procedure

The local search procedure plays an important role in the 
performance of IG and ILS methods. This paper proposes 
an improved precedence-based local search with two 
neighborhood structures and referenced permutation. The 
proposed local search procedure is depicted in Fig. 4. The 
local search procedure aims to optimize the current task 
permutation � , and this local search terminates when an 
improved permutation has not been achieved for a number 
of consecutive Nt × Nt∕a iterations, where a is a param-
eter that must be calibrated. Within a cycle, the task �rp

i
 is 

selected from a referenced permutation �rp, and this task 
is either inserted into another position or exchanged with 
another random task. After executing the insert operator 
or swap operator, the new task permutation �′ is checked 
to ensure that the precedence constraint is satisfied. If the 
precedence constraint is not violated, a new solution is 
obtained using this new task permutation. If the new fit-
ness value is better than the current one, then the incum-
bent task permutation is replaced with the new one and 
the value of the counter is set to zero. If the new fitness is 
equal to the current one, the incumbent permutation is also 
updated. In this paper, the referenced permutation is set to 
be the same as the current best permutation.

This local search has several features leading to faster 
computation and an effective search capacity. Specifically 

Fig. 4  The procedure of new 
precedence-based local search Procedure Local search ( )

counter:=0;i:=1;
While (counter<                )                  

for j:=1 to b do
If (Rand()%100<50)                                                                    % Insert operation 

Remove task     from    ; 
:= Permutation by inserting task into a random position (without repetition);

Else                                                                                              %Swap operation 
Select a random task and exchanges the positions of this task and     ;

Endif
If (New task permutation is violated to precedence constraints) %Precedence check

Continue; 
Else 

Obtain a feasible solution based on the new task permutation;
Endif
If Fit( )<Fit( );

:= ; counter:=0;
Elseif Fit( )=Fit( );

:= ;
Endif     

Endfor
counter:=counter+1;
i:=mod(i+1, nt)

Endwhile
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(1) this referenced permutation ensures that each task 
undergoes a local search and reduces the possibility of 
updating the positions of a same task again and again. (2) 
Both the insert operator and swap operator are combined 
with the aim of increasing the search space. (3) Another 
important feature in the improved local search procedure 
is that the position of the selected task is modified a times, 
rather than testing the selected task on all the possible 
positions, as is done in Ruiz and Stützle [23]. This also 
assists in increasing the search speed. Moreover, the search 
speed is further accelerated by testing only task permuta-
tions satisfying the precedence constraint. From the pre-
liminary results, this new local search could demonstrate 
better performance than that proposed by Li et al. [16].

5.4  Two‑stage evaluation procedure

Based on Li et al. [15], this study develops a two-stage eval-
uation procedure with two objectives in expressions (11–13). 
Here, Nm and Ns are the number of mated-stations and the 
number of workstations, and w1 and w2 are the correspond-
ing weights. Indexes j, k, and m denote a task, a side of a 
mated-station, and a model, respectively. STjkm is the work-
load (the total operation time of tasks on workstation (j,k)) 
allocated to workstation (j,k) for model m, and CT is the 
cycle time. WSI is a weighted smoothness index calculated 
using expression (13) and WSI0 is the weighted smoothness 
index obtained from the initial solution. WLjkm is the finish-
ing time of workstation (j,k) for model m and WLmax is the 
maximum value of WLjkm.

In this study, the two-stage evaluation procedure first 
utilizes the first evaluation objective, referred to as station-
oriented evaluation, in expression (11), and later utilizes 
the second evaluation objective in expression (12) when the 
optimal solution in terms of the number of mated-stations 
and the number of workstations is achieved. The first evalu-
ation objective in expression (11) aims at optimizing the 
mated-station number and workstation number by selecting 
the solution with more allocated workloads to the former 
mated-stations. In expression (11), the idle time of the for-
mer mated-station is provided with a larger weight, and thus 

(11)Min Fitness1 = w1 × Nm + w2 × Ns +

∑
m∈M

∑
j∈J

∑
k=1,2 qm × (Nm + 1 − j) ×

�
CT − STjkm

�

2 × Nm × CT

(12)Min Fitness2 = w1 × Nm + w2 × Ns +WSI∕WSI0

(13)

WSI =

����∑
m∈M qm ×

�∑
j∈J

∑
k=1,2

�
WLjkm −WLmax

�2�

Ns

the solution with more workload on former workstations is 
preserved. Nevertheless, the first evaluation objective might 
result in unbalanced workloads on workstations, where the 
former mated-stations have much larger workloads. Hence, 
the second evaluation objective in expression (12) is uti-
lized here only when the first evaluation objective cannot 
further reduce the workstation number or a termination cri-
terion for the first stage is satisfied. Expression (12) is used 
to minimize the weighted smoothness index to preserve the 
solutions with balanced workloads, aiming at optimizing the 
balance of workloads. Since a mated-station comprises two 
workstations, the w1 and w2 are set to 2 and 1 respectively. 
As the latter part of expression (11) or expression (12) is 
usually smaller than 1.0, this part takes effect only when 
solutions have the same mated-stations and workstations.

It might be augured that utilizing only expression (12) is 
sufficient, though only utilizing expression (12) might obtain 
poor performance; the reasons for utilizing the two-stage 
evaluation procedure are analyzed as follows. Among the 
reported papers, there are two types of objectives solved 
in the MTALBP-I: minimizing the w1 × Nm + w2 × Ns in 
Delice et al. [5] and maximizing the line efficiency and mini-
mizing the smoothness proposed by Özcan and Toklu [18]. 
Since there are many solutions having the same number of 
mated-station and workstations, the w1 × Nm + w2 × Ns can-
not determine the better one and thus cannot determine the 
proper evolutionary direction. Özcan and Toklu [18] objec-
tive is also not effective since it might lose the ability to 
find the optimal solution. If the workloads on workstations 
are balanced, it is difficult or even impossible to reduce the 

number of workstations with a small adjustment. Never-
theless, if there are fewer workloads on the latter worksta-
tions, there is a high probability of reducing the number 
of workstations with a small adjustment. In short, the two 
published objectives might not be capable of reducing the 
number of mated-stations and workstations effectively. As 
will be seen in Sect. 6.2, this station-oriented evaluation in 
expression (11) outperforms the other two published objec-
tives by a significant margin in terms of reducing the number 
of workstations.

6  Computational results

This section presents the experimental design and computa-
tional results. Tested benchmark datasets and the adaptions 
of eleven other metaheuristic algorithms are explained in 
Sect. 6.1. The performances of the nine decoding schemes 
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and several objectives are compared in Sect. 6.2. The com-
putational and statistical results are presented in Sect. 6.3.

6.1  Experimental design

To evaluate the proposed algorithms, most of the available 
benchmark problems, to the authors’ best knowledge, are 
solved: four small-sized problems (P9, P12, P16, and P24) 
and four large-sized problems (P65, P148, P205-Yuan, and 
P205-Delice). The precedence relations and operation direc-
tions of P9, P12, and P24 are taken from Kim et al. [8], 
and those of P16, P65, P205-Yuan, and P205-Delice are 
taken from Lee et al. [13]. The precedence relations and 
operation directions of P148 are taken from Bartholdi [2]. 
The task times of the P9, P12, P16, P24, P65, and P148 are 
taken from Özcan and Toklu [18], the task times of P205-
Yuan are taken from Yuan et al. [27], and the task times of 
P205-Delice are taken from Delice et al. [5]. The bench-
mark problems are summarized in Table 3. The overall pro-
portions of all models are assumed to be the same, namely 
qA= qB= …=qm [18].

To test the performance of the proposed algorithms, this 
research presents several adaptions of other well-known and 
recent metaheuristic algorithms. Eleven algorithms are re-
implemented, among which nine algorithms are developed 
for the first time to solve the MTALBP-I. The compared 
methods include a genetic algorithm (GA), ant colony opti-
mization algorithm (ACO), simulated annealing algorithm 
(SA), tabu search algorithm (TS), two-ant colony optimiza-
tion algorithm (2ACO), bee optimization algorithm (BA), 
particle swarm optimization with negative knowledge 
(PSONG), particle swarm optimization algorithm (PSO), 
teaching–learning-based optimization algorithm (TLBO), 
late acceptance hill-climbing algorithm (LAHC), and dis-
crete artificial bee colony algorithm (DABC) [15]. During 
the re-implementing process, some adaptions are neces-
sary, including adopting the provided new objective and 
effective decoding scheme. Due to space constraints, the 
pseudo-algorithms of these methods are not presented, but 

the basic information of these algorithms is available upon 
request. All the algorithms are re-programmed utilizing the 
C++ language in Microsoft Visual Studio 2012, and they 
utilize the same termination criteria of an elapsed CPU time 
of Nt × Nt × � milliseconds. To avoid prejudiced compari-
son, � is set to 5, 10, 15, and 20, respectively, to analyze the 
performance of the tested methods for short to very large 
computational times. In the termination criterion, the large-
sized problems consume more computational time during 
solution search. All the experiments are tested on a set of 
personal computers with the same setting, namely equipped 
with an Intel Core2 2.33GHZ CPU and 3.036 GB memory.

To highlight the effectiveness of the proposed station-
oriented evaluation in expression (11) as well as the ration-
ality of utilizing the two-stage evaluation procedure, the 
following comparison in Sects. 6.2 and 6.3 focuses mainly 
on the results in terms of the number of mated-stations and 
the number of workstations. After conducting the experi-
ments, it is observed that Nm = Ns∕2 + Ns%2 for all the 
tested cases. In other words, the value of Nm can be achieved 

Table 3  Description of tested 
benchmark problems

Problem Number of 
tasks

Number of 
models

Number of tested 
cases

Tested cycle times

P9 9 2 3 4, 5, 6
P12 12 2 4 5, 6, 7, 8
P16 16 2 6 15, 16, 18, 19, 21, 22
P24 24 2 6 20, 24, 25, 30, 35, 40
P65 65 3 5 326, 381, 435, 490, 544
P148 148 4 7 204, 255, 306, 357, 408, 459, 510
P205-Yuan 205 5 10 1133, 1322, 1510, 1699, 1888, 

2077, 2266, 2454, 2643, 2832
P205-Delice 205 5 10 1133, 1322, 1510, 1699, 1888, 

2077, 2266, 2454, 2643, 2832
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Fig. 5  Means plot of decoding schemes with three objectives
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directly once the value of the Ns is given. For simplicity, this 
section mainly presents the results in terms of the number of 
workstations. Notice that the results in terms of the number 
of mated-stations can be achieved utilizing the above expres-
sion, and are also available upon request.

6.2  Computational analysis of decoding schemes 
and objectives

This section presents the results in terms of the number of 
workstations utilizing nine decoding schemes and three 
objectives to show their performance regarding optimiz-
ing the number of the workstations. The three objectives 
comprise the station-oriented evaluation in expression 
(11) (referred to as Objective-N), the objective taken from 
Özcan and Toklu [18] (referred to as Objective-O), and the 
objective from Delice et al. [5] (referred to as Objective-
D). Objective-O optimizes the maximization of the line 
efficiency and minimization of the workload smoothness at 
the same time, while Objective-D minimizes the number of 
mated-stations and the number of workstations. Note that 
Objective-O is tested to verify the rationality of utilizing the 
two-stage evaluation procedure in sequence, and Objective-
D is tested to prove the superiority of the station-oriented 
evaluation as the first evaluation objective in terms of opti-
mizing the mated-station and workstation numbers.

This study utilizes the SA algorithm to test the decoding 
schemes and objectives. Ten cases of P205-Yuan are solved, 
and the average results of 10 repetitions are recorded for the 
four termination criteria. Since different cases are solved, 
the relative deviation index (RDI) is selected to transfer the 
achieved workstation numbers using expression (14), where 
Fitsome is the workstation number of one case through a com-
bination of decoding scheme and objective and Fitworst and 
Fitbest are the largest and smallest workstation number of the 
same case among all the combinations.

The mean RDI values of different decoding schemes and 
objectives are depicted in Fig. 5 under � = 20 . It can be 
noted that the proposed Objective-N shows a clear advantage 
over the two compared schemes, whereas the performances 
of decoding schemes are different for the three objectives. 
The best results are obtained by Objective-N and followed 
by Objective-D and Objective-O. It is clear that Objective-N 
performs best. However, it is interesting to note that Objec-
tive-D performs better than Objective-O. This could be due 
to the fact that Objective-O optimizes the line efficiency and 
workload balance together, leading to a possibility of los-
ing optimal solutions. In general, it is very difficult or even 
impossible to transfer a well-balanced solution into a new 

(14)Relative Deviation Index(RDI) = 100 ×
(
Fitsome − Fitbest

)
∕
(
Fitworst − Fitbest

)

solution with fewer workstations with a small adjustment. 
On the contrary, there are much larger possibilities to reduce 
the workstation number of a solution with little workload on 
the last workstation.

In summary, this comparative study proves the following. 
(1) The line efficiency and smoothness should be optimized 
in sequence as the simultaneous optimizing of the line effi-
ciency and smoothness leads to poor results regarding the 
mated-station number and the workstation number. (2) The 
proposed station-oriented evaluation, as the first evaluation 
objective, outperforms other objectives in terms of optimiz-
ing the mated-station number and workstation number, and 
is a good option for utilizing the two-stage evaluation pro-
cedure to optimize the line efficiency and line smoothness 
in a sequence.

Due to the clear superiority of the proposed Objective-
N in terms of the number of workstations as presented in 

Fig. 5, the main focus is on the decoding scheme under the 
condition of Objective-N. The non-parametric Friedman 
rank-based analysis is utilized to analyze the results obtained 
by the different decoding schemes due to the deviation from 
normality. Since there are nine decoding schemes, the results 
of the algorithms for each case are transferred so that the 
smallest value is ranked 1 and the largest value is ranked 9. 
Analysis results indicate that there is a statistical difference 
in the average ranks of the decoding schemes with a P value 
lower than 0.01. The mean plot of the ranks for the decoding 
schemes under � = 20 is depicted in Fig. 6. In addition, it 
is observed that TSD4 ranks first, TSD3 ranks second, and 
finally TSD1 ranks ninth.
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Fig. 6  Means plot of the average ranks and 95% confidence intervals 
for nine decoding schemes
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6.3  Comprehensive comparison of metaheuristics

This section presents the experimental results obtained from 
all the tested methods. It is to be noted that there are nine 
selected decoding schemes and three selected objectives, lead-
ing to 27 configurations for each algorithm. Due to space con-
straints, this section presents only the computational results 
obtained using decoding scheme TS4 and Objective-N, which 
is proved to be the most effective in Sect. 6.2.

The proper parameters often play an underlying role in 
creating a high-performing algorithm. Therefore, this sec-
tion first calibrates the parameters for all the algorithms 
with full factorial design as proposed by Tang et al. [25] 
and Li et al. [17]. One of the largest cases from P205-Yuan 
is used for parameter determination, and this case is solved 
10 times for each combination of the parameters. All the 
algorithms terminate when the computational time reaches 
t = Nt × Nt × 5 milliseconds. After carrying out all the 

Table 4  Comparison of algorithms with four termination criteria

Problem GA DABC BA TLBO PSO LAHC SA TS PSONG ACO 2ACO IG ILS

� = 5

 P9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P24 38.6 39.3 45.0 19.1 65.1 20.2 28.6 33.2 19.8 100.0 63.9 3.9 25.9
 P65 57.2 56.5 56.6 58.4 66.1 49.9 47.5 28.5 57.0 100.0 68.4 41.0 38.4
 P148 25.4 27.3 23.8 51.5 55.8 10.5 21.3 14.6 57.6 100.0 29.8 12.8 15.5
 P205-Yuan 4.6 5.3 6.0 11.4 13.7 2.7 2.3 1.8 10.0 100.0 43.6 0.5 0.9
 P205-Delice 20.9 20.0 18.5 28.6 30.6 11.7 8.0 10.5 30.2 100.0 46.8 4.9 4.0
 Avg 18.6 18.9 18.9 22.9 30.5 11.5 13.0 11.1 23.7 74.5 36.0 7.3 9.9
� = 10

 P9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P24 35.1 37.3 28.1 15.3 65.1 19.1 26.5 30.1 19.8 94.6 63.9 1.7 24.6
 P65 54.2 49.7 52.9 56.0 66.1 48.5 36.2 25.3 54.0 98.1 61.7 23.8 37.3
 P148 20.5 26.1 17.2 47.1 55.7 6.5 16.8 9.5 30.6 97.1 29.2 7.8 10.3
 P205-Yuan 3.2 3.1 3.8 9.4 13.7 1.8 0.9 0.7 8.4 100.0 43.6 0.2 0.3
 P205-Delice 14.2 8.8 12.3 28.0 30.5 10.6 7.7 9.4 27.7 100.0 46.8 2.1 2.7
 Avg 15.7 15.2 14.0 21.1 30.5 10.3 10.7 9.3 18.9 73.3 35.3 4.1 8.5
� = 15

 P9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P24 30.4 36.3 25.9 14.7 65.1 18.1 26.5 30.1 19.8 91.9 63.6 0.3 21.8
 P65 50.4 47.4 49.7 55.2 66.1 46.1 35.5 22.8 53.8 98.1 59.1 17.7 36.5
 P148 19.3 25.3 13.2 46.9 55.7 4.7 13.0 6.9 27.6 92.1 28.9 2.6 3.5
 P205-Yuan 2.7 2.0 3.1 9.1 13.7 1.3 0.6 0.6 7.3 100.0 43.1 0.1 0.1
 P205-Delice 12.7 6.5 10.7 27.8 30.5 9.7 6.8 8.5 26.0 100.0 46.8 1.7 1.1
 Avg 14.2 14.1 12.4 20.8 30.5 9.5 9.8 8.5 17.9 72.3 34.9 2.5 6.9
� = 20

 P9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P24 28.3 35.0 22.7 14.5 65.1 18.1 25.5 30.1 19.8 89.2 63.5 0.0 21.2
 P65 49.7 45.7 46.3 54.2 66.1 37.5 34.6 22.7 53.7 98.1 59.0 0.0 16.4
 P148 17.9 23.7 11.7 45.4 54.8 4.6 9.4 6.7 27.0 90.7 28.6 1.1 1.1
 P205-Yuan 2.3 1.4 2.7 8.8 13.7 1.2 0.5 0.5 6.2 100.0 43.1 0.1 0.0
 P205-Delice 11.1 6.4 9.9 27.5 30.5 9.6 6.2 8.3 24.0 100.0 46.7 1.5 0.9
 Avg 13.3 13.4 11.3 20.4 30.3 8.6 9.0 8.4 17.2 71.8 34.8 0.5 4.4
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experiments, the parametric analysis of variance method 
(ANOVA) is applied to select the best combination of the 
parameters. All the final selected parameters, along with the 
ranges for each parameter, are available upon request. For 
the MTALBP-I, the workstation number minimization is the 
primary concern, and thus the following comparison focuses 
mainly on the results in terms of the number of workstations 
obtained using station-oriented evaluation.

Table 4 shows the average RDI values for all problems 
with four termination criteria. It is to be noted that both 
TS1 and TS4 are utilized, and they are randomly selected 
for small-sized problems. This is due to that fact TSD4 with 
reduced research space can lose the optimal solutions for 
a few small-size cases. STD1, on the other hand, has the 
largest search space, and the optimal solution is definitely 
in the search space. All the other decoding methods uti-
lize heuristic methods to decide the side for E-type tasks to 
reduce search space at the cost of losing optimal solutions. 
In the preliminary test, this situation occurs only for a few 
small-sized problems, and thus STD4 is selected exclusively 
for large-sized problems. In Table 4, the number in each 
column is the average results for several cycle times with 10 
runs. For instance, each number for P205-Yuan is the aver-
age result of 100 datasets, combing the results of 10 different 
cycle times. It is observed that IG is the best algorithm with 
an overall RDI of 7.3 under � = 5 , and ILS is the second-best 
algorithm with an overall RDI of 9.9.

For the other three termination criteria, the IG and ILS 
are also the two best algorithms. Among the remaining 
methods, the LAHC, SA, and TS, which are also local search 
methods, outperform the GA, DABC, and BA. Results 
obtained using the TLBO, PSO, PSONG, and 2ACO are 
worse, and for all large-sized cases, the ACO reports the 
worst performance. It is interesting to investigate the cause 
of these results. Local search methods benefit from the 

objective function proposed in this research and ST4 with 
reduced search space. The newly proposed objective guides 
them quickly to the near optimal solutions by preserving 
small improvements. The TLBO and PSO lack strong local 
search capacity, and thus they are outperformed by the GA, 
DABC, and BA algorithms.

Although the difference between the proposed algorithms 
and other competing algorithms is quite large, it is still rec-
ommended that a statistical analysis be carried out to check 
whether the observed difference is statistically significant. 
Since an initial analysis with a parametric ANOVA tech-
nique shows strong deviation from normality, a non-para-
metric Friedman rank-based analysis is also executed. As 
there are 13 methods, the results are transferred in a way 
such that the best result is given a rank of 1, and the worst 
result is given a rank of 13. Because four termination criteria 
are applied, there are four statistical results with Friedman 
rank-based analysis. On the basis of the statistical analysis, it 
is observed that there are statistical differences among these 
algorithms with P-values less than 0.01 for all four termina-
tion conditions. Instead of exhibiting the detailed statistical 
results, this paper mainly presents the average ranks of the 
13 algorithms on large-sized cases in Fig. 7a, b. Figure 7a 
depicts the average ranks with 95% minimal significant dif-
ference confidence intervals when � = 5, and Fig. 7b depicts 
the average ranks with confidence intervals when � = 20, in 
order to show the performances with the smallest and larg-
est CPU times.

From these figures, it is clear that the IG and ILS rank 
first and second respectively, for both termination criteria. 
They are followed by the TS, SA, and LAHC, ranking third, 
fourth, and fifth. Subsequently, the DABC, BA, and GA rank 
sixth, seventh, and eighth, and the ACO ranks last. It is also 
observed that the 95% confidence intervals of the IG and ILS 
almost do not overlap with the confidence intervals of the 

Average ranks
0 5 10 15

ACO
2ACO

PSONG
PSO

TLBO
GA
BA

DABC
LAHC

SA
TS

ILS
IG

A
lg

or
ith

m

Average ranks
0 5 10 15

ACO
2ACO

PSONG
PSO

TLBO
GA
BA

DABC
LAHC

SA
TS

ILS
IG

A
lg

or
ith

m

(a) Ranks of the algorithms under (b) Ranks of the algorithms under 

Fig. 7  Means plot of the average ranks and 95% confidence intervals for 13 algorithms



126 Memetic Computing (2021) 13:111–130

1 3

Table 5  New lower bounds and best results by algorithms under � = 20

Problem CT LB-O LB-N OPT HBMO MPSO GA DABC BA LAHC SA TS IG ILS

P9 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 3 3 3 3 3 3 3 3 3 3 3 3 3
6 3 3 3 3 3 3 3 3 3 3 3 3 3

P12 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 4 4 4 4 4 4 4 4 4 4 4 4 4
7 3 4 4 4 4 4 4 4 4 4 4 4 4
8 3 3 3 3 3 3 3 3 3 3 3 3 3

P16 15 5 5 6 6 6 6 6 6 6 6 6 6 6
16 5 5 6 6 6 6 6 6 6 6 6 6 6
18 4 4 5 5 5 5 5 5 5 5 5 5 5
19 4 4 5 5 5 5 5 5 5 5 5 5 5
21 4 4 4 4 4 4 4 4 4 4 4 4 4
22 4 4 4 4 4 4 4 4 4 4 4 4 4

P24 20 7 7 7 7 7 7 7 7 7 7 7 7 7
24 6 6 6 6 6 6 6 6 6 6 6 6 6
25 5 6 6 6 6 6 6 6 6 6 6 6 6
30 5 5 5 5 5 5 5 5 5 5 5 5 5
35 4 4 4 4 4 4 4 4 4 4 4 4 4
40 4 4 4 4 4 4 4 4 4 4 4 4 4

P65 326 8 8 N/A 9 9 9 9 9 9 9 9 9 9
381 7 7 7 8 8 8 8 8 8 8 7 7 7
435 6 6 6 7 7 7 7 7 6 6 7 6 6
490 6 6 6 6 6 6 6 6 6 6 6 6 6
544 5 5 5 6 6 5 5 5 5 5 5 5 5

P148 204 13 14 14 17 17 15 15 15 15 15 15 15 14
255 11 12 12 13 13 12 12 12 12 12 12 12 12
306 9 10 10 11 11 10 10 10 10 10 10 10 10
357 8 8 8 10 9 8 9 8 8 8 8 8 8
408 7 7 7 8 8 7 7 7 7 7 7 7 7
459 6 7 7 7 7 7 7 7 7 7 7 7 7
510 6 6 6 7 6 6 6 6 6 6 6 6 6

P205-Yuan 1133 11 12 N/A 15 N/A 13 13 13 13 13 13 13 13
1322 10 11 11 13 N/A 11 11 11 11 11 11 11 11
1510 8 9 N/A 11 N/A 10 10 10 10 10 10 10 10
1699 8 8 N/A 10 N/A 9 9 9 9 9 9 9 9
1888 7 8 8 9 N/A 8 8 8 8 8 8 8 8
2077 6 7 7 8 N/A 7 7 7 7 7 7 7 7
2266 6 6 N/A 8 N/A 7 7 7 7 7 7 7 7
2454 5 6 6 7 N/A 6 6 6 6 6 6 6 6
2643 5 6 6 6 N/A 6 6 6 6 6 6 6 6
2832 5 5 5 6 N/A 5 5 5 5 5 5 5 5
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other algorithms. This underlines that the proposed IG and 
ILS are better than other methods by a clear and significant 
margin.

To the authors’ best knowledge, there are several cases 
in which the optimal solutions are not found, and the gap 
between the obtained best results and the theoretical lower 
bounds by Özcan and Toklu [18] are quite large. Özcan and 
Toklu [18] calculated the lower bounds using the weighted 
task times and lower bound calculation method as shown in 
Hu et al. [6]. This method suits the weighted task time situ-
ation, but they are not efficient for the non-weighted situa-
tion considered in this research. Therefore, this research pre-
sents an improved version for lower bound calculation with 
expressions (15–18). In these expressions, LBNm

m
 and LBNs

m
 

are the lower bounds of the number of mated-stations, and 
the number of workstations for the model m; LBNm and LBNs 
are the lower bounds of the number of mated-stations and 
the number of workstations for the whole problem. i indi-
cates a task, tim is the operation time for task i of model m, 
and AL, AR, and AE are sets of tasks whose preferred direc-
tions are left, right, and either, respectively. The logic behind 
the improvement is that each product needs to be completed 
within the cycle time for the non-weighted method.

(15)LBNm
m

= max

{∑
i∈AL

tim∕CT ,
∑
i∈AR

tim∕CT

}

(16)

LB
Ns

m
= 2 ⋅ LBNm

m

+max

�
0,

∑
i∈AE tim −

�
LB

Nm

m
⋅ CT −

∑
i∈AL tim

�
−
�
LB

Nm

m
⋅ CT −

∑
i∈AR tim

�
CT

�

(17)LBNm = max
m

{
LBNm

m

}

Table 5 presents the lower bounds and best workstation 
numbers by part of the algorithms using the largest compu-
tational time within 10 repetitions. The old lower bounds 
(LB-O) provided by Özcan and Toklu [18] are highlighted 
by adding an “–O” at the end of the name, and the new lower 
bounds (LB-N) proposed in this paper are highlighted by add-
ing an “–N.” OPT means the optimal number of workstations. 
For small-sized problems, the optimal results have been pro-
vided. For large-sized problems, the solution is optimal when 
the number of workstations is equal to the lower bound of 
the workstation number. The current best results obtained 
by modified particle swarm optimization (MPSO) [5] and 
hybrid honey bee mating optimization (HBMO) [27] are also 
included.

From Table 5, it can be seen that the LB-N updates the 
lower bounds for 19 cases, including two small-sized cases 
and 17 large-sized cases. Using this new lower bound cal-
culation, the results for 24 large-sized cases are proven to be 
optimal, among which 14 cases can be proved to be optimal 
only through the new lower bound calculation. Also, all eight 
of the proposed algorithms in this paper can obtain the same 
or better results when compared with MPSO and HBMO 
for all large-sized cases. To be specific, the IG outperforms 
HBMO in three, six, and nine cases for P65, P148, and P205-
Yuan, respectively. Moreover, the IG outperforms MPSO in 
three, five, and seven cases for P65, P148, and P205-Delice, 
respectively. Among all the methods, the IG and ILS find the 
maximum number of optimal solutions. Among the large-sized 
problems, 19 optimal results are first presented using the IG 
and ILS. These results further confirm the advantages of the 
proposed local search methods as well as the new station-
oriented evaluation.

(18)LBNs = max
m

{
LBNs

m

}

Table 5  (continued)

Problem CT LB-O LB-N OPT HBMO MPSO GA DABC BA LAHC SA TS IG ILS

P205-Delice 1133 11 12 12 N/A 14 13 13 13 13 13 13 13 12

1322 9 10 N/A N/A 12 11 11 11 11 11 11 11 11

1510 8 9 9 N/A 11 10 10 10 10 9 9 9 9

1699 7 8 8 N/A 10 8 8 8 8 8 8 8 8

1888 7 7 N/A N/A 8 8 8 8 8 8 8 8 8

2077 6 7 7 N/A 8 7 7 7 7 7 7 7 7

2266 6 6 6 N/A 8 6 6 6 6 6 6 6 6

2454 5 6 6 N/A 6 6 6 6 6 6 6 6 6

2643 5 5 N/A N/A 6 6 6 6 6 6 6 6 6

2832 5 5 5 N/A 6 5 5 5 5 5 5 5 5

*N/A means that the result is not available, and new lower bounds are in bold
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7  Conclusion and future research

Mixed-model two-sided assembly lines are utilized in 
modern industry to assemble different types of products 
simultaneously and in parallel, and this type of line has 
great relevance to the automobile industry. This paper con-
siders this practical and important mixed-model two-sided 
assembly line balancing problem to minimize the mated-
station number and workstation number (MTALBP-I).

Firstly, six new decoding schemes are developed for 
the MTALBP-I (modified from those used for solving the 
TALBP) for the first time, and a comparative study of nine 
decoding procedures is also carried out to test their perfor-
mance. Secondly, two local search methods, the iterated 
greedy (IG) and iterated local search (ILS), are developed 
to solve the MTALBP-I. A new precedence-based local 
search using referenced permutation and two neighborhood 
structures is also employed by these two methods to empha-
size intensification while preserving fast search speed. A 
two-stage evaluation procedure is developed to guide the 
search process, wherein the first stage with a station-ori-
ented evaluation is applied to find the solutions with the 
fewest workstations, and the second stage attempts to find 
balanced solutions on the basis of the solution obtained in 
the first stage. Thirdly, a comprehensive study of these two 
algorithms and 11 adaptions of recent and high-performing 
algorithms demonstrates that the proposed algorithm out-
performs other implemented methods and obtains 23 new 
upper bounds. Fourthly, a new lower bound calculation is 
developed, which updates the lower bounds for 19 problem 
cases and proves the optimality for 14 more cases.

The developed techniques can be adopted by the pro-
duction-line managers to reduce the number of workers, 
making their assembly lines shorter, improve line effi-
ciency, and thus reduce costs and make factories more 
competitive. As the real industrial contexts are diverse and 
complicated, the considered problem can be extended to 
consider more realistic objectives (e.g., minimizing the 
cost or the cycle time), the realistic constraints (e.g., posi-
tional constraint, zoning constraints), and the uncertainties 
in production (e.g., uncertain operation times). One can 
also study the rebalancing of the MTALBP-I so that the 
existing assembly lines can be improved by utilizing the 
developed methodologies. As model sequencing is another 
problem in mixed-model production, it is necessary to 
study the mixed-model two-sided assembly line balanc-
ing and sequencing problem simultaneously.
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Appendix A: Illustrated decoding procedure

Utilized notations for decoding procedure

i, h, p The index of tasks
I Set of tasks; i, h ∈ I

j The index of mated-stations
J Set of mated-stations; j ∈ J

k The index of sides, k = 1, 2

m The index of the product models
M Set of product models; m ∈ M

AL Set of tasks that should be 
allocated to the left side of a 
mated-station

AR Set of tasks that should be 
allocated to the right side of a 
mated-station

AE Set of tasks that should be allo-
cated to either side of a mated-
station

P(h) Set of immediate predecessors of 
task h

tm
h

Operation time of task h for model 
m

tf m
h

Completion time of task h for 
model m

wlm
j

The completion time of the left-
side workstation of the mated-
station j (including the idle time) 
for model m

wrm
j

The completion time of the right-
side workstation of the mated-
station j (including the idle time) 
for model m

SLj Set of tasks that have been allo-
cated to the left side of mated-
station j

SRj Set of tasks that have been 
allocated to the right side of 
mated-station j

ATLj Set of assignable tasks that can 
be allocated to the left side of 
mated-station j

ATRj Set of assignable tasks that can 
be allocated to the right side of 
mated-station j

CT Cycle time
Nt Total number of tasks
nm, nl, nr The number of mated-stations, 

left-side workstation, and right-
side workstations

ns The total number of workstations

The decoding procedure of TSD4 is detailed as follows, and 
serves as an example.
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