
Vol.:(0123456789)1 3

Memetic Computing (2021) 13:111–130
https://doi.org/10.1007/s12293-020-00319-0

REGULAR RESEARCH PAPER

Local search methods for type I mixed‑model two‑sided assembly line
balancing problems

Zixiang Li1,2 · Mukund Nilakantan Janardhanan3 · Qiuhua Tang1,2 · Peter Nielsen4

Received: 20 March 2019 / Accepted: 14 December 2020 / Published online: 5 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Two-sided assembly lines are widely utilized to assemble large-sized products such as cars and trucks. Recently, these types
of assembly lines have been applied to assemble different types of products due to a large variety of customer demands and
strong market competition. This paper presents two simple local search methods, the iterated greedy algorithm and iterated
local search algorithm, to deal with type I mixed-model two-sided assembly line balancing problems. These two algorithms
utilize new precedence-based local search functions with referenced permutation and two neighborhood structures to empha-
size intensification while preserving high search speed. Additionally, these local search methods are enhanced by utilizing the
best decoding scheme amongst nine candidates and a new station-oriented evaluation to guide the search direction. New lower
bound calculations are also presented to check the optimality of the achieved solutions. Eleven recent and high-performing
metaheuristic algorithms are re-implemented to test the performance of the proposed algorithms. A comprehensive study
on a set of benchmark problems demonstrates the advantages of the improvements and the superiority of the two proposed
methods. Experimental results show that the proposed algorithms obtain 23 new upper bounds compared with two recently
published algorithms, among which 19 cases are proven to be optimal for the first time.

Keywords Metaheuristics · Assembly line balancing · Two-sided assembly line · Mixed-model production · Local search

1 Introduction

Assembly lines are of great importance to several industries
such as the automotive and consumer electronics industries
[3]. These types of production systems are mainly designed
for producing high-quality and standardized products. In this
type of line, a set of tasks is allocated to and operated on a
set of workstations. Each task has a deterministic and non-
negative operation time, and each workstation is connected
using a transportation system such as a conveyor belt. The
total operation time of the tasks in a workstation is less than
a limited time referred to as the cycle time. The assembly
line balancing problem aims at determining the best alloca-
tion of tasks to the workstations with the optimization of one
or several objective functions.

The simple assembly line balancing problem has been
criticized for being too theoretical, as most real industrial
settings are much more complex. Further, variants of this
problem have attracted significant attention with the goal
of reducing the gap between real-world application and
research. Among the more complex real-world assembly
line configurations, the two-sided variant is a good choice

 * Mukund Nilakantan Janardhanan
 mukund.janardhanan@leicester.ac.uk

 Zixiang Li
 zixiangliwust@gmail.com

 Qiuhua Tang
 tangqiuhua@wust.edu.cn

 Peter Nielsen
 peter@mp.aau.dk

1 Key Laboratory of Metallurgical Equipment and Control
Technology of Ministry of Education, Wuhan University
of Science and Technology, Wuhan, Hubei, China

2 Hubei Key Laboratory of Mechanical Transmission
and Manufacturing Engineering, Wuhan University
of Science and Technology, Wuhan, Hubei, China

3 Mechanics of Materials Research Group, Department
of Engineering, University of Leicester, Leicester, UK

4 Department of Materials and Production, Aalborg University,
Aalborg, Denmark

http://orcid.org/0000-0002-8170-2738
http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-020-00319-0&domain=pdf

112 Memetic Computing (2021) 13:111–130

1 3

for manufacturing large products such as trucks and cars.
In a two-sided assembly line, unlike the traditional one-
sided assembly line, a set of tasks are allocated to a set of
mated-stations, and each mated-station is composed of two
opposite-facing workstations. There are three types of tasks
on this line: L-type tasks that must be allocated to the left
side, R-type tasks that must be allocated to the right side,
and E-type tasks that can be allocated to either side. This
type of assembly line has several advantages when compared
with traditional one-sided assembly lines: shorter length,
reduced setup time, and the ability for increased sharing of
tools [2]. The two-sided assembly line balancing problems,
referred to as TALBP, are highly complex due to the utiliza-
tion of two sides of mated-stations and the existence of three
types of tasks.

Mixed-model assembly lines are capable of assembling
more than one product with similar characteristics simul-
taneously. Assembly lines of this type can be found in the
automotive industry, furniture factories, and so forth. The
major goal of the mixed-assembly line balancing is to handle
diverse products while achieving high line efficiency. From
the literature, it can be seen that both two-sided assembly
line balancing and mixed-model assembly lines have been
separately and thoroughly studied. However, studies of
mixed-models in a two-sided assembly line balancing prob-
lem (MTALBP) have been limited, even though these types
of assembly lines are widely used in the automotive industry.
Hence, this paper focuses mainly on the type I mixed-model
two-sided assembly line balancing problem (MTALBP-I)
with the objective of minimizing the number of mated-sta-
tions and the number of workstations.

As the well-known simple one-sided assembly line bal-
ancing is already NP-hard in the strong sense [3], the con-
sidered MTALBP-I is also NP-hard, and it is more complex
due to the utilization of two sides and the consideration
of a mixed-model. To the authors’ best knowledge, most
researchers have focused on the single-model TALBP and
the research results reported with regard to the MTALBP
are limited. Moreover, published research focuses on utiliz-
ing different heuristic methods to select the appropriate side
for E-type tasks in their decoding procedures, and there has
been no detailed comparison of such decoding schemes to
identify the most effective one. Furthermore, the reported
objectives might be ineffective in solving the MTALBP-I.
In practice, many of the obtained solutions have the same
number of workstations. Hence, the objective of minimiz-
ing the number of workstations cannot readily be reached
as there exist a very large number of similar solutions. The
weighted method of maximization of the line efficiency and
minimizing the smoothness proposed by Özcan and Toklu
[18] is also not effective in minimizing the workstation num-
ber since it might lose the ability to find the optimal solution,
which is further discussed in Sect. 6.2.

To overcome the aforementioned drawbacks, this paper
presents four major contributions. (1) Six new decoding
schemes are developed for the first time to solve MTALBP-
I and a comparative study of nine decoding procedures is
also carried out to test their performance, where most of
the reported decoding methods are covered. (2) An iterated
greedy algorithm and iterated local search algorithm are
extended and improved to solve the MTALBP for the first
time. A new local search with two neighborhood structures
is developed to enhance their performance. A two-stage
evaluation procedure is developed to guide the search pro-
cess, where the first stage with a station-oriented evaluation
is applied to find the solutions with the fewest workstations,
and the second stage attempts to find balanced solutions on
the basis of the solution obtained in the first stage. (3) A set
of 11 other algorithms is also implemented for the consid-
ered problem, among which nine algorithms are developed
for the first time to solve the considered problem. A com-
prehensive study is conducted to evaluate all 13 algorithms.
The computational results demonstrate the superiority of the
proposed local search methods, and the proposed methods
are able to obtain 23 new upper bounds. (4) A new lower
bound calculation is presented to check the optimality of the
obtained solutions. This method achieves 19 better lower
bounds and confirms the optimality of 14 large-sized cases
for the first time.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of the reported literature. Sec-
tion 3 presents the problem description and formulation.
Section 4 introduces the decoding schemes, and Sect. 5
presents the two proposed algorithms with new local search
strategies. Section 6 discusses the computational results of
the new algorithms, and finally Sect. 7 presents the conclu-
sions and provides future research directions.

2 Literature review

Assembly line balancing problems have been widely stud-
ied since the first study by Salveson in 1955 [3]. This sec-
tion first introduces the heuristic techniques used to solve
the TALBP and later discusses the recent research on the
MTALBP.

TALBP was first introduced by Bartholdi [2], and a
modified “first fit” heuristic was developed to solve this
problem. Lee et al. [13] developed a group assignment
procedure, and Özcan and Toklu [20] presented a new
heuristic-based approach for balancing two-sided assembly
lines with sequence-dependent setup times. As exact meth-
ods cannot solve the large-sized instance in an acceptable
time, metaheuristics are widely employed. Kim et al. [8]
developed a genetic algorithm to solve the TALBP with
positional constraints, and the genetic algorithms were

113Memetic Computing (2021) 13:111–130

1 3

later proposed by Kim et al. [9] and Purnomo et al. [22]
for solving the TALBP with a cycle time minimization cri-
terion. Other algorithms such as the tabu search algorithm
[19] and ant colony algorithm [4] were later developed to
solve the TALBP. Khorasanian et al. [7] utilized a simu-
lated annealing algorithm which thus far outperforms all
other published methods. The higher performance of the
method is partly attributed to the new decoding scheme
and the new objective function. More recently, Li et al.
[16] developed an iterated greedy algorithm to tackle
the TALBP with a cycle time minimization criterion. A
detailed summary of different algorithms which have been
applied can be found in Li et al. [15].

Regarding the MTALBP, Simaria and Vilarinho [24]
introduced the MTALBP, and proposed a mathematical
programming model. Thereafter, Özcan and Toklu [18]
developed a new mixed-integer programming model,
and also developed a simulated annealing algorithm to
solve the large-sized problems. Delice et al. [5] improved
this algorithm, and also improved the decoding proce-
dure reported in Özcan and Toklu [18] by allocating the
E-type task to the side which can start the task earlier. This
improved algorithm has been proven to outperform the
results obtained using a simulated annealing algorithm,
however the decoding procedures are not compared in
detail. Aghajani et al. [1] considered the robotic mixed-
model two-sided assembly line with robot setup times.
Yuan et al. [27] improved Özcan and Toklu [18] decoding
procedure by allocating E-type tasks to the side with a
larger capacity. They also developed a hybrid honey bee
mating optimization algorithm to maximize line efficiency
and minimize weighted smoothness index. This new algo-
rithm can find better results than the reported results, but
decoding procedures have again not yet been compared.
More recently, Li et al. [14] proposed a hybrid imperi-
alist competitive algorithm to tackle a multi-objective
MTALBP-I. Several other researchers have reported stud-
ies concerning the mixed-model parallel TALBP [12],
MTALBP with underground workstations [10], MTALBP
with setup time [26], and the mixed-model two-sided
assembly line balancing and sequencing problem [11].

Based on the above literature review, it can be seen that
the literature on the MTALBP is limited and the improve-
ments on the results of the MTALBP are mainly related
to the new objectives or decoding schemes. Moreover,
no work has reported a detailed comparison of different
applied decoding schemes. To overcome the aforemen-
tioned gaps in the literature, this paper presents several
new decoding schemes, a new station-oriented evalua-
tion, and two local search algorithms. A comprehensive
study is also carried out to test the performance of these
improvements.

3 Problem description and formulation

This section first introduces the problem description in
Sect. 3.1 and then presents the mathematical formulation
in Sect. 3.2.

3.1 Problem description

Mixed-model two-sided assembly lines assemble a set of
similar product models according to the operators on a set
of Nm mated-stations. Each model has its specific prec-
edence relation and the operation times of different models
can differ from one other. All the precedence graphs of the
product models can be merged into a combined precedence
diagram [18]. In this combined precedence diagram, the
operation time of task i of model m can be equal to zero,
denoting that model m does not process task i. The basic
assumptions of the MTALBP, based on Özcan and Toklu
[18], are summarized as follows.

(1) All products have similar characteristics, and the prec-
edence relations of the models can be merged into a
combined precedence diagram.

(2) Operators assemble the products in parallel on both
sides of the mated-stations.

(3) The task times of models can differ from each other, but
they are all deterministic.

(4) The tasks of each model must be finished within a pre-
determined cycle time in their workstations and differ-
ent models have the same cycle time.

(5) The parallel workstation, travel time of operators,
and the work-in-process inventory are not taken into
account.

To highlight the features of the considered MTALBP,
a typical example with 12 tasks and a cycle time of 6 is
here provided. Table 1 illustrates the combined precedence
relations, task directions, and task times. As can be seen,
two types of products, model A and model B, are assem-
bled and the operation time of a task completed on model
B can differ from that of model A. For instance, there is no
task 3 in model B whereas the operation time of task 3 in
model A is 2. Figure 1 depicts the detailed task assignment
in a mixed-model two-sided assembly line.

During the allocation of tasks to mated-stations there
are three constraints which need to be satisfied. (1) Prec-
edence constraint: the predecessor of one task must be
allocated to the former mated-station or be operated before
this task when the predecessor and this task are allocated
to the same mated-station. As can be seen in Fig. 1, prec-
edence constraint is satisfied as all the predecessors of

114 Memetic Computing (2021) 13:111–130

1 3

a given task is completed before operating the task. For
instance, task 1 is the predecessor of task 4 and hence task
1 is completed before operating task 4. (2) Direction con-
straint: the L-type tasks must be allocated to the left side,
R-type tasks must be allocated to the right side, and E-type
tasks can be allocated to either side. For instance, task 1
is an L-type task and hence it is assigned to the left side.
(3) Cycle time constraint: Tasks of each model on work-
stations must be finished within a pre-determined cycle
time. Clearly, all the tasks of all models are completed
within the given cycle time of 6 in this example, which
can be achieved by considering the models separately in
the decoding procedure. Notice that there are two types
of idle times in the MTALBP: the idle time behind the
workstation and the idle time in the middle of a worksta-
tion. The second idle time is the special idle time resulting
from precedence constraint and is referred to as sequence-
depended idle time. For instance, the idle time behind task
8 is the sequence-depended idle time for model B.

3.2 Mathematical formulation

The notations utilized in the model formulation are pre-
sented as follows.

Indices
i, h, p Task index
j, g Mated-station index
m Product model index
k, f The side of the line;

k, f =

{
1 if the side is left

2 if the side is right

(j, k) The k side workstation of the
mated-station j

Parameters
I Set of tasks in the com-

bined precedence diagram;
I = {1, 2,… , i,… ,Nt}

J Set of mated-stations;
J = {1, 2,… , j,… ,Nm}

M Set of product models;
M = {1, 2,… ,m,… ,Np}

AL Set of tasks which should be oper-
ated at a left-side workstation;
AL ⊆ I

AR Set of tasks which should be per-
formed at a right-side worksta-
tion; AR ⊆ I

AE Set of tasks which can be per-
formed on the left or right side
of a mated-station; AE ⊆ I

P0 Set of tasks that have no immedi-
ate predecessors

Pa(i) Set of all predecessors of task i
P(i) Set of immediate predecessors of

task i
Sa(i) Set of all successors of task i
S(i) Set of immediate successors of

task i
K(i) Set of integers indicating the pre-

ferred operation direction of task

i ;

C(i) =

⎧⎪⎨⎪⎩

{1} if i ∈ AL

{2} if i ∈ AR

{1, 2} if i ∈ AE

Table 1 Precedence relation, task directions, and task times

Task Successors Preferred
direction

Task times

Model A Model B

1 4 L 2 3
2 5 R 3 3
3 6 E 2 0
4 7 L 3 2
5 7, 8, 9 E 1 2
6 9 L 1 0
7 10 E 3 2
8 10 R 3 1
9 11 E 2 0
10 – E 2 3
11 12 E 0 2
12 – R 0 1

Fig. 1 Task allocation in a
mixed-model two-sided assem-
bly line

2 9

11

3
6
5

1
8

4 7 10
Model A

6

2
7

5 12
4

8
1 10

2

R
L

3 4 5 4 51 3210 0

Model B

R
L

6

115Memetic Computing (2021) 13:111–130

1 3

C(i) Set of tasks whose operation
directions are opposite to that of

task i ;

C(i) =

⎧⎪⎨⎪⎩

AL if i ∈ AR

AR if i ∈ AL

� if i ∈ AE

tim Operation time of task i of model
m

� A very large positive number
CT Cycle time
w1,w2 The weights of an opened mated-

station and an opened worksta-
tion

Decision variables
xijk 1, if task i is assigned to side k of

mated-station j ; 0, otherwise
tfim Completion time of task i of

model m
Gj 1, if one side of mated-station j is

utilized; 0, otherwise
Fj 1, if both sides of mated-station j

are utilized; 0, otherwise
vjk 1, if workstation (j, k) is utilized;

0, otherwise
Indicator variables
zip 1, if task i is assigned earlier than

task p at the same workstation;
0, if task p is assigned earlier
than task i at the same worksta-
tion

On the basis of Özcan and Toklu [18], the mathematical
model is formulated utilizing expressions (1–10). The objective
in expression (1) minimizes the number of mated-stations and
the number of workstations. Constraint (2) is the occurrence
constraint, indicating that each task must be allocated to exactly
one side of a mated-station. Constraint (3) and (4) deal with the
cycle time constraint: constraint (3) indicates that the comple-
tion time of each task for each model must be less than or equal
to the cycle time; constraint (4) indicates that the completion
time of each task for each model must be larger than or equal
to the corresponding operation time. Constraint (5) and (6) deal
with the precedence constraint: constraint (5) indicates that the
predecessors of one task must be allocated to the former or the
same mated-station; constraint (6) denotes that the predecessor
of one task must be completed before operating this task when
the predecessor and this task are allocated to the same mated-
station. Constraint (7) and (8) regard the situation when two tasks
have no precedence relationship and they are allocated to the
same workstation: constraint (7) is reduced to tfpm − tfim ≥ tpm
when task i is operated before task p ; constraint (8) is reduced to
tfim − tfpm ≥ tim when task p is operated before task i . Constraint
(9) indicates that vjk is equal to 1 when there is at least one task in
the combined precedence relation allocated to workstation (j, k) .
Lastly, constraint (10) determines the values of Gj and Fj.

4 Encoding and decoding

This section introduces the encoding schemes in Sect. 4.1
and the decoding schemes in Sect. 4.2, and thereafter com-
pares the tested decoding schemes in Sect. 4.3.

4.1 Encoding schemes

The encoding schemes for the MTALBP-I are similar
to that for the TALBP-I, and this study mainly tests two
encoding schemes: (1) permutation-oriented encoding
where only task permutation is employed and (2) permu-
tation-oriented and side-oriented encoding where task per-
mutation and side vector are employed. In the first method,
directions of E-type tasks are determined in the decoding

(1)Minimize w1 ⋅

∑
j∈J

(
Fj + Gj

)
+ w2 ⋅

∑
j∈J

∑
k=1,2

vjk

(2)
∑
j∈J

∑
k∈K(i)

xijk = 1∀i ∈ I

(3)tfim ≤ CT ∀i ∈ I,m ∈ M

(4)tfim ≥ tim∀i ∈ I,m ∈ M

(5)

∑
g∈J

∑
k∈K(h)

g ⋅ xhgk ≤
∑
j∈J

∑
k∈K(i)

j ⋅ xijk ∀i ∈ I − P0, h ∈ P(i)

(6)

tfim − tfhm + �

(
1 −

∑
k∈K(h)

xhjk

)
+ �

(
1 −

∑
k∈K(i)

xijk

)
≥ thm,

∀i ∈ I − P0, h ∈ P(i), j ∈ J,m ∈ M

(7)

tfpm − tfim + 𝜓
(
1 − xijk

)
+ 𝜓

(
1 − xpjk

)
+ 𝜓

(
1 − zip

)
≥ tpm ∀i ∈ I,m ∈ M,

p ∈
{
r|r ∈ I −

(
Pa(i) ∪ Sa(i) ∪ C(i)

)
and i < r

}
, j ∈ J, k ∈ K(i) ∩ K(p)

(8)

tfim − tfpm + 𝜓
(
1 − xijk

)
+ 𝜓

(
1 − xpjk

)

+ 𝜓 ⋅ zip ≥ tim ∀i ∈ I,m ∈ M,

p ∈
{
r|r ∈ I −

(
Pa(i) ∪ Sa(i) ∪ C(i)

)
and i < r

}
,

j ∈ J, k ∈ K(i) ∩ K(p)

(9)

∑
i∈I

xijk − � ⋅ vjk ≤ 0 ∀j ∈ J, k ∈ {1, 2}

(10)
∑
k=1,2

vjk − 2 ⋅ Fj − Gj = 0 ∀j ∈ J

116 Memetic Computing (2021) 13:111–130

1 3

process utilizing the heuristic method. The second method
utilizes the task side vector to determine the directions
before the decoding. For the first permutation-oriented
encoding, a task permutation is utilized to encode all the
tasks. The tasks in the former positions of the task permu-
tation are allocated first. A possible task permutation, for
the example in Fig. 1, is {1, 3, 2, 4, 5, 6, 8, 7, 9, 10, 11,
12}. For instance, task 1 is in the first position of the task
permutation and has the highest priority, and it should thus
be allocated first when all the constraints are satisfied. The
task permutation does not provide detailed information
about the allocated sides of E-type tasks, and the direc-
tions of E-type tasks are determined in the decoding pro-
cess. For the second method, a side vector is applied, and
the example corresponding to Fig. 1 is {L, R, R, L, R, L,
L, R, R, L, R, R}. The first position is L or left, denoting
that task 1 is allocated to the left side.

4.2 Decoding schemes

The decoding procedures for the MTALBP-I are quite dif-
ferent from those utilized in solving the TALBP-I, as all the
tasks for the models in the MTALBP-I must be completed in
the given cycle time. The general decoding procedure for the
MTALBP-I is presented in Algorithm 1. It is to be noted that
the detailed information for dealing with the MTALBP-I is
omitted due to space constraints, however, in the MTALBP-I
the models need to be considered separately. For instance,
a task is assignable in Step 2 when the completion time of
this task for each model is less than or equal to the cycle
time. In Step 5, the tasks of the last mated-station can be
removed to one workstation only when the total operation
time for each model on the last mated-station is not larger
than the cycle time.

All the reported research on this topic have the same Step
1, Step 2, and Step 4, though the methods for selecting a task
and a side in Step 3 are different. All the reported methods
for the selection of tasks and sides, along with the proposed
new method, are summarized here. Among them, the first
eight methods utilize only task permutation for decoding
whereas the ninth method utilizes both task permutation and
task side vector.

(1) Task-to-workstation decoding 1 or TSD1 An assign-
able task in the former position is first selected. If this
task can be allocated to only one side, the correspond-
ing side is selected. Namely, the L-type/R-type tasks
are allocated to the left/right side respectively. If the
selected task can be allocated to either side, a side is
randomly selected as the current workstation.

(2) Task-to-workstation decoding 2 or TSD2 An assignable
task in the former position is first selected. If this task
can be allocated to only one side, the corresponding
side is selected. If the selected task can be allocated
to either side, the left side is selected by default as the
current workstation.

(3) Task-to-workstation decoding 3 or TSD3 An assignable
task in the former position is first selected. If this task
can be allocated to only one side, the corresponding
side is selected. If the selected task can be allocated to
either side, the side with a larger capacity is selected

Algorithm 1. Decoding procedure for the MTALBP-I
Step 1: If some tasks are still unallocated, open a new mated-station. Otherwise, go to Step 5.
Step 2: Check whether assignable tasks exist. If no tasks are assignable, go to Step 1.
% A task is assignable when it has not been allocated and it satisfies the precedence constraint, cycle
time constraint, and direction constraint.
Step 3: Select an assignable task and a side of the current mated-station and allocate this task to the
selected side.
Step 4: Update the remaining capacities for the two sides of the current mated-station and go to Step 1.
Step 5: Remove the tasks of the two sides of the last mated-station to one side when satisfying the
following conditions: 1) the two sides are both utilized; 2) the total operation time is smaller than or
equal to the cycle time; 3) the tasks’ directions are not conflicted.

117Memetic Computing (2021) 13:111–130

1 3

as the current workstation or a random side is selected
when the capacities for both sides are equal.

(4) Task-to-workstation decoding 4 or TSD4 An assignable
task in the former position is first selected. If this task
can be allocated to only one side, the corresponding
side is selected. If the selected task can be allocated to
either side, the side with a larger capacity is selected as
the current workstation or the left side is selected when
the capacities for both sides are equal.

(5) Workstation-to-task decoding 1 or STD1 Both sides of
the current mated-station are checked for whether it is
possible to allocate the tasks to them. If only one side
is available for allocated tasks, this side is selected. If
both sides are available, the side with a larger capacity
is selected or a random side is selected when both sides
have the same capacities. Subsequently, an assignable
task in the former position of the task permutation is
selected to be allocated to this selected side.

(6) Workstation-to-task decoding 2 or STD2 Both sides of
the current mated-station are checked for whether it is
possible to allocate the tasks to them. If only one side
is available for allocated tasks, this side is selected. If
both sides are available, the side with a larger capacity
is selected or the left side is selected by default when
both sides have the same capacities. Subsequently, an
assignable task in the former position of the task per-
mutation is selected to be allocated to this selected side.

(7) Workstation-to-task decoding 3 or STD3 Both sides of
the current mated-station are checked for whether it is
possible to allocate the tasks to them. If only one side
is available for allocated tasks, this side is selected. If
both sides are available, the side with a larger capac-
ity is selected or a random side is selected when both
sides have the same capacities. During the task selec-
tion process, we first obtain all the assignable tasks and
check whether the tasks which can be operated at the
earliest possible time of the selected workstation exist.
If so, the tasks which cannot be operated at the earliest
possible time are deleted from the assignable task set.

Lastly, a task in the former position of the task permu-
tation is selected.

(8) Workstation-to-task decoding 4 or STD4 Both sides of
the current mated-station are checked for whether it
is possible to allocate tasks to them. If only one side
is available for allocated tasks, this side is selected. If
both sides are available, the side with a larger capacity
is selected or the left side is selected by default when
both sides have the same capacities. During the task
selection process, we first obtain all the assignable
tasks and check whether the tasks which can be oper-
ated at the earliest possible time of the selected work-
station exist. If so, the tasks which cannot be operated
at the earliest possible time are deleted from the assign-
able task set. Lastly, a task in the former position of the
task permutation is selected.

(9) Two vector decoding or TVD The assignable sides for
all E-type tasks are obtained on the basis of the side
vector. Then, an assignable task in the former position
is first selected and allocated to the corresponding side.
It is to be noted that in the former eight decoding pro-
cedures, E-type tasks can be allocated to either side,
but in this decoding scheme the side for a task is deter-
mined in advance.

Note that the detailed information for dealing with the
MTALBP-I is not exhibited here due to space constraints,
though the detailed decoding procedures of TSD4 is pre-
sented in “Appendix A” as an example. However, all the
detailed decoding procedures and corresponding informa-
tion are available upon request, where the models must be
considered separately. Among these decoding methods, only
three methods have been utilized in the literature (TSD1,
TSD3, and TSD4), and the remaining six decoding schemes
are developed to solve the MTALBP for the first time. Notice
that, as can be seen in Sect. 6.2, the different decoding
schemes have a great impact on the final performance of
the algorithms. However, the above finding does not receive
enough attention and a comparative study to evaluate these
decoding schemes has not yet been undertaken. Hence, this

Table 2 The complexity
comparison among decoding
schemes

Decoding scheme Number of possible solutions Source

TSD1
[
Nt!, 2Ne ⋅ Nt!

]
Özcan and Toklu [18]

TSD2 Nt! Developed for the first time in this paper
TSD3

[
Nt!, 2Ne ⋅ Nt!

]
Delice et al. [5]

TSD4 Nt! Yuan et al. [27]
STD1

[
Nt!, 2Ne ⋅ Nt!

]
Developed for the first time in this paper

STD2 Nt! Developed for the first time in this paper
STD3

[
Nt!, 2Ne ⋅ Nt!

]
Modified from Khorasanian et al. [7]

STD4 Nt! Modified from Li et al. [16]
TVD 2Ne ⋅ Nt! Developed for the first time in this paper

118 Memetic Computing (2021) 13:111–130

1 3

study presents all the decoding schemes here and conducts
the comparative study in Sect. 6.2 in order to evaluate these
decoding schemes for the first time, with the purpose of pro-
viding useful information and guidance for future research.

4.3 Decoding scheme comparisons

Based on the literature, it can be seen that there are Nt! pos-
sible task permutations for a type I one-sided assembly line
if the task permutation-oriented encoding is utilized, where
Nt is the number of tasks and each task permutation cor-
responds to a solution and there are Nt! possible solutions.
However, in the case of the MTALBP-I, there will be Nt!
possible task permutations, where each task permutation
might correspond to many solutions due to the existence
of E-type tasks. This situation results in 2Ne × NT! possible
solutions, where Ne is the number of E-type tasks.

The nine decoding procedures have different search
spaces due to different approaches to handling E-type tasks,
and are summarized in Table 2. For TVD, the number of all
possible task permutations is Nt! , though the E-type tasks
need to be tested on both the sides, which results in 2Ne ⋅ Nt!
possible solutions. For the remaining methods, TSD2 allo-
cates the E-type task to the left side by default. In this case,
E-type tasks are not required to be tested on both sides,
which reduces the number of solutions of Nt! . This situa-
tion also suits TSD4, STD2, and STD4, which utilize heuris-
tic methods to determine the selected side for E-type tasks.
TD1 selects a side randomly for E-type tasks, and each task

permutation might correspond to many solutions. However,
in some instances E-type tasks can be allocated to only one
side and thus the number of possible solutions is less than or
equal to 2Ne ⋅ Nt! . This situation also suits TSD3, STD1, and
STD3, where a random side is selected in some situations.
In addition, this paper provides only the ranges for TSD1,
TSD3, STD1, and STD3 since, to the authors’ best knowl-
edge, the real number of possible solutions is still unknown.
It is worth noting that the search space of TSD3 is much
smaller than that of TSD1, since TSD3 allocates the E-type
tasks to the side with a larger capacity when both sides have
different capacities.

Table 2 presents the sources of these decoding schemes,
and these decoding schemes cover all the reported instances
for the MTALBP-I. TSD1 is the first decoding reported,
and it ignores the balance of workloads and reduction of
sequence-dependent idle time. TSD3 and TSD4, on the con-
trary, allocate the tasks to the side with a larger capacity so
as to obtain a well-balanced solution. STD1 and STD2 also
improve the balance of the obtained solutions by allocating
tasks to the side with a larger remaining capacity. STD3 and
STD4 take into account the sequence-dependent idle time
during the decoding process. These methods prioritize the
tasks which can be operated at the earliest possible time
of the selected workstation and aim at reducing sequence-
dependent idle time. TVD determines a solution on the basis
of task permutation and task side vector, and the final solu-
tion depends only on the update of these two vectors. It is
worth pointing out that the optimality may not be achievable

Fig. 2 Pseudo-code of the
presented IG

Procedure of IG (d, T)
:= Modified NEH-based initialization; %Initialization
:=Local search() %Local search

; %Update best solution
While (termination criterion is not satisfied) do

; %Destruction phase
For i:=1 to d do

:= remove one task of randomly to position Nt-d+i ;
Endfor
For i:=1 to d do %Construction phase

:=best permutation by inserting task in all possible position;
Endfor

:=Local search() %Local search
If then % Acceptance criterion

;
If then %Update best solution

;
Endif

Elseif then
;

Endif
Endwhile

'π

π

'π

' :π π=

'π

'π''π
('') ()Fit Fitπ π<

: ''π π=

: bπ π=
{ }(0,1) exp (('') () /rand Fit Fit Temperatureπ π≤ − −

'Nt d iπ − +

π
π

:bπ π=

: ''bπ π=
('') ()bFit Fitπ π<

119Memetic Computing (2021) 13:111–130

1 3

if one uses the first eight decoding schemes in some cases,
since they all utilize heuristic methods to determine the sides
of E-type tasks. Notice that this paper considers allocating
the E-type tasks to the left side by default for TSD2, TSD4,
STD2, and STD4, though allocating the E-type tasks to the
right side is also practical. Actually, the left and the right
side are both tested in the preliminary experiments, and they
show similar performance. A detailed comparison campaign
of the nine decoding schemes is presented in Sect. 6.2.

5 Local search methods

Different optimization algorithms have been applied to
solve the TALBP, but some are too complex or difficult to
extend to solve other variants of the TALBP. To overcome
this concern, the main focus of this paper is to develop sim-
ple methods with high performance. The simple and effec-
tive iterated greedy (IG) algorithm [23] and iterated local
search (ILS) algorithm [21] are employed and modified to
solve the proposed MTALBP-I. Both IG and ILS are sim-
ple stochastic methods that have demonstrated good perfor-
mance in optimization problems despite their simplicity of
implementation.

5.1 Iterated greedy algorithm

The proposed IG starts with constructing a high-quality ini-
tial solution and improving this initial solution using a local
search. Then, the following four steps repeat interactively:
the destruction, construction, local search, and accept-
ance. The procedure of the implemented IG algorithm is
depicted in Fig. 2. This paper utilizes a modified NEH-based

initialization for the initialization process presented in Li
et al. [17], which can obtain a high-quality solution. The
local search is employed to emphasize intensification, which
is presented in detail in Sect. 5.3. Within the iteration, the
destruction phase destructs the current individual by mov-
ing d randomly selected tasks to the ending positions of the
current permutation � . The construction phase is applied to
improve the new permutation �′ by inserting these d tasks
into all the possible positions. It is to be noted that the pro-
posed destruction phase and construction phase are different
from those used in Ruiz and Stützle [23]. d random tasks are
not removed from permutation �′ but are inserted into the
backward positions, guaranteeing that each task permutation
is able to acquire a feasible solution. This modification is
carried out due to the difficulty in evaluating part of the task
permutation. Subsequently, a local search is also applied to
enhance this new task permutation �′ . Finally, the accept-
ance criterion is utilized to determine whether this new per-
mutation �′′ can replace the incumbent permutation � . If the
new permutation outperforms the incumbent one, it replaces
the incumbent one. Otherwise, it replaces the incumbent one
with a possibility of exp{−(Fit(���)) − Fit(�)∕Temperature} .
This acceptance criterion allows the acceptance of a worse
solution. Both d and Temperature are important parameters
to select, and they need to be carefully calibrated to achieve
good results.

5.2 Iterated local search algorithm

ILS is also a simple local search algorithm proposed by Pan
and Ruiz [21] which shows promising results for different
types of optimization problems. It is adopted to solve this
problem since it is easy to implement and quite effective and

Fig. 3 Pseudo-code of the
presented ILS

Procedure of ILS (d, nm_move)
:= Modified NEH-based initialization; %Initialization
:=Local search() %Local search

Repeat
;

For i=1 to nm_move do %Perturbation
For j=1 to d do

Select a random task from and insert it into a random position;
Endfor

End for
:= Best individual among nm_move perturbed solutions ;
:=Local search() %Local search

If then % Acceptance criterion
;

Endif
Until termination criterion is met

'π

π

'π

' :π π=

''π

('') ()Fit Fitπ π≤
: ''π π=

π
π

''π ''π

120 Memetic Computing (2021) 13:111–130

1 3

efficient. The procedure of the implemented ILS is presented
in Fig. 3. Like IG, ILS starts by generating a high-quality
initial solution and improving the initial solution using a
local search. Then, perturbation, local search, and accept-
ance criterion application are performed in a loop which
is executed until a termination criterion is satisfied. In the
perturbation phase, nm_move, new permutation �′ is gener-
ated by implementing a randomly inserted operator d times
on the current permutation � , and then the best individual is
selected. This perturbation procedure is easier and simpler
than the destruction phase and construction phase in the IG
algorithm. Subsequently, a local search is applied to enhance
the new permutation �′′ , and acceptance criterion is applied
to decide whether this new solution can be accepted. As for
the acceptance criterion, the ILS adopts a simpler method
by only accepting a solution with an equal or better objective
function value. The main idea behind this modification is to
develop an easier method. By doing so, this modification
does not cause a large difference in the algorithm perfor-
mance with preliminary experiments. nm_move and d are
two important parameters that need to be calibrated. The
proposed ILS algorithm can be considered an easier method
than the IG algorithm.

5.3 Improved local search procedure

The local search procedure plays an important role in the
performance of IG and ILS methods. This paper proposes
an improved precedence-based local search with two
neighborhood structures and referenced permutation. The
proposed local search procedure is depicted in Fig. 4. The
local search procedure aims to optimize the current task
permutation � , and this local search terminates when an
improved permutation has not been achieved for a number
of consecutive Nt × Nt∕a iterations, where a is a param-
eter that must be calibrated. Within a cycle, the task �rp

i
 is

selected from a referenced permutation �rp, and this task
is either inserted into another position or exchanged with
another random task. After executing the insert operator
or swap operator, the new task permutation �′ is checked
to ensure that the precedence constraint is satisfied. If the
precedence constraint is not violated, a new solution is
obtained using this new task permutation. If the new fit-
ness value is better than the current one, then the incum-
bent task permutation is replaced with the new one and
the value of the counter is set to zero. If the new fitness is
equal to the current one, the incumbent permutation is also
updated. In this paper, the referenced permutation is set to
be the same as the current best permutation.

This local search has several features leading to faster
computation and an effective search capacity. Specifically

Fig. 4 The procedure of new
precedence-based local search Procedure Local search ()

counter:=0;i:=1;
While (counter<)

for j:=1 to b do
If (Rand()%100<50) % Insert operation

Remove task from ;
:= Permutation by inserting task into a random position (without repetition);

Else %Swap operation
Select a random task and exchanges the positions of this task and ;

Endif
If (New task permutation is violated to precedence constraints) %Precedence check

Continue;
Else

Obtain a feasible solution based on the new task permutation;
Endif
If Fit()<Fit();

:= ; counter:=0;
Elseif Fit()=Fit();

:= ;
Endif

Endfor
counter:=counter+1;
i:=mod(i+1, nt)

Endwhile

, ,rp aπ π

'π

π
π'π

'π

π

Nt Nt a×

rp
iπ

rp
iπ

π
π 'π

'π

rp
iπ

121Memetic Computing (2021) 13:111–130

1 3

(1) this referenced permutation ensures that each task
undergoes a local search and reduces the possibility of
updating the positions of a same task again and again. (2)
Both the insert operator and swap operator are combined
with the aim of increasing the search space. (3) Another
important feature in the improved local search procedure
is that the position of the selected task is modified a times,
rather than testing the selected task on all the possible
positions, as is done in Ruiz and Stützle [23]. This also
assists in increasing the search speed. Moreover, the search
speed is further accelerated by testing only task permuta-
tions satisfying the precedence constraint. From the pre-
liminary results, this new local search could demonstrate
better performance than that proposed by Li et al. [16].

5.4 Two‑stage evaluation procedure

Based on Li et al. [15], this study develops a two-stage eval-
uation procedure with two objectives in expressions (11–13).
Here, Nm and Ns are the number of mated-stations and the
number of workstations, and w1 and w2 are the correspond-
ing weights. Indexes j, k, and m denote a task, a side of a
mated-station, and a model, respectively. STjkm is the work-
load (the total operation time of tasks on workstation (j,k))
allocated to workstation (j,k) for model m, and CT is the
cycle time. WSI is a weighted smoothness index calculated
using expression (13) and WSI0 is the weighted smoothness
index obtained from the initial solution. WLjkm is the finish-
ing time of workstation (j,k) for model m and WLmax is the
maximum value of WLjkm.

In this study, the two-stage evaluation procedure first
utilizes the first evaluation objective, referred to as station-
oriented evaluation, in expression (11), and later utilizes
the second evaluation objective in expression (12) when the
optimal solution in terms of the number of mated-stations
and the number of workstations is achieved. The first evalu-
ation objective in expression (11) aims at optimizing the
mated-station number and workstation number by selecting
the solution with more allocated workloads to the former
mated-stations. In expression (11), the idle time of the for-
mer mated-station is provided with a larger weight, and thus

(11)Min Fitness1 = w1 × Nm + w2 × Ns +

∑
m∈M

∑
j∈J

∑
k=1,2 qm × (Nm + 1 − j) ×

�
CT − STjkm

�

2 × Nm × CT

(12)Min Fitness2 = w1 × Nm + w2 × Ns +WSI∕WSI0

(13)

WSI =

����∑
m∈M qm ×

�∑
j∈J

∑
k=1,2

�
WLjkm −WLmax

�2�

Ns

the solution with more workload on former workstations is
preserved. Nevertheless, the first evaluation objective might
result in unbalanced workloads on workstations, where the
former mated-stations have much larger workloads. Hence,
the second evaluation objective in expression (12) is uti-
lized here only when the first evaluation objective cannot
further reduce the workstation number or a termination cri-
terion for the first stage is satisfied. Expression (12) is used
to minimize the weighted smoothness index to preserve the
solutions with balanced workloads, aiming at optimizing the
balance of workloads. Since a mated-station comprises two
workstations, the w1 and w2 are set to 2 and 1 respectively.
As the latter part of expression (11) or expression (12) is
usually smaller than 1.0, this part takes effect only when
solutions have the same mated-stations and workstations.

It might be augured that utilizing only expression (12) is
sufficient, though only utilizing expression (12) might obtain
poor performance; the reasons for utilizing the two-stage
evaluation procedure are analyzed as follows. Among the
reported papers, there are two types of objectives solved
in the MTALBP-I: minimizing the w1 × Nm + w2 × Ns in
Delice et al. [5] and maximizing the line efficiency and mini-
mizing the smoothness proposed by Özcan and Toklu [18].
Since there are many solutions having the same number of
mated-station and workstations, the w1 × Nm + w2 × Ns can-
not determine the better one and thus cannot determine the
proper evolutionary direction. Özcan and Toklu [18] objec-
tive is also not effective since it might lose the ability to
find the optimal solution. If the workloads on workstations
are balanced, it is difficult or even impossible to reduce the

number of workstations with a small adjustment. Never-
theless, if there are fewer workloads on the latter worksta-
tions, there is a high probability of reducing the number
of workstations with a small adjustment. In short, the two
published objectives might not be capable of reducing the
number of mated-stations and workstations effectively. As
will be seen in Sect. 6.2, this station-oriented evaluation in
expression (11) outperforms the other two published objec-
tives by a significant margin in terms of reducing the number
of workstations.

6 Computational results

This section presents the experimental design and computa-
tional results. Tested benchmark datasets and the adaptions
of eleven other metaheuristic algorithms are explained in
Sect. 6.1. The performances of the nine decoding schemes

122 Memetic Computing (2021) 13:111–130

1 3

and several objectives are compared in Sect. 6.2. The com-
putational and statistical results are presented in Sect. 6.3.

6.1 Experimental design

To evaluate the proposed algorithms, most of the available
benchmark problems, to the authors’ best knowledge, are
solved: four small-sized problems (P9, P12, P16, and P24)
and four large-sized problems (P65, P148, P205-Yuan, and
P205-Delice). The precedence relations and operation direc-
tions of P9, P12, and P24 are taken from Kim et al. [8],
and those of P16, P65, P205-Yuan, and P205-Delice are
taken from Lee et al. [13]. The precedence relations and
operation directions of P148 are taken from Bartholdi [2].
The task times of the P9, P12, P16, P24, P65, and P148 are
taken from Özcan and Toklu [18], the task times of P205-
Yuan are taken from Yuan et al. [27], and the task times of
P205-Delice are taken from Delice et al. [5]. The bench-
mark problems are summarized in Table 3. The overall pro-
portions of all models are assumed to be the same, namely
qA= qB= …=qm [18].

To test the performance of the proposed algorithms, this
research presents several adaptions of other well-known and
recent metaheuristic algorithms. Eleven algorithms are re-
implemented, among which nine algorithms are developed
for the first time to solve the MTALBP-I. The compared
methods include a genetic algorithm (GA), ant colony opti-
mization algorithm (ACO), simulated annealing algorithm
(SA), tabu search algorithm (TS), two-ant colony optimiza-
tion algorithm (2ACO), bee optimization algorithm (BA),
particle swarm optimization with negative knowledge
(PSONG), particle swarm optimization algorithm (PSO),
teaching–learning-based optimization algorithm (TLBO),
late acceptance hill-climbing algorithm (LAHC), and dis-
crete artificial bee colony algorithm (DABC) [15]. During
the re-implementing process, some adaptions are neces-
sary, including adopting the provided new objective and
effective decoding scheme. Due to space constraints, the
pseudo-algorithms of these methods are not presented, but

the basic information of these algorithms is available upon
request. All the algorithms are re-programmed utilizing the
C++ language in Microsoft Visual Studio 2012, and they
utilize the same termination criteria of an elapsed CPU time
of Nt × Nt × � milliseconds. To avoid prejudiced compari-
son, � is set to 5, 10, 15, and 20, respectively, to analyze the
performance of the tested methods for short to very large
computational times. In the termination criterion, the large-
sized problems consume more computational time during
solution search. All the experiments are tested on a set of
personal computers with the same setting, namely equipped
with an Intel Core2 2.33GHZ CPU and 3.036 GB memory.

To highlight the effectiveness of the proposed station-
oriented evaluation in expression (11) as well as the ration-
ality of utilizing the two-stage evaluation procedure, the
following comparison in Sects. 6.2 and 6.3 focuses mainly
on the results in terms of the number of mated-stations and
the number of workstations. After conducting the experi-
ments, it is observed that Nm = Ns∕2 + Ns%2 for all the
tested cases. In other words, the value of Nm can be achieved

Table 3 Description of tested
benchmark problems

Problem Number of
tasks

Number of
models

Number of tested
cases

Tested cycle times

P9 9 2 3 4, 5, 6
P12 12 2 4 5, 6, 7, 8
P16 16 2 6 15, 16, 18, 19, 21, 22
P24 24 2 6 20, 24, 25, 30, 35, 40
P65 65 3 5 326, 381, 435, 490, 544
P148 148 4 7 204, 255, 306, 357, 408, 459, 510
P205-Yuan 205 5 10 1133, 1322, 1510, 1699, 1888,

2077, 2266, 2454, 2643, 2832
P205-Delice 205 5 10 1133, 1322, 1510, 1699, 1888,

2077, 2266, 2454, 2643, 2832

Decoding schemes
TSD1 TSD2 TSD3 TSD4 STD1 STD2 STD3 STD4 TVD

xedni
noitaived

evitale
R

0

20

40

60

80

100
Objective-N
Objective-D
Objective-O

Fig. 5 Means plot of decoding schemes with three objectives

123Memetic Computing (2021) 13:111–130

1 3

directly once the value of the Ns is given. For simplicity, this
section mainly presents the results in terms of the number of
workstations. Notice that the results in terms of the number
of mated-stations can be achieved utilizing the above expres-
sion, and are also available upon request.

6.2 Computational analysis of decoding schemes
and objectives

This section presents the results in terms of the number of
workstations utilizing nine decoding schemes and three
objectives to show their performance regarding optimiz-
ing the number of the workstations. The three objectives
comprise the station-oriented evaluation in expression
(11) (referred to as Objective-N), the objective taken from
Özcan and Toklu [18] (referred to as Objective-O), and the
objective from Delice et al. [5] (referred to as Objective-
D). Objective-O optimizes the maximization of the line
efficiency and minimization of the workload smoothness at
the same time, while Objective-D minimizes the number of
mated-stations and the number of workstations. Note that
Objective-O is tested to verify the rationality of utilizing the
two-stage evaluation procedure in sequence, and Objective-
D is tested to prove the superiority of the station-oriented
evaluation as the first evaluation objective in terms of opti-
mizing the mated-station and workstation numbers.

This study utilizes the SA algorithm to test the decoding
schemes and objectives. Ten cases of P205-Yuan are solved,
and the average results of 10 repetitions are recorded for the
four termination criteria. Since different cases are solved,
the relative deviation index (RDI) is selected to transfer the
achieved workstation numbers using expression (14), where
Fitsome is the workstation number of one case through a com-
bination of decoding scheme and objective and Fitworst and
Fitbest are the largest and smallest workstation number of the
same case among all the combinations.

The mean RDI values of different decoding schemes and
objectives are depicted in Fig. 5 under � = 20 . It can be
noted that the proposed Objective-N shows a clear advantage
over the two compared schemes, whereas the performances
of decoding schemes are different for the three objectives.
The best results are obtained by Objective-N and followed
by Objective-D and Objective-O. It is clear that Objective-N
performs best. However, it is interesting to note that Objec-
tive-D performs better than Objective-O. This could be due
to the fact that Objective-O optimizes the line efficiency and
workload balance together, leading to a possibility of los-
ing optimal solutions. In general, it is very difficult or even
impossible to transfer a well-balanced solution into a new

(14)Relative Deviation Index(RDI) = 100 ×
(
Fitsome − Fitbest

)
∕
(
Fitworst − Fitbest

)

solution with fewer workstations with a small adjustment.
On the contrary, there are much larger possibilities to reduce
the workstation number of a solution with little workload on
the last workstation.

In summary, this comparative study proves the following.
(1) The line efficiency and smoothness should be optimized
in sequence as the simultaneous optimizing of the line effi-
ciency and smoothness leads to poor results regarding the
mated-station number and the workstation number. (2) The
proposed station-oriented evaluation, as the first evaluation
objective, outperforms other objectives in terms of optimiz-
ing the mated-station number and workstation number, and
is a good option for utilizing the two-stage evaluation pro-
cedure to optimize the line efficiency and line smoothness
in a sequence.

Due to the clear superiority of the proposed Objective-
N in terms of the number of workstations as presented in

Fig. 5, the main focus is on the decoding scheme under the
condition of Objective-N. The non-parametric Friedman
rank-based analysis is utilized to analyze the results obtained
by the different decoding schemes due to the deviation from
normality. Since there are nine decoding schemes, the results
of the algorithms for each case are transferred so that the
smallest value is ranked 1 and the largest value is ranked 9.
Analysis results indicate that there is a statistical difference
in the average ranks of the decoding schemes with a P value
lower than 0.01. The mean plot of the ranks for the decoding
schemes under � = 20 is depicted in Fig. 6. In addition, it
is observed that TSD4 ranks first, TSD3 ranks second, and
finally TSD1 ranks ninth.

Average ranks
2 4 6 8 10

TSD1

TSD2

TSD3

TSD4

STD1

STD2

STD3

STD4

TVD

D
ec

od
in

g
sc

he
m

es

Fig. 6 Means plot of the average ranks and 95% confidence intervals
for nine decoding schemes

124 Memetic Computing (2021) 13:111–130

1 3

6.3 Comprehensive comparison of metaheuristics

This section presents the experimental results obtained from
all the tested methods. It is to be noted that there are nine
selected decoding schemes and three selected objectives, lead-
ing to 27 configurations for each algorithm. Due to space con-
straints, this section presents only the computational results
obtained using decoding scheme TS4 and Objective-N, which
is proved to be the most effective in Sect. 6.2.

The proper parameters often play an underlying role in
creating a high-performing algorithm. Therefore, this sec-
tion first calibrates the parameters for all the algorithms
with full factorial design as proposed by Tang et al. [25]
and Li et al. [17]. One of the largest cases from P205-Yuan
is used for parameter determination, and this case is solved
10 times for each combination of the parameters. All the
algorithms terminate when the computational time reaches
t = Nt × Nt × 5 milliseconds. After carrying out all the

Table 4 Comparison of algorithms with four termination criteria

Problem GA DABC BA TLBO PSO LAHC SA TS PSONG ACO 2ACO IG ILS

� = 5

 P9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P24 38.6 39.3 45.0 19.1 65.1 20.2 28.6 33.2 19.8 100.0 63.9 3.9 25.9
 P65 57.2 56.5 56.6 58.4 66.1 49.9 47.5 28.5 57.0 100.0 68.4 41.0 38.4
 P148 25.4 27.3 23.8 51.5 55.8 10.5 21.3 14.6 57.6 100.0 29.8 12.8 15.5
 P205-Yuan 4.6 5.3 6.0 11.4 13.7 2.7 2.3 1.8 10.0 100.0 43.6 0.5 0.9
 P205-Delice 20.9 20.0 18.5 28.6 30.6 11.7 8.0 10.5 30.2 100.0 46.8 4.9 4.0
 Avg 18.6 18.9 18.9 22.9 30.5 11.5 13.0 11.1 23.7 74.5 36.0 7.3 9.9
� = 10

 P9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P24 35.1 37.3 28.1 15.3 65.1 19.1 26.5 30.1 19.8 94.6 63.9 1.7 24.6
 P65 54.2 49.7 52.9 56.0 66.1 48.5 36.2 25.3 54.0 98.1 61.7 23.8 37.3
 P148 20.5 26.1 17.2 47.1 55.7 6.5 16.8 9.5 30.6 97.1 29.2 7.8 10.3
 P205-Yuan 3.2 3.1 3.8 9.4 13.7 1.8 0.9 0.7 8.4 100.0 43.6 0.2 0.3
 P205-Delice 14.2 8.8 12.3 28.0 30.5 10.6 7.7 9.4 27.7 100.0 46.8 2.1 2.7
 Avg 15.7 15.2 14.0 21.1 30.5 10.3 10.7 9.3 18.9 73.3 35.3 4.1 8.5
� = 15

 P9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P24 30.4 36.3 25.9 14.7 65.1 18.1 26.5 30.1 19.8 91.9 63.6 0.3 21.8
 P65 50.4 47.4 49.7 55.2 66.1 46.1 35.5 22.8 53.8 98.1 59.1 17.7 36.5
 P148 19.3 25.3 13.2 46.9 55.7 4.7 13.0 6.9 27.6 92.1 28.9 2.6 3.5
 P205-Yuan 2.7 2.0 3.1 9.1 13.7 1.3 0.6 0.6 7.3 100.0 43.1 0.1 0.1
 P205-Delice 12.7 6.5 10.7 27.8 30.5 9.7 6.8 8.5 26.0 100.0 46.8 1.7 1.1
 Avg 14.2 14.1 12.4 20.8 30.5 9.5 9.8 8.5 17.9 72.3 34.9 2.5 6.9
� = 20

 P9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 P24 28.3 35.0 22.7 14.5 65.1 18.1 25.5 30.1 19.8 89.2 63.5 0.0 21.2
 P65 49.7 45.7 46.3 54.2 66.1 37.5 34.6 22.7 53.7 98.1 59.0 0.0 16.4
 P148 17.9 23.7 11.7 45.4 54.8 4.6 9.4 6.7 27.0 90.7 28.6 1.1 1.1
 P205-Yuan 2.3 1.4 2.7 8.8 13.7 1.2 0.5 0.5 6.2 100.0 43.1 0.1 0.0
 P205-Delice 11.1 6.4 9.9 27.5 30.5 9.6 6.2 8.3 24.0 100.0 46.7 1.5 0.9
 Avg 13.3 13.4 11.3 20.4 30.3 8.6 9.0 8.4 17.2 71.8 34.8 0.5 4.4

125Memetic Computing (2021) 13:111–130

1 3

experiments, the parametric analysis of variance method
(ANOVA) is applied to select the best combination of the
parameters. All the final selected parameters, along with the
ranges for each parameter, are available upon request. For
the MTALBP-I, the workstation number minimization is the
primary concern, and thus the following comparison focuses
mainly on the results in terms of the number of workstations
obtained using station-oriented evaluation.

Table 4 shows the average RDI values for all problems
with four termination criteria. It is to be noted that both
TS1 and TS4 are utilized, and they are randomly selected
for small-sized problems. This is due to that fact TSD4 with
reduced research space can lose the optimal solutions for
a few small-size cases. STD1, on the other hand, has the
largest search space, and the optimal solution is definitely
in the search space. All the other decoding methods uti-
lize heuristic methods to decide the side for E-type tasks to
reduce search space at the cost of losing optimal solutions.
In the preliminary test, this situation occurs only for a few
small-sized problems, and thus STD4 is selected exclusively
for large-sized problems. In Table 4, the number in each
column is the average results for several cycle times with 10
runs. For instance, each number for P205-Yuan is the aver-
age result of 100 datasets, combing the results of 10 different
cycle times. It is observed that IG is the best algorithm with
an overall RDI of 7.3 under � = 5 , and ILS is the second-best
algorithm with an overall RDI of 9.9.

For the other three termination criteria, the IG and ILS
are also the two best algorithms. Among the remaining
methods, the LAHC, SA, and TS, which are also local search
methods, outperform the GA, DABC, and BA. Results
obtained using the TLBO, PSO, PSONG, and 2ACO are
worse, and for all large-sized cases, the ACO reports the
worst performance. It is interesting to investigate the cause
of these results. Local search methods benefit from the

objective function proposed in this research and ST4 with
reduced search space. The newly proposed objective guides
them quickly to the near optimal solutions by preserving
small improvements. The TLBO and PSO lack strong local
search capacity, and thus they are outperformed by the GA,
DABC, and BA algorithms.

Although the difference between the proposed algorithms
and other competing algorithms is quite large, it is still rec-
ommended that a statistical analysis be carried out to check
whether the observed difference is statistically significant.
Since an initial analysis with a parametric ANOVA tech-
nique shows strong deviation from normality, a non-para-
metric Friedman rank-based analysis is also executed. As
there are 13 methods, the results are transferred in a way
such that the best result is given a rank of 1, and the worst
result is given a rank of 13. Because four termination criteria
are applied, there are four statistical results with Friedman
rank-based analysis. On the basis of the statistical analysis, it
is observed that there are statistical differences among these
algorithms with P-values less than 0.01 for all four termina-
tion conditions. Instead of exhibiting the detailed statistical
results, this paper mainly presents the average ranks of the
13 algorithms on large-sized cases in Fig. 7a, b. Figure 7a
depicts the average ranks with 95% minimal significant dif-
ference confidence intervals when � = 5, and Fig. 7b depicts
the average ranks with confidence intervals when � = 20, in
order to show the performances with the smallest and larg-
est CPU times.

From these figures, it is clear that the IG and ILS rank
first and second respectively, for both termination criteria.
They are followed by the TS, SA, and LAHC, ranking third,
fourth, and fifth. Subsequently, the DABC, BA, and GA rank
sixth, seventh, and eighth, and the ACO ranks last. It is also
observed that the 95% confidence intervals of the IG and ILS
almost do not overlap with the confidence intervals of the

Average ranks
0 5 10 15

ACO
2ACO

PSONG
PSO

TLBO
GA
BA

DABC
LAHC

SA
TS

ILS
IG

A
lg

or
ith

m

Average ranks
0 5 10 15

ACO
2ACO

PSONG
PSO

TLBO
GA
BA

DABC
LAHC

SA
TS

ILS
IG

A
lg

or
ith

m

(a) Ranks of the algorithms under (b) Ranks of the algorithms under

Fig. 7 Means plot of the average ranks and 95% confidence intervals for 13 algorithms

126 Memetic Computing (2021) 13:111–130

1 3

Table 5 New lower bounds and best results by algorithms under � = 20

Problem CT LB-O LB-N OPT HBMO MPSO GA DABC BA LAHC SA TS IG ILS

P9 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 3 3 3 3 3 3 3 3 3 3 3 3 3
6 3 3 3 3 3 3 3 3 3 3 3 3 3

P12 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 4 4 4 4 4 4 4 4 4 4 4 4 4
7 3 4 4 4 4 4 4 4 4 4 4 4 4
8 3 3 3 3 3 3 3 3 3 3 3 3 3

P16 15 5 5 6 6 6 6 6 6 6 6 6 6 6
16 5 5 6 6 6 6 6 6 6 6 6 6 6
18 4 4 5 5 5 5 5 5 5 5 5 5 5
19 4 4 5 5 5 5 5 5 5 5 5 5 5
21 4 4 4 4 4 4 4 4 4 4 4 4 4
22 4 4 4 4 4 4 4 4 4 4 4 4 4

P24 20 7 7 7 7 7 7 7 7 7 7 7 7 7
24 6 6 6 6 6 6 6 6 6 6 6 6 6
25 5 6 6 6 6 6 6 6 6 6 6 6 6
30 5 5 5 5 5 5 5 5 5 5 5 5 5
35 4 4 4 4 4 4 4 4 4 4 4 4 4
40 4 4 4 4 4 4 4 4 4 4 4 4 4

P65 326 8 8 N/A 9 9 9 9 9 9 9 9 9 9
381 7 7 7 8 8 8 8 8 8 8 7 7 7
435 6 6 6 7 7 7 7 7 6 6 7 6 6
490 6 6 6 6 6 6 6 6 6 6 6 6 6
544 5 5 5 6 6 5 5 5 5 5 5 5 5

P148 204 13 14 14 17 17 15 15 15 15 15 15 15 14
255 11 12 12 13 13 12 12 12 12 12 12 12 12
306 9 10 10 11 11 10 10 10 10 10 10 10 10
357 8 8 8 10 9 8 9 8 8 8 8 8 8
408 7 7 7 8 8 7 7 7 7 7 7 7 7
459 6 7 7 7 7 7 7 7 7 7 7 7 7
510 6 6 6 7 6 6 6 6 6 6 6 6 6

P205-Yuan 1133 11 12 N/A 15 N/A 13 13 13 13 13 13 13 13
1322 10 11 11 13 N/A 11 11 11 11 11 11 11 11
1510 8 9 N/A 11 N/A 10 10 10 10 10 10 10 10
1699 8 8 N/A 10 N/A 9 9 9 9 9 9 9 9
1888 7 8 8 9 N/A 8 8 8 8 8 8 8 8
2077 6 7 7 8 N/A 7 7 7 7 7 7 7 7
2266 6 6 N/A 8 N/A 7 7 7 7 7 7 7 7
2454 5 6 6 7 N/A 6 6 6 6 6 6 6 6
2643 5 6 6 6 N/A 6 6 6 6 6 6 6 6
2832 5 5 5 6 N/A 5 5 5 5 5 5 5 5

127Memetic Computing (2021) 13:111–130

1 3

other algorithms. This underlines that the proposed IG and
ILS are better than other methods by a clear and significant
margin.

To the authors’ best knowledge, there are several cases
in which the optimal solutions are not found, and the gap
between the obtained best results and the theoretical lower
bounds by Özcan and Toklu [18] are quite large. Özcan and
Toklu [18] calculated the lower bounds using the weighted
task times and lower bound calculation method as shown in
Hu et al. [6]. This method suits the weighted task time situ-
ation, but they are not efficient for the non-weighted situa-
tion considered in this research. Therefore, this research pre-
sents an improved version for lower bound calculation with
expressions (15–18). In these expressions, LBNm

m
 and LBNs

m

are the lower bounds of the number of mated-stations, and
the number of workstations for the model m; LBNm and LBNs
are the lower bounds of the number of mated-stations and
the number of workstations for the whole problem. i indi-
cates a task, tim is the operation time for task i of model m,
and AL, AR, and AE are sets of tasks whose preferred direc-
tions are left, right, and either, respectively. The logic behind
the improvement is that each product needs to be completed
within the cycle time for the non-weighted method.

(15)LBNm
m

= max

{∑
i∈AL

tim∕CT ,
∑
i∈AR

tim∕CT

}

(16)

LB
Ns

m
= 2 ⋅ LBNm

m

+max

�
0,

∑
i∈AE tim −

�
LB

Nm

m
⋅ CT −

∑
i∈AL tim

�
−
�
LB

Nm

m
⋅ CT −

∑
i∈AR tim

�
CT

�

(17)LBNm = max
m

{
LBNm

m

}

Table 5 presents the lower bounds and best workstation
numbers by part of the algorithms using the largest compu-
tational time within 10 repetitions. The old lower bounds
(LB-O) provided by Özcan and Toklu [18] are highlighted
by adding an “–O” at the end of the name, and the new lower
bounds (LB-N) proposed in this paper are highlighted by add-
ing an “–N.” OPT means the optimal number of workstations.
For small-sized problems, the optimal results have been pro-
vided. For large-sized problems, the solution is optimal when
the number of workstations is equal to the lower bound of
the workstation number. The current best results obtained
by modified particle swarm optimization (MPSO) [5] and
hybrid honey bee mating optimization (HBMO) [27] are also
included.

From Table 5, it can be seen that the LB-N updates the
lower bounds for 19 cases, including two small-sized cases
and 17 large-sized cases. Using this new lower bound cal-
culation, the results for 24 large-sized cases are proven to be
optimal, among which 14 cases can be proved to be optimal
only through the new lower bound calculation. Also, all eight
of the proposed algorithms in this paper can obtain the same
or better results when compared with MPSO and HBMO
for all large-sized cases. To be specific, the IG outperforms
HBMO in three, six, and nine cases for P65, P148, and P205-
Yuan, respectively. Moreover, the IG outperforms MPSO in
three, five, and seven cases for P65, P148, and P205-Delice,
respectively. Among all the methods, the IG and ILS find the
maximum number of optimal solutions. Among the large-sized
problems, 19 optimal results are first presented using the IG
and ILS. These results further confirm the advantages of the
proposed local search methods as well as the new station-
oriented evaluation.

(18)LBNs = max
m

{
LBNs

m

}

Table 5 (continued)

Problem CT LB-O LB-N OPT HBMO MPSO GA DABC BA LAHC SA TS IG ILS

P205-Delice 1133 11 12 12 N/A 14 13 13 13 13 13 13 13 12

1322 9 10 N/A N/A 12 11 11 11 11 11 11 11 11

1510 8 9 9 N/A 11 10 10 10 10 9 9 9 9

1699 7 8 8 N/A 10 8 8 8 8 8 8 8 8

1888 7 7 N/A N/A 8 8 8 8 8 8 8 8 8

2077 6 7 7 N/A 8 7 7 7 7 7 7 7 7

2266 6 6 6 N/A 8 6 6 6 6 6 6 6 6

2454 5 6 6 N/A 6 6 6 6 6 6 6 6 6

2643 5 5 N/A N/A 6 6 6 6 6 6 6 6 6

2832 5 5 5 N/A 6 5 5 5 5 5 5 5 5

*N/A means that the result is not available, and new lower bounds are in bold

128 Memetic Computing (2021) 13:111–130

1 3

7 Conclusion and future research

Mixed-model two-sided assembly lines are utilized in
modern industry to assemble different types of products
simultaneously and in parallel, and this type of line has
great relevance to the automobile industry. This paper con-
siders this practical and important mixed-model two-sided
assembly line balancing problem to minimize the mated-
station number and workstation number (MTALBP-I).

Firstly, six new decoding schemes are developed for
the MTALBP-I (modified from those used for solving the
TALBP) for the first time, and a comparative study of nine
decoding procedures is also carried out to test their perfor-
mance. Secondly, two local search methods, the iterated
greedy (IG) and iterated local search (ILS), are developed
to solve the MTALBP-I. A new precedence-based local
search using referenced permutation and two neighborhood
structures is also employed by these two methods to empha-
size intensification while preserving fast search speed. A
two-stage evaluation procedure is developed to guide the
search process, wherein the first stage with a station-ori-
ented evaluation is applied to find the solutions with the
fewest workstations, and the second stage attempts to find
balanced solutions on the basis of the solution obtained in
the first stage. Thirdly, a comprehensive study of these two
algorithms and 11 adaptions of recent and high-performing
algorithms demonstrates that the proposed algorithm out-
performs other implemented methods and obtains 23 new
upper bounds. Fourthly, a new lower bound calculation is
developed, which updates the lower bounds for 19 problem
cases and proves the optimality for 14 more cases.

The developed techniques can be adopted by the pro-
duction-line managers to reduce the number of workers,
making their assembly lines shorter, improve line effi-
ciency, and thus reduce costs and make factories more
competitive. As the real industrial contexts are diverse and
complicated, the considered problem can be extended to
consider more realistic objectives (e.g., minimizing the
cost or the cycle time), the realistic constraints (e.g., posi-
tional constraint, zoning constraints), and the uncertainties
in production (e.g., uncertain operation times). One can
also study the rebalancing of the MTALBP-I so that the
existing assembly lines can be improved by utilizing the
developed methodologies. As model sequencing is another
problem in mixed-model production, it is necessary to
study the mixed-model two-sided assembly line balanc-
ing and sequencing problem simultaneously.

Acknowledgments This project is partially supported by National
Natural Science Foundation of China under Grants 51875421 and
61803287 and the China Postdoctoral Science Foundation under Grant
2018M642928. The authors are grateful for the insightful comments by
the anonymous referees which helped to improve this paper.

Appendix A: Illustrated decoding procedure

Utilized notations for decoding procedure

i, h, p The index of tasks
I Set of tasks; i, h ∈ I

j The index of mated-stations
J Set of mated-stations; j ∈ J

k The index of sides, k = 1, 2

m The index of the product models
M Set of product models; m ∈ M

AL Set of tasks that should be
allocated to the left side of a
mated-station

AR Set of tasks that should be
allocated to the right side of a
mated-station

AE Set of tasks that should be allo-
cated to either side of a mated-
station

P(h) Set of immediate predecessors of
task h

tm
h

Operation time of task h for model
m

tf m
h

Completion time of task h for
model m

wlm
j

The completion time of the left-
side workstation of the mated-
station j (including the idle time)
for model m

wrm
j

The completion time of the right-
side workstation of the mated-
station j (including the idle time)
for model m

SLj Set of tasks that have been allo-
cated to the left side of mated-
station j

SRj Set of tasks that have been
allocated to the right side of
mated-station j

ATLj Set of assignable tasks that can
be allocated to the left side of
mated-station j

ATRj Set of assignable tasks that can
be allocated to the right side of
mated-station j

CT Cycle time
Nt Total number of tasks
nm, nl, nr The number of mated-stations,

left-side workstation, and right-
side workstations

ns The total number of workstations

The decoding procedure of TSD4 is detailed as follows, and
serves as an example.

129Memetic Computing (2021) 13:111–130

1 3

130 Memetic Computing (2021) 13:111–130

1 3

References

 1. Aghajani M, Ghodsi R, Javadi B (2014) Balancing of robotic
mixed-model two-sided assembly line with robot setup times. Int
J Adv Manuf Technol 74:1005–1016

 2. Bartholdi J (1993) Balancing two-sided assembly lines: a case
study. Int J Prod Res 31:2447–2461

 3. Battaïa O, Dolgui A (2013) A taxonomy of line balancing prob-
lems and their solution approaches. Int J Prod Econ 142:259–277

 4. Baykasoglu A, Dereli T (2008) Two-sided assembly line balanc-
ing using an ant-colony-based heuristic. Int J Adv Manuf Technol
36:582–588. https ://doi.org/10.1007/s0017 0-006-0861-3

 5. Delice Y, Kızılkaya Aydoğan E, Özcan U, İlkay MS (2017) A
modified particle swarm optimization algorithm to mixed-model
two-sided assembly line balancing. J Intell Manuf 28:23–36. https
://doi.org/10.1007/s1084 5-014-0959-7

 6. Hu X, Wu E, Jin Y (2008) A station-oriented enumerative algo-
rithm for two-sided assembly line balancing. Eur J Oper Res
186:435–440. https ://doi.org/10.1016/j.ejor.2007.01.022

 7. Khorasanian D, Hejazi SR, Moslehi G (2013) Two-sided assem-
bly line balancing considering the relationships between tasks.
Comput Ind Eng 66:1096–1105. https ://doi.org/10.1016/j.
cie.2013.08.006

 8. Kim YK, Kim Y, Kim YJ (2000) Two-sided assembly line balanc-
ing: a genetic algorithm approach. Prod. Plan. Control 11:44–53.
https ://doi.org/10.1080/09537 28002 32478

 9. Kim YK, Song WS, Kim JH (2009) A mathematical model and a
genetic algorithm for two-sided assembly line balancing. Comput
Oper Res 36:853–865. https ://doi.org/10.1016/j.cor.2007.11.003

 10. Kucukkoc I, Li Z, Karaoglan AD, Zhang DZ (2018) Balancing
of mixed-model two-sided assembly lines with underground
workstations: a mathematical model and ant colony optimization
algorithm. Int J Prod Econ 205:228–243. https ://doi.org/10.1016/j.
ijpe.2018.08.009

 11. Kucukkoc I, Zhang DZ (2014) Mathematical model and agent
based solution approach for the simultaneous balancing and
sequencing of mixed-model parallel two-sided assembly
lines. Int J Prod Econ 158:314–333. https ://doi.org/10.1016/j.
ijpe.2014.08.010

 12. Kucukkoc I, Zhang DZ (2016) Mixed-model parallel two-sided
assembly line balancing problem: a flexible agent-based ant col-
ony optimization approach. Comput Ind Eng 97:58–72. https ://
doi.org/10.1016/j.cie.2016.04.001

 13. Lee TO, Kim Y, Kim YK (2001) Two-sided assembly line balanc-
ing to maximize work relatedness and slackness. Comput Ind Eng
40:273–292. https ://doi.org/10.1016/S0360 -8352(01)00029 -8

 14. Li D, Zhang C, Tian G, Shao X, Li Z (2018) Multiobjective pro-
gram and hybrid imperialist competitive algorithm for the mixed-
model two-sided assembly lines subject to multiple constraints.
IEEE Trans. Syst. Man Cybern. Syst. 48:119–129. https ://doi.
org/10.1109/TSMC.2016.25986 85

 15. Li Z, Kucukkoc I, Nilakantan JM (2017) Comprehensive review
and evaluation of heuristics and meta-heuristics for two-sided
assembly line balancing problem. Comput Oper Res 84:146–161.
https ://doi.org/10.1016/j.cor.2017.03.002

 16. Li Z, Tang Q, Zhang L (2016) Minimizing the cycle time in two-
sided assembly lines with assignment restrictions: improvements
and a simple algorithm. Math. Probl. Eng. 2016:1–15. https ://doi.
org/10.1155/2016/45364 26

 17. Li Z, Tang Q, Zhang L (2017) Two-sided assembly line balanc-
ing problem of type I: improvements, a simple algorithm and a
comprehensive study. Comput Oper Res 79:78–93. https ://doi.
org/10.1016/j.cor.2016.10.006

 18. Özcan U, Toklu B (2009) Balancing of mixed-model two-
sided assembly lines. Comput Ind Eng 57:217–227. https ://doi.
org/10.1016/j.cie.2008.11.012

 19. Özcan U, Toklu B (2009) A tabu search algorithm for two-sided
assembly line balancing. Int J Adv Manuf Technol 43:822–829

 20. Özcan U, Toklu B (2010) Balancing two-sided assembly lines
with sequence-dependent setup times. Int J Prod Res 48:5363–
5383. https ://doi.org/10.1080/00207 54090 31407 50

 21. Pan Q-K, Ruiz R (2012) Local search methods for the flowshop
scheduling problem with flowtime minimization. Eur J Oper Res
222:31–43. https ://doi.org/10.1016/j.ejor.2012.04.034

 22. Purnomo HD, Wee H-M, Rau H (2013) Two-sided assembly lines
balancing with assignment restrictions. Math Comput Model
57:189–199. https ://doi.org/10.1016/j.mcm.2011.06.010

 23. Ruiz R, Stützle T (2007) A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem. Eur
J Oper Res 177:2033–2049

 24. Simaria AS, Vilarinho PM (2009) 2-ANTBAL: an ant colony
optimisation algorithm for balancing two-sided assembly lines.
Comput Ind Eng 56:489–506

 25. Tang Q, Li Z, Zhang L (2016) An effective discrete artificial bee
colony algorithm with idle time reduction techniques for two-
sided assembly line balancing problem of type-II. Comput Ind
Eng 97:146–156. https ://doi.org/10.1016/j.cie.2016.05.004

 26. Yang W, Cheng W (2019) Modelling and solving mixed-
model two-sided assembly line balancing problem with
sequence-dependent setup time. J. Prod. Res, Int. https ://doi.
org/10.1080/00207 543.2019.16832 55

 27. Yuan B, Zhang C, Shao X, Jiang Z (2015) An effective hybrid
honey bee mating optimization algorithm for balancing mixed-
model two-sided assembly lines. Comput Oper Res 53:32–41.
https ://doi.org/10.1016/j.cor.2014.07.011

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00170-006-0861-3
https://doi.org/10.1007/s10845-014-0959-7
https://doi.org/10.1007/s10845-014-0959-7
https://doi.org/10.1016/j.ejor.2007.01.022
https://doi.org/10.1016/j.cie.2013.08.006
https://doi.org/10.1016/j.cie.2013.08.006
https://doi.org/10.1080/095372800232478
https://doi.org/10.1016/j.cor.2007.11.003
https://doi.org/10.1016/j.ijpe.2018.08.009
https://doi.org/10.1016/j.ijpe.2018.08.009
https://doi.org/10.1016/j.ijpe.2014.08.010
https://doi.org/10.1016/j.ijpe.2014.08.010
https://doi.org/10.1016/j.cie.2016.04.001
https://doi.org/10.1016/j.cie.2016.04.001
https://doi.org/10.1016/S0360-8352(01)00029-8
https://doi.org/10.1109/TSMC.2016.2598685
https://doi.org/10.1109/TSMC.2016.2598685
https://doi.org/10.1016/j.cor.2017.03.002
https://doi.org/10.1155/2016/4536426
https://doi.org/10.1155/2016/4536426
https://doi.org/10.1016/j.cor.2016.10.006
https://doi.org/10.1016/j.cor.2016.10.006
https://doi.org/10.1016/j.cie.2008.11.012
https://doi.org/10.1016/j.cie.2008.11.012
https://doi.org/10.1080/00207540903140750
https://doi.org/10.1016/j.ejor.2012.04.034
https://doi.org/10.1016/j.mcm.2011.06.010
https://doi.org/10.1016/j.cie.2016.05.004
https://doi.org/10.1080/00207543.2019.1683255
https://doi.org/10.1080/00207543.2019.1683255
https://doi.org/10.1016/j.cor.2014.07.011

	Local search methods for type I mixed-model two-sided assembly line balancing problems
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description and formulation
	3.1 Problem description
	3.2 Mathematical formulation

	4 Encoding and decoding
	4.1 Encoding schemes
	4.2 Decoding schemes
	4.3 Decoding scheme comparisons

	5 Local search methods
	5.1 Iterated greedy algorithm
	5.2 Iterated local search algorithm
	5.3 Improved local search procedure
	5.4 Two-stage evaluation procedure

	6 Computational results
	6.1 Experimental design
	6.2 Computational analysis of decoding schemes and objectives
	6.3 Comprehensive comparison of metaheuristics

	7 Conclusion and future research
	Acknowledgments
	References

