Memetic Computing (2020) 12:299-315
https://doi.org/10.1007/s12293-020-00311-8

REGULAR RESEARCH PAPER l‘)

Check for
updates

An efficient memetic genetic programming framework for symbolic
regression

Tiantian Cheng’ - Jinghui Zhong'

Received: 7 November 2019 / Accepted: 21 September 2020 / Published online: 13 October 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Background Symbolic regression is one of the most common applications of genetic programming (GP), which is a popular
evolutionary algorithm in automatic computer program generation. Despite existing success of GP on symbolic regression,
the accuracy and efficiency of GP can still be improved especially on complicated symbolic regression problems, enabling
GP to be applied to more fields.

Purpose This paper proposes a novel memetic GP framework to improve the accuracy and search efficiency of GP on
complicated symbolic regression problems. The proposed framework consists of two components: feature construction and
feature combination. The first component focuses on constructing diverse features. The second component aims to filter
redundant features and linearly combines these independent features.

Methods The first component (feature construction) focuses on constructing polynomial features derived from polyno-
mial functions, and evolves features by a GP solver. In addition, a gradient-based nonlinear least squares algorithm named
Levenberg-Marquardt (LM) is embedded in the second component (feature combination) to locally adjust the weights of
independent features. A filtering mechanism is put forward to discard redundant features in the second component. Hence,
the polynomial features and evolved features can work together in the framework to improve the performance of GP.
Results Experimental results demonstrate that the proposed framework offers enhanced performance compared with several
state-of-the-art algorithms in terms of accuracy and search efficiency on nine benchmark regression problems and three
real-world regression problems.

Conclusion In this study, a novel memetic genetic programming framework is proposed to improve the performance of GP
on symbolic regression. Experimental results demonstrate that the proposed framework can improve the accuracy and search
efficiency of GP on complicated symbolic regression problems compared with four state-of-the-art algorithms.

Keywords Evolutionary computation - Genetic programming - Symbolic regression

1 Introduction

Genetic programming (GP) is a popular evolutionary algo-
rithm which has been proved quite effective in automatic
computer program generation [13,20]. In GP, computer pro-
grams are represented as trees and evolved using genetic
operators such as crossover and mutation. In the past decades,
GP has been developing rapidly and a number of enhanced

B< Jinghui Zhong
jinghuizhong @ gmail.com
Tiantian Cheng
2269130298 @qq.com

School of Computer Science and Engineering, South China
University of Technology, Guangzhou, China

GP variants have been proposed such as gene expression pro-
gramming (GEP) [15,54,55], cartesian genetic programming
(CGP) [26], linear genetic programming (LGP) [6], and oth-
ers [1,33]. Moreover, GP has been applied to a wide range of
applications, including but not limited to symbolic regression
(SR) [28,55], classification problem [39], job shop schedul-
ing [30], rule discovery [31] and others [14]. Among these
applications, symbolic regression is one of the most com-
mon applications of GP. It fulfills a regression task which
aims to find the relationship between the input variables and
responses in the given dataset. Compared with traditional
regression tasks, symbolic regression discovers the relation-
ship by combining various mathematical expressions without
assuming a model beforehand, which makes it more flexible
for practical applications.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-020-00311-8&domain=pdf
http://orcid.org/0000-0003-0113-3430

300

Memetic Computing (2020) 12:299-315

Despite existing great success, the accuracy and efficiency
of GP can still be improved especially on complicated sym-
bolic regression problems, enabling GP to be applied to more
fields. To this end, a number of efforts have been made over
the past decades. For example, Pawlak et al. [33] proposed
a new operator called random desired operator which uses
intermediate states determined by semantic backpropaga-
tion to decompose the original task into smaller subtasks.
Arnaldo et al. [1] combined lasso regression [41] and multi-
objective optimization [11] together to boost accuracy and
reduce the complexity of GP solution. Moraglio et al.[27]
proposed geometric semantic genetic programming (GSGP)
to search directly in semantic space. Local search opera-
tions based on evolutionary algorithm such as differential
evolution (DE) [34] have also been utilized to fine-tune solu-
tions [18,19,42,46,53]. However, existing methods are either
time-consuming or unable to offer solutions with satisfying
accuracy. Therefore, developing a more accurate and effec-
tive GP is still greatly desirable.

For complex optimization problems, memetic algorithms
have been proved to be effective to obtain highly accurate
solutions [9,12,25,51,52]. Inspired by that, this paper pro-
poses a novel memetic GP framework to improve the accu-
racy and search efficiency of GP on complicated symbolic
regression problems. The proposed framework consists of
two components: feature construction and feature combina-
tion. The first component focuses on constructing polynomial
features derived from polynomial functions, and evolves the
features generated by GP or its variants. Diverse features gen-
erated by the first component increase the possibility of find-
ing highly accurate solutions. The second component aims to
filter redundant features and find proper weights for indepen-
dent features to form the final solution. Because there may be
some correlation between the features passed from the first
component, redundant features are filtered in the second com-
ponent. In addition, a gradient-based nonlinear least squares
algorithm named Levenberg—Marquardt (LM) [22] is embed-
ded in the second component to locally adjust the weights
of independent features. With the help of LM, accuracies of
solutions can be improved greatly. Furthermore, a GP variant
named linear imperative programming with differential evo-
lution (LDEP) [16] is integrated into our framework to create
evolved features for the first component. This algorithm is
called memetic LDEP (MLDEP). Experimental results show
that the MLDEP can achieve higher accuracy and more effi-
cient search ability than several state-of-the-art GP variants.

The rest of the paper is organized as follows: the related
work and efforts on highly accurate GP are discussed in
Sect. 2. The proposed memetic GP framework is described in
Sect. 3. Section 4 demonstrates experimental studies. Section
5 draws the conclusion.

@ Springer

2 Preliminaries

In this section, we provide a brief introduction of background
knowledge that is relevant to this study. Since the purpose of
this paper is to solve the symbolic regression (SR) using GP
[32,36,48], a definition of SR is described first to aid readers
in better comprehending our method. Next, related work for
solving SR using GP is presented.

2.1 Symbolic regression

Regression is a process to identify the relationships between
the input variables and the corresponding response. Given a
dataset, whose sample is composed of input variables and the
corresponding response. The task of SR is to find a function
S(.) whose output can fit the response well. The ith sample
can be represented as a real-valued vector
Ai=lai1,ai2,...,6i4,)il (D
where A; represents the ith sample, g; ; is the jth input
variable of the ith sample, d is the number of input vari-
ables and y; is the corresponding response of the ith sample.
Generally speaking, function S(.) is composed of elements
selected from the predefined function set and terminal set.
The function set can contain common mathematic functions
or user-defined functions, while the terminal set is composed
of variables and constants. In the beginning, mean square
error (M SE) can be adopted as the metric to measure the
quality of formula S(.):

n 02
MSE:M—’O’), 2)
n

where o; is the output of formula S(.) with respect to the ith
sample and 7 is the number of samples. However, M SE or
root mean square error (RM SE) is dependent on the range

of the response variable. A better measurement is the nor-
malized RMSE (NRMSE) [8]

MSE
o(y)

F(S()) = , 3

where F(S(.)) is the objective function to measure the fitness
of formula S(.), and o (y) can be the standard deviation of
the response variable. In this study, the task of SR is to find
a formula S(.) that can minimize F'(S(.)).

2.2 Related work of GP on SR
Over the past decades, a number of methods have been pro-

posed to improve the accuracy of GP on SR. Generally, these
methods can be classified into three groups.

Memetic Computing (2020) 12:299-315

301

The first group focuses on introducing new symbols to
represent constants in the GP tree, so that the algorithm can
find highly accurate solutions with constants. For instance,
Koza [20] proposed to use a special terminal called ephemeral
random constant (ERC) to represent constants in GP. At the
initialization step, each ERC is initialized to a random con-
stant of specific data type within a special interval. Then,
these ERCs will spread between different trees with the help
of mutation or crossover operator. A drawback of this kind
of method is that it is not accurate enough in some cases due
to the blind random search.

The second group utilizes new operators to improve the
search efficiency. Creep mutation and uniform mutation are
two kinds of mutation methods proposed at early stages
[35]. Recently, semantic-based operators such as semantic-
based crossover and mutation operators [4,5,21,29,44,45]
have been proposed and attracted increasing attention from
researchers. Semantic backpropagation [33] is a powerful
operator where semantics of the target response is utilized
to improve the search efficiency. In semantic backpropaga-
tion, a library of trees is constructed. The heights of trees
are restrained so that the number of nodes would not be too
large. The semantic backpropagation performs excellently on
1-dimensional problems but mediocre on high dimensional
problems. Geometric sematic genetic programming (GSGP)
[27] is another GP variant based on semantics which drives
the search in the semantics space rather than the syntax space.
Recently, Chen et al.[7] proposed an angle-driven selection
operator and two angle-driven geometric search operators
which induce a unimodal fitness landscape in the semantic
space, and offered a theoretical framework for researchers
to design geometric semantic operators more efficiently. In
general, this kind of method is usually time-consuming.

The third group makes use of optimizers to fine-tune con-
stants to improve the solution accuracy. For example, Zhang
et al. [53] proposed a GP variant which utilizes differential
evolution [34] to refine the constants. In this method, a special
gene called random number generator (RNG) is employed
as a kind of terminal to represent constants. All RNGs of
an individual form a vector, which is optimized by the dif-
ferential evolution. In [46], two populations are created for
genetic algorithm (GA) and GP respectively, where GA is
used to evolve numeric terminals for GP. Other algorithms
such as simulated annealing [18], gradient search algorithm
[42], estimation of distribution algorithm [40] and nonlinear
least squares minimization [19], can also be used as local
search operators to fine-tune the constants for GP.

One special cluster of the third group contains sev-
eral state-of-the-art algorithms. The main idea is to con-
struct the final solution by linearly combining multiple
shorter sub-solutions/subexpressions. For example, Arnaldo
et al.[1] proposed the multiple regression genetic program-
ming (MRGP) to assign a weight to each node in the solution.

In this way, the output of the solution is the linear combina-
tion of all nodes in the tree instead of the value stored in the
root node. In order to reduce the complexities of solutions, the
least absolute shrinkage and selection operator (LASSO) [41]
is adopted. So the weight vector of these nodes is regulated
using the L; norm. However, this method is time-consuming
and easily results in over-fitting. Another similar algorithm
is evolutionary feature synthesis (EFS) [2] where each fea-
ture used in the final solution is simple and independent.
Since this method restricts the height of the tree for each fea-
ture, each feature maintained in the population is too simple
to acquire sufficient expressive ability. GPTIPS [37] adopts
the least squares regression to combine GP trees of the cur-
rent population to form the final solution. Individuals in the
population are evolved by multi-gene genetic programming
(MGGP) [17]. Fast function extraction (FFX) [23] is a deter-
ministic algorithm based on GP. FFX creates lots of basic
functions in advance. Then it employs the regularized linear
regression to combine promising functions to form the final
model. A shortcoming of FFX is that the basic function set
is fixed in advance, which limits its exploration ability.

Our proposed method belongs to the third group. Unlike
the above existing works, the proposed framework not only
uses complex features evolved by GP but also adopts sim-
ple features generated by elementary functions. Hence, our
method has superior search ability which increases the
chance of finding good solutions. Besides, filtering redun-
dant features and adopting LM optimizer also contribute to
improving the accuracy and search efficiency.

3 Proposed framework
3.1 General architecture of the proposed framework

The basic idea of the proposed memetic GP framework is to
construct accurate solutions by linearly combining a set of
polynomial features and evolved features. As shownin Fig. 1,
the proposed framework contains two components: feature
construction and feature combination.

The first component focuses on constructing diverse
features. Different from previous algorithms, the first com-
ponent not only uses features generated by polynomial
functions but also evolved features generated by GP or its
variants. Polynomial functions with low order are applied to
each variable to generate polynomial features. Evolved fea-
tures refer to the subexpressions of the GP trees generated
during the process of evolution. Then these features will be
passed to the second component.

The second component aims to filter redundant features
and linearly combines these independent features. In this
component, a filtering mechanism is put forward to discard
redundant features. If a feature can be linearly represented by

@ Springer

302 Memetic Computing (2020) 12:299-315
Fig.1 Flowchart of the |
memetic GP framework :
| . Target Vector
i ! [ys, ¥2, ¥l Final
. o2 7 I Solution
I 1 d .
X |
I 2 % Feature I
i . - Combination .
i Xlk Xdk l | | Yes
X |l I
I ~_ | | Optimized |
: . . Feature LM Solution
! Polynomial Features N Filter —> Optimizer
! I |
| .
. [| No
| .
. R, || |
| L.
. R, 1 |
N R S R
i _ Evolve Features GP/GP l Solutions
. R, b Variants I~
I~ ~ |
| Evolved |
| Features Feature
| Construction -
___________________________ _

other features, then this feature will be discarded early before
doing the LM optimization. This mechanism can be fulfilled
by putting the output of all features into a matrix. Rank of
this matrix is the number of independent features that will be
left behind. Using this way, all the independent features can
be selected. Next, they will be passed to the LM optimizer
to construct the final solution. The LM optimizer is adopted
to adjust the weight for each independent feature due to its
fast convergence speed compared with other nonlinear least
square methods [22]. The best individual generated by the
second component is outputted as the final solution.

In general, with regard to less complicated problems,
polynomial features can be used to approximate them. As
for problems containing intricate structures and constants,
evolved features with more expressive power are essential to
finding accurate solutions. In addition, with the help of the
LM optimizer, each feature can get a proper weight, and
all features are combined linearly to form the final solu-
tion. Hence, the polynomial features and evolved features
can work together in the framework to improve the perfor-
mance of GP.

3.2 Program representation

In order to validate the effectiveness of the proposed frame-
work, a GP solver named LDEP [16] is integrated into our
framework to generate evolved features for the first compo-
nent. This algorithm is called memetic LDEP (MLDEP). The

@ Springer

Opr| iy | Lj1| Tki1|OP2| Li2 | Ij2 | Tk2

Fig.2 The schematic diagram of MLDEP

program representation form of MLDEP is based on LDEP
and given here to help readers understand MLDEP better.

As shown in Fig. 2, each solution of MLDEP is a sequence
of imperative instructions. Every four elements (op, r;, 7},
) form an instruction. The first element op indicates which
operator to use. r;, rj, ry are registers or constants. The
instruction (op, r;, 7, ry) Tepresents r; = r; op ry. Several
registers are maintained by MLDEP to store the temporary
values during the evolution process. For example, an instruc-
tion like ; = r; + ry can be reduced to (+, r;, 7},). r;j and
1t can also be constants. In order to operate these instructions
more conveniently, each individual of MLDEP is represented
by a vector of floating-point values. Each instruction is rep-
resented by 4 floating-point values (v1, va, v3, v4), Where v;
encodes the operator, vy, v3 and v4 encode the registers or
constants. Each floating-point value v; can be turned into an
integer value to index the operator lists or register lists using
the following scheme.

First, a floating point value within [0, 1) is gotten by

vi — Lil, “)

Memetic Computing (2020) 12:299-315

303

1.36 | 271 | 0.59 | 4.81 | 5.22 | 3.76 | 1.03 | 9.21

Fig.3 An example program of MLDEP

where | v; | returns the biggest integer no more than v;.

Let nops be the number of operators and n,.¢s be the
number of registers, then the operator encoded by v; can
be calculated by

#operator = [(vi — i]) * neps . &)

When decoding a register or constant, if the value returned
by Eq. 4 is bigger than a predefined constant probability ¢, 4ze,
then a register will be used. The register represented by v;
will be decoded similarly

#register = [(v; — [v;i]) * Nypegs] (6)

Otherwise v; encodes a constant, the constant indicated by
v; is computed using an equation different from the previous
one. According to the suggestion described in LDEP, keeping
only the fraction part of v; will cause a strong linkage between
the constant probability and the constant register index. Thus,
v; is used directly here to index the constants.

#constant = (lv; * C]) mod C, @)

where C is the number of constants, mod is the modulo oper-
ator.

In the following parts, we give an example to help read-
ers understand the mapping process. Suppose the MLDEP
works with 3 registers (rg to r2), 50 constants and 4 follow-
ing operators

O0:4+ 1:— 2:x%x 3:/ (8)
Figure 3 demonstrates a vector of 8 floating-point values
which can be decoded to the following two instructions.
Specifically, the first element represents an operator
selected from the four operators. To index the operator,
the first element is transformed into an integer using Eq. 5,
[(1.36 — [1.36]) x 4] = 1. Thus, the operator — is selected.
The second value denotes a register. According to Eq.6,
[(2.71—12.71])*3] = 2,s0r is picked. Assume the prede-
fined constant probability equals to 0.05. The third element
denotes a register or constant. First a float value in the range
[0, 1] is obtained according to Eq.4. 0.59 — [0.59] = 0.59
which is bigger than 0.05, so the third element is decoded as
a register. On the basis of Eq.6, [(0.59 — [0.59]) %3] =1,
meaning that r| is selected. The last element can be decoded
in the same way. 4.81 — [4.81] = 0.81 which is bigger than

0.05, illustrating a register. Since | (0.81 — [0.81]) %3] = 2,
register r; is chosen. After transformation, the first four float-
point values make up an instruction

rp=ry—r. 9)

The next four elements are decoded using the same map-
ping process except that the seventh element of the vector
represents a constant. The seventh element is 1.03, accord-
ing to Eq.4 and 1.03 — [1.03] = 0.03 that is less than the
constant probability 0.05, so this element is turned into a
constant. Then using Eq. 7, the index number is (| 1.03 * 50
1) mod 50 = 1. Assume the corresponding element of the
constant array equals to 7.95, then the last four elements can
be mapped as the following instruction

ry =7.95 4 rp. (10)

Using this representation form, vectors of floating-point
values are translated to linear sequences of instructions
before evaluation no matter how these vectors are created.

3.3 Algorithm implementation

The procedure of MLDEP is composed of six steps, namely
initialization, mutation, crossover, features filtering, weights
optimization, and selection. In the following parts, we will
introduce the procedure of MLDEP in a step-by-step manner.
The pseudo-code of MLDERP is also given in Algorithm 1.

Step 1-initialization During the initialization stage, an
array of 50 constants in the range [—5.0, +5.0] is created
first. Next, the corresponding polynomial features for each
variable are created. For each variable, polynomial functions
with order higher than one butnomorethan MAX_ORDER
are applied to produce polynomial features. Thus, there are
MAX_ORDER — 1 polynomial features for each variable.

Then, evolved features are generated. Different from tra-
ditional LDEP, MLDEP maintains two kinds of registers to
store the results of evolved features for different purposes.
One kind of registers are unmodifiable which means that
these registers can only appear on the right side of the oper-
ator. Another kind of registers are modifiable indicating that
content of these registers can be changed. Thus, the second
kind of registers can appear on both sides of any operators. In
order to protect original variables from being overlapped dur-
ing the evolution process, each input variable is assigned to
an unmodifiable separate register to store its value. Each reg-
ister ry is initialized with an input variable x; whose indices
satisfy

t =5 mod nygrs, (1D

where 7,45 15 the total number of input variables in the
dataset.

@ Springer

304

Memetic Computing (2020) 12:299-315

To create evolved features, N P programs are created ran-
domly to form the initial population. Each program can be
represented by a vector of floating-point values. The ith pro-
gram H; can be represented as a vector
Hi =1lhi1,hi2, ..., hij, ..., hiDpl, (12)
where i = 1,2,3,...,NP; j =1,2,3,---,D; h; j rep-
resents the jth element of H;. Each h; ; is initialized as a
random value chosen from the interval [0, 1], D is the length
of the program, which is a multiple of 4. As mentioned before,
every consecutive 4 floating-point values in the program rep-
resent an instruction. Thus, for a program of length D, it
contains D /4 instructions to manipulate the registers.

Step 2-mutation In this step, a mutation operator is per-
formed on each target vector to produce a corresponding
mutant vector Y;. In this study, the mutation operator in
DE [34] is adopted to generate the linear sequences of
imperative instructions, since DE is quite effective and suit-
able for optimizing non-linear continuous space functions.
Thus, the mutant vector is generated by the commonly used
“DE/best/2/bin” strategy

Yi = Hpest + F - (Hyy + Hg, — Hygy — Hy,), (13)

where Hp,; s the best individual at the current population, F
is the scaling factor which manages the amplification of DE
and prevents DE from falling into the local optimum. i, g1,
q2, 43, q4 are five mutually distinct indices that are selected
randomly.

Step 3-crossover In the third step, a trial vector U; is cre-
ated using H; and Y;

uij = Z,-,j, ifranc.l(O, 1) <CRor j=k (14)
i,j» otherwise,

where C R is the crossover rate, k is arandom integer between

land D, u; ;, y; j and h; ; are the jth variables of U;, Y; and

H; respectively. Similar to the mutation rate, the crossover

rate CR is randomly set as CR = rand (0, 1).

Step 4-features filtering After the crossover step, trial vec-
tors representing different programs are generated. Using the
same mapping scheme, each trial vector U; can be decoded to
a linear sequence of imperative instructions. After carrying
out these instructions one by one, each register of MLDEP
can be regarded as an evolved feature. However, one issue
arising from previous steps is that features may be linearly
dependent. In order to reduce the complexity of final solu-
tions, redundant features will be filtered in this step. If a
feature can be linearly represented by other features, then
this feature will be discarded. This job can be achieved by
putting the semantics of all features (i.e., polynomial features
and evolved features) into a matrix G = [g1, g2, ..., &m] as

@ Springer

Algorithm 1: MLDEP

1 Begin:
2 Ty =clock() /* a function returns the system time */
3 Tp = clock()
4 AT=T,—T
/* initialize the constant pool */

for k = 1 to 50 do
L set constant[k] be a real number between [-5, 5]

R

/* generate polynomial features */
for each input variable v; appeared in the dataset do
for j =2to MAX_ORDER do
L vl-j is generated as one polynomial feature

e ® 2

/* initialize the register */
10 for s = 1to nyegs do
11 L initialize register ry with corresponding input variable using Eq. 11

/* initialize the population */
12 fori =1to NP do
13 for j =1tondo
14 L set h; j randomly

16 while AT < MAX_TIME do
17 fori =1to NP do

/* mutation and crossover */
18 F =rand(0,1); CR = rand(0, 1)
19 Randomly choose four individuals: Hgy, Hyy . Hys, Hyy
20 and q| # q2 # q3 # q4 # i from current population
21 Set k to be a random integer between 1 and D
22 for j = 1to D do
23 if (rand(0,1)<CR or j=k) then
2 | tij = Hpest,j+ F - (Hgy,j+ Hgy j — Hoy j — Hgy j)
25 else
26 L ujj = hi,j
27
/* feature filtering */
28 Put the semantics of polynomial features and evolved features
decoded by U; into the matrix G = [g1, 82, ---, &m]
29 Find the maximally independent features [f1, f2. ..., f;] of G using

elementary row transformation and leave them behind
30

/* weight optimization */
31 Assign weights to independent features using the LM Optimizer
2 [wo, wy, ..., wz]=LM_Optimizer([1, f1, f2..... fz])
33 Calculate the formula represented by U;:

SO =wo*1+wy*fi+ - +wyxfz
34

/* selection */
35 if F(U;) < F(H;) then
36 i = Ui
37 if F(U;) < F(Hpeg;) then
38 L Hpes; = Ui

39 Ty = clock()
w0 | AT=T,-T

41 End
follows
81,1 s 81,m
(15)
8n,1 o 8n,m

where n is the number of samples, m is the total number
of features and g; ; is the ith element of the column vector
gj- Each column represents the semantics of each feature
on n samples. Then the rank of this matrix is the number

Memetic Computing (2020) 12:299-315

305

Table 1 Symbolic regression problems for comparison

Problem Dimension Objective function Train Test

Septic 1 xT = 2x0 4 x% — x4 -2 4 x U[-1,1,20] U[-1,1,20]

Nguyen-5 1 sin(x2) % cos(x) — 1 Ul[—-1, 1, 20] Ul[-1,1,20]

Keijzer-1 1 0.3xsin(2mx) E[—1,1,0.1) E[—1,1,0.001]

Korns-11 5 6.87 + 11cos(7.23x1°%) U[-50, 50, 10,000] U[-50, 50, 10,000]

Keijzer-14 2 8/(2+ x1% +x2%) U[-3,3,20] E[-3,3,0.01]

Keijzer-15 2 0.2x1% 4 0.5x% — x1 — x» U[-3,3,20] E[-3,3,0.01]

Viadislavleva-8 2 o) U10.05. 6.05, 50] E[~0.25,6.35,0.2]

Keijzer-5 3 % x1 : U[—1, 1, 1000] x1: U[=1, 1,10,000]
x2 1 U[1,2,1000] x2 1 U[1,2,10,000]
x3: U[—1, 1, 1000] x3: U[—1,1,10,000]

Vladislavleva-5 3 W x1 1 U[0.05, 2, 300] x1 : E[—0.05,2.1,0.15]
x2 1 U[1,2,300] x2 1 E[0.95,2.05,0.1]
x3 : U[0.05, 2, 300] x3 : E[—0.05,2.1,0.15]

ENC 8 N/A 512 samples 256 samples

ENH 8 N/A 512 samples 256 samples

WIR 11 N/A 1066 samples 533 samples

of features that are mutually independent. By using elemen-
tary row transformation, the maximally independent column
vector group [f1, f2, ..., f;] can be found. Thus, the num-
ber of features used in the final programs can be cut down to
enhance the interpretability of MLDEP solution.

Step 5-weights optimization In this step, all independent
features found in the previous step are linked linearly to form
the final solution. As shown below, each feature is assigned
with a weight.

SO =woxl4+wy* f14+---+w;*x [z, (16)

where wq is anintercept, w; (j = 1,2, 3, ..., z) isthe weight
of jth feature, z is the number of independent features after
performing the features filtering step, and S(.) is the formula
represented by the trial vector U;. In order to find a proper
weight for each feature, the gradient-based LM algorithm
[22] is used in this paper.

Step 6-selection In this step, the fitter solution between
each target parent (H;) and the corresponding mutant vector
(U;) will be selected to survive to the next generation based
on their fitness values. On the basis of the above description,
each program can be decoded to get a formula S(.). Fitness
of a program is defined as the fitness of the corresponding
formula, which is computed according to Eq. 3. Thus, we can
use Eq. 17 to select the fitter solution.

U, if F(U) < F(H;)

H; = .
' H;, otherwise,

)

where F'(H) is the objective function which returns the fit-
ness of the program H.

The last five steps are repeated until the maximal time is
reached or a solution with satisfying fitness is found.

To summarize, polynomial features, and evolved features
generated by LDEP construct the diversity of features, which
increases the chance of finding better solutions. Besides,
the filtering mechanism can reduce the search space and
improve the search efficiency. At last, the LM optimizer
locally fine-tunes weights for features to produce highly
accurate solutions.

4 Experiments and comparisons
4.1 Test problems

In this section, MLDEP is tested on nine benchmark regres-
sion problems and three real-world regression problems to
validate its effectiveness. Table 1 summarizes the regression
problems used in this study. In Table 1, the first column is
the problem name, the second column lists the dimension of
each problem, and the third column shows the objective for-
mulas. The fourth and fifth columns describe the training set
and testing set respectively. E[a, b, c] means a grid of points
evenly spaced (for this variable) with an interval of c, from a
tobinclusive. While U[a, b, c] represents that the ¢ instances
selected from interval [a, b] follow a uniform distribution.
The function set of all problems is {+, —, X, /, sin, cos}.
The nine benchmark regression problems are chosen from
[20] and [24], which are commonly used in the literature. The
dimension of the nine problems varies from one to five. For
problems like Nguyen-5, where no testing set is given in the

@ Springer

306

Memetic Computing (2020) 12:299-315

literature, the testing set is generated according to uniform
distribution within the same interval as the training set.

As for last three real-world problems, the dataset ENC and
ENH are selected from [43]. The dataset WIR is selected from
[10] where the input variables are physical factors, but the
response is a subjective grade evaluated by human from one
to ten. For each problem, we reorder the sample data and pick
out a certain number of samples as the training set, while the
rest samples are considered as the testing set.

4.2 Comparison algorithms and parameter settings

To assess the performance of MLDEP, four state-of-the-art
GP variants are used for comparison. These four compared
algorithms are described as follows.

Semantic backpropagation for designing search operators
In [33], semantic backpropagation is combined with random
desired operator (RDO) [50] to improve the accuracy and
search efficiency of GP. One feature of this method is that
it needs to construct a library of subtrees. According to the
original paper, the static library construction scheme (RDOy4)
is more stable, so RDOy is used in this paper to compete with
the proposed MLDEP.

Linear imperative programming with differential evolu-
tion (LDEP) Since the proposed MLDEP is designed based
on LDEP [16], we compare MLDEP with LDEP to evaluate
the effectiveness of the new mechanisms proposed in this
study.

Multiple regression genetic programming (MRGP) MRGP
is a well known GP variant proposed by Arnaldo et al.[1].
In MRGP, all nodes in the decoded tree of an individual are
linearly combined to form the final solution. Besides, the
LASSO regression and non-dominated sorting genetic algo-
rithm II (NSGA-II) [11] are used to get a balance between
accuracy and complexity.

Evolutionary feature synthesis (EFS) EFS [2] is a recently
published GP, which also combines features linearly to gen-
erate the final solution. Different from MRGP, EFS has no
concept of genotype, cutting down the time of mapping geno-
type to phenotype. However, due to the height limit imposed
on each feature, EFS is difficult to find solutions with com-
plex structures.

Table2 lists the parameter settings of MLDEP, while
the parameters of the other four algorithms are configured
according to what have been suggested by the original papers.

4.3 Comparison metrics

Three metrics are used for performance evaluation. The first
metric is the testing accuracy calculated according to Eq.3.
Generally, this metrics is regarded as the most important one
for assessing the performance of an algorithm. The second
metric is the success rate (abbreviated as Suc) of reaching

@ Springer

Table2 Parameter settings of MLDEP

Parameters Values

MAX_TIME
Stopping condition

10 min
Running for 10 min or optimal solution found

Fitness function Normalized root mean square error

(NRMSE)
Crate 0.05
D 48
F 0.5
NP 20
CR 0.1
MAX_ORDER 4

Number of registers Number of input variables plus five

Function set +, —, *, /P, sin, cos

Crate, the constant probability; D, the program length; F, the scaling
factor of the mutation operator; N P, the size of the population; CR,
the crossover rate; /7, the protected division; a /b, will return a if b is 0

perfect hits [3]. Suc is calculated according to the following
formula

R;
Suc = i 100%, (18)

where Ry is the number of runs realizing perfect hit and R
is the total number of independent runs. The last metric is
adopted to measure the complexity of the compound models
evolved by these algorithms. Counting the node numbers and
calculating the structural complexity of a tree [38,49] are two
alternatives to quantify the complexity of a solution. In this
paper, the total node numbers of an expression are computed
to measure the complexity of a solution, as done in [33]. It
should be noted that for algorithms which assign a weight for
each feature, the weights are also included when calculating
the total number of nodes.

For the sake of fair comparison, each algorithm is per-
formed for 30 independent runs on each problem and the
average results of the 30 runs are used for analysis. Since
the computational complexity of these algorithms is differ-
ent, some algorithms are quite time-consuming, while others
run very fast. In order to fairly compare the search efficiency
of different algorithms in a reasonable time range, for every
independent run, each algorithm is allowed to run on the
same computer for 10 min, because 10 min is enough for most
algorithms to converge. If an algorithm finds a solution U;
whose fitness F(U;) < 1079, a perfect hit is assumed, then
this algorithm will terminate immediately. For each prob-
lem, the Wilcoxon signed-rank test is also done to check
whether there are significant differences between MLDEP
and its rivals. These experiments are done on a PC with
an Intel(R) Core(TM)i7-8700 CPU @3.20GHz and 16.0GB
RAM in single thread mode.

Memetic Computing (2020) 12:299-315

307

4.4 Results for algorithm comparison
4.4.1 Comparison of accuracy

The success rates and NRMSE of the five algorithms are
shown in Table 3. The last three rows of Table3 summarize
the results of the Wilcoxon signed-rank test on the problems.
The N RM SE is the average testing fitness of the best solu-
tion among 30 independent runs. It can be observed that the
MLDEP outperforms its rivals on most problems in terms of
success rate and N RM S E. Next we will analyze experimen-
tal results in detail.

The first comparison is among benchmark problems con-
taining one variable. MLDEP achieves perfect hits on prob-
lems containing one variable and gets almost zero NRM SE
on the testing set. Especially, the success rates of the first two
problems are 100%. Among other algorithms, only RDOy4
can achieve successful hits on problem Nguyen-5, but its suc-
cess rate and testing N RM SE are both worse than MLDEP.
MRGP, EFS and LDEP find no perfect hit on all problems.
MRGP and LDEP perform better than EFS and RDO4 obvi-
ously, but they are still not as good as MLDEP. Therefore,
the winner of this part is MLDEP.

For benchmark problems having more than one input vari-
able, EFS, LDEP and MRGP can’t find satisfying solutions,
and only MLDEP can achieve successful hits on problem
Keijzer-15. Before RDOy starting the evolution process, it
needs to construct a library of subtrees constrained by a
certain height. However, this preparing step is quite slow,
so the NRM SE and success rate of RDOy4 are labelled as
TLE, which means the preparing step of RDOy4 exceeds the
time limit. For problems on which no algorithms can achieve
a perfect hit, the proposed MLDEP can always obtain the
smallest NRM S E except Korns-11. On problem Korns-11,
MLDEP performs competitively to EFS and LDEP. In addi-
tion to the problem Korns-11, in terms of NRMSE, EFS
ranks second on three problems (i.e., Keijzer-14, Keijzer-
15, and Vladislavleva-8), while MRGP achieves the second
place on two problems (i.e., Keijzer-5 and Vladislavleva-5).
LDEP ranks third on Keijzer-5 and Vladislavleva-8, fourth
on Keijzer-14 and Vladislavleva-5, and last on Keijzer-15.
RDOy4 ranks third only on Keijzer-15, and last on other
problems. As for the three real-world regression problems,
MLDEP achieves better NRM SE on problems WIR, while
EFS performs better than MLDEP on ENC. For problem
ENH, MLDEP and EFS get similar results. The results show
that MLDEP performs better than or at least competitive to
the other algorithms on the three real-world problems.

Generally, the above experimental results demonstrate that
the proposed MLDEP outperforms other methods on most
problems in terms of NRM SE and Suc.

In addition to comparing with the above four algorithms.
We also compares MLDEP with a recently published GP vari-

ant which has achieved good results on many datasets. This
variant is based on RDO and uses semantic backpropagation
synergy with linear scaling to improve the performance of GP
[47]. To keep up with the original paper, this GP variant is
abbreviated as sLS. Table 4 lists the datasets used to compare
MLDEP and sLS. It should be noted that there are ten real-
world benchmark datasets in [47], but two of them have been
unavailable on the internet. So we use the rest eight datasets,
covering different numbers of samples and dimensions. They
are commonly used GP datasets and selected from the UCI
machine learning repository'. For the sake of fairness, we ran
MLDEP on the same datasets as sLS and used the same pop-
ulation size and generation number. Since several datasets
have lots of samples and dimensions, we make a small mod-
ification here. That is if MLDEP can’t reach the maximal
generation number in an hour for one independent run, it
will be terminated early. Except for this, parameter settings
and evaluation metrics are the same. 30 independent runs are
carried out and Table 5 compares the published results of sL.S
with MLDEP. It can be observed that MLDEP outperforms
sLS on 6 out of 8 problems not only on the training set but
also on the testing set. sLS is better than MLDEP mainly on
benchmarks (Wr) and (Ww). In summary, MLDEP can find
more accurate solutions than sLS on most datasets, which
proves its excellent performance.

4.4.2 Comparison of convergence speed

This part compares the convergence speed of the five algo-
rithms. Fig.4 displays the convergence speed of the best
solutions obtained by these algorithms among 30 runs. The
horizontal axis represents time and the vertical axis shows
the NRM SE of the best individual. It should be noted that
the NRM SE is attained on the training set, since evaluating
the best individual on testing set every generation is time-
consuming for some algorithms especially when we restrict
the total running time of each algorithm. Combining Fig.4
and Table 3, the search efficiency of different algorithms can
be analyzed.

The nine benchmark regression problems are studied first.
It can be observed that MLDEP converges fastest on seven out
of nine problems especially for Septic, Keijzer-1, Keijzer-15,
Vladislavleva-8 and Keijzer-5 where MLDEP converges in
the early stages of evolution. For problem Korns-11, the con-
vergence speed of MRGP is the fastest but its generalization
ability is not good enough and overfits on the testing set. The
convergence speed of MLDEP, EFS and LDEP on Korns-11
are close. Actually, the performance of these algorithms has
no much difference on Korns-11 in combination with Table 3.
MLDEP and MRGP demonstrates similar convergence speed
on Vladislavleva-5 and better than other algorithms. Besides

! https://archive.ics.uci.edu/ml/index.php.

@ Springer

https://archive.ics.uci.edu/ml/index.php

Memetic Computing (2020) 12:299-315

308

‘p1oq ur pake[dsip are synsariseq oy,

G0’ = J' 159) JURI-PAUTIS UOXOI[IAN Y3 0 SUIpI0odde JHJTIA UBY) 19339q PUE ‘0} Je[IWIs ‘uey) asiom Apueoyrugis A[9anoadsar st 10inedwod ay) ey Juasaidar sjoxoriq Ul + pue A ‘— S[OQUIAS

0 I 0 0 +
I € I 0 A
1 8 1 9 -
SS6L'0 0 (=) 06160 0 (=) ¥908°0 0 (~) L9660 0 471L A1L qIm
98100 0 (=) ss¥€0 0 (~) 06¥0°0 0 (—) 98¢50 0 A1L A1L HNA
S191°0 0 (=) §80¢°0 0 () 12810 0 (=) €€9¢°1 0 471L A1L ONA
6L10°0 0 (=) T6£7°0 0 (=) 9LLED 0 (=) ¥L80°0 0 A1L A1L G-BAQ[AR[SIPRIA
1000°0 0 (=) 1L¥0°0 0 (=) 68LE0 0 (=) $€00°0 0 A1L AT1L G-1azfoy
7000°0 0 (=) LvL9'8 0 (=) ssor'0 0 (=) ¥z89°€1 0 (=)90¢ %0 8-AQ[ARISIPEIA
L2000 001 (=) LveTS 0 (=) szLeo 0 (=) L1€TT 0 (=) 62870 %0 G1-10zf1o3]
0120 0 (=) TL8t'LT 0 () 19LT°0 0 (=) ss6L0 0 (=)ozit %0 p1-10z1oy]
$866°0 0 () 9810'T 0 (») 16660 0 (=) 1L69°C1 0 AT1L A1L [T-suIoy]
00000 L'9S (=) #5¥0°0 0 (=) 16950 0 (=) 11000 0 (=) L60 %0 [-10zf1oy
00000 00T (=) T8L0°0 0 (=) $901°0 0 (=) #1000 0 (=) €100°0 %EEE G-uakn3N
00000 00T (=) 90500 0 (=) €6¥9°0 0 (=) 09100 0 (=) €812°0 %0 ondag
ASWAN (%) ong ASWIN (%) ong ASWIN (%) ong ASWAN (%) ong ASWAN ong
dAa TN daat sS4 dOUN roay wa[qoId

swa[qoad [[e uo JAATAL PU® dAA'T ‘SAH ‘IO ‘YO Jo saroemmooe SunsaL, € djqe]

pringer

Qs

Memetic Computing (2020) 12:299-315

309

Table 4 Real-world benchmark

datasets (Abbreviation) Name Examples Features Variance (0)
(A) Airfoil 1503 5 4.756 x 10
(B) Boston housing 506 13 8.442 x 10
(C) Concrete strength 1030 8 2.788 x 10?
(Ec) Energy cooling 768 8 9.039 x 10
(Eh) Energy heating 768 8 1.017 x 10%
(Wr) Wine red 1599 11 7.842 x 107!
(Ww) Wine white 4899 11 7.702 x 103
(Y) Yacht hydrodynamics 308 6 2.291 x 10?

Table 5 Training and test median normalized M SE for MLDEP and
sLS

Problem Train NMSE Test NMSE

MLDEP sLS MLDEP sLS
A 0.06 0.22 0.22 0.29
B 0.03 0.14 0.20 0.16
C 0.02 0.15 0.14 0.18
Ec 0.017 0.049 0.027 0.054
Eh 0.004 0.054 0.0024 0.071
Wr 0.931 0.6 0.65 0.62
Ww 0.90 0.67 0.68 0.70
Y 0.003 0.004 0.005 0.0061

The better results are displayed in bold

the rapid convergence speed on the training set, the testing
fitness of MLDERP is also better than its rivals according to
the N RM S E shown in Table 3. As mentioned before, RDOy4
oversteps the time limit at its preparation step, so it is omitted
in the following comparison.

As for the real-world regression problems (i.e., ENC, ENH
and WIR), LDEP is far behind other algorithms. MRGP con-
verges a little faster than MLDEP and EFS on the training
set, but it performs worst than MLDEP and EFS on the test-
ing set. Hence, the generalization ability of MRGP is not
as good as MLDEP and EFS. MLDEP and EFS perform
similarly on the real-world problems in terms of accuracy
and convergence speed. Though their convergence speed is
slightly worse than MRGP, their testing accuracies are obvi-
ously better than MRGP. Thus, MLDEP and EFS perform
best and competitively on real-world regression problems.

In summary, MLDEP converges fastest on seven out of
nine benchmark regression problems. With regard to real-
world regression problems, MLDEP and EFS are tied for
the first place. Therefore, MLDEP wins this comparison of
convergence speed. This is a result of using diverse features
(i.e., polynomial features and evolved features) and the LM
optimizer. With the help of diverse features, MLDEP has
more possibilities to find the optimal solution. Given a set

of features, the LM optimizer can find the most appropri-
ate coefficient for each feature. These two modules work
together in our framework to improve the search efficiency
of GP.

4.4.3 Comparison of solution complexity

This section compares the solution complexity of all algo-
rithms. MRGP is a variant of GP which reduces the com-
plexity of solutions by considering accuracy and complexity
at the same time. EFS cuts down the complexity of solutions
by restricting the height of each subexpression and using the
LASSO regression. The shortage of this method is that each
subtree is too simple, the linear combination of simple fea-
tures is not effective enough to solve problems whose objec-
tive functions contain complicated expressions. For example,
to find function f(x) = x3e_xc0s(2x)sin(x)log(x)cos(x)
which isn’t the sum of more than one subexpression, each
subtree must have sufficient expressive ability. Different
from these two algorithms, the total length of each MLDEP
program is restricted rather than the height of each subex-
pression. One advantage is that each subtree of MLDEP can
represent more subtle features. In addition to that, the number
of registers of MLDERP is also fixed and redundant features
in MLDEP programs are filtered.

Table 6 demonstrates the average node numbers of 30
independent runs for all algorithms. It can be observed that
the node numbers of different algorithms vary greatly on
the same problem. The first algorithm used for compari-
son is RDO4. Though RDOy4 uses more nodes than MLDEP
on 1-dimensional benchmark problems, its accuracies and
convergence speed are still worse than MLDEP. For 2-
dimensional benchmark problems, MLDEP employs more
nodes than RDOy, in exchange for a significant increase in
accuracies.

The second rival of MLDEP is MRGP, which optimizes
accuracy and node numbers at the same time. In Table 6, the
average node numbers of the most accurate individual found
by MRGP among 30 runs are used for comparison. Compared
with MLDEP, MRGP can find more concise but less accurate

@ Springer

310 Memetic Computing (2020) 12:299-315
! Septic —8— LDEP Nguyen-5 —&— [DEP Keijzer-1 —&— LDEP
—o— RGP —o— RGP —o— VRGP
10007 —— EFS loco % —— EFS 10007 —— EFS
—*— MLDEP —*— MLDEP —*— MLDEP
—— RO,] = R0, L] = R0, |
T I 0-060600000000000000 T
j£a) o= =
72 & =
= = =
= = =
= =0.001 =
0.001 4 0.001 4
_L E
1E-7 T 7 T T T T T T 1E-7 T T T T T T T T 1E-7 T T T T T T T
0 20 100 200 300 400 500 600 0 15 100 200 300 400 500 600 0 100 200 300 400 500 600
time (s) time(s) time(s)
Korns—11 —a— [DEP Keijzer-14 —a&— [DEP Keijzer-15 —a&— LDEP
—o— RGP —o— RGP —o— RGP
1000 1 —— EFS 10001 —— EFS 1000 1 —o— EFS
—&— MLDEP —*— MLDEP —#— MLDEP
n | —4— RDO, | | —4— RDO, |
N N . T4 0000000
B2 & 72
= = =
= = =
= = =
0.1 0.001 4
0.98 7
0.014 M
0.96 T T T T T T T T T T T T T T 1E-7 T T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600 -100 0 100 200 300 400 500 600 700
time(s) time(s) time(s)
Vladislavleva-8 —=— LDEP Kei jzer-5 —a— [DEP Vladislavleva-5 —%— LDEP
—o— MRGP —o— MRGP —o— MRGP
1000 7 —— [FS 10007 —&— [FS 1000 7 —&— FFS
—*— MLDEP —*— MLDEP —#— MLDEP
—&— RDO,
0.30 1
= = =
& & B2
= = =
= Z0.014 =
0.01) -
0.154
1E-6 T T T T T T T 1E-5 T T T T T T 0.00
0 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
time(s) time(s) time(s)
ENC —a— LDEP ENH —a— [DEP WIR —a— LDEP
—o— MRGP —o— MRGP —o— MRGP
1000 1 —o— EFS 10007 —o— EFS 1000 1 —o— EFS
—*— MLDEP —*— MLDEP —#— MLDEP
= = =
B2 & B2
= = =
= = =
= = 0.14 =
0.89
0.29
T T T T T T T 0.01 T T T T T T 0.6 T T T T T T
0 100 200 300 400 500 600 100 200 300 400 500 600 0 100 200 300 400 500 600
time(s) time(s) time(s)

Fig.4 Convergence trends of the five algorithms on training set with respect to all problems

@ Springer

Memetic Computing (2020) 12:299-315

311

Table 6 Node numbers of RDO4, MRGP, EFS, LDEP and MLDEP

Problem RDO4s MRGP EFS LDEP MLDEP
Septic 385.9 87.6 20.8 310.1 135.8
Nguyen-5 208.3 67.3 18.1 4749 922
Keijzer-1 347.0 83.1 14.1 161.9 89.8
Korns-11 TLE 11,8542 943 150.2 128.2
Keijzer-14 50.7 140.5 37.8 53.6 105.3
Keijzer-15 44.2 126.3 36.7 61.6 106.4
Vladislavleva-8 55.6 303.8 37.6 2202 924
Keijzer-5 TLE 223.3 51.8 109.0 118.8
Vladislavleva-5 TLE 1043.0 57.5 114.1 124.0
EN TLE 2998.1 1409 1463 161.7
ENH TLE 2960.9 1343 1469 172.5
WIR TLE 4449.2 2105 117.7 2338

The best results are displayed in bold

solutions on 1-dimensional problems. As problem dimen-
sions increase, the node numbers of MRGP increase rapidly
and overtake MLDEP obviously. But the testing accuracies
of MRGP are still worse than MLDEP on most problems.

The third opponent is EFS. The node numbers of EFS are
extraordinarily low due to the height restriction imposed on
each feature and the usage of LASSO regression. In reality,
the total number of features of EFS is proportional to the
number of independent variables. Though the node numbers
of EFS are smaller, the accuracies of EFS are the worst one
on four out of nine benchmark problems. For the real-world
problems, the node numbers of EFS are slightly less than
MLDEP. Meanwhile, the accuracies of EFS and MLDEP are
also close to each other.

The last competitor is LDEP. It can be observed that there
is no obvious relationship between the number of nodes in
LDEP and the dimension of the problems. Because LDEP
only selects one register as the output register. As the prob-
lem dimension gets larger, the total number of registers in
LDEP also increases. Though the problems become more
complex as the dimension increases, the probability of each
register being selected is reduced in the process of evolution.
Thus, the node numbers of LDEP may not increase with the
dimension of regression problems. For benchmark problems,
MLDEP achieves higher accuracies and lower node numbers
on 5 out of 9 problems comparing with LDEP. While for
real-world regression problems, the node numbers of LDEP
are smaller than MLDEDP, but its accuracies are worse than
MLDEP on all real-world problems.

Generally speaking, MLDEP ranks medium in terms of
solution complexity among these algorithms. Considering
its high precision and excellent search efficiency, we could
fairly claim that MLDEP can find solutions of high accuracies

and acceptable solution complexity in comparison with other
state-of-the-art algorithms.

4.5 Component analysis

Our framework involves three important components: poly-
nomial features, evolved features and the LM optimizer. In
order to investigate the impacts of each module, we design
three additional experiments for further explanation. For each
experiment, the same Wilcoxon signed-rank test and nota-
tions as Table 3 are adopted to check whether the performance
of variants of MLDEP is significantly different from that of
MLDEP.

4.5.1 Impact of polynomial features

The proposed framework utilizes two kinds of features: poly-
nomial features and evolved features. In this subsection, we
investigate whether the polynomial features are necessary
and useful to improve the search accuracy and efficiency of
our framework. A simplified MLDEP is generated and named
MLDEP/PolyF. The only difference between MLDEP/PolyF
and MLDEP is that MLDEP/PolyF doesn’t contain polyno-
mial features. Table 7 shows the average testing accuracies
and node numbers of the best individual among 30 runs
of these two algorithms. According to Table 7, the perfor-
mance of MLDEP and MLDEP/PolyF is similar on the nine
benchmark problems since the evolved features are still used
in MLDEP/PolyF, and the evolved features have excellent
expressive abilities. But there are still differences between
MLDEP and MLDEP/PolyF. In terms of NRMSE, read-
ers can find that MLDEP outperforms the MLDEP/PolyF
on three problems, two of which are complicated real-world
regression problems. This shows that with the help of poly-
nomial features, MLDEP can obtain better accuracies on
complicated regression problems. As for the node numbers,
MLDEP uses more nodes than MLDEP/PolyF on three real-
world regression problems. It seems that MLDEP tends to
link more features (i.e., polynomial and evolved features)
to find more accurate solutions when solving complicated
regression problems.

4.5.2 Impact of evolved features

This section explores the effectiveness of the evolved
features in our framework. In order to validate it, another
simplified algorithm called MLDEP/EvolvedF is gener-
ated to compete with the original MLDEP. The only dif-
ference between MLDEP/EvolvedF and MLDEP is that
MLDEP/EvolvedF doesn’t utilize the features evolved by
LDEP. It means MLDEP/EvolvedF only combines the poly-
nomial features. In this case, MLDEP/EvolvedF becomes a
deterministic algorithm since it doesn’t need the evolutionary

@ Springer

312

Memetic Computing (2020) 12:299-315

Table 7 Accuracies and node

numbers of MLDEP and Problem MLDEP MLDEP/PolyF

MLDEP/PolyF NRMSE Nodenums NRMSE Nodenums
Septic 0.0000 135.8 0.0000 (~) 136.6 (=)
Nguyen-5 0.0000 92.2 0.0000 (~) 96.2 (~)
Keijzer-1 0.0000 89.8 0.0000 (~) 109.0 (=)
Korns-11 0.9984 128.2 0.9974 (=) 131.6 (—)
Keijzer-14 0.2102 105.3 1.3678 (~) 97.3 ()
Keijzer-15 0.0027 106.4 0.0048 (—) 97.9 (=)
Vladislavleva-8 0.0002 924 0.0002 (=) 92.9 (=)
Keijzer-5 0.0001 118.8 0.0001 () 1204 ()
Vladislavleva-5 0.0179 124.0 0.0275 (=) 1294 ()
ENC 0.1616 161.7 0.1670 (—) 75.2 (4+)
ENH 0.0486 172.5 0.0609 (—) 753 (+)
WIR 0.7955 233.8 0.7959 (=) 874 (+)
- 3 1
=~ 9 8
+ 0 3
The better results are displayed in bold

Eﬂ'ﬁ:ﬁfm Accuracies and node Problem MLDEP MLDEP/EvolvedF

MLDEP/EvolvedF NRMSE NodeNums NRMSE NodeNums
Septic 0.0000 135.8 0.6425 (—) 17.0 (+)
Nguyen-5 0.0000 92.2 0.3708 (—) 17.0 (+)
Keijzer-1 0.0000 89.8 0.7057 (—) 9.0 (+)
Korns-11 0.9984 128.2 0.9997 (—) 73.0 (+)
Keijzer-14 0.2102 105.3 0.6831 (—) 31.0 (+)
Keijzer-15 0.0027 106.4 0.2791 (—) 31.0 (+)
Vladislavleva-8 0.0002 924 0.5054 (—) 31.0 (+)
Keijzer-5 0.0001 118.8 1.0036 (—) 45.0 (+)
Vladislavleva-5 0.0179 124.0 1.0142 (-) 45.0 (+)
ENC 0.1616 161.7 0.2089 (—) 107.0 (+)
ENH 0.0486 172.5 0.1938 (—) 107.0 (+)
WIR 0.7955 233.8 0.8065 (—) 157.0 (+)

12 0

~ 0 0
+ 0 12

The better results are displayed in bold

process. Then running once is enough for MLDEP/EvolvedF.
The testing accuracies and node numbers of MLDEP are
still the average value of 30 independent runs of the best
solution. Table 8 lists the results. It can be observed that
the testing accuracies of MLDEP are much better than
MLDEP/EvolvedF, which indicates that evolved features
play an important role in finding more complex structures.
Correspondingly, the node numbers of MLDEP/EvolvedF
are smaller than those of MLDEP, which is expected in that
MLDEP/EvolvedF only contains the polynomial features. It

@ Springer

is worthwhile to improve the accuracies obviously at the cost
of a moderate increase of node numbers. Thus, evolved fea-
tures are meaningful to improve the performance of GP.

4.5.3 Impact of LM optimizer

This section assesses the effectiveness of the LM optimizer
in our framework. Similar to the previous two sections, a
new variant of MLDEP is created. The variant is called
MLDEP/LM. The only difference is that the weight of each

Memetic Computing (2020) 12:299-315 313

lﬂ';:eb:rs ﬁ;;}ﬁ;‘; Z‘I‘l‘é node Problem MLDEP MLDEP/LM

MLDEP/LM NRMSE NodeNums NRMSE NodeNums
Septic 0.0000 135.8 0.0938 (—) 103.6 (+)
Nguyen-5 0.0000 92.2 0.0776 (—) 106.8 (—)
Keijze-1 0.0000 89.8 0.4935 (—) 94.1 (~)
Korns-11 0.9984 128.2 11,829.0 (-) 1274 (~)
Keijzer-14 0.2102 105.3 735.3 (=) 91.0 (4)
Keijzer-15 0.0027 106.4 1.6240 (=) 89.6 (+)
Vladislavleva-8 0.0002 92.4 2.2190 (—) 98.1 ()
Keijzer-5 0.0001 118.8 1.2139 (=) 103.1 (+)
Vladislavleva-5 0.0179 124.0 1.8160 (—) 107.2 (+)
ENC 0.1616 161.7 52,5396.2 (—) 199.5 (—-)
ENH 0.0486 172.5 619,159.2 (=) 191.5 (=)
WIR 0.7955 233.8 18,185.1 () 250.1 (—)
- 12 4
~ 0 3
+ 5

The better results are displayed in bold

independent feature in MLDEP/LM is set to 1. Redundant
features in MLDEP/LM are also filtered. Table 9 shows the
average testing accuracies and node numbers of the best indi-
vidual among 30 independent runs of these two algorithms.
From Table 9, it can be observed that MLDEP demonstrates
much better performance than MLDEP/LM. MLDEP out-
performs its rival on all problems in terms of accuracies in
that the weight of each feature reflects the importance of
each feature, which is essential to forming good solutions.
With regard to node numbers, MLDEP and MLDEP/LM each
wins on half of the problems. The above experimental results
demonstrate that the LM optimizer is effective to improve the
accuracy of GP.

5 Conclusions and future work

In this paper, a novel memetic genetic programming frame-
work is proposed to improve the accuracy and search
efficiency of GP on complicated symbolic regression prob-
lems. In this framework, a GP solution is regarded as the
linear combination of polynomial features and evolved fea-
tures. In order to improve the simplicity of final solutions,
redundant features are filtered before the weight optimiza-
tion step. A gradient-based solver called LM is adopted to
link these features by assigning each feature a weight. A GP
variant named LDEP is integrated into this framework to
form a new algorithm named MLDEP. Experimental results
demonstrate that the proposed MLDEP offers enhanced per-
formance over other four state-of-the-art algorithms in terms
of accuracy and search efficiency. There are still several inter-

esting research directions. Some advanced techniques can be
used to reduce the node numbers further. Another direction is
to explore an adaptive manner to do LM optimization rather
than perform it for every individual, so as to save computing
resources.

Acknowledgements This work is supported by the Program for Guang-
dong Introducing Innovative and Entrepreneurial Teams (Grant No.
2017ZT07X183), the Guangdong Natural Science Foundation Research
Team (Grant No. 2018B030312003), and the Fundamental Research
Funds for the Central Universities (Grant No. D2191200).

References

1. Arnaldo I, Krawiec K, O’Reilly UM (2014) Multiple regression
genetic programming. In: Proceedings of the 2014 annual confer-
ence on genetic and evolutionary computation. ACM, pp 879-886

2. Arnaldo I, O’Reilly UM, Veeramachaneni K (2015) Building pre-
dictive models via feature synthesis. In: Proceedings of the 2015
annual conference on genetic and evolutionary computation. ACM,
pp 983-990

3. Barrero, DF (2011) Relibility of performance measures in tree-
based genetic programming: a study on Koza’s computational
effort. Ph.D. thesis, School of Computing of the University of
Alcala

4. Beadle L, Johnson CG (2008) Semantically driven crossover in
genetic programming. In: IEEE congress on evolutionary compu-
tation. IEEE, pp 111-116

5. Beadle L, Johnson CG (2009) Semantically driven mutation in
genetic programming. In: IEEE congress on evolutionary compu-
tation. IEEE, pp 1336-1342

6. Brameier MF, Banzhatf W (2007) Linear genetic programming.
Springer, Berlin

7. Chen Q, Xue B, Zhang M (2018) Improving generalisation of
genetic programming for symbolic regression with angle-driven

@ Springer

314

Memetic Computing (2020) 12:299-315

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

geometric semantic operators. IEEE Trans Evolut Comput. https://
doi.org/10.1109/TEVC.2018.2869621

Chen Q, Zhang M, Xue B (2017) Feature selection to improve gen-
eralization of genetic programming for high-dimensional symbolic
regression. IEEE Trans Evolut Comput 21(5):792-806. https://doi.
org/10.1109/TEVC.2017.2683489

Chen X, Ong Y, Lim M, Tan KC (2011) A multi-facet survey on
memetic computation. IEEE Trans Evolut Comput 15(5):591-607.
https://doi.org/10.1109/TEVC.2011.2132725

Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009) Modeling
wine preferences by data mining from physicochemical properties.
Decis Support Syst 47(4):547-553

. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and eli-

tist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evolut
Comput 6(2):182-197

Eremeev AV, Kovalenko YV (2019) A memetic algorithm with
optimal recombination for the asymmetric travelling salesman
problem. Memet Comput 12(1):23-36

Espejo PG, Ventura S, Herrera F (2010) A survey on the application
of genetic programming to classification. IEEE Trans Syst Man
Cybern C (Appl Rev) 40(2):121-144

Fenton M, Lynch D, Kucera S, Claussen H, O’Neill M (2017) Mul-
tilayer optimization of heterogeneous networks using grammati-
cal genetic programming. IEEE Trans Cybern 47(9):2938-2950.
https://doi.org/10.1109/TCYB.2017.2688280

Ferreira C (2001) Gene expression programming: a new adaptive
algorithm for solving problems. arXiv preprint arXiv:cs/0102027
Fonlupt C, Robilliard D, Marion-Poty V (2011) Linear imperative
programming with differential evolution. In: 2011 IEEE sympo-
sium on differential evolution (SDE), pp 1-8. https://doi.org/10.
1109/SDE.2011.5952066

Hinchliffe M, Hiden H, McKay B, Willis M, Tham M, Barton G
(1996) Modelling chemical process systems using a multi-gene
genetic programming algorithm. In: Koza JR (ed) Late breaking
papers at the genetic programming 1996 conference Stanford Uni-
versity July 28-31, 1996. Stanford Bookstore, Stanford University,
CA, USA, pp 56-65

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by sim-
ulated annealing. Science 220(4598):671-680

Kommenda M, Kronberger G, Winkler S, Affenzeller M, Wagner S
(2013) Effects of constant optimization by nonlinear least squares
minimization in symbolic regression. In: Proceedings of the 15th
annual conference companion on Genetic and evolutionary com-
putation. ACM, pp 1121-1128

Koza JR (1992) Genetic programming: on the programming of
computers by means of natural selection, vol 1. MIT press, Cam-
bridge

Krawiec K, Lichocki P (2009) Approximating geometric crossover
in semantic space. In: Proceedings of the 11th annual conference
on genetic and evolutionary computation. ACM, pp 987-994
Marquardt DW (1963) An algorithm for least-squares estimation
of nonlinear parameters. J Soc Ind Appl Math 11(2):431-441
McConaghy T (2011) Ffx: fast, scalable, deterministic symbolic
regression technology. In: Genetic programming theory and prac-
tice IX. Springer, pp 235-260

McDermott J, White DR, Luke S, Manzoni L, Castelli M, Van-
neschi L, Jaskowski W, Krawiec K, Harper R, De Jong K (2012)
Genetic programming needs better benchmarks. In: Proceedings of
the 14th annual conference on genetic and evolutionary computa-
tion. ACM, pp 791-798

Meuth R, Lim MH, Ong YS, Wunsch DC (2009) A proposition on
memes and meta-memes in computing for higher-order learning.
Memet Comput 1(2):85-100

Miller JF (2011) Cartesian genetic programming. Springer, Berlin,
pp 17-34

@ Springer

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Moraglio A, Krawiec K, Johnson CG (2012) Geometric seman-
tic genetic programming. In: International conference on parallel
problem solving from nature. Springer, pp 21-31

Muiioz L, Trujillo L, Silva S, Castelli M, Vanneschi L (2019) Evolv-
ing multidimensional transformations for symbolic regression with
m3gp. Memet Comput 11(2):111-126

Nguyen QU, Nguyen XH, O’Neill M (2009) Semantic aware
crossover for genetic programming: the case for real-valued func-
tion regression. In: European conference on genetic programming.
Springer, pp 292-302

Nguyen S, Zhang M, Johnston M, Tan KC (2015) Automatic
programming via iterated local search for dynamic job shop
scheduling. IEEE Trans Cybern 45(1):1-14. https://doi.org/10.
1109/TCYB.2014.2317488

Nguyen S, Zhang M, Tan KC (2017) Surrogate-assisted genetic
programming with simplified models for automated design of dis-
patching rules. IEEE Trans Cybern 47(9):2951-2965. https://doi.
org/10.1109/TCYB.2016.2562674

Orzechowski P, Cava WL, Moore JH (2018) Where are we now?
A large benchmark study of recent symbolic regression methods.
CoRR arXiv:1804.09331

Pawlak TP, Wieloch B, Krawiec K (2015) Semantic backprop-
agation for designing search operators in genetic programming.
IEEE Trans Evolut Comput 19(3):326-340. https://doi.org/10.
1109/TEVC.2014.2321259

Price K, Storn R (1995) Differential evolution-a simple and effi-
cient adaptive scheme for global optimization over continuous
space. Technical report, International Computer Science Institue,
Berkley

Ryan C, Keijzer M (2003) An analysis of diversity of constants
of genetic programming. In: European conference on genetic pro-
gramming. Springer, pp 404-413

Schmidt M, Lipson H (2009) Distilling free-form natural laws from
experimental data. Science 324(5923):81-85. https://doi.org/10.
1126/science.1165893

Searson DP, Leahy DE, Willis MJ (2010) Gptips: an open source
genetic programming toolbox for multigene symbolic regression.
In: Proceedings of the international multiconference of engineers
and computer scientists, vol 1. Citeseer, pp 77-80

Smits GF, Kotanchek M (2005) Pareto-front exploitation in sym-
bolic regression. In: Genetic programming theory and practice II.
Springer, pp 283-299

Suganuma M, Shirakawa S, Nagao, T (2017) A genetic pro-
gramming approach to designing convolutional neural network
architectures. In: Proceedings of the genetic and evolutionary com-
putation conference, pp 497-504

Tan LT, Chen WN, Zhang J (2018) A histogram estimation of
distribution algorithm for resource scheduling. In: Proceedings of
the genetic and evolutionary computation conference companion.
ACM, pp 143-144

Tibshirani R (1996) Regression shrinkage and selection via the
lasso. J R Stat Soc Ser B (Methodol) 58:267-288

Topchy A, Punch WF (2001) Faster genetic programming based on
local gradient search of numeric leaf values. In: Proceedings of the
3rd annual conference on genetic and evolutionary computation.
Morgan Kaufmann Publishers Inc., pp 155-162

Tsanas A, Xifara A (2012) Accurate quantitative estimation
of energy performance of residential buildings using statistical
machine learning tools. Energy Build 49:560-567

Uy NQ, Hoai NX, O’Neill M (2009) Semantics based mutation in
genetic programming: the case for real-valued symbolic regression.
In: 15th International conference on soft computing, Mendel, vol
9, pp 73-91

Uy NQ, Hoai NX, O’Neill M, McKay RI, Galvan-Lépez E (2011)
Semantically-based crossover in genetic programming: application

https://doi.org/10.1109/TEVC.2018.2869621
https://doi.org/10.1109/TEVC.2018.2869621
https://doi.org/10.1109/TEVC.2017.2683489
https://doi.org/10.1109/TEVC.2017.2683489
https://doi.org/10.1109/TEVC.2011.2132725
https://doi.org/10.1109/TCYB.2017.2688280
http://arxiv.org/abs/cs/0102027
https://doi.org/10.1109/SDE.2011.5952066
https://doi.org/10.1109/SDE.2011.5952066
https://doi.org/10.1109/TCYB.2014.2317488
https://doi.org/10.1109/TCYB.2014.2317488
https://doi.org/10.1109/TCYB.2016.2562674
https://doi.org/10.1109/TCYB.2016.2562674
http://arxiv.org/abs/1804.09331
https://doi.org/10.1109/TEVC.2014.2321259
https://doi.org/10.1109/TEVC.2014.2321259
https://doi.org/10.1126/science.1165893
https://doi.org/10.1126/science.1165893

Memetic Computing (2020) 12:299-315

315

46.

47.

48.

49.

50.

to real-valued symbolic regression. Genet Program Evolv Mach
12(2):91-119

Vanneschi L, Mauri G, Valsecchi A, Cagnoni S (2006) Heteroge-
neous cooperative coevolution: strategies of integration between
gp and ga. In: Proceedings of the 8th annual conference on genetic
and evolutionary computation. ACM, pp 361-368

Virgolin M, Alderliesten T, Bosman PAN (2019) Linear scaling
with and within semantic backpropagation-based genetic program-
ming for symbolic regression. In: Proceedings of the genetic
and evolutionary computation conference, GECCO 2019, Prague,
Czech Republic, July 13-17, 2019, pp 1084-1092

Vladislavleva E, Smits G, Den Hertog D (2010) On the importance
of data balancing for symbolic regression. IEEE Trans Evolut Com-
put 14(2):252-277

Vladislavleva EJ, Smits GF, den Hertog D (2009) Order of nonlin-
earity as a complexity measure for models generated by symbolic
regression via pareto genetic programming. IEEE Trans Evo-
lut Comput 13(2):333-349. https://doi.org/10.1109/TEVC.2008.
926486

Wieloch B, Krawiec K (2013) Running programs backwards:
instruction inversion for effective search in semantic spaces. In:
Proceedings of the 15th annual conference on genetic and evolu-
tionary computation

51.

52.

53.

54.

55.

Ong YS, Keane AJ (2004) Meta-lamarckian learning in memetic
algorithms. IEEE Trans Evolut Comput 8(2):99-110. https://doi.
org/10.1109/TEVC.2003.819944

Ong Y-S, Lim M-H, Zhu N, Wong K-W (2006) Classification of
adaptive memetic algorithms: a comparative study. IEEE Tran Syst
Man Cybern B (Cybern) 36(1):141-152. https://doi.org/10.1109/
TSMCB.2005.856143

Zhang Q, Zhou C, Xiao W, Nelson PC (2007) Improving gene
expression programming performance by using differential evolu-
tion. In: Sixth international conference on machine learning and
applications (ICMLA 2007). IEEE, pp 31-37

Zhong J, Feng L, Ong Y (2017) Gene expression programming: a
survey. IEEE Comput Intell Mag 12(3):54-72. https://doi.org/10.
1109/MCI1.2017.2708618

Zhong J, Ong YS, Cai W (2016) Self-learning gene expression
programming. IEEE Trans Evol Comput 20(1):65-80

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1109/TEVC.2008.926486
https://doi.org/10.1109/TEVC.2008.926486
https://doi.org/10.1109/TEVC.2003.819944
https://doi.org/10.1109/TEVC.2003.819944
https://doi.org/10.1109/TSMCB.2005.856143
https://doi.org/10.1109/TSMCB.2005.856143
https://doi.org/10.1109/MCI.2017.2708618
https://doi.org/10.1109/MCI.2017.2708618

	An efficient memetic genetic programming framework for symbolic regression
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Symbolic regression
	2.2 Related work of GP on SR

	3 Proposed framework
	3.1 General architecture of the proposed framework
	3.2 Program representation
	3.3 Algorithm implementation

	4 Experiments and comparisons
	4.1 Test problems
	4.2 Comparison algorithms and parameter settings
	4.3 Comparison metrics
	4.4 Results for algorithm comparison
	4.4.1 Comparison of accuracy
	4.4.2 Comparison of convergence speed
	4.4.3 Comparison of solution complexity

	4.5 Component analysis
	4.5.1 Impact of polynomial features
	4.5.2 Impact of evolved features
	4.5.3 Impact of LM optimizer

	5 Conclusions and future work
	Acknowledgements
	References

