
Memetic Computing (2020) 12:355–369
https://doi.org/10.1007/s12293-020-00316-3

REGULAR RESEARCH PAPER

Multi-task gradient descent for multi-task learning

Lu Bai1 · Yew-Soon Ong1 · Tiantian He1 · Abhishek Gupta2

Received: 23 September 2020 / Accepted: 1 October 2020 / Published online: 19 October 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Multi-Task Learning (MTL) aims to simultaneously solve a group of related learning tasks by leveraging the salutary knowl-
edge memes contained in the multiple tasks to improve the generalization performance. Many prevalent approaches focus
on designing a sophisticated cost function, which integrates all the learning tasks and explores the task-task relationship in a
predefinedmanner. Different from previous approaches, in this paper, we propose a novelMulti-task Gradient Descent (MGD)
framework, which improves the generalization performance of multiple tasks through knowledge transfer. The uniqueness of
MGD lies in assuming individual task-specific learning objectives at the start, but with the cost functions implicitly changing
during the course of parameter optimization based on task-task relationships. Specifically, MGD optimizes the individual
cost function of each task using a reformative gradient descent iteration, where relations to other tasks are facilitated through
effectively transferring parameter values (serving as the computational representations of memes) from other tasks. The-
oretical analysis shows that the proposed framework is convergent under any appropriate transfer mechanism. Compared
with existing MTL approaches, MGD provides a novel easy-to-implement framework for MTL, which can mitigate negative
transfer in the learning procedure by asymmetric transfer. The proposed MGD has been compared with both classical and
state-of-the-art approaches on multiple MTL datasets. The competitive experimental results validate the effectiveness of the
proposed algorithm.

Keywords Multi-task gradient descent · Knowledge transfer · Multi-task learning · Multi-label learning

1 Introduction

Inspired by human learning activities where people often
apply the knowledge learned from other tasks to help learn
a related task, knowledge (memes) transfer has been inves-
tigated to enhance the optimization performance in many
related optimization tasks, which can be real-world problems
that have similarities in nature or different methods solving
one complicated problem [1,14,17,19,49].Basedon this idea,

B Lu Bai
bailu@ntu.edu.sg

Yew-Soon Ong
asysong@ntu.edu.sg

Tiantian He
tiantian.he@ntu.edu.sg

Abhishek Gupta
abhishek_gupta@simtech.a-star.edu.sg

1 School of Computer Science and Engineering, Nanyang
Technological University, Singapore, Singapore

2 Singapore Institute of Manufacturing Technology, Agency for
Science, Technology and Research, Singapore, Singapore

evolutionary multitasking algorithms have been developed
and verified on a range of optimization tasks [3,8,18,48].
Similarly, in the community of machine learning, Multi-task
Learning (MTL) solves multiple related tasks simultane-
ously to leverage knowledge contained in one task to help
learn other tasks. MTL has shown to outperform single-task
learning in many cases, from computer vision [28,54], drug
discovery [21,22], to natural language processing [9], which
validate the idea of utilizing knowledge from related tasks.

MTL handles multiple related tasks by jointly training
them to improve generalization ability, either by shallow
or deep models [37,51]. There are different mechanisms
to utilize information from similar tasks in MTL. In a
majority of shallow model based approaches, the similari-
ties are promoted through regularization in the global cost
function, which is composed of all the tasks, such as fea-
ture based approaches [2,6,20,31,33] and task-relation based
approaches [11,16,53]. In the deep model based approaches,
one way is to let different tasks share the first several hidden
layers, where common feature representations for multiple
tasks are learned, and then have task-specific parameters

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-020-00316-3&domain=pdf
http://orcid.org/0000-0003-4882-6672

356 Memetic Computing (2020) 12:355–369

in the subsequent layers [23,32,37,54]. Inspired by regu-
larization techniques for shallow MTL, the other way of
parameter sharing in deepmodels is to regularize the distance
between the parameters of different models to encourage the
parameters to be similar [10,44]. As a subproblem of MTL,
multi-label learning deals with the problem that one instance
is associated with multiple labels. Due to the special form
of multi-label learning problems, a lot of methods have been
proposed to improve the performance of multi-label learning
by exploring the label correlations [46]. Classical methods
such as classifier chains [36], calibrated label ranking [15],
and random k-labelsets [43] transform the problem into a
combination of classification problems. [24,25] considered
taking the symmetric label correlations as prior knowledge
and incorporating it into themodel training.Local label corre-
lations are also exploited in [26,55] by partitioning the dataset
into groups and then learn local label correlations within the
groups.

In most existing MTL models, the information transfer
is symmetric between any two participating tasks based on
the coupled cost functions, or a common feature representa-
tion is learned from all the tasks. The symmetric information
sharing will deteriorate the performance of some of the par-
ticipating learners since not always all tasks benefit from the
joint learning [30], and the indistinguishable common fea-
ture sharing may result in performance degeneration if there
are noisy and outlier tasks. Although some methods pro-
posed for multi-label learning, such as classifier chains, can
achieve asymmetric information transfer, they rely largely
on the ordering or relation combination of the labels, which
usually have high complexity with a large number of tasks.

Inspired by the merits of first-order gradient descent and
taking into account the importance of relations among the
tasks, a novelMulti-task Gradient Descent (MGD) algorithm
is proposed in this paper to solve theMTL problem. InMGD,
instead of modeling all the tasks into one coupled cost func-
tion, each task minimizes its individual cost function using
the gradient descent algorithm. The similarities among the
tasks are then facilitated through transferring model parame-
ter values during the model learning process of each task. By
implicitly changing the cost function during the learning pro-
cess, MGD achieves MTL with proper transfer mechanisms.
The convergence of MGD when the transfer mechanism and
the step size of gradient descent satisfy certain easily achiev-
able conditions is theoretically proven,which allows a variety
of similarity measurements to be leveraged to promote infor-
mation sharing. Compared with the existing approaches, the
advantages of MGD are threefold:

1. MGDprovides a novel easy-to-implement framework for
MTLandmoreflexibleway to conduct information trans-
fer between related tasks.

2. It can achieve asymmetric transfer easily such that nega-
tive transfer is mitigated.

3. It can benefit from parallel computing with a small
amount of information processed centrally when the
number of tasks is large.

The rest of the paper is organized as follows. Section 2
briefly introduces related works, includingMTL, multi-label
learning, and transfer learning. Then, the proposed MGD
is presented in Sect. 3, where the convergence of the pro-
posed algorithm is theoretically proven, and the relation of
MGD and the regularization basedMTL is analyzed. Experi-
ments on a synthetic problem, a set of real-world multi-label
learning datasets, and MultiMNIST dataset using LeNet are
conducted in Sect. 4 to evaluate the performance of the algo-
rithm. Finally, Sect. 5 gives the conclusion and future work.

2 Related work

In the existing MTL works, information sharing is achieved
by designing a common model concerning the related tasks,
either is shallow or deep. In most of the deep model based
MTL, thefirst several hidden layers are trained on all the tasks
to learn common feature representations for multiple tasks,
and the subsequent layers are left as task specific parame-
ters which are only trained on a specific task [32,47,54]. The
deep MTL models can learn powerful feature representa-
tions. However, the sharing hidden layers approach usually
lacks of interpretability, and it is vulnerable to noisy and
outlier tasks. The shallow model usually comes up with a
global cost function, the relations among the tasks are pro-
moted through a regularization term in the cost function that
composed of all the tasks’ parameters, such as feature based
approaches [2,6,20,31,33] and task relationbased approaches
[11,16,53]. Taking the classical feature selection method in
[33] as an example, the cost function under the regularization
framework is

min
T∑

i=1

fi (wi) + σ‖W‖2,1,

where T is the number of tasks, wi is the model parameters
for the i th task, fi denotes a function of wi including the
loss function and other regularization functions of wi , W is
a matrix with the i th column being wi , and σ is a positive
regularization parameter. The �2,1-norm regularization onW
equals the sum of �2 norm of rows in W , which enforces W
to be row sparse and results in selecting important features
shared across multiple tasks. In this kind of regularization
based approaches, same shared features are used for all the
participating tasks.

123

Memetic Computing (2020) 12:355–369 357

Treating a single-label learning problem as one task, the
multi-label learning problem can be seen as a special case of
MTL problem, where the feature vectors x j for j = 1, . . . , n
are the same for different tasks. The relations between the
tasks can be learned from the relations between the labels.
For first-ordermethods, the label correlations are ignored and
themulti-label learning problem is handled in a label by label
manner, such as BR [5] and LIFT [45]. Second-order meth-
ods consider pairwise relations between labels, such as LLSF
[24] and JFSC [25]. High-order methods, where high-order
relations among label subsets or all the labels are consid-
ered, such as RAkEL [43], ECC [36], LLSF-DL [24], and
CAMEL [13]. Generally, the higher the order of correlations
being considered, the stronger is the correlation-modeling
capabilities, while on the other hand, the more computation-
ally demanding and less scalable the approach becomes.

In contrast to the existing MTL approaches which incor-
porate correlation information into the modeling in the form
of regularization or shared hidden layers, MGD serves as the
first attempt to incorporate the correlations by transferring
model parameter values during the model learning process
of each task. Unlike the multi-label learning methods which
rely on the ordering or relation combination of the labels to
achieve asymmetric information transfer, MGD can achieve
asymmetric transfer easily even with a large number of tasks.
When considering only one task receive information from
other tasks in an asymmetric transfer manner, it seems simi-
lar to transfer learning [7,34], however, they have significant
difference. The objective in transfer learning is to improve
the performance of a target task with the help of source tasks
which are already learned, while in MGD with only one task
receives information, all the tasks are simultaneously solved.
The asymmetric information transfer is utilized to mitigate
negative transfer.

3 TheMGD approach

In this section, we elaborate the proposed MGD algorithm
forMTL. Themathematical notations used in the manuscript
are first introduced. We then generically formulate the MTL
problem and introduce the proposed MGD. At last, we per-
form the theoretical analysis ofMGD, including convergence
proof, analysis on relation with regularization based MTL,
and computational complexity.

Throughout this paper, normal font small letters denote
scalars, boldface small letters denote column vectors, and
capital letters denote matrices. 0 denotes zero column vec-
tor with proper dimension, In denotes identity matrix of size
n × n. A′ denotes the transpose of matrix A and ⊗ denotes
the Kronecker product. [zi]vec denotes a concatenated col-
umn vector formed by stacking zi on top of each other, and
diag{zi } denotes a diagonal matrix with the i th diagonal ele-

ment being zi . The norm ‖·‖without specifying the subscript
represents the Euclidean norm by default.

3.1 Problem formulation

Suppose we have T tasks to be solved simultaneously. For
simplicity, we assume that all the tasks share the common
data space and the tasks are positively correlated. Each task
i ∈ {1, . . . , T } aims to solve the following minimization
problem,

min
wi

fi (wi), (1)

where wi ∈ R
d is the model parameter and fi : Rd → R

is the cost function of the i th task. In this paper, we do not
restrict the specific form of the cost functions. In particular,
the cost functions fi (wi) is assumed to be strongly convex,
twice differentiable, and the gradient of fi is Lipschitz con-
tinuous with constant L fi , i.e.,

‖∇ fi (u) − ∇ fi (v)‖ ≤ L fi ‖u − v‖, ∀u, v ∈ R
d .

Cost functions in machine learning problems such as mean
squared error with �2 norm regularization and cross-entropy
with �2 norm regularization apply. Non-differentiable cost
functions where �1 norm regularization is used can also be
approximately considered [40]. Since fi (wi) is strongly con-
vex and twice differentiable, there exists positive constant ξi
such that ∇2 fi (u) ≥ ξi Id . As a result, we have

ξi Id ≤ ∇2 fi (u) ≤ L fi Id , ∀u ∈ R
d .

3.2 The proposed framework

Using the gradient descent, problem (1) can be solved using
the following iteration,

wt+1
i = wt

i − α∇ fi (w
t
i), (2)

where t is the iteration index, α is the step size, and
∇ fi (wt

i) ∈ R
d is the gradient of fi at wt

i . As there are
relations among tasks, we are able to improve the learning
performance by considering the correlation of parameters
belonging to different tasks. Based on this idea, we propose
a reformative gradient descent iteration, which allows the
values of the model parameters to be transferred across tasks
during each iteration. The MGD is designed as follows,

wt+1
i =

T∑

j=1

mt
i jw

t
j − α∇ fi (w

t
i), i = 1, . . . , T , (3)

123

358 Memetic Computing (2020) 12:355–369

where mt
i j is the transfer coefficient describes the informa-

tion flow from task j to task i , which satisfies the following
conditions,

mt
i j ≥ 0, (4a)

T∑

j=1

mt
i j = 1. (4b)

From (3), we can see that under MGD, the learning of dif-
ferent tasks can be decoupled with only a small amount of
information need to be transferred among the tasks, thus can
benefit from parallel computing.

From (4b), we have mt
ii = 1− ∑

j �=i m
t
i j . Rewriting iter-

ation (3) as follows

wt+1
i = mt

iiw
t
i +

∑

j �=i

mt
i jw

t
j − α∇ fi (w

t
i)

=
⎛

⎝1 −
∑

j �=i

mt
i j

⎞

⎠wt
i +

∑

j �=i

mt
i jw

t
j − α∇ fi (w

t
i).

Rescale mt
i j as

m̄t
i j =

{
1

ασ
mt

i j , j �= i,

1 − 1
ασ

∑
j �=i m

t
i j , j = i,

(5)

where σ is a positive constant and satisfies the condition

1 − 1

ασ

∑

j �=i

mt
i j > 0. (6)

Given (5),mt
i j is parameterized by σ . With the rescaling, the

iteration in (3) can be alternatively expressed as

wt+1
i =

⎛

⎝1 −ασ
∑

j �=i

m̄t
i j

⎞

⎠wt
i + ασ

∑

j �=i

m̄t
i jw

t
j − α∇ fi (w

t
i)

= wt
i − ασ(1 − m̄t

ii)w
t
i + ασ

∑

j �=i

m̄t
i jw

t
j − α∇ fi (w

t
i)

= (1 − ασ)wt
i + ασ

T∑

j=1

m̄t
i jw

t
j − α∇ fi (w

t
i). (7)

3.3 Convergence analysis

In this section, we give the convergence property of the pro-
posed MGD iteration based on the expression in (7).

Denote w∗
i as the underlying target model parameter for

task i , w̃i
t = wt

i −w∗
i , and L̄ fi = maxi {L fi }. The following

theorem gives the convergence property of the iteration (7)

under certain conditions on the transfer parameter m̄t
i j and

step-size α.

Theorem 1 Under the iteration in (7) with the transfer coef-
ficient m̄t

i j satisfying

T∑

j=1

m̄t
i j = 1, ∀i,

m̄t
i j ≥ 0, ∀i, j,

wt
i is convergent if the step size α is chosen to satisfy

0 < α <
2

2σ + L̄ fi

. (8)

Specifically,

lim
t→∞max

i
‖w̃i

t‖ ≤
ασ maxi, j ‖w∗

i − w∗
j ‖ + αmaxi ‖∇ fi (w

∗
i)‖

1 − (γ̄ + ασ)
, (9)

where γ̄ = maxi {|1 − ασ − αξi |, |1 − ασ − αL fi |}.
Proof Let the i, j-th element of M̄t ∈ R

T×T at iter-
ation time t being m̄t

i j , denote M̄t = M̄t ⊗ Id ∈
R
dT×dT , w = [w′

1, . . . ,w
′
T]′ ∈ R

dT , and ∇ f (wt) =
[∇ f1(wt

1)
′, . . . ,∇ fT (wt

T)′]′ ∈ R
dT . Note that we are using

the typeface w to distinguish this from the single vector-
valued variable wi . Write (7) into a concatenated form gives

wt+1 = (1 − ασ)wt + ασM̄twt − α∇ f (wt). (10)

Denotew∗ = [w∗′
1 , . . . ,w∗′

T]′ and w̃t = wt−w∗. Subtracting
w∗ from both sides of (10) gives

w̃t+1 = ((1 − ασ)IdT + ασM̄t)wt − w∗ − α∇ f (wt)

= ((1 − ασ)IdT+ασM̄t)w̃t − α(∇ f (wt)−∇ f (w∗))
+ α(σ(M̄t − IdT)w∗ − ∇ f (w∗))

= ((1 − ασ)IdT + ασM̄t)w̃t

− α

∫ 1

0
∇2 f (w∗ + μ(wt − w∗))dμw̃

+ α(σ(M̄t − IdT)w∗ − ∇ f (w∗))
= ((1 − ασ)IdT + ασM̄t − αHt)w̃t

+ α(σ(M̄t − IdT)w∗ − ∇ f (w∗)), (11)

where Ht = ∫ 1
0 ∇2 f (w∗+μ(wt−w∗))dμ ∈ R

dT×dT . It can
be verified that Ht is a block diagonal matrix and the block
diagonal elements Ht

i = ∫ 1
0 ∇2 fi (w∗

i + μ(wt
i − w∗

i))dμ ∈
R
d×d for i = 1, . . . , T are Hermitian.
We use the block maximum norm defined in [39] to show

the convergence of the above iteration. The block maximum

123

Memetic Computing (2020) 12:355–369 359

norm of a vector x = [xi]vec ∈ R
dT with xi ∈ R

d is defined
as [39]

‖x‖b,∞ = max
i

‖xi‖.

The induced matrix block maximum norm is therefore
defined as [39]

‖A‖b,∞ = max
x �=0

‖Ax‖b,∞
‖x‖b,∞ .

From the iteration in (11) we have

‖w̃t+1‖b,∞ ≤ ‖((1 − ασ)IdT + ασM̄t − αHt)w̃t‖b,∞
+ α‖σ(M̄t − IdT)w∗ − ∇ f (w∗)‖b,∞

≤ ‖(1 − ασ)IdT + ασM̄t − αHt‖b,∞‖w̃t‖b,∞
+ α‖σ(M̄t − IdT)w∗ − ∇ f (w∗)‖b,∞

≤ (‖(1 − ασ)IdT − αHt‖b,∞ + ασ‖M̄t‖b,∞)‖w̃t‖b,∞
+ α‖σ(M̄t − IdT)w∗ − ∇ f (w∗)‖b,∞.

From Lemma D.3 in [39], we have

‖M̄t‖b,∞ = ‖M̄t‖∞ = 1,

where the last equality comes from the fact that m̄t
i j ≥ 0 and

the row summation of M̄t is one. Since ξi Id ≤ ∇2 fi (wi) ≤
L fi Id , ξi Id ≤ ∫ 1

0 ∇2 fi (w∗
i +μ(wi −w∗

i)dμ ≤ L fi Id . Thus,
‖(1 − ασ)Id − αHt

i ‖ ≤ γi where γi = max{|1 − ασ −
αξi |, |1 − ασ − αL fi |}. By the definition of induced matrix
block maximum norm, we have

‖(1 − ασ)IdT − αHt‖b,∞
= max

x �=0

‖((1 − ασ)IdT − αHt)x‖b,∞
‖x‖b,∞

≤ max
x �=0

maxi ‖((1 − ασ)Id − αHt
i)‖‖x‖b,∞

‖x‖b,∞
= max

i
‖(1 − ασ)Id − αHt

i ‖
≤ γ̄ ,

where γ̄ = max{γi }. Thus,

‖w̃t+1‖b,∞ ≤ (γ̄ + ασ)‖w̃t‖b,∞ασ‖(M̄t − IdT)w∗‖b,∞
+ α‖∇ f (w∗)‖b,∞. (12)

By choosing the step size α to satisfy γ̄ + ασ < 1, the
iteration asymptotically converges. To ensure γ̄ + ασ < 1,
it is sufficient to ensure

|1 − ασ − αξi | + ασ < 1 and

|1 − ασ − αL fi | + ασ < 1, ∀i,

which leads to

0 < α <
2

2σ + L̄ fi

.

Since M̄t is row-sum-to-one and the elements of M̄t are all
non-negative, the elements in M̄tw∗ are convex combina-
tions ofw∗

i . Thus, ‖(M̄t − IdT)w∗‖b,∞ is upper bounded by
maxi, j ‖w∗

i − w∗
j‖. From the iteration in (12), we have

‖w̃t+1‖b,∞ ≤ (γ̄ + ασ)t+1‖w̃0‖b,∞

+ (ασ max
i, j

‖w∗
i − w∗

j‖ + α‖∇ f (w∗)‖b,∞)

t∑

k=0

(γ̄ + ασ)k .

Under the condition that γ̄ + ασ < 1,

lim
t→∞ ‖w̃t‖b,∞ ≤ ασ maxi, j ‖w∗

i − w∗
j‖ + α‖∇ f (w∗)‖b,∞

1 − (γ̄ + ασ)
.

From the definition of block maximum norm, (9) is obtained.
��

In iteration (3), the transfer coefficient mt
i j between task

i and task j is a scalar. In the following, we consider the
element-wise feature similarities between task i and task j .
The transfer coefficient between task i and task j is assumed
to be a diagonal matrix Pi j ∈ R

d×d with its k-th diagonal
element Pi j,k being the transfer coefficient from the k-th ele-
ment of w j to the k-th element of wi . The MGD iteration in
(3) then becomes

wt+1
i =

T∑

j=1

Pt
i jw

t
j − α∇ fi (w

t
i), (13)

where

T∑

j=1

Pt
i j = Id ,

Pt
i j,k ≥ 0, ∀i, j = 1, . . . , T , k = 1, . . . , d. (14)

Following the same rescaling,

P̄ t
i j =

{
1

ασ
Pt
i j , j �= i,

Id − 1
ασ

∑
j �=i P

t
i j , j = i,

(15)

(13) becomes

wt+1
i = (1 − ασ)wt

i + ασ

T∑

j=1

P̄ t
i jw

t
j − α∇ fi (w

t
i). (16)

123

360 Memetic Computing (2020) 12:355–369

Corollary 1 Under (16) with the transfer coefficient P̄ t
i j sat-

isfies

T∑

j=1

P̄ t
i j = Id ,

P̄ t
i j,k ≥ 0, ∀i, j = 1, . . . , T , k = 1, . . . , d,

wt
i is convergent if the following conditions are satisfied:

σ <
L̄ fi

T − 1
, for T > 1,

0 < α <
2

(T + 1)σ + L̄ fi

.

Proof Let the i, j-th block element of P̄ t ∈ R
dT×dT being

P̄ t
i j ∈ R

d×d . Following the similar procedure of the proof of
Theorem 1, we obtain

‖w̃t+1‖b,∞ ≤ (‖(1 − ασ)IdT − αHt‖b,∞
+ ασ‖P̄ t‖b,∞)‖w̃t‖b,∞
+ α‖σ(P̄ t − IdT)w∗ − ∇ f (w∗)‖b,∞. (17)

Let x = [xi]vec ∈ R
dT being a block column vector with

xi ∈ R
d .

‖P̄ t x‖b,∞ = max
i

‖
T∑

j=1

P̄ t
i j x j‖

≤ max
i

T∑

j=1

‖P̄ t
i j‖‖x j‖

≤
⎛

⎝max
i

T∑

j=1

‖P̄ t
i j‖

⎞

⎠max
j

‖x j‖.

Recall that P̄ t
i j is a diagonal matrix and the elements therein

are all no greater than 1, thus,
∑T

j=1 ‖P̄ t
i j‖ ≤ T . As a result

‖P̄ t x‖b,∞ ≤ T max
j

‖x j‖.

By the definition of matrix block maximum norm, we have

‖P̄ t‖b,∞ ≤ T .

The condition to ensure convergence of the iteration in (17)
becomes

γ̄ + ασT < 1,

which gives

σ <
L̄ fi

T − 1
, for T �= 1,

0 < α <
2

(T + 1)σ + L̄ fi

.

��

3.4 Relation with regularization basedmulti-task
learning

From the iteration in (7), we have

wt+1
i = (1 − ασ)wt

i

+ ασ

T∑

j=1

m̄t
i jw

t
j − α∇ fi (w

t
i)

= wt
i − α

⎛

⎝σ

T∑

j=1

m̄t
i j (w

t
i − wt

j) + ∇ fi (w
t
i)

⎞

⎠ . (18)

If fix m̄t
i j = m̄i j for all t , then, the last term in the brackets

can be seen as the gradient of the following function

f̄i (wi ,w−i) = fi (wi) + 1

2
σ

T∑

j=1

m̄i j‖wi − w j‖2,

where w−i denotes the collection of other tasks’ variables,
i.e., w−i = [w′

1, . . . ,w
′
i−1,w

′
i+1, . . . ,w

′
T]′. Thus, the itera-

tion in (18) with fixed m̄i j can be seen as the gradient descent
algorithmwhich solves the followingNash equilibriumprob-
lem

min
wi

f̄i (wi ,w−i), i = 1, . . . , T . (19)

In (19), each task’s cost function is influenced by other tasks’
decision variables. Since the cost function f̄i (wi ,w−i) is
continuous in all its arguments, strongly convex with respect
to wi for fixed w−i , and satisfies f̄i (wi ,w−i) → ∞ as
‖wi‖ → ∞ for fixed w−i , a Nash equilibrium exists [4].
Furthermore, as a result of strongly convexity, the gradient
of f̄i (wi ,w−i) with respect to wi for fixed w−i is strongly
monotone.Thus, theNash equilibrium for (19) is unique [12].
Denote the Nash equilibrium of (19) as wo

i , i = {1, . . . , T }.
It is known that the Nash equilibrium satisfies the following
condition [4]:

wo
i = argminwi

f̄i (wi ,w
o
−i), i = 1, . . . , T ,

123

Memetic Computing (2020) 12:355–369 361

which implies

∇ fi (w
o
i) + σ

T∑

j=1

m̄i j (w
o
i − wo

j) = 0, i = 1, . . . , T . (20)

Write the conditions in (20) in a concatenated form gives

∇ f (wo) + σ(IT − M̄) ⊗ Idwo = 0. (21)

It has been pointed out in [51] that the regularized MTL
algorithms which learn with task relations can be expressed
as

min
wi ,Σ

T∑

i=1

Li (wi) + 1

2
λwT (Σ−1 ⊗ Id)w + g(Σ), (22)

where Li is the training loss of task i , λ is a positive regular-
ization parameter, Σ ∈ R

T×T models the task relations, and
g(Σ) denotes constraints on Σ . For comparison, we elimi-
nate the constraints on Σ , consider the case that Σ is fixed,
and let f (w) = ∑T

i=1 Li (wi). Denote the optimal solutions
of problem (22) as wg . The optimal solution satisfies the
following condition,

∇ f (wg) + 1

2
λ(Σ−1 + (Σ−1)T) ⊗ Idwg = 0. (23)

Comparing the optimality conditions (21) and (23) for the
Nash equilibrium problem (19) and the MTL problem (22),
we find that if M̄ can be set as

σ(IT − M̄) = 1

2
λ(Σ−1 + (Σ−1)T), (24)

the optimal solution wo will be the same as wg . The only
limitation is that m̄i j > 0, which can not cover the situa-
tion where there exists non-negative non-diagonal values in
Σ−1. Overall, the regularized multi-tasking learning prob-
lem with task relation learning can be solved by the MGD
algorithm by setting the coefficients m̄i j between task i and
task j properly. In addition, using MGD, we can consider
feature-feature relations between different tasks sincewe can
use P̄i j ∈ R

d×d as the transfer coefficient. Furthermore, in
MGD, m̄i j is not required to be equal to m̄ ji . This relaxation
allows asymmetric task relations in MTL [30], which is hard
to achieve by most MTL methods since Σ−1 + (Σ−1)T is
always symmetric in (23).

Another category of regularized MTL method is learning
with feature relations [51]. The cost function of this kind of
method is

min
wi ,Θ

T∑

i=1

Li (wi) + 1

2
λwT (IT ⊗ Θ−1)w + g(Θ), (25)

where Θ ∈ R
d×d models the covariance between the fea-

tures. The term wT (IT ⊗ Θ−1)w can be decoupled as∑T
i=1w

T
i Θ−1wi , which can be incorporated into fi (wi) for

task i .

3.5 Pseudocode of theMGD algorithm

MGD provides a novel framework of utilizing task similar-
ities to improve the learning performance. The pseudocode
of the proposed MGD is summarized in Algorithm 1.

Algorithm 1 Pseudocode of MGD for Task i
Require:

The multi-task training set Di , i = 1, ..., T
Hyperparameters in cost function fi for i = 1, ..., T and σ

Step size α, random initial values w1
i for i = 1, ..., T

Ensure:
Model parameter w∗

i for i = 1, ..., T
1: Set t = 0, initialize m0

i j and w0
i

2: repeat
3: Calculate the gradient ∇ fi (wt

i), i = 1, ..., T ;
4: Calculate the transfer coefficient mt

i j , j ∈ Ni ;

5: Update wi according to (3):w
t+1
i = ∑T

j=1 m
t
i jw

t
j −α∇ fi (wt

i);
6: t = t + 1;
7: until Stop criterion reached;
8: return w∗

i = wt+1
i , i = 1, ..., T .

As shown in Theorem 1, the transfer coefficients are only
required to satisfy mild conditions to ensure the convergence
of the proposed algorithm, which allows a variety of exist-
ing task relation learning methods to be used to design the
transfer coefficients. A straightforward way to set the trans-
fer coefficient is based on task similarities. The more similar
two tasks are, the larger the corresponding transfer coeffi-
cient is expected to be. For a multi-label learning problem,
the similarity between task i and task j can be modeled by
the correlation between the label sets, which can be calcu-
lated by many different similarity measurements, such as
cosine similarity and Euclidean distance between the labels.
By assuming the task relations be known as a prior like in
[11,27], the transfer coefficient can be designed utilizing the
relation between MGD and the regularization based MTL.
In addition to set the transfer coefficients as a predefined
value according to prior assumption or statistical methods,
the value ofmt

i j can also be learned during the learning of the
parameters. Methods placing a prior on the learning param-
eters like in [50,52,53] can also be utilized to design the
transfer coefficients. Furthermore, the regularization based
MTL methods usually result in symmetric task relations,
whileMGD can achieve asymmetric transfer easily for a spe-
cific problem such that negative transfer can be mitigated.

123

362 Memetic Computing (2020) 12:355–369

3.6 Complexity analysis

We analyze the complexity of the iteration MGD using pre-
defined transfer coefficients. In each iteration, the gradient
calculation leads to a complexity ofO(g(d)nT), where g(d)

is the complexity of calculating the gradient w.r.t. the dimen-
sion d, which is determined by the cost function used, and
the update of the model parameter according to (3) needs
O(dT 2). Therefore, the overall complexity of the MGD
algorithms is of order O(t(ng(d)T + dT 2)), where t is the
iteration time.

4 Experiments

In this section, we evaluate the MGD algorithm on differ-
ent types of MTL problems, including regression problems,
multi-label learning as multi-task learning problems, and a
deep neural network model. Specifically, we first conduct a
simple linear regression using synthetic datasets to demon-
strate the effect of MGD compared to single-task gradient
descent. Then, we validate the effectiveness of MGD for
the multi-label learning problem on a series of real-world
multi-label learning datasets, and compare it with both clas-
sical and state-of-the-art algorithms. Finally, we use MGD
for digit classification on the MultiMNIST dataset, an MTL
version of the MNIST dataset, based on LeNet. To show the
effectiveness of the proposed framework, the transfer coeffi-
cients are set manually or through statistical methods, which
are simple but already effective. More sophisticated transfer
coefficients can be used to further improve the performance.

4.1 Toy problem

We first validate our approach by an experiment with
synthetic datasets. We generate two synthetic datasets for
regression that have same mean but different variances.
Specifically, the noise level for the first task is set to be low
while that for the second task is set to be high as follows,

T1 : y1 j =w∗x1 j + δ, j = 1, . . . , n,

T2 : y2 j =w∗x2 j + 10δ, j = 1, . . . , n,

where n is the number of data samples and δ ∼ N (0, 1).
Taking the Mean Squared Error (MSE) as the cost function,
denote xi and yi as the data vector for task i , by minimizing
the cost function, Single-task Gradient Descent (SGD) gives
the following iteration

wt+1
i = wt

i − αi

n
xTi (wt

i xi − yi), i = 1, 2.

Under MGD, the iteration is

wt+1
i =

2∑

j=1

mt
i jw

t
j − αi

n
xTi (wt

i xi − yi), i = 1, 2.

Note that althoughwe can directly obtain the analytic expres-
sion which minimizes the MSE for this simple problem,
iteration method is more commonly used for most problems,
and we use iteration here to showcase the difference between
MGD and SGD.

We set w∗ = 2, α1 = α2 = 0.2. We generate 100 points
for each task from the standard Gaussian distribution and use
5-folder split for training and test, and run the iteration 50
times. First, we use a fixed transfer coefficientsm12 = m21 =
0.05 for symmetric transfer. Then, sincewe alreadyknow that
task 2 has a higher noisy level than task 1, it is believed that
transfer information from task 2 to task 1 will probably cause
negative transfer, thus, we conduct asymmetric transfer with
transfer coefficients m12 = 0.0001 and m21 = 0.05.

The results are shown in Fig. 1.
Figure 1a shows the updates of the absolute error between

wi and w∗, it can be seen that the parameter of task 2
under both MGD and MGD-asy converge to better solu-
tions than under SGD, while the parameter of task 1 under
MGD converges to a solution worse than under SGD, and
that of MGD-asy converges to a solution similar with SGD.
This indicates that a negative transfer from task 2 to task 1
exists when the transfer is symmetric, and it can be mitigated
by asymmetric transfer. Comparing the results obtained by
MGD and MGD-asy, we can see that the solution for task 1
improvesmore underMGD-asy thanMGD. This is due to the
better solution obtained for task 1 under asymmetric transfer.
The update of the log of the total training loss is shown in
Fig. 1b. As can be seen, all the iterations converge to steady
states, while the steady states are different. SGD produces
the lowest training loss since it directly minimizes the cost
function. However, note that the cost functions are defined
for each task separately, which ignore task similarities, the
one which gives the lowest loss doesn’t guarantee the best
performance. The different steady state values produced by
MGD and MGD-asy showcase that the information trans-
fer between the tasks implicitly changes the cost function,
which may give better solution when the transfer is properly
designed. The MSE reduction of MGD and MGD-asy over
SGD on the test set is shown in Fig. 1c. The result shows
that MGD has a higher MSE than SGD on task 1, while
this negative transfer is suppressed by asymmetric transfer
in MGD-asy. Nevertheless, looking at the total MSE, both
MGD and MGD-asy have better performance than SGD.

123

Memetic Computing (2020) 12:355–369 363

(a) (b) (c)

Fig. 1 Linear regression under SGD and MGD

4.2 Multi-label classification

Multi-label learning deals with the problem that one instance
is associatedwithmultiple labels. Given themulti-label train-
ing set D = {(x j , y j)|1 ≤ j ≤ n}, where n is number of
instances, x j ∈ X is the feature vector for the j-th instance
and y j ∈ {0, 1}T is the set of labels associated with the j-th
instance. The task of multi-label learning is to learn a func-
tion h from D which can assign a set of proper labels to
an instance. We decompose the multi-label learning problem
into T binary classification tasks. For each of the classifica-
tion tasks, we use the 2-norm regularized logistic loss as the
cost function. Thus, for any task i , the following cost function
is optimized by each task individually,

fi (wi) = − 1

n

n∑

j=1

(yij log h(zij) + (1 − yij) log(1 − h(zij)))

+ 1

2
ρ‖wi,−1‖2,

where h(zij) = P(yij = 1|x j) = 1

1+e
−zij

, zij = [1 xTj]wi ,

wi ∈ R
p+1 is the model parameter, wi,−1 ∈ R

p is the
remaining elements in wi except the first element, and ρ

is the regularization parameter. Let

X =
⎡

⎢⎣
1 xT1
...

...

1 xTn

⎤

⎥⎦ , yi =
⎡

⎢⎣
yi1
...

yin

⎤

⎥⎦ .

The MGD iteration is

wt+1
i =

T∑

j

mt
i jw

t
j − α

n
XT (g(Xwt

i) − yi) − αρ

[
0

wi,−1

]
,

(26)

where g(Xwt
i) = [1

1+e−[1 xT1]wt
i
, . . . , 1

1+e−[1 xTn]wt
i
]′.

In multi-label learning problems, the similarity between
task i and task j can be modeled by the correlation between
labels yi and y j . In this experiment, we use the cosine
similarity to calculate the correlation matrix C , i.e., Ci j =
< yi , y j>
‖ yi‖‖ y j‖ . Then, we normalize each row of the correlation
matrix C to be row-sum-to-one and set m̄i j = Ci j . Finally,
we rescale m̄i j according to (5) to get the transfer coefficient
mi j .

After learning the model parameterw∗
i , we can predict the

label yit for a test instance xt by the corresponding prediction
function. The i th label prediction for an instant xt is predicted
1 if h(zit) ≥ η and 0 otherwise, where η is the threshold. In
the experiment, η is chosen from {0.1, 0.2, 0.3}.

4.2.1 Experimental setup

We conduct the multi-label classification on six bench-
mark multi-label datasets, including regular-scale datasets:
emotions, genbase, and cal500; and relatively large-scale
datasets: enron, corel5k, and bibtex. The details of the
datasets are summarized in Table 1, where |S|, dim(S), L(S),
Card(S), and Dom(S) represent the number of examples, the
number of features, the number of class labels, the average
number of labels per example, and feature type of dataset S,
respectively. The datasets are downloaded from the website
of Mulan1 [42].

Five widely used evaluation metrics are employed to eval-
uate the performance, including Average precision, Macro-
averaging F1, Micro-averaging F1, Coverage score, and
Ranking loss. Concrete metric definitions can be found in
[46]. Note that for the comparison purpose, the coverage
score is normalized by the number of labels. For Average
precision, Macro averaging F1, and Micro averaging F1, the
larger the values the better the performance. For the other two
metrics, the smaller the values the better the performance.

1 http://mulan.sourceforge.net/datasets-mlc.html

123

http://mulan.sourceforge.net/datasets-mlc.html

364 Memetic Computing (2020) 12:355–369

Table 1 Characteristics of the tested multi-label datasets

Dataset |S| dim(S) L(S) Card(S) Dom(S)

emotions 593 72 6 1.869 Music

genbase 662 1186 27 1.252 Biology

cal500 502 68 174 26.044 Music

enron 1702 1001 53 3.378 Text

corel5k 5000 499 374 3.522 Images

bibtex 7395 1836 159 2.402 Text

|S| represents the number of examples, dim(S) represents the number
of features, L(S) represents the number of class labels, Card(S) repre-
sents the average number of labels per example, and Dom(S) represents
feature type of dataset S

We compare our proposed method MGD with three clas-
sical algorithms including BR [5], RAkEL [43], ECC [36],
and two state-of-the-artmulti-label learning algorithmsLIFT
[45] and LLSF-DL [24].

In the experiments, we used the source codes provided
by the authors for implementation. BR, ECC, and RAkEL
are implemented under the Mulan multi-label learning pack-
age [42] using the logistic regression model as the base
classifier. Parameters suggested in the corresponding lit-
eratures are used, i.e., RAkEL: ensemble size 2T with
k = 3; ECC: ensemble size 30; LIFT: the ratio param-
eter r is tuned in {0.1,0.2,…,0.5}; LLSF-DL: α, β, γ

are searched in {4−5, 4−4, . . . , 45}, and ρ is searched in
{0.1, 1, 10}. For the proposed approach MGD, α is set to
0.02, ρ is chosen from {0.1, 0.2, . . . , 1}, and σ is chosen
from {0, 0.05, 0.1, 0.15, . . . , 0.3}.

4.2.2 Experimental results

We run the algorithms 5 times on five sets of randomly parti-
tioned training (80%) and testing (20%)data, themeanmetric
values with standard deviations are recorded in Tables 2 and
3. The best performance is shown in boldface,↑ indicates the
larger the better, and ↓ indicates the smaller the better. From
the results, we can see that MGD outperforms other com-
paring algorithms in most cases. Specifically, MGD ranks
first in 86.7% cases. Compared with the existing algorithms,
MGD introduced a new approach to incorporate label corre-
lations, which is easy to implement and has low complexity.
The results demonstrate the effectiveness of the proposed
approach in improving the learning performance.

Compared to single gradient descent, the transfer inMGD
also helps to accelerate the convergence. To see this, the itera-
tions of the total loss, i.e.,

∑T
i=1 fi (wi), are plotted in the first

row of Fig. 2 for three datasets. It can be seen that the MGD
converges faster than single gradient descent, especially at
early iterations. The iterations of the average precision score
are also plotted in the second row of Fig. 2. It can be seen

Table 2 Prediction performance (mean± std. deviation) on the regular-
scale tested datasets

Dataset emotions genbase cal500

Algorithm Average precision ↑
MGD 0.815 ± 0.014 0.994 ± 0.006 0.516 ± 0.012

BR 0.783 ± 0.027 0.985 ± 0.009 0.323 ± 0.009

RAkEL 0.782 ± 0.030 0.575 ± 0.032 0.143 ± 0.003

ECC 0.774 ± 0.030 0.992 ± 0.005 0.437 ± 0.007

LIFT 0.734 ± 0.013 0.535 ± 0.031 0.502 ± 0.009

LLSF-DL 0.710 ± 0.018 0.619 ± 0.053 0.470 ± 0.023

Algorithm Macro-averaging F1 ↑
MGD 0.668 ± 0.015 0.652 ± 0.076 0.191 ± 0.003

BR 0.619 ± 0.037 0.915 ± 0.036 0.155 ± 0.007

RAkEL 0.629 ± 0.034 0.661 ± 0.021 0.060 ± 0.011

ECC 0.622 ± 0.033 0.904 ± 0.042 0.158 ± 0.010

LIFT 0.432 ± 0.017 0.026 ± 0.003 0.045 ± 0.002

LLSF-DL 0.123 ± 0.024 0.006 ± 0.003 0.143 ± 0.006

Algorithm Micro-averaging F1 ↑
MGD 0.679 ± 0.014 0.966 ± 0.023 0.481 ± 0.010

BR 0.632 ± 0.035 0.974 ± 0.010 0.331 ± 0.005

RAkEL 0.644 ± 0.035 0.740 ± 0.038 0.073 ± 0.004

ECC 0.636 ± 0.031 0.926 ± 0.015 0.357 ± 0.008

LIFT 0.506 ± 0.012 0.219 ± 0.025 0.316 ± 0.004

LLSF-DL 0.199 ± 0.015 0.038 ± 0.022 0.459 ± 0.014

Algorithm Coverage score ↓
MGD 0.291 ± 0.016 0.009 ± 0.004 0.740 ± 0.005

BR 0.314 ± 0.029 0.016 ± 0.008 0.803 ± 0.007

RAkEL 0.332 ± 0.024 0.370 ± 0.022 0.983 ± 0.002

ECC 0.327 ± 0.036 0.013 ± 0.005 0.794 ± 0.007

LIFT 0.358 ± 0.007 0.161 ± 0.829 0.748 ± 0.012

LLSF-DL 0.373 ± 0.023 0.175 ± 0.036 0.733 ± 0.007

Algorithm Ranking loss ↓
MGD 0.152 ± 0.010 0.001 ± 0.001 0.176 ± 0.003

BR 0.180 ± 0.027 0.005 ± 0.004 0.243 ± 0.005

RAkEL 0.194 ± 0.027 0.361 ± 0.024 0.604 ± 0.004

ECC 0.194 ± 0.036 0.002 ± 0.002 0.222 ± 0.003

LIFT 0.233 ± 0.007 0.138 ± 0.023 0.181 ± 0.012

LLSF-DL 0.254 ± 0.025 0.161 ± 0.033 0.198 ± 0.010

Best performance is shown in boldface

that for limited iteration times, the score underMGD ismuch
better than single gradient descent.

We investigate the sensitivity of MGD with respect to the
two hyperparameters ρ and σ , which control the norm 2 reg-
ularization strength in the logistic regression and the transfer
strength. Due to space limit, we only report the results on the
emotions dataset using the average precision score. Figure 3
shows how the average precision score varies with respect
to ρ and σ . Figure 3b, c are obtained by keeping the other
parameter fixed at its best setting. It can be seen that both ρ

123

Memetic Computing (2020) 12:355–369 365

Table 3 Prediction performance (mean ± std. deviation) on the large-scale tested datasets

Dataset enron corel5k bibtex

Algorithm Average precision ↑
MGD 0.704 ± 0.016 0.326 ± 0.010 0.596 ± 0.007

BR 0.384 ± 0.009 0.132 ± 0.004 0.199 ± 0.009

RAkEL 0.168 ± 0.005 0.119 ± 0.004 0.323 ± 0.008

ECC 0.554 ± 0.014 0.232 ± 0.006 0.441 ± 0.011

LIFT 0.696 ± 0.011 0.289 ± 0.005 0.566 ± 0.010

LLSF-DL 0.635 ± 0.018 0.271 ± 0.008 0.593 ± 0.004

Algorithm Macro-averaging F1 ↑
MGD 0.226 ± 0.016 0.051 ± 0.003 0.336 ± 0.003

BR 0.206 ± 0.021 0.148 ± 0.007 0.136 ± 0.004

RAkEL 0.112 ± 0.012 0.162 ± 0.012 0.202 ± 0.008

ECC 0.252 ± 0.017 0.208 ± 0.014 0.256 ± 0.009

LIFT 0.141 ± 0.011 0.024 ± 0.001 0.218 ± 0.014

LLSF-DL 0.195 ± 0.017 0.040 ± 0.003 0.210 ± 0.006

Algorithm Micro-averaging F1 ↑
MGD 0.602 ± 0.014 0.291 ± 0.009 0.413 ± 0.002

BR 0.356 ± 0.013 0.120 ± 0.003 0.145 ± 0.006

RAkEL 0.182 ± 0.008 0.132 ± 0.003 0.211 ± 0.007

ECC 0.457 ± 0.014 0.091 ± 0.007 0.352 ± 0.009

LIFT 0.560 ± 0.012 0.077 ± 0.004 0.378 ± 0.009

LLSF-DL 0.548 ± 0.019 0.249 ± 0.015 0.397 ± 0.010

Algorithm Coverage score ↓
MGD 0.218 ± 0.015 0.292 ± 0.003 0.105 ± 0.003

BR 0.259 ± 0.012 0.704 ± 0.007 0.426 ± 0.013

RAkEL 0.819 ± 0.006 0.864 ± 0.005 0.366 ± 0.012

ECC 0.292 ± 0.011 0.433 ± 0.007 0.236 ± 0.011

LIFT 0.224 ± 0.011 0.292 ± 0.005 0.137 ± 0.006

LLSF-DL 0.336 ± 0.013 0.486 ± 0.012 0.185 ± 0.008

Algorithm Ranking loss ↓
MGD 0.075 ± 0.007 0.136 ± 0.003 0.056 ± 0.001

BR 0.308 ± 0.010 0.368 ± 0.007 0.274 ± 0.008

RAkEL 0.587 ± 0.005 0.573 ± 0.007 0.222 ± 0.008

ECC 0.119 ± 0.005 0.192 ± 0.002 0.134 ± 0.008

LIFT 0.077 ± 0.006 0.123 ± 0.002 0.075 ± 0.004

LLSF-DL 0.130 ± 0.007 0.238 ± 0.005 0.097 ± 0.004

Best performance is shown in boldface

and σ influence the performance. While, under a relatively
wide range of parameters combinations, the score does not
vary too much.

In the above experiment, we use the cosine similar-
ity on the label set to calculate the correlation matrix C ,
which results in symmetric correlation. To see the effect
of asymmetric transfer, we take the emotions dataset as an
example and impose asymmetric correlation on the labels.
There are six labels in the emotions datasets representing
amazed-surprised (L1), happy-pleased (L2), relaxing-calm

(L3), quiet-still (L4), sad-longly (L5), and angry-fearful (L6).
Based on the ease of predictions, which ranked in the fol-
lowing descending order L4, L6, L5, L1, L3, L2, we added a
vector [3/21, 1/21, 2/21, 6/21, 4/21, 5/21] on each row of
the cosine similarity matrix, to makemore information trans-
ferred from easier tasks to harder tasks, and less information
transferred vice versa. We compare the evaluation metrics
obtained by using the above asymmetric correlation matrix
(MGD-asy) and cosine similarity (MGD) in Table 4.

123

366 Memetic Computing (2020) 12:355–369

As can be seen fromTable 4,MGDwith asymmetric trans-
fer improves the performance in all the evaluation metrics.
The classification accuracy for each label is further compared
in Table 5. It can be seen that the classification accuracy for
both easier and harder predicted labels are improved under
asymmetric transfer.

4.3 MultiMNIST

MultiMNIST is an MTL version of the MNIST dataset [38],
where multiple images are overlaid together to convert digit

classification into amulti-task problem.We use the construc-
tion from [41]. For each image, a different one is chosen
uniformly in random. Then one of the images is put at the
top-left and the other is at the bottom-right with partially
overlapping. The resulting two tasks are classifying the digit
on the top-left and classifying the digit on the bottom-right
with the transformed images as the input. We use the dataset
created by [41], which contains 60K examples.

The LeNet [29] is used as the base model for each task.
During the optimization procedure, we transfer the param-
eters of the first two convolution layers, and leave the fully

Fig. 2 Convergence test

Fig. 3 Sensitivity analysis on
the emotions dataset

123

Memetic Computing (2020) 12:355–369 367

Fig. 4 Architecture of the multiMNIST experiment

Table 4 Prediction performance (mean± std. deviation) on the emo-
tions dataset obtained by asymmetric MGD and MGD

emotions MGD-asy MGD

Average precision ↑ 0.816 ± 0.012 0.815 ± 0.014

Macro-averaging F1 ↑ 0.672 ± 0.015 0.668 ± 0.015

Micro-averaging F1 ↑ 0.682 ± 0.014 0.679 ± 0.014

Coverage score ↓ 0.289 ± 0.016 0.291 ± 0.016

Ranking loss ↓ 0.150 ± 0.009 0.152 ± 0.010

Table 5 Classification accuracy for each label on the emotions dataset
obtained by asymmetric MGD and MGD

emotions MGD-asy MGD

L1 0.74534 0.74531

L2 0.65268 0.64596

L3 0.76227 0.75891

L4 0.85828 0.85321

L5 0.75720 0.75045

L6 0.76904 0.76899

Avg 0.75747 0.75381

connected layers without transfer. The architecture is visual-
ized in Fig. 4. For both tasks, the cross-entropy loss is used as
the cost function. We adapt the SGD and modify it with the
multi-task transfer as the optimizer. The transfer parameter
between the two tasks is set based on the Euclidean distance
(Euc) between the two label sets, which is 1/(Euc + 1),
where the scaler 1 in the dominator is to ensure the transfer
parameter less than 1. The rescale parameter σ is set as 1.

To show the effectiveness, each single task is solved solely
by SGD to serve as the baseline. Furthermore, based on the
code by the author, we run the MTL method proposed in
Sener and Koltun 2018 [41], which trained the first two con-
volution layers and the first fully connected layers as a shared
encoder and two independent fully-connected layers as task-
specific function for the two tasks, as a comparison. For all
the experiments, the learning rate is set as 0.001 and halved
every 30 epoches, the momentum is set as 0.9. We use batch
size of 256 and train for 100 epoches. The results averaged
over 5 runs are listed in Table 6.

As can be seen from the results in Table 6, our method
performs the best. Specifically, compared with single task
baseline, MGD which superimpose transfer on single-task
learning achieves a better performance, which showcases
the effectiveness of utilizing information from related tasks.
Compared with the model-based MTL method [38] which
uses the first two convolutional layers and one fully con-
nected layer as shared layers, our method also achieves
better results on both tasks. The result validates the effi-
cacy of ourmethodwhich promotes relations between related
tasks through transferring parameter values during themodel
learning process.

5 Conclusion and future work

In this paper, we propose the MGD algorithm for MTL.
Different from the state-of-the-art, MGD treats multi-task
learning as multiple learning tasks with independent cost
functions, and transfers correlated model parameter values
during the model learning process of the independent cost

Table 6 Performance on the
MultiMNIST dataset

Approaches Left digit accuracy (%) Right digit accuracy (%)

Single task 95.90 ± 0.03% 94.32 ± 0.01%

Sener and Koltun 2018 [38] 94.94 ± 0.00% 93.51 ± 0.00%

Ours 95.96 ± 0.03% 94.39 ± 0.05%

123

368 Memetic Computing (2020) 12:355–369

functions. By implicitly changing the cost function through
the learning process, MGD achieves utilizing information
from related tasks with proper transfer mechanisms. The
convergence of the algorithm has been theoretically proven
for any transfer mechanism satisfying easily achievable con-
ditions, which provides flexibility in using different kinds
of similarity measurements. Compared to existing MTL
approaches, MGD is easy to implement, can achieve seam-
less asymmetric transformation such that negative transfer
is mitigated, and can benefit from parallel computing when
the number of tasks is large. The competitive experimen-
tal results validate the effectiveness of MGD. In our current
work, we only require the transfer coefficients to satisfy
easily achievable conditions and utilize simple similarity
measurements such as cosine similarity to find task relations
in the experiment. It is desirable to design more effective
and systematic learning of transfer coefficients to improve
the performance, including asymmetric transfer. Besides, it
is also interesting to investigate element-wise feature-feature
relations rather than only task-task relations in the future.

Acknowledgements This work were supported in part by the A*STAR
Cyber-Physical Production System (CPPS)-Towards Contextual and
Intelligent Response Research Program, under the RIE2020 IAF-PP
Grant A19C1a0018, the National Research Foundation, Singapore
under its AI Singapore Programme (AISG Award No: AISG-RP-2018-
004), and Data Science & Artificial Intelligence Research Centre,
Nanyang Technological University. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the
authors and do not reflect the views of National Research Foundation,
Singapore.

References

1. Amaya JE, Cotta C, Fernández-Leiva AJ, García-Sánchez P (2020)
Deep memetic models for combinatorial optimization problems:
application to the tool switching problem.Memet Comput 12(1):3–
22

2. Argyriou A, Evgeniou T, Pontil M (2007) Multi-task feature learn-
ing. Adv Neural Inf Process Syst 20:41–48

3. Bali KK, Ong Y-S, Gupta A, Tan PS (2019) Multifactorial evo-
lutionary algorithm with online transfer parameter estimation:
Mfea-ii. IEEE Trans Evol Comput 24(1):69–83

4. Basar T, Olsder GJ (1999) Dynamic noncooperative game theory,
vol 23. SIAM, Philadelphia

5. Boutell MR, Luo J, Shen X, Brown CM (2004) Learning multi-
label scene classification. Pattern Recogn 37(9):1757–1771

6. Chen J,TangL,Liu J,Ye J (2009)Aconvex formulation for learning
shared structures from multiple tasks. In: Proceedings of the 26th
annual international conference on machine learning. ACM, pp
137–144

7. Deng Z, Lu J, Wu D, Choi K-S, Sun S, Nojima Y (2019) Guest
editorial: special issue on new advances in deep-transfer learning.
IEEE Trans Emerg Top Comput Intell 3(5):357–359

8. Dinh TP, Thanh BHT, Ba TT, Binh LN (2020)Multifactorial evolu-
tionary algorithm for solving clustered tree problems: competition
among cayley codes. Memet Comput 12(3):185–217

9. DongD,WuH,HeW,YuD,WangH (2015)Multi-task learning for
multiple language translation. In: Proceedings of the 53rd annual

meeting of the association for computational linguistics and the 7th
international joint conference on natural language processing, pp
1723–1732

10. DuongL, CohnT, Bird S, Cook P (2015) Low resource dependency
parsing: cross-lingual parameter sharing in a neural network parser.
In: Proceedings of the 53rd annual meeting of the association for
computational linguistics and the 7th international joint conference
on natural language processing (volume 2: short papers), pp 845–
850

11. Evgeniou T, Pontil M (2004) Regularized multi–task learning. In:
Proceedings of the tenth ACM SIGKDD international conference
on knowledge discovery and data mining. ACM, pp 109–117

12. Facchinei F, Pang J-S (2007) Finite-dimensional variational
inequalities and complementarity problems. Springer, Berlin

13. Feng L, An B, He S (2019) Collaboration based multi-label learn-
ing. In: Thirty-third AAAI conference on artificial intelligence

14. Feng L, Ong Y-S, Tan A-H, Tsang IW (2015) Memes as build-
ing blocks: a case study on evolutionary optimization + transfer
learning for routing problems. Memet Comput 7(3):159–180

15. Fürnkranz J, Hüllermeier E, Mencía EL, Brinker K (2008) Mul-
tilabel classification via calibrated label ranking. Mach Learn
73(2):133–153

16. Görnitz N, Widmer C, Zeller G, Kahles A, Rätsch G, Sonnen-
burg S (2011) Hierarchical multitask structured output learning for
large-scale sequence segmentation. Adv Neural Inf Process Syst
24:2690–2698

17. Gupta A, Ong Y-S (2019) Memetic computation: the mainspring
of knowledge transfer in a data-driven optimization era, vol 21.
Springer

18. Gupta A, Ong Y-S, Feng L (2015) Multifactorial evolution: toward
evolutionary multitasking. IEEE Trans Evol Comput 20(3):343–
357

19. GuptaA,OngY-S, FengL (2017) Insights on transfer optimization:
because experience is the best teacher. IEEE Trans Emerg Top
Comput Intell 2(1):51–64

20. Han L, Zhang Y, Song G, Xie K (2014) Encoding tree sparsity in
multi-task learning: a probabilistic framework. In: Twenty-eighth
AAAI conference on artificial intelligence

21. He T, Liu Y, Ko T-H, Chan K-C, Ong Y-S (2019) Contextual corre-
lation preserving multiview featured graph clustering. IEEE trans
cybern 50(10):4318–4331

22. He T, Bai L, OngY-S (2019)Manifold regularized stochastic block
model. In: International Conference on Tools with Artificial Intel-
ligence, pp 800–807

23. Hou J-C, Wang S-S, Lai Y-H, Tsao Y, Chang H-W, Wang H-M
(2018) Audio-visual speech enhancement using multimodal deep
convolutional neural networks. IEEE Trans Emerg Top Comput
Intell 2(2):117–128

24. Huang J, Li G, Huang Q, Wu X (2016) Learning label-specific
features and class-dependent labels for multi-label classification.
IEEE Trans Knowl Data Eng 28(12):3309–3323

25. Huang J, Li G, Huang Q, Wu X (2018) Joint feature selection
and classification for multilabel learning. IEEE Trans Cybern
48(3):876–889

26. Huang S-J, Zhou Z-H (2012) Multi-label learning by exploiting
label correlations locally. In: Twenty-sixth AAAI conference on
artificial intelligence

27. Kato T, Kashima H, Sugiyama M, Asai K (2008) Multi-task
learning via conic programming. Adv Neural Inf Process Syst
21:737–744

28. Kendall A, Gal Y, Cipolla R (2018) Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics. In:
Proceedings of the IEEEconference on computer vision and pattern
recognition 7482–7491

123

Memetic Computing (2020) 12:355–369 369

29. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based
learning applied to document recognition. Proc IEEE86(11):2278–
2324

30. Lee G, Yang E, Hwang S (2016) Asymmetric multi-task learning
based on task relatedness and loss. In: International conference on
machine learning, pp 230–238

31. Liu H, Palatucci M, Zhang J (2009) Blockwise coordinate descent
procedures for the multi-task lasso, with applications to neural
semantic basis discovery. In: Proceedings of the 26th annual inter-
national conference on machine learning. ACM, pp 649–656

32. LiuW,Mei T, ZhangY,CheC, Luo J (2015)Multi-task deep visual-
semantic embedding for video thumbnail selection. In: Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp 3707–3715

33. Obozinski G, Taskar B, Jordan M (2006) Multi-task feature selec-
tion. Statistics Department, UC Berkeley, Tech. Rep, 2(2.2):2

34. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans
Knowl Data Eng 22(10):1345–1359

35. Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande
V (2015) Massively multitask networks for drug discovery. arXiv
preprint arXiv:1502.02072

36. Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains
for multi-label classification. Mach Learn 85(3):333

37. Ruder S (2017). An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098

38. Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between
capsules. Adv Neural Inf Process Syst 3856–3866

39. Sayed AH (2014) Diffusion adaptation over networks. In: Aca-
demicPress library in signal processing, vol 3.Elsevier, pp323–453

40. Schmidt M, Fung G, Rosales R (2007) Fast optimization methods
for l1 regularization: a comparative study and two new approaches.
In: European conference on machine learning. Springer, pp 286–
297

41. Sener O, Koltun V (2018) Multi-task learning as multi-objective
optimization. Adv Neural Inf Process Syst 525–536

42. Tsoumakas G, Katakis I, Vlahavas I (2010) Mining multi-
label data. In: Data mining and knowledge discovery handbook.
Springer, pp 667–685

43. Tsoumakas G, Katakis I, Vlahavas I (2010) Random k-labelsets for
multilabel classification. IEEETrans Knowl Data Eng 23(7):1079–
1089

44. YangY,Hospedales TM (2016) Trace norm regularised deepmulti-
task learning. arXiv preprint arXiv:1606.04038

45. Zhang M-L, Wu L (2014) Lift: multi-label learning with label-
specific features. IEEE Trans Pattern Anal Mach Intell 37(1):107–
120

46. Zhang M-L, Zhou Z-H (2014) A review on multi-label learning
algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837

47. Zhang W, Li R, Zeng T, Sun Q, Kumar S, Ye J, Ji S (2016) Deep
model based transfer and multi-task learning for biological image
analysis. IEEE Trans Big Data 6(2):322–333

48. Zhang X, Yang Z, Cao F, Cao J-Z, Wang M, Cai N (2020) Con-
ditioning optimization of extreme learning machine by multitask
beetle antennae swarm algorithm. Memet Comput 12(2):151–164

49. Zhang X, Zhuang Y,WangW, PedryczW (2016) Transfer boosting
with synthetic instances for class imbalanced object recognition.
IEEE Trans Cybern 48(1):357–370

50. Zhang Y, Yang Q (2017) Learning sparse task relations in multi-
task learning. In: Proceedings of the thirty-first AAAI conference
on artificial intelligence, pp 2914–2920

51. Zhang Y, Yang Q (2017) A survey on multi-task learning. arXiv
preprint arXiv:1707.08114

52. ZhangY,YeungD-Y (2013)Multilabel relationship learning.ACM
Trans Knowl Discov Data (TKDD) 7(2):1–30

53. Zhang Y, Yeung D-Y (2014) A regularization approach to learning
task relationships in multitask learning. ACMTrans Knowl Discov
Data (TKDD) 8(3):12

54. Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection
by deep multi-task learning. In: European conference on computer
vision. Springer, pp 94–108

55. Zhu Y, Kwok JT, Zhou Z-H (2018) Multi-label learning with
global and local label correlation. IEEE Trans Knowl Data Eng
30(6):1081–1094

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1502.02072
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1606.04038
http://arxiv.org/abs/1707.08114

	Multi-task gradient descent for multi-task learning
	Abstract
	1 Introduction
	2 Related work
	3 The MGD approach
	3.1 Problem formulation
	3.2 The proposed framework
	3.3 Convergence analysis
	3.4 Relation with regularization based multi-task learning
	3.5 Pseudocode of the MGD algorithm
	3.6 Complexity analysis

	4 Experiments
	4.1 Toy problem
	4.2 Multi-label classification
	4.2.1 Experimental setup
	4.2.2 Experimental results

	4.3 MultiMNIST

	5 Conclusion and future work
	Acknowledgements
	References

