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Abstract
TheMultifactorial Evolutionary Algorithm (MFEA) has emerged as an effective variant of the evolutionary algorithm.MFEA
has been successfully applied to deal with various problems with many different types of solution encodings. Although
clustered tree problems play an important role in real life, there haven’t been much research on exploiting the strengths of
MFEA to solve these problems. One of the challenges in applying the MFEA is to build specific evolutionary operators of the
MFEA algorithm. To exploit the advantages of the Cayley Codes in improving theMFEA’s performance, this paper introduces
MFEA with representation scheme based on the Cayley Code to deal with the clustered tree problems. The new evolutionary
operators in MFEA have two different levels. The purpose of the first level is to construct a spanning tree which connects to
a vertex in each cluster, while the objective of the second one is to determine the spanning tree for each cluster. We focus on
evaluating the efficiency of the new MFEA algorithm on known Cayley Codes when solving clustered tree problems. In the
aspect of the execution time and the quality of the solutions found, each encoding type of the Cayley Codes is analyzed when
performed on both single-task and multi-task to find the solutions of one or two different clustered tree problems respectively.
In addition, we also evaluate the effect of those encodings on the convergence speed of the algorithms. Experimental results
show the level of effectiveness for each encoding type and prove that the Dandelion Code outperforms the remaining encoding
mechanisms when solving clustered tree problems.
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1 Introduction

Alongwith the rapid development of technology, the demand
for connecting devices through the network is increasing.
Therefore, optimization of the network design to save the
building cost, but still to allow the devices to communicate
with each other quickly and simultaneously has attracted a
lot of interests from the research community. The common
problem in fiber-optic network design is to ensure communi-
cation, the speed of sending, receiving information between
devices and to optimize the cost of network construction.

All of the above problems can be modeled as an optimiza-
tion problem on a fully connected graph. In particular, each
device is considered as a vertex of the graph, each pair of
devices is assigned with a weight representing the cost of
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the connection between them. To ensure that there is always
a connection between the two devices, designing the net-
work as a spanning tree of the graph is a suitable solution.
When the number of devices is large, many research work
have the ideas of aggregating similar devices into clusters,
which will be used for designing a bigger network system.
In reality, numerous types of clustered network systems are
designed with different goals in term of optimizing com-
munication costs. Those network systems are then modeled
as clustered spanning trees to ensure inter-device connectiv-
ity and inter-cluster communication connectivity. In some
recent studies on problems with clustered tree structures,
D’Emidio et al. [8] defined the Clustered Shortest-Path Tree
Problem (CluSPT), and Chen-Wan Lin et al. [14] intro-
duced the Minimum Inter-cluster Routing Cost Clustered
Tree Problem (InterCluMRCT). The solution to each of the
2 problems mentioned above is a spanning tree of a graph
which satisfies a constrain that the sub-graph in each cluster
belonging to that tree is also a spanning tree. Nevertheless,
the goals of two problems are different. While the goal of the
CluSPT is to find a spanning tree of a graph whichminimizes
the total length of all paths from a given source vertex to
other vertices, the InterCluMRCT tries to minimize the total
communication cost among vertices of different clusters. In
this study, we aim to design an algorithm to solve simulta-
neously multiple network problems that can be transformed
into the clustered tree problemswith different objective func-
tions. The effectiveness of the algorithm is then experimented
on two examples of clustered tree problems, which are the
CluSPT and the InterCluMRCT. Based on the similarities
of the solution structures and constraints, we try to build a
mechanism to simultaneously solve those 2 above problems
specifically, with the purpose of solving various different
types of clustered network design problems in general.

Recently, many studies have proposed multitasking algo-
rithms to find solutions to multiple different combinatorial
optimization problems at the same time. In particular, Multi-
factorial Evolutionary Algorithm (MFEA) [2] is emerging
as one of the most effective variants of the Evolution-
ary Algorithm (EA). MFEA which has been proposed by
A. Gupta et al. [11] can solve multiple independent opti-
mization problems simultaneously using a single population
of solutions in the unified search space. Since a part of the
genetic material of individuals in unified search space is
shared among different problems, there is always a process
of exchanging information among problems inside MFEA
through changing the shared geneticmaterial. Based on these
advantages, this research introduces the MFEA algorithm to
simultaneously solve 2 problemswhich are theCluSPT prob-
lems and the InterCluMRCT problem. We propose a method
of combining those two problems with different dimensions
into the same search space. The main reason for doing that
is due to the similar properties of the solution structures for

those problems, so exchanging the components of the two
solutions will assist in searching to find a better solution in
the process of exploring the solution space.

There are several ways for representing solution as span-
ning tree such as edge-sets [20], characteristic vectors [9],
etc. in which Cayley Code [19,24] has been investigated
for a long time and attracted a lot of attention from the
research community because of its three main advantages.
Cayley Code represents each tree with n labeled vertices
as a string of n − 2 labels, such that each tree corresponds
to a unique string. Firstly, Cayley Code can encode a solu-
tion into spanning tree easier than other methods. Instead
of representing chromosome as a list of edges like edge-
set method [20], chromosome can be encoded as a series of
numbers. Secondly, it takes full advantage of existing evo-
lutionary operators such as one-point crossover, two-point
crossover, swapmutation, etc. Lastly, there are various effec-
tive algorithms for solving a lot of problems based on the
Cayley Code [19,24].

With its outstanding advantages, Cayley Code is chosen to
be the solution representation for the solution to the 2 above-
mentioned problems in our research. We introduce a method
to represent a solution of clustered tree problems as a series of
integers based on Cayley code. A spanning tree correspond-
ing to each cluster is encoded into a segment of Cayley string
which is arranged next to each other to form a solution for
clustered tree problem.Avalid solution can be constructed by
decoding all Cayley strings from encoded solution and com-
bining them altogether. As a result, some operations on the
solutionwill be less complex since performing the operations
on a string of numbers is simpler than that of a graph. This is
especially useful when applying for EA due to the fact that in
each generation such evolutionary operations like crossover
operator, mutation operator,... constantly happened, so the
simplification of those operations reduces the computational
time for the entire algorithm. This paper also investigates the
effectiveness of different types of encodings in the Cayley
Code to find the most appropriate representations for solving
clustered problems.

Consequently, we propose MFEA to solve clustered tree
problems based on the Cayley Code (called CC-MFEA). The
major contributions of this work are as following:

1. Propose an effective encoding mechanism for represent-
ing many solutions of clustered tree problems into unified
representation in Unified Search Space (USS) in order to
apply different types of Cayley Codes: Prüfer Code, Dan-
delion Code, and Blob Code for encoding trees.

2. Propose an effective decoding method to obtain the solu-
tion corresponding to each specific task problem.

3. Propose evolutionary operations for CC-MFEA.
4. Analyze the effectiveness of the proposed algorithm in

some different clustered tree problems.
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5. Analyze the effectiveness of the Cayley Code for solving
the clustered tree problems.

The rest of this paper is organized as follows. Section 2
introduces related works and Sect. 3 provides foundation
knowledge of the Cayley Code. Section 4 presents the nota-
tions and definitions used for formulating problem. The
proposed CC-MFEA for the clustered tree problems is
elaborated in Sect. 5. Section 6 explains the setup of our
experiments and reports the computed results. The paper con-
cludes in Sect. 7 with discussions on the future extension of
this research.

2 Related works

2.1 Multitasking in evolutionary algorithms

Evolutionary Algorithm (EA) [1] is one of the most well-
known algorithms for finding global optimization and is a
part of evolutionary computation. The mechanisms of EA
are inspired by the biological evolution. Being able to solve
complexproblems,EAhasbeen successfully applied inmany
fields such as engineering, art, economics, marketing, genet-
ics, operations research, robotics and social sciences. Despite
its various strengths, EA has shown several weaknesses, one
of them is the ability to domultiple tasks at a time. Therefore,
EA is not compatible with some computational model such
as cloud computing. To overcome this restriction, Abhishek
Gupta et al [11] proposed a new paradigm of EA, called
Multifactorial Evolutionary Algorithm. This new model can
performmany tasks at a time on a sole search space. R. Chan-
dra et al [5] applied the MFEA to train neural networks. In
this model, the required tasks are neural network topologies
with different number of hidden neurons. The authors use the
encoding and decoding rules in [11] for solution representa-
tion whose dimensionality is that of one single task (in this
case, the number of hidden neurons). For evaluation of the
proposed algorithm, MFEA is compared with evolutionary
single-task learning (ESTL) by using the n-bit Parity Prob-
lem. The results showed that MFEA is better than ESTL on
all of the cases.

In Da et al. [6], the authors used MFEA to solve a single-
objective problem by transforming it into a multi-objective
one. With this method, MFEA is expected to overcome the
local optima and exploit better areas of the search space.
To demonstrate the competence of proposed MFEA, the
authors compared it with the classic single-objective evolu-
tionary algorithm (SOEA) and the standard multi-objective
evolutionary algorithm (MOEA). The symmetric Travel-
ing Salesman Problem is selected as test problem. Order
crossover, random swap mutation and 2-opt local search are
used. The results show that by overcoming the local optima,

the proposed algorithm can get the optimal solutions on 4
out of the 5 runs, while SOEA gets trapped at a local opti-
mum. The proposed algorithm performs at least as well as
SOEA in 20 cases and better in 11 cases. In comparison with
MOEA, the proposed algorithm performs at least as well on
18 out of the 20 instances and better in 11 cases. Concerning
convergence trends, the convergent speeds of the proposed
algorithm and SOEA are relatively fast, and equal to each
other in the first 25 generations, but in the rest generations, the
proposed algorithm continues to successfully explore latent
regions of the search space, while SOEA gets stuck.

A. Gupta et al [10] used the characteristics of the Evolu-
tionarymultitasking in the bi-level optimization. The authors
assume that lower level optimization tasks are correspond-
ing to the neighboring upper level population members.
Therefore, the individuals in that upper level population are
clustered into groups. For comparing the proposed algo-
rithmwith the basicNestedBi-LevelEvolutionaryAlgorithm
(N-BLEA), ten-dimension variants of SMD benchmarks
are selected. The representation is random-key encoding
scheme. The selected crossover and mutation operator are
SBX operator and polynomial mutation respectively. The
experimental results show that N-BLEA is worse than the
proposed algorithm with respect to the number of function
evaluations of the lower level. The authors also select the
composites manufacturing problem for evaluating the pro-
posed algorithm. The results show that the convergence trend
of the proposed algorithm is considerably hastened compared
with that of N-BLEA.

In Gupta et al. [12], A.Gupta et al further extended the
concept of multitasking into a Multi-Objective MultiFac-
torial Optimization (MO-MFO) paradigm, in which each
constitutive task is a Multi-Objective Optimization (MOO)
problem that contributes a distinct factor influencing the evo-
lutionary search process. One of the main characteristics
that makes evolutionary multitasking appealing for multi-
objective problems is the implicit parallelism provided by a
unified population which may allow for simultaneous con-
vergence toward the Pareto front. Accordingly, the authors
proposed the Multi-Objective Multi-Factorial Evolutionary
Algorithm (MO-MFEA), and compared the performance of
the proposed algorithm with the classical NSGA-II which
dealswith a single task at a time. To demonstrate the improve-
ment in the convergence trends of the proposed algorithm,
experiments on several synthetic benchmark functions was
conducted with identical solution encoding, genetic oper-
ators, and parameter settings of the proposed MO-MFEA
and the NSGA-II counterpart. The results showed that while
solving a problem instance separately by NSGA-II, the IGD
progressed slowly and had the tendency of getting trapped
in a local Pareto front. In contract, the implicit genetic
transfer provided a strong motivation to the evolutionary
search process of multiple task instances being integrated,
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which explains the accelerated convergence characteristics
achieved by the MO-MFEA.

Y.S Ong et al [17] pointed out from a practical point
of view that the potential applications of effective mul-
titask optimization are truly remarkable since by taking
advantage of the underlying commonalities between differ-
ent optimization tasks, multitaking provides the scope for
improved performance in real-world problem solving. To
prove this claim, the authors compared the performance of the
proposed multitasking engine with the traditional methodol-
ogy on 3 insightful computational studies of the continuous
benchmark functions, combinatorial optimization problems,
as well as for a more realistic optimization domain involv-
ing the path-planning of multiple unmanned aerial vehicles
(multi-UAVs). In the first study, three continuous bench-
mark functions, namely Sphere function, Ackley function,
and Rastrigin function, were combined pairwise to create
the multitaking instances. Then, in order to highlight the
performance of multitasking, the proposed MFEA shall be
compared to an elitist single-objective evolutionary algo-
rithm (SOEA) with similar algorithmic specifications and
parameter settings. Experimental results showed that the
improvement in convergence characteristics achieved dur-
ing multitasking is substantial in comparison to the SOEA.
As a result of intersecting global optimums between different
functions which leads to predominantly positive transfer of
knowledge, the MFEA can exploit the evolving population
of both tasks simultaneously, efficiently overcome obsta-
cles and converge faster, while traditional SOEA causes the
population to often stuck at a local optimum. Interestingly,
prior familiarity about the relationship between tasks is not
a prerequisite for successful evolutionary multitasking, as
the proposed MFEA can exploit latent complementarities
autonomously even between apparently disparate optimiza-
tion tasks, thereby successfully accelerating convergence
trends. Such claim was successfully demonstrated in the sec-
ond study about combinatorial optimization problems, when
the authors combined a QAP(Sko100a) and a JSP(la27) to be
solved together. While the single-tasking method is found to
get trapped in local optimum regions of the search space,
the diversified search facilitated by multitasking substan-
tially improved performance characteristics due to constant
transfer of genetic materials. Finally, by tackling 2 different
multi-UAV path-planning missions at once (a pair of UAVs
flying through two narrow openings in a barrier, and four
UAVs flying around a centrally located geo-fence of circular
planformwithout colliding into one another), the authors had
been able to improved the obtained results which showcase
the utility of multitasking in realistic domains.

2.2 Cayley code: a representation scheme for
spanning tree in genetic algorithms

There are a lot of research works about representation for
Trees, one of the earliest is Cayley Code when Palmer et al.
[18] introduced Prüfer code. In recent years, many research
works demonstrate the effect of Cayley code on Genetic
Algorithm (GA), such as Julstrom et al. (Julstrom [13])
deployed the Blob Code as an individual representation in
GA. The results showed that the Blob Code has high local-
ity, and could outperform the Prüfer Code in a simple test
problem. In 2005, Julstrom el al. (Julstrom [13]) showed that
the Blob Code was competitive with edge-sets representa-
tion on the minimum routing cost spanning tree problem.
Thompson E. B. [24] indicated that the Dandelion Code has
even higher locality than the Blob Code, and offers superior
performance in a GA. Futher details of the Cayley Code will
be presented in Sect. 3.

2.3 Clustered tree optimization problems and
several solving approaches

The network optimization problems have many applications
in real life [8,14] and many of those problems have struc-
ture being clustered [8]. For that reason, a lot of researchers
have shown their keen interests in such problems. One of the
most interesting research in clustered problems is Clustered
Steiner Tree Problem (CluSteiner). Bang Ye Wu et al. [26]
considered a version of the Steiner Minimum Tree whose
vertices are allocated into clusters. Firstly, the authors show
that the Steiner ratios of problems can get maximum at 4
and minimum at 3. The authors also propose an approxima-
tion algorithm for solving CluSteiner. In the new algorithm,
the Hamiltonian paths are added to all local tree of the clus-
ters, then the edges belonging to the inter-cluster topology are
removed. The authors demonstrate that new algorithm can be
approximate in (2+ρ) for CluSteiner in O(nlog(n)+ f (n))

time, when local topologies are given, the problem CluS-
teiner can be (1 + ρ)-approximated in O(nlog(n) + f (n))

time. Chen-Wan Lin and Bang Ye Wu [14] studied another
variant of clustered tree, Minimum Routing Cost Clustered
Tree Problem (CluMRCT). The new constraint in CluM-
RCT problem is that sub-graph in each cluster is a spanning
tree. The authors proved that the CluMRCT having more
than 2 clusters is NP-Hard and proposed an approxima-
tion algorithm for solving the CluMRCT problem. The new
approximation algorithm finds the solutions of CluMRCT
problem by creating a two-level star-like graph and based on
the R-Star graph. The authors demonstrate that the routing
cost of R-Star graph is less than two times the cost of the
optimal solution of CluMRCT problem.

In Myung et al. [16], the authors studied a generalized
version of the Minimum Spanning Tree Problem. The ver-
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tices were divided into distinct groups. The goal was to
find a minimum-cost tree which contains only one vertex
from each group. After proving that Generalized Minimum
Spanning Tree Problem (GMSTP) was NP-hard, the authors
proposed two mathematical programming formulations and
compared them in terms of linear programming relaxations
when applied to GMSTP. The test problems were partitioned
into two sets: big and small set. The small one were selected
from generalized traveling salesman instances whose num-
ber of vertices ranged from 0 to 100. The larger one were
randomly created through an algorithm. The experimental
results showed that the gap between the upper and the lower
bounds grewwhen the number of groups and vertices in each
group increased. The authors [8] have proven that theCluSPT
is in the NP-hard class and provided an approximation algo-
rithm for CluSPT problem (denoted as ALL). ALL performs
well when the number of vertices in all clusters is small. The
approximation approaches including EAs are used to solve
the CluSPT when the problem has large dimensionality or
at least one cluster has a great number of vertices. Recently,
new variants of EA, MFEA are applied to solve the CluSPT
and improve the resulting solutions.

In Binh et al. [3], the authors proposedMFEA (hereinafter
E-MFEA)with newgenetic operator algorithm for solving the
CluSPT.Themajor ideas of the novel genetic operators is that
first constructing spanning tree for smallest sub-graph then
the spanning tree for larger sub-graph are construed based on
the spanning tree for smaller sub-graph. This paper also pro-
posed the new individual encoding in unified search space.
The number of clusters of individual is equal to maximum
number of clusters of all tasks and the number of vertices of
cluster i ismaximumnumber of vertex of cluster i of all tasks.
The experimental results point out the effect of novelMFEA.
However the novel MFEA has disadvantage, for instance, to
construct spanning tree for the sub-graph the edges set of
the sub-graph must contain edges set of smaller sub-graph;
the individual encoding can make no good solutions for each
task in the initial population.

In Thanh et al. [23], the authors take the advantage of
Cayley code to encode the solution of CluSPT and proposed
genetic operators based on Cayley code. The ideas of genetic
operators are taken ideas of genetic operator for binary and
permutation representation. In this paper, effective MFEA
(hereinafter C-MFEA) for CluSPT is proposed. The decod-
ing method processes segments of genes by removing the
genes which have invalid values. To present the spanning
tree for a graph by Cayley code, the vertex of the graph must
has larger than 2 so novel MFEA can only apply to solve
CluSPT instances in which the vertex of its clusters must has
larger than 2. Another disadvantage of Cayley code is only
applying to complete graph therefore novelMFEA is suitable
for complete graph.

The authors [4] proposed a new algorithm based on
the EA and Dijkstra Algorithm. The proposed algorithm
decomposes the CluSPT problem into two sub-problems, the
solution of the first sub-problem is found by an EAwhile that
of the second sub-problem is found by Dijkstra Algorithm.
The goal of the first sub-problem is to determine a spanning
tree which connects among the clusters, while that of the
second sub-problem is to determine the best spanning tree
for each cluster. In some real-life applications, the commu-
nication cost between devices of different clusters may need
to be considered more than between those of the same clus-
ter. In Wu and Lin [25], Chen-Wan Lin et al investigated
the problem of finding a clustered spanning tree with min-
imum inter-cluster cost (InterCluMRCT) and denoted the
variant of InterCluMRCT with the number of clusters is k
as k-InterCluMRCT. After proving that the InterCluMRCT
problem with 2 clusters is solvable in polynomial time, the
authors have shown that k-InterCluMRCT is NP-hard for
any fixed k > 2 and presented a 2-approximation algorithm
for 3-InterCluMRCT.

Although there have been many studies on the use of Cay-
ley encodingmechanisms, evaluating the effectiveness of the
MFEA algorithm when applying the Cayley Code to solve
the clustered tree problems is still a novel topic and attracts
a lot of attention in the scientific community. As a result,
this paper focuses on analyzing the efficiency of the MFEA
algorithm when using the Cayley Code to solve the clustered
tree problems.

3 Preliminaries of the Cayley code

Cayley Code is one of the most classical representations for
spanning trees. It offers a fast and simple coding of span-
ning trees whose decoding algorithm is originated from a
constructive proof of the Cayley’s formula. This formula
identifies the number of possible spanning trees in a complete
graph on n nodes is nn−2. From this formula, theCayleyCode
has been proposed as a tree coding scheme that represents
each tree on n labelled vertices (in which the underlying
graph to form the tree is a complete graph) as a string of
(n − 2) vertex labels. The Cayley Code indicates a bijective
mapping between a tree and a corresponding string which
ensures that each tree corresponds to a unique string, and
each string corresponds to a unique tree.

In the following subsections, this paper introduces 3
typical coding types in the Cayley Code families and demon-
strates their corresponding encoding and decoding mecha-
nisms.
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3.1 Prüfer code

Prüfer Code is one of the earliest example of the Cayley
Code as it was firstly used in 1918 when Prufer described a
mapping between a spanning tree with n nodes and a string of
(n − 2) node labels. Since then, this code had become well-
known and been widely considered as a convenient way for
representing trees, especially in the application of the genetic
algorithms.

Given a tree T on n nodes. The algorithm to convert a tree
into a Prüfer string is described as follows:

1. Let i be the leaf with the smallest label (node of degree
1) in T and j be the neighbour node of i . Set the label of
j to be the rightmost digit in the Prüfer string.

2. Remove node i and the edge (i, j) from T .
3. Repeat steps (1) and (2) until there are only 2 remaining

nodes in T . The final Prüfer string is read from left to
right.

It is also possible to convert from a Prüfer string to a
unique tree via the following algorithm. Let a1a2...an−2 be a
Prüfer string. In the corresponding spanning tree, each node’s
degree is one more than the number of times the node’s label
appears. The edges of that tree is identified as follows:

1. Scan the Prüfer number to identify each node’s degree.
Initialize a variable t to 1.

2. Find a node i of degree 1 with the smallest label. (i, at )
is a spanning tree edge.

3. Decrease the degree of node i and at by 1; increase t by
1.

4. Repeat steps (2) and (3) until all nodes have degree 0,
except for two nodes with degree 1 which create the span-
ning tree’s last edge.

Several researchers have pointed out the advantages of
the Prüfer Code such as: quick and simple decoding, easy
to generate a random Prüfer string and supportive in the
application of conventional evolutionary operators like k-
point crossover and position-by-positionmutation. However,
Prüfer Code actually does not support effective evolutionary
search since this coding mechanism lacks the essential prop-
erties of locality (small changes in genotypes should result
in small changes in the phenotypes) and heritability (solu-
tions generated by evolutionary operators should combine
characteristics of their parents).

3.2 Blob code

In 2001, another type of Cayley Code called Blob Code was
identified as aGArepresentation for spanning trees. TheBlob
mapping appears to be adapted well for evolutionary search

when a GA using the Blob Code tends to considerably out-
perform one using the Prüfer code for a simple test problem.
This can be explained by the higher locality and heritability
under positional crossover and mutation that the Blob Code
possesses.

In this research, we reuse the encoding and decoding algo-
rithms for Blob Code mentioned in Julstrom [13]. These two
algorithms which has the time complexity of O(n), can run
much faster compared to the traditional ones for the Blob
Code, which may require quadratic time in the worst case.
For the notation convenience, we define vertex 1 as the root
vertex; the vertex i is a descendant of vertex j if there is a
directed path from i to j , and successor of vertex i (succ(i))
is the unique neighbour of i on the path from i to 1 on the
tree. Two algorithms below help to convert a tree T into a
corresponding Blob string a2a3 . . . an−1 and vice versa.

Encoding algorithm for the Blob Code:

1. Define succ(i) for each vertex i ∈ [2, n] and add the
directed edge (i → succ(i)) into a temporary tree T ′.

2. Colour each vertex v ∈ [1, n] black if none of the descen-
dants of v in the directed tree T ′ has a label exceeding v;
and colour white for the remaining vertices.

3. Label the black vertices as x1 < x2 < . . . < xt , where
t ∈ [2, n] is the total number of black vertices. Noting
that x1 = 1 and xt = n since vertices 1 and n must be
black.

4. To construct the Blob string, set ai = succ(i) for every
white vertex i ∈ [2, n − 1], and set axi = succ(xi+1) for
each i ∈ [2, t − 1].

Decoding algorithm for the Blob Code:

1. Define a digraph G with the vertex set as [1, n] and the
directed edge set as (i → ai ) : i ∈ [2, n − 1].

2. Colour each vertex v ∈ [1, n] black if none of the descen-
dants of v in the directed tree Gs has a label exceeding v;
and colour white for the remaining vertices.

3. Label the black vertices as x1 < x2 < . . . < xt , where
t ∈ [2, n] is the total number of black vertices. Noting
that x1 = 1 and xt = n since vertices 1 and n must be
black.

4. To construct the tree T, create the edge (i, ai ) for each
white vertex i ∈ [2, n−1], and create the edge (xi , axi−1)

for each i ∈ [3, t] with the final edge is (x2, 1).

However, EAs using the representation of Blob Code still
have not performed as well as EAs using other representa-
tions (like edge-sets, etc) onmost of the problemswhich have
the search spaces of spanning trees.
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3.3 Dandelion code

Recently, Dandelion Code has been proposed to be a strong
alternative as it offers efficient performance for represent-
ing tree in a GA. Researchers show that this coding scheme
exhibits even higher locality than the Blob Code and could
potentially outperform other current Cayley code represen-
tations.

Given a Dandelion string a2a3...an−1, the algorithm to
decode the Dandelion Code into a tree T works as follows:

1. Define a function f : [2, n−1] → [1, n] such that f (i) =
ai for each i ∈ [2, n − 1]

2. Determine the cycles associated with the function f
so that in each cycle, the largest element is rightmost.
Arrange the cycles from left to right in the decreasing
order of the largest element of each cycle.

3. Create a list L containing all the elements of every cycle
with their corresponding orders after arranging in step 2.

4. To construct the tree T from a set of n isolated vertices,
build a path from 1 to n such that the intermediate nodes
on this path are the nodes in the list L in left-to-right order.
Then, create the edge (i, ai ) for every i ∈ [2, n − 1] not
occurring in the list L .

To encode a tree T into its correspondingDandelion string,
the encoding algorithm works simply by reversing the above
procedure:

1. Find a unique path from 1 to n in T , and let L be the
ordered list of intermediate nodes

2. Split this list L into cycles in which each cycle ends when
an element that is larger than all elements to its left still
can be found.

3. The Dandelion Code corresponding to the tree T is the
unique string a2a3...an−1 which satisfies: a) for those
nodes i ∈ [2, n − 1] appear in the list L, insert the
cycle information of each node i with respect to func-
tion f (i) = ai ; b) for each i ∈ [2, n − 1] that does not
occur in the list L , the unique neighbour of i on the path
from vertex i to vertex n in the tree T is ai .

An example of applying 3 above-mentioned types of Cay-
ley Code for representing a spanning tree is demonstrated in
Fig. 1. On the left of this figure is a spanning tree on 8 nodes
with its corresponding Prüfer string, Blob string and Dande-
lion string shown respectively on the right.

4 Problem formulation

In this paper, a graph is a simple, connected and undirected
graph. For a graph G = (V , E, w), V and E are the vertex

Fig. 1 An example of applying 3 types of Cayley Code for representing
a spanning tree

and the edge sets, respectively, and w is the non-negative
edge length function. An edge between 2 vertices u and v is
denoted by (u, v), and its weight is denoted by w(u, v).

For a vertex subset U , the sub-graph of G induced by
U is denoted by G[U ]. For a vertex set V , a collection
C = {Ci |1 ≤ i ≤ h} of subsets of V is a partition of V
if the subsets are mutually disjoint and their union is exactly
V . A path of G is simple if no vertex appears more than once
on the path. This paper only considers simple paths.

For a given spanning tree T of G = (V , E, w) and u, v ∈
V , let dT (u, v) denote length of the shortest path between u
and v on T .

Local root of a cluster is a vertex which connects to a
vertex in each other cluster and denoted as Lr .

The CluSPT [8] is defined as following

Input: - A weighted undirected graph G = (V , E, w).
- Vertex set V is partitioned into h clusters C1,C2, . . . ,Ch .
- A source vertex s ∈ V .

Output: - A spanning tree T of G.
- Sub-graph T [Ci ](i = 1, . . . , h) is a connected graph.

Objective:
∑

v∈V
dT (s, v) → min

The InterCluMRCT [14] is defined as following

Input: - A weighted undirected graph G = (V , E, w).
- Vertex set V is partitioned into h clusters C1,C2, . . . ,Ch .

Output: - A spanning tree T of G.
- Sub-graph T [Ci ](i = 1, . . . , h) is a connected graph.

Objective:
k∑

i=1

∑

j �=i

dT
(
Ci ,C j

) → min

where dT
(
Ci ,C j

) = ∑
u∈Ci

∑
v∈C j

dT (u, v).

Figure 2 illustrates the cases of valid and invalid solutions
of the CluSPT and the InterCluMRCT. Figure 2(a) shows
the input graph G with 6 clusters, 18 vertices and vertex
1 as source vertex. Figure 2(b) presents a valid solution of

123



192 Memetic Computing (2020) 12:185–217

Fig. 2 An example of valid and invalid solutions for the CluSPT

the CluSPT and InterCluMRCT. In Fig. 2(c), the vertex 6
and vertex 7 in cluster 2 are not connected, so this solution
violates the second condition of the output of the CluSPT
and the InterCluMRCT problems.

5 Proposed algorithm

This section presents a novel approach by using the MFEA
to deal with the clustered tree problems. The algorithm
includes: a new individual encoding, and new evolutionary
operators, i.e. new population initialization, new crossover
operator and new mutation operator.

5.1 MFEA scheme to solve clustered tree problems

Multifactorial Evolutionary Algorithm is used to find the
solutions of k clustered tree problemsGi = (Vi , Ei , wi ,Ci ),
i = 1, .., k where Vi , Ei , wi and Ci are set of vertices, set of
edges, weight matrix and set of clusters, respectively.

Vi is partitioned into mi (i = 1, . . . , k) clusters Ci =
{C1

i ,C
2
i , . . . ,C

mi
i }.

For each clustered tree problem Gi , we decompose the
problem into two subproblems: The first subproblem aims to
determine the spanning tree for each cluster (also called local
tree), while the second one intents to construct a spanning
tree connecting all of the clusters (also called global tree).
Global Graph is denoted by a graph G ′

i = (V ′
i , E

′
i ) in which

a clusterCi is represented as a vertex in V ′
i . An edge connects

two vertices of G ′
i if there exists at least one edge connecting

the corresponding clusters in Gi .
To use CC-MFEA for solving many clustered tree prob-

lems simultaneously, a new scheme of individuals encoding
based onCayley code and a two-level approach are proposed.
Cayley codes are used for representation of local trees and
the global tree in which the position of the Cayley codes for
local tree is placed before that of the global tree in an indi-
vidual. We provide a mechanism for decoding the individual
into the solution for each clustered tree problem as well as
efficient evolutionary operators.

The pseudocode of our approach is presented in Algo-
rithm 1. It should be noted that to compute the fitness of an
individual ind j for a given task, both local trees and global
treemust be constructed for the corresponding solution of the
clustered tree problem s j (lines 5 and 27 in the Algorithm 1).
Then, the algorithm computes the fitness of solution of the
clustered tree problem s j . Finally, the fitness of individual
ind j is computed through the cost of the clustered tree prob-
lem s j (lines 6 and 28 in the Algorithm 1).

5.2 Individual encoding in unified search space

Individuals in the unified search space are encoded through
two stages: the first stage will rearrange clusters of input
graphs to reduce resource consumption, while the second
stage encodes the solutions of all tasks into a unified repre-
sentation.

5.2.1 Encoding solution of input graphs

In order to combinemany clustered tree problems into unified
search space, we define an individual IND which is a graph
G = (V , E,C) with properties as follows:

– The number of clusters of IND is equal to the maximum
number of clusters in all graph Gi , denoted by N .

– The number of vertices in t th cluster of an IND is equal
to the maximum number of vertices in t th cluster of all
tasks, denoted by nt .

Encoding procedures transform an individual into the
string of genes by using Cayley encoding algorithms for rep-
resenting all of the local trees and the global tree. Moreover,
local trees and global tree are combined via the set of ver-
tices which is the root of the local tree. The components of
an individual are arranged as follows:

– Spanning tree for t th cluster is presented as t th segment,
denoted by st (if a task constitutes of the number of clus-
ters which is smaller than t , that task is ignored). Values
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Algorithm 1: New approach to solve the clustered tree
problem

1 begin
/* An individual as an array of vertices

and clusters */
2 P0 ← Randomly generate N individuals � Refer to

Algorithm 2;
3 foreach individual ind j ∈ P0 do
4 Randomly assign skill factor τ j ;
5 Construct local and global trees of solution of the

clustered tree problem s j corresponding individual ind j
for task τ j only;

6 Evaluate the fitness of ind j based on the cost of solution
s j ;

7 t ← 0;
8 while stopping conditions are not satisfied do
9 Ot ← ∅;

10 while number of generated offspring < N do
11 Randomly select two individuals pa and pb from Pt ;
12 if τa = τb then
13 Perform crossover on Parents pa and pb to give

two offspring individuals oa and ob;
14 Assign skill factor τa to offspring oa and ob ;
15 else
16 rand ← Generate a random number between 0

and 1;
17 if rand < rmp then
18 Perform crossover on Parents pa and pb to

give two offspring individuals oa and ob;
19 Each offspring is randomly assigned skill

factor τa or τb;
20 else
21 Parent pa is mutated to give an offspring oa �

Refer to Algorithm 3;
22 Assign skill factor τa to offspring oa ;
23 Parent pb is mutated to give an offspring ob �

Refer to Algorithm 3;
24 Assign skill factor τb to offspring ob;
25 Ot ← Ot ∪ {oa, ob};

/* Evaluate offspring individuals for
their assigned skill factors only
*/

26 foreach individual o j ∈ Ot do
27 Construct local and global trees of solution of the

clustered tree problem s′
j corresponding individual o j

for task τ j only � Refer to Algorithm 5;
28 Evaluate the fitness of o j based on the cost of solution

s′
j ;

29 Rt ← Ot ∪ Pt ;
30 Pt+1 ← Select N fittest members from Rt ;
31 t ← t + 1;

of genes in each segment are in the comprehensive range
of 1 to nt .

– Spanning tree for Global Graph is represented as a seg-
ment, called G-Seg.

– Genes in the last segment (called M-Seg) is used for
representing the set of local roots. The i th gene of this
segment represents the vertex in the i th cluster.

– Spanning tree are represented by Cayley Code [19].

A chromosome is divided into N + 2 segments. For the
convenience of notation, the N +2 segments will be indexed
from 1 to N+2. Each of the first N segments is a Cayley code
corresponding to a unique local tree. The segment N+1 is the
Cayley code corresponding to the global tree. The segment
N + 2 is the M-seg contains all of the root vertices of the
local trees.

An example of individual encoding in new MFEA is
depicted in Fig. 3. Assume that the vertices of the tasks are
partitioned into clusters as Fig. 3a. An individual in the USS
is illustrated in Fig. 3b. The representation of individual via
Prüfer Code is depicted in Fig. 3c. This chromosome has 6
segments in which the numbers of vertices in cluster 1, 2 3
and 4 are 4, 5, 5 and 4 respectively; the G-Seg has 2 genes;
M-Seg has 4 genes which are 1, 1, 3 and 2.

To find labels of vertices in all clusters for a task, the
proposed CC-MFEA also builds a mapping function (called
M-function) which maps vertices in every cluster of an indi-
vidual in unified search space to vertices in relative cluster
in that task. Take Fig. 3a, b as an example, the M-function
maps vertices in cluster 2 of the individual in USS to vertices
in cluster 2 of task 1 is 1 matches with 5; 2 matches with 6; 3
matches 7; 4 matches 8. Vertex 5 in cluster 2 in Fig. 3b is not
mapped to task 2 because the number of vertices in cluster 2
in task 2 is 4 whereas cluster 2 in Fig. 3b has 5 vertices. The
mapping functions are used in proposed decoding method.

5.2.2 Rearrange clusters on input graphs

When solutions of all tasks are encoded as an individual in
USS, if the order of clusters of input graphs are kept then it
may become resource consuming. For example, in the case
shown in Fig. 4, Fig. 4a show as vertices in clusters of two
input graphs. If the order of clusters on input graphs are
kept, with the solution in USS, the number of vertices in
cluster 1 is 6 while the number of vertices needed to encode
cluster 2 is 5 (detail in Fig. 4b). However, if clusters of input
graphs are sorted in the order of increasing of the number
of vertices, then the solution in USS only needs 3 vertices
for encoding cluster 1 and 6 vertices for encoding cluster 2
(detail in Fig. 4c). Clearly, this procedure reduces resources
for encoding solutions.

Therefore, the clusters in the input graph are sorted in
ascending (descending) order of the number of vertices in a
cluster, then applied the encoding procedure in Sect. 5.2.1.
For the sake of simplicity, this article assumes that the number
of vertices in clusters of an input graph is sorted in increasing
order.

5.3 Individual initializationmethod

To generate valid individuals for a problem, different rep-
resentations require different methods correspondingly. We
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Fig. 3 The representation of
individual in unified search
space for MFEA with two tasks

Fig. 4 Illustration of a
disadvantage of the encoding
solution

introduce a method to generate a valid individual, in which
each segment corresponding to a Cayley string is generated
randomly. In order to generate the valid solution for clustered
tree problem, spanning tree for each cluster and G-Graph are
constructedbasedon randomCayleyCode.Thedetail of indi-
vidual initializing method (IIM) is presented in Algorithm 2.

Algorithm 2: Individual Initialization
Input: Gi = (Vi , Ei ,Ci ), i = 1, . . . , k
Output: An individual I nd

1 begin
2 N ← maximum number of cluster of all tasks;
3 for i ← 1 to N do
4 ni ← maximum number of vertex in i th cluster of all

tasks ;
5 Si ← Generate_Random_Cayley_Code(ni );
6 Insert Si to the end of I nd;
7 SN+1 ← Generate_Random_Cayley_Code(N );
8 Insert SN+1 to the end of I nd;
9 SN+2 ← Select_Random_Vertices_In_Clusters();

10 Insert Sn+2 to the end of I nd;
11 return I nd;

InAlgorithm2,Generate_Random_Cayley_Code(l)method
generates randomly a Cayley code whose length is equal to
l−2. Select_Random_Vertices_In_Clusters()method selects
a random vertex in each cluster for creating edges which con-
nect among clusters.

5.4 Crossover operator

An advantage of Cayley Code is that it can use many exist-
ing genetic operators such as one-point crossover, PMX
crossover [1], etc. In the proposed algorithm, the One-point
crossover operator [1] is used. Observe that, one point in
chromosome is selected then 2 gene segments after that point
are swapped for generating two offspring.

Figure 5 illustrates the crossover operator in CC-MFEA
in which red vertical line presents crossover point. In our
encoding method, the Cayley strings of each local tree and
the global one are placed adjacent to each other, and the last
segment stores the information of the vertices that will be
used to construct the complete solution from the local and
global tree. The one-point crossover can keep characteristics
of the pair of parents, and the affectivity of that crossover
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Fig. 5 An example for the crossover operator in CC-MFEA

is different depending on the position of the selected point.
If the crossover point is in the local tree segment, that seg-
ment will generate a different local tree in comparison to
the pair of parents. If the point crosses in the G-seg segment
then the global tree is constructed differently from the pair of
parents. Finally, if that point lies in the last segment, it will
produce a new set of the root of the local tree. Exchanging
two good partial genes of parents through that crossover point
more often could result in generating high quality solution. In
the crossover operation, the probability of a crossover point
is located in a cluster/G-seg/M-seg is actually proportional
to the corresponding length of gene. Search space of each
segment is corresponding to its length. Segment with larger
length has a larger search space, thus requires more gener-
ation iterations to obtain optimal structures. In contrast, the
segment with shorter length requires less generation itera-
tions to explore good structures. By making the probability
of a crossover point located in a segment proportional to its
corresponding length, the larger segment can have greater
opportunities to exchange good partial genes in an effort to
acquire more optimal structures. As a result, crossover oper-
ation reduces the number of generation loops needed in order
to obtain high quality solutions.

Because of the properties of the encoding method, the
One-point crossover always produces valid offsprings, and
increases the diversity of individual.

5.5 Mutation operator

The Swap-Change Mutation operator (SCM) performs two
types of variation: The first type of variation generates new
Cayley string by swapping two genes in the selected segment,
and the effect of the change to the spanning tree depends
on the level of locality of which type of Cayley code has
been used. If high locality code is used for decoding Cayley
codes into the tree, the swapping of two genes in that Cayley
string generates the newoffspringwhich is less different from
the parent. Otherwise, the low locality decoding methods
change the spanning tree significantly different from parents.
The second type of variation is executed on M-Segment to
change the root of the local tree with the aim of increasing
the diversity of individual. The SCM is described in details
in Algorithm 3.

Algorithm 3: Proposed Mutation Operator
Input: An individual I
Output: A new solution I ′

1 begin
2 N ← Number of segments;

/* The first type of variation */
3 Select a random segement Sr , r ∈ [1, N − 2];
4 Swap two random genes in segment Sr ;

/* The second type of variation */
5 v ← A random vertex in segment Sr ;
6 Replace gene r th in M-Segment by v;
7 return;

Fig. 6 An example for the new mutation operator in MFEA for solving
the CluSPT problem

Figure 6 provides an example of the SCM. In this exam-
ple, the 3rd cluster is randomly selected. Two genes in third
segment which have the values of 2 and 3 respectively (the
values are in red and bold), are swapped. The value on 2nd
gene in M-Seg, which is equal to 1, is replaced by the value
of 3 (the values are in red and bold).

5.6 Decodingmethod

In this subsection, we present association between an indi-
vidual in USS and an individual in task Tj . The main reason
for selecting Cayley Code to represent a chromosome is that
we can use simple methods for decoding between tasks.

5.6.1 Decoding method for spanning tree problem

Let Dj be the dimensionality of j th task.

– Step 1: Remove genes whose values are greater than Dj

and store them in the corresponding order into a queue
Q.

– Step 2: If the number of remaining genes R is greater
than (Dj − 2), the solution will select the first Dj − 2
genes from the remaining. Otherwise, while the number
of remaining genes R is less than (Dj − 2), repeat fol-
lowing procedure: Let a be the first element in Q; b is the
result of a modulo D j ; Append b to R; Delete a from
front of Q.
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Algorithm 4: S-decoding method
Input: A Cayley code segment Mi of an individual in unified

search space I
Output: A Cayley code segment M ′

i of an individual in j th task

1 begin
2 n′

i ← Number of vertices in i th cluster on j th task;
3 R ← genes in Mi whose values are less or equal than n′

i ;
4 Queue Q ← genes in Mi whose values are greater than n′

i ;
5 if length of R > n′

i − 2 then
6 M ′

i ← the first n′
i − 2 from R ;

7 else
8 M ′

i ← R ;
9 while Length of M ′

i ≤ (n′
i − 2) do

10 a ← first element in Q;
11 b ← a modula n′

i ;
12 Append b to M ′

i ;
13 Delete a from front of Q;
14 return M ′

i

Fig. 7 The decoding method for representing spanning tree via Cayley
code

Figure 7 presents the use of S-Decodingmethod for decod-
ing a representing spanning tree into Cayley code of two
tasks. The dimensionality of these two tasks are 6 and 8
respectively, and an individual in the unified search space
is transformed to a task whose dimensionality is 6.

Figure 7a depicts a case in which after step 1, the number
of remaining genes is greater than the dimensionality of the
associated task. In step 1, as the value of second gene is 7
which is greater than 6, this gene is removed then stored in
Q = {7}. In step 2, the number of the remaining genes is 5
which is greater than 6 − 2 = 4, so first 4 genes are chosen
to create an individual for the associated task.

Figure 7b illustrates another case of a decoding method in
which the number of remaining genes is less than the dimen-
sionality of the associated task. In step 1, genes 7, 8, 7 are
removed froma segment then stored to a queueQ = {7, 8, 7}.
In step 2, the number of the remaining genes is 3 which is
less than 6 − 2 = 4 is stored in R = {1, 2, 3}, one missing
gene are created by getting the remainder of the first element
the queue Q is 7 divided by the dimensionality of particular
task is 6, and the result of 7 modulo 6 is 1, then append 1 to
the end of R.

5.6.2 Decoding method for Clustered Tree Problems

New decoding method for the Clustered Tree Problems
(NDM) has two stages. The first stage finds spanning tree for
clusters and G-Graph by using S-Decoding method. The sec-
ond stage performs on last segment for finding edges which
connect among clusters.

Detail of new decoding method is described in Algorithm
5.

Algorithm 5: Proposed Decoding Method
Input: An individual in unified search space I
Output: A solution T(V, E) in j th task

1 begin
2 An individual of j th task is denoted I ′;
3 nc′ ← Number of cluster on j th task;
4 for i ← 1 to nc′ do
5 si ← Cayley code segment i th of I ;
6 S′

i ← S-Decoding(si ) � Refer to Algorithm 4;
7 Construct a tree Ti rooted at i th gene on M-Seg from S′

i ;
8 Ti ← M-functions(Ti );
9 G − seg ← Cayley code segment of global tree ;

10 S′
m ← S-Decoding(G − seg) � Refer to Algorithm 4;

11 Set of local roots Lr of I ′ ← nc′ first genes in M-Seg on I ;
12 Construct a tree Tm from S′

m ;
13 Tm ← M-function(Tm );

14 V ← ∪nc′
i=1V (Ti );

15 E ← ∪nc′
i=1E(Ti ) ∪ E(Tm);

16 return T ;

In Algorithm 5, the S-Decoding method is a proposed
method in Sect. 5.6.1; Line 8 and 13 use the mapping func-
tions to relabel for vertices in clusters.

Figure 8 illustrates the proposed decoding method. Fig-
ure 8a presents an individual in USS. Representation of
individual via Prüfer code is depicted in Fig. 8b. Figure 8c
illustrates chromosome via Prüfer code after performing
from line 1 to line 12 of Algorithm 5. Figure 8d repre-
sents a solution which is constructed from chromosome in
Fig. 8c. Figure 8e illustrates the complete solution which
receives from Fig. 8d after performing the M-functions in
Algorithm 5.

6 Computational results

6.1 Problem instances

Toassess theperformanceof theproposed algorithm,CluSPT
instances are selected fromBinh et al. [4] and InterCluMRCT
instances are selected from Clustered Traveling Salesman
Problem (CluTSP) instances [15]. Themain reason for select-
ing those instances is that the instances had been generated
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Fig. 8 An illustrative example
of propose decoding method for
CluSPT

with various algorithms to be suitable for clustered prob-
lems [15].

The experiments is performed on all small instances of
Type 1, Type 5 and Type 6. The instances are selected ran-
domly for implementing CC-MFEA. All tested instances are
available via Thanh [22].

The Prüfer Code [18], Blob Code (Julstrom [13]) and
Dandelion Code [19] are the well-known example of Cayley
codes, so those Codes are chosen to implement experiments.

6.2 Experimental setup

We focus on the following criteria to assess the quality of the
output of the algorithms.
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Criteria

Average (Avg) Average function value over all runs
Best-found (BF) Best function value achieved over all runs

Each problem instance was evaluated 30 times on Intel
Core i7 - 4790, 16GB RAM computer using windows 8 64-
bit. The source codes were written in the Java language.

The simulation parameters include population size = 100,
number of evaluations = 50000, probability of random mat-
ing = 0.5, mutation rate = 0.05 and number of tasks = 2.

6.3 Experimental results

In this section, we analyze the results obtained by the pro-
posed algorithm using different types of Cayley codes. The
performance of each Cayley Code is evaluated in both
single-task and multi-task environment. In addition, the
effectiveness of combining 2 types of variation in the pro-
posed SCM is also examined. All of the obtained results
are then carefully investigated under some statistical analy-
sis methods such as Wilcoxon Signed-rank Test to show the
effectiveness of the proposed algorithm.

In tables of results in this section, the italic, red cells
on the Prüfer Code column mean that on those instances,
CC-MFEA using Prüfer Code outperforms using Dandelion
Code. Similar for other encoding techniques, cells in italic
and red color on the Dandenion Code and Blob Code col-
umn mean that CC-MFEA using Dandelion Code exceeds
the CC-MFEA using the Blob Code and CC-MFEA using
Blob Code surpasses CC-MFEA using Prüfer Code, respec-
tively. The values in bold on encoding techniques column
means that CC-MFEA using the encoding techniques out-
performs using two other encoding techniques.

6.3.1 The efficacy of the proposed variation of mutation
operator

Toevaluate the effectiveness of each variation to the proposed
mutation, Dandelion Code is chosen to conduct the following
experiments: In the first experiment, we perform only the
first type of variation which is swapping two genes in the
selected segments, while the second experiment only uses the
second type of variation that changes an element in the M-
seg segment. The obtained results from the two experiments
above are then compared to those of the proposedSCMwhich
is a combination of both variation types.

Table 1 presents the results obtained by performing the
swap variation, change variation and the proposed SCM. The
experimental results show that the proposed SCM is better
than swap variation and change variation by 8.7% and 8.6%
in average, respectively.

To demonstrate the effectiveness of the proposed SCM
operator, a Wilcoxon signed-rank test is conducted to check
whether there was an improvement in the performance of the
CC-MFEA between applying the swap variation or change
variation separately and combining them intro the proposed
SCM. In particular, 2 pairs of samples SCM-Change and
SCM-Swap are examined to discover if these changes of
mutation operator led overall to a statistically significant dif-
ference in the obtained results. Detailed of the statistic test is
shown in Table 2.

As can be seen from Table 2, for the CluSPT problem,
the SCM mutation produces better results than using either
change or swap mutation separately on 10 out of 11 test
instances. AWilcoxon signed-rank test showed that the com-
bination of 2 variations of mutation operator inside the SCM
provided a statistically significant improvement in the qual-
ity of obtained solutions with the Asymp. Sig. (2-tailed) p of
0.026 and 0.021 for the SCM-Change and the SCM-Swap,
respectively. Similarly for the InterCluMRCT problem, a
considerable advance in performance of the proposed CC-
MFEA can be witnessed when applying the SCM operator
instead of either change or swap with p = 0.028 and
p = 0.005 respectively. In conclusion, the proposed SCM
mutation operator does statistically improve the overall per-
formance of the algorithm.

Explanation: The first type of variation makes changes
to the segments which are used for representing local span-
ning trees. Altering any two genes in those segments helps to
modify the local spanning trees. In addition, changing local-
root vertices is also an important factor since they contribute
a major role in making connections between clusters, from
which a global tree will be constructed. Therefore, the com-
bination of these two types of variation in the process of
creating new individuals helps to increase the diversity of
the population, thereby helping the proposed algorithm to
explore better solutions.

6.3.2 The effect of encoding techniques in single task

In this section, the performance of each Cayley Code is eval-
uated in either CluSPT or InterCluMRCT problem.
A. Overall results of singletasking

Table 3 summarizes the comparison results among 3
encoding typeswhenperforming in single task.The “Num.Ins”
column denotes the total number of instances, while the
“Dandelion”, “Blob” and “Prüfer” columns represent the
number of instances where the encoding type has better
results than the other two.

A notable point in the results shown on those tables is
that the performance of Dandelion Code is by far the best.
In particular, the Dandelion Code outperforms the remaining
codes on 2 out of 3 types of instances (Type 1 and Type 6).
The result obtained by using the Prüfer Code seems to be the
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Table 1 Results obtained by variations of the mutation operator using Dandelion code on instances in Type 1

Instances Change variation Swap variation SCM

BF Avg BF Avg BF Avg

CluSPT 10berlin52 54234.3 61719.5 52614.2 61693.7 49068.3 58599.4

10eil76 3341.5 4046 3189.8 4120.9 2762.6 3447.1

10pr76 734240.7 893274.5 737821.8 996312.6 644302.7 828170.9

15eil51 2328.2 2903.7 2504.2 3144 2125.2 2758.5

15pr76 992773.1 1305765.5 1049556.1 1331127.9 952262.1 1214188.8

25eil101 6844.1 9383.9 8052.7 10318.7 6708.3 9294

25lin105 202693.9 298671.7 209999.5 315898.4 155233.0 281917

50eil101 8275.1 12774.7 7446.2 14153.6 9788.0 12654

50kroB100 373556.8 553207.3 432215.9 596317.9 491024.2 606069.8

5eil51 2247.5 2616 1940.1 2350.7 1955.0 2198.5

5pr76 894432.2 1029626.4 739250.3 907498.9 667837.8 822934.7

InterCluMRCTSPT 10eil51 60507.4 71196.5 52260.9 70634.7 50494.5 62486.8

10kroB100 12524450.7 14206655.2 10315981.7 12897154.7 9405236.7 12039989.7

10rat99 798031.8 890791.1 683229.7 797539.2 589667.7 749772.7

15eil76 163299.6 198846.7 164718.9 201447.4 146785.6 181834.5

15st70 168131.6 238685.5 172627.3 229877.8 149009.4 203731.9

25kroA100 14332444.4 19635063.4 14818748.8 20262451.9 12872635.2 18974511.3

25rat99 770558.3 998865.2 725557.7 1089673.5 638380.1 968377.2

50kroA100 24515550.2 30445137.8 24369101.3 30863904.2 22757582.7 30014740.7

50lin105 14569661.1 22189079.5 14751843.8 23326248.7 14536077.1 23186711.8

50rat99 1236037.0 1497889.5 1119216.1 1547733.4 1040326.9 1404530

5eil76 169865.6 196664.3 115177.8 142784 129445.0 143326.5

5st70 218895.4 244249.2 154823.3 183927.2 168499.6 187038.6

Table 2 Wilcoxon signed-ranks test statistics between SCM-Swap and SCM-change to show the efficiency of proposed mutation operator

SCM-Change SCM-Swap

N Mean rank Sum of ranks N Mean rank Sum of ranks

CluSPT Negative Ranks 10 5.8 58 10 5.9 59

Positive Ranks 1 8 8 1 7 7

Z −2.223 −2.312

Asymp. Sig. (2-tailed) 0.026 0.021

InterCluMRCT Negative Ranks 11 6.09 67 10 7.5 75

Positive Ranks 1 11 11 2 1.5 3

Z −2.197 −2.824

Asymp. Sig. (2-tailed) 0.028 0.005

N: number of instances
Negative Rank: SCM’s Avg < Swap/Change’s Avg
Positive Rank: SCM’s Avg > Swap/Change’s Avg

Table 3 Comparison among 3
Cayley Codes to summarize the
number of instances in which
one encoding type outperforms
the other two when performing
in single task

Types CluSPT InterCluMRCT Num.Ins

Dandelion Blob Prüfer Dandelion Blob Prüfer

Type 1 15 3 6 12 4 8 24

Type 5 6 7 3 4 3 9 16

Type 6 18 10 6 17 8 9 34
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worst when its performance is poorer than the Blob and the
Dandelion Code in all 3 types.
B. Detailed results of singletasking

For more details of the CluSPT, in Type 1, the Dandelion
Code outperforms both Prüfer Code and Blob Code in 15
out of 24 test cases. In Type 6, the Dandelion Code exceeds
Prüfer Code and Blob Code on 21 out of 34 and 20 out of 34
test instances respectively.

Unlike Type 1 and Type 6, in Type 5, the Blob Code is
slightly superior to 2 remaining encoding techniques, i.e. the
Blob Code exceeds the Prüfer Code and Dandelion Code in
9 out of 16 and a half of test cases respectively.

Tables 4, 5 and 6 show more details of the the results
obtained by the proposed algorithmon single-taskwhen solv-
ing the CluSPT on instances of Type 1, Type 5 and Type 6.

In the InterCluMRCT, the Dandelion Code receives the
best performance when that encoding mechanism exceeds
two remaining encoding techniques on two-thirds of the total
number of instances. In detail, Dandelion Code outperforms
Blob Code on 14 out of 24 instances of Type 1 and on 22 out
of 34 instances of Type 5. In comparison with Prüfer Code,
Dandelion Code surpasses 15 out of 24 instances of Type 1
and on 22 out of 34 instances of Type 6.

A remarkable point occurs on the results in Type 5 where
Prüfer Code exceeds both Dandelion and Blob Code on 10
out of 16 instances. However, in general, the performance of
Prüfer Code is not as well as either Dandelion Code or Blob
Codewhen its results areworse than those ofDandelionCode
and Blob Code in two out of three instance types.

The details of the InterCluMRCT’s results received from
single-tasking of the proposed algorithm with different Cay-
ley codes are presented in Tables 7, 8 and 9.
C. Statistical analysis of 3 Cayley Codes in singletasking

In order to examine the effect of different CayleyCodes on
the obtained results in singletasking environment, a Friedman
test is firstly carried out to see if there were differences in
perceiving better performance of the algorithm based on 3
encoding types.

For the CluSPT problem, detailed of the statistic test is
given in Table 10. The Friedman Test compares the Mean
ranks between the related groups and provides the test statis-
tic χ2 value Chi-square, degrees of freedom df and the
significance level Asymp. Sig. to indicate how the groups
differed. Results of the Friedman Test show that there was
a statistically significant difference in the CluSPT’s results
depending on which type of the encoding mechanism was
used, with χ2(2) = 10.0811, p = 0.0065.

However, at this stage, we only know that there are dif-
ferences somewhere between the related groups, but the
Friedman Test does not pinpoint which groups in partic-
ular differ from each other. As a result, another post hoc
test needs to be run. In this case, separate Wilcoxon signed-
rank tests on the different combinations of related groups

(Dandelion–Prufer, Blob–Dandelion and Prufer–Blob) are
chosen to be conducted. In addition, a Bonferroni adjust-
ment on theWilcoxon test’s results must be applied since we
are making multiple comparisons. The initial significance
level (0.05) is simply divided by the number of running tests,
which results in a new significance level of 0.05/3 = 0.017 in
our case.

Table 10 also shows the output of the Wilcoxon signed-
rank test on each of our combinations. We can see that at
the p < 0.017 significance level, a statistically significantly
improvement can be obtained by applying the Dandelion
Code instead of the other two for the CluSPT problem in
singletasking, with Dandelion–Prufer and Blob–Dandelion
of p = 0.0003 and p = 0.0099 respectively. Therefore,
Dandelion Code is considered as the best among 3 encoding
types for evolutionary algorithm to solve the CluSPT prob-
lem.

Similarly, Table 11 shows the results of statistical analy-
sis among 3 Cayley Codes for the InterCluMRCT problem.
There was a statistically significant difference in perceived
effort depending on which type of encoding used for this
problem with χ2(2) = 3.4324, p = 0.0179. Post hoc
analysis with Wilcoxon signed-rank tests was conducted
with a Bonferroni correction applied, resulting in a sig-
nificance level set at p < 0.017. Median (IQR) achieved
for Prufer, Dandelion and Blob Code were 1112182.75,
1111663.90 and 1130830.75, respectively. There were no
significant differences between Blob to Dandelion Code
(Z = −0.606, p = 0.5445) or between Prufer to Blob Code
(Z = −0.773, p = 0.4395) despite an overall improvement
in the Blob vs Prufer Code. However, there was a statisti-
cally significant reduction in performance in the Prufer Code
compare to Dandelion Code (Z = −1.872, p = 0.0161).
As a consequence, it can be concluded that Dandelion Code
outperforms the remaining two encoding mechanisms when
solving clustered tree problems.
D. Explanation of the obtained results

In type 1 and type 6, all of the instances are modified from
the TSPLIB [21]. In details, type 1 uses a k-means algorithm
to create clusters, then a source vertex is randomly selected
to create instances for CluSPT; and type 6 uses grid method
clustering: all vertices are divided into m ∗ n rectangles with
the same area. The properties of these instances in type 1 and
type 6 are: clusters are separated clearly and less messed up,
the vertices in a cluster are close to each other, and the dis-
tancebetween twovertices belonging to twodifferent clusters
is greater than the distance between two vertices belonging
to the same one. Using the code with high locality (a small
change in genotype causes a small change in phenotype) like
Blob code and Dandelion code is effective for instances with
the above properties. In our encoding method, each cluster is
encoded as a segment with different types of Cayley codes,
and a small change in these segments will have different
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Table 4 CluSPT’S results obtained by single task on instances in Type 1

Instances Prüfer Code Dandelion Code Blob Code

BF Avg Time Dande.BF Avg Time BF Avg Time

10berlin52 48231.6 56930.5 0.02 49389.1 57340.9 0.03 50538.3 57971 0.02

10eil51 2259.3 2748.9 0.02 2143.2 2652.3 0.03 2292.3 2693.2 0.02

10eil76 3054.4 4037.4 0.03 3035.7 3851.7 0.05 3147.4 3960 0.03

10kroB100 194594.2 279317.4 0.05 213508.1 272930.7 0.08 219140.4 277438 0.03

10pr76 739479.0 919138.6 0.03 745736.3 906817.1 0.07 812444.9 970703.8 0.03

10rat99 11284.8 14780.4 0.05 11689.4 14520.2 0.08 10826.1 14297.2 0.03

15eil51 1977.7 2655.6 0.02 1923.4 2619.9 0.03 2217.5 2658.4 0.02

15eil76 3898.9 4899.1 0.03 3910.9 5008.1 0.07 3864.9 4935.5 0.03

15pr76 931016.2 1153653.4 0.03 916803.3 1142816.9 0.07 948248.6 1132786.2 0.03

15st70 5628.6 6702.7 0.03 5275.8 6897.8 0.05 5556.4 6802.4 0.03

25eil101 7117.2 8445.7 0.05 6854.5 8777.3 0.08 7013.1 8638.6 0.05

25kroA100 239682.2 322796.9 0.05 210245.2 315251.9 0.08 246531.4 332016.3 0.05

25lin105 187275.2 242850 0.05 190351.0 239917.7 0.08 183321.3 235841.7 0.07

25rat99 13956.4 17371.4 0.05 13529.3 16323.5 0.07 13383.1 17054.8 0.07

50eil101 8269.5 10885.3 0.05 7961.6 9965.7 0.07 8719.7 10644.5 0.10

50kroA100 372389.2 511675.4 0.05 363383.9 460977.6 0.07 399591.5 498709.7 0.10

50kroB100 366297.9 478398.2 0.05 329645.2 445994.3 0.07 368230.9 473867.2 0.10

50lin105 294923.8 385231.3 0.05 275393.3 349959.6 0.07 274885.4 374014.8 0.10

50rat99 16793.8 26184.1 0.05 16679.2 22536 0.07 17506.0 24348 0.08

5berlin52 31166.2 38102.9 0.02 28238.3 36913.1 0.02 31346.0 38123 0.03

5eil51 2275.6 2717.1 0.02 2328.4 2746 0.02 2293.7 2753 0.03

5eil76 3855.3 4852.4 0.03 4069.9 4849.2 0.03 3930.3 4938.1 0.05

5pr76 879111.5 1071822.5 0.03 821911.6 1046564.7 0.03 859905.0 1050015.2 0.05

5st70 5808.4 6830 0.03 5541.7 6930.5 0.03 6022.6 7071 0.05

Table 5 CluSPT’S RESULTS OBTAINED BY SINGLE TASK ON INSTANCES IN TYPE 5

Instances Prüfer Code Dandelion Code Blob Code

BF Avg Time BF Avg Time BF Avg Time

10i120-46 127591.3 147596.8 0.07 123892.0 144535.6 0.10 129441.2 147613.6 0.07

10i45-18 31533.1 36981.6 0.02 29406.9 35997.6 0.03 29941.3 35617.5 0.02

10i60-21 46134.5 55344.3 0.02 48239.6 55184.1 0.05 46324.9 57107.7 0.03

10i65-21 48825.4 61886.7 0.03 52769.9 61366.4 0.05 50870.7 61348.4 0.03

10i70-21 52408.0 62816.2 0.03 54582.1 64193.1 0.05 50099.1 63887.9 0.05

10i90-33 72058.8 86808.5 0.03 73900.3 84450.3 0.08 74143.4 83540.8 0.07

5i120-46 88215.5 106548.5 0.07 89735.6 110200.1 0.12 90910.7 110628.1 0.12

5i30-17 15019.7 18559.9 0.02 15123.9 19059.1 0.02 15707.2 18460 0.02

5i45-18 18732.5 25755.5 0.02 21365.2 25788.2 0.03 19776.6 25369 0.03

5i60-21 42073.7 50615.6 0.02 39619.2 50585.7 0.05 39399.4 48939.4 0.03

5i65-21 44363.7 52971.5 0.03 40048.8 50534.3 0.05 43271.2 53701.7 0.05

5i70-21 46501.6 57623.9 0.03 47731.6 58653.2 0.05 45167.9 57788.5 0.05

5i75-22 46924.0 59739.7 0.03 48160.9 58589.9 0.05 47359.3 58892.7 0.05

5i90-33 70015.4 80680.3 0.03 68261.6 80092 0.05 69887.0 81086.3 0.07

7i60-21 48741.4 58940.3 0.02 48699.2 57659.1 0.03 49495.7 59543.4 0.03

7i65-21 49922.9 62428.3 0.03 48497.8 60235.8 0.03 48083.2 59650.1 0.05
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Table 6 CluSPT’S results obtained by single task on instances in Type 6

Instances Prüfer Code Dandelion Code Blob Code

BF Avg Time BF Avg Time BF Avg Time

10berlin52-2x5 34600.0 45911.4 0.02 34757.6 46754.6 0.03 34651.4 46368.7 0.02

12eil51-3x4 2273.3 2650.5 0.02 2126.1 2588.3 0.03 2149.6 2631.1 0.02

12eil76-3x4 3729.8 4536.6 0.03 3476.3 4544.3 0.07 3734.8 4513.9 0.05

12pr76-3x4 872118.5 1061867.5 0.03 873703.6 1053138.3 0.05 829010.5 1045190.8 0.05

12st70-3x4 5215.2 6506.6 0.03 5178.9 6317 0.05 5164.2 6460.9 0.05

15pr76-3x5 881691.8 1059162.6 0.03 811904.5 989953.8 0.07 834225.6 1009128.6 0.05

16eil51-4x4 2042.5 2591.7 0.02 2095.8 2510.7 0.03 2053.0 2596.7 0.03

16eil76-4x4 3641.9 4524.7 0.03 3737.5 4730 0.07 3249.8 4518.6 0.05

16lin105-4x4 187298.4 241744.6 0.05 193278.6 236213.9 0.10 189307.9 243894.9 0.08

16st70-4x4 4732.5 6089.1 0.03 4748.5 5994.3 0.05 4769.8 5965.2 0.05

18pr76-3x6 910086.9 1134622.3 0.03 932884.2 1112377.7 0.07 1022655.1 1169389 0.05

20eil51-4x5 2935.7 3545.7 0.02 2986.3 3644.7 0.03 2997.9 3630.6 0.03

20eil76-4x5 3691.7 4909.4 0.03 3987.1 5117 0.05 4254.4 5421 0.05

20st70-4x5 4770.3 6539 0.03 5020.9 6349.6 0.03 5180.3 6481.7 0.05

25eil101-5x5 6067.5 8315.9 0.05 6571.4 8200.6 0.07 6719.3 8304 0.08

25eil51-5x5 2607.5 3309.9 0.02 2547.3 3270.9 0.02 2748.1 3416.9 0.03

25eil76-5x5 3500.3 5346.9 0.03 4340.3 5287.4 0.03 4061.7 5516.6 0.05

25rat99-5x5 16537.0 19547.5 0.05 16220.1 20357.3 0.05 16370.5 20868.9 0.07

28kroA100-4x7 278119.8 356025.1 0.05 225349.3 332745.4 0.05 283240.3 359197.4 0.05

30kroB100-5x6 318830.6 402822.5 0.05 308115.6 381350.7 0.05 309228.4 390918.3 0.05

35kroB100-5x5 278483.0 334016.4 0.05 239402.3 313986.9 0.05 243024.2 328924.3 0.05

36eil101-6x6 6908.9 8924.4 0.05 6409.0 8870.3 0.07 7503.1 9460.9 0.05

42rat99-6x7 16454.9 22549.1 0.05 15773.8 20780 0.07 16262.3 22342.9 0.05

4berlin52-2x2 31117.4 41498.2 0.02 31507.1 43049.8 0.02 31747.9 40229.4 0.02

4eil51-2x2 2530.9 3068.7 0.02 2567.9 3028.9 0.02 2545.1 3009.3 0.02

4eil76-2x2 3989.6 5327.5 0.03 4204.5 5353.7 0.03 4269.2 5251 0.03

4pr76-2x2 841497.0 1063294.6 0.03 813612.6 1098560.2 0.03 820843.4 1036132 0.03

6berlin52-2x3 41748.2 49495.8 0.02 40940.2 50510.3 0.02 41837.6 49244.1 0.02

6pr76-2x3 880775.9 1104705.5 0.03 856589.4 1068609.2 0.03 879161.2 1082865.7 0.03

6st70-2x3 4499.2 6268.2 0.02 5044.0 6174.5 0.03 5130.1 6308.3 0.03

8berlin52-2x4 34594.1 44883.6 0.02 37810.1 47899.4 0.02 35684.8 45298.4 0.02

9eil101-3x3 4973.3 6427.5 0.03 4866.7 6112 0.05 4839.3 6282.6 0.05

9eil51-3x3 2437.7 2841.3 0.02 2276.9 2922.7 0.02 2412.1 2874.1 0.02

9eil76-3x3 3876.1 4887.3 0.03 4072.3 4913.8 0.03 4054.3 4856.7 0.03

affects on the solution depending on the types of encoding
has been used. For instance, in CluSPT, the Dandelion code
is the highest locality amongCayley codes, so a small change
in a single cluster segment is similar to performing a local
search to obtain optimal structure for a cluster. As a result,
the Dandelion code is the most effective encoding for the
CluSPT in type 1 and type 6.

6.3.3 The effect of encoding techniques when CC-MFEA
solves two different problems

To evaluate the effectiveness of each Cayley codes’ encoding
technique for the CC-MFEA algorithm when solving clus-
teredproblems, theCluSPTand the InterCluMRCTproblems
with different input graphs are implemented.
A. Overall results of multitasking

Table 12 presents a summary of comparison results among
3 encoding types when performing in multi-tasks. Similarly,
the “Num.Ins” column indicates the number of instances,
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Table 7 InterCluMRCT’S results obtained by single task on instances in Type 1

Instances Prüfer Code Dandelion Code Blob Code

BF Avg Time BF Avg Time BF Avg Time

10berlin52 746471.5 1023526.6 0.02 792361.5 1010288.6 0.03 783512.1 1021982.4 0.03

10eil51 54112.3 71066 0.02 63468.3 71817.7 0.03 61643.5 72022.6 0.03

10eil76 151067.5 178340.7 0.03 141267.2 172323.6 0.05 142672.4 174096.1 0.05

10kroB100 13796654.8 16553385 0.05 14268396.3 17162543.8 0.08 14088040.1 16702067 0.08

10pr76 33652106.5 39763551.6 0.05 33210205.5 39015916.6 0.05 31661498.3 38824375.1 0.05

10rat99 663406.3 790745.9 0.07 707663.1 814165.9 0.08 668456.1 800100.2 0.07

15eil51 67491.4 78011.2 0.03 65482.8 79942.7 0.03 63989.5 78261.9 0.03

15eil76 159242.1 191385.1 0.05 175205.2 199709.5 0.07 161537.2 194755.4 0.07

15pr76 33722952.2 40019937.8 0.05 33588177.6 42043159.5 0.07 33387637.8 41600496.1 0.07

15st70 190660.0 237189.8 0.05 190905.2 241981.3 0.05 184618.6 235648.7 0.05

25eil101 327629.2 408284.1 0.08 306631.3 381127.1 0.10 308306.7 411172.7 0.10

25kroA100 13818342.2 16681116.5 0.08 13938211.0 17397605.3 0.10 13767588.8 16922818.9 0.10

25lin105 10132848.0 12438176 0.08 9737057.8 12165628.2 0.08 9968455.1 12298921.1 0.10

25rat99 755224.0 941903.2 0.07 723944.8 925427.4 0.07 727798.7 916487.1 0.07

50eil101 425487.2 528523.3 0.13 393815.4 491051.1 0.15 419381.6 516375.6 0.13

50kroA100 20264432.1 25425696.2 0.15 19336846.6 23015435.9 0.13 18039553.6 25149684.4 0.13

50kroB100 17103857.1 23695144.6 0.13 15593970.2 21992772.3 0.15 16782080.2 22632886.3 0.13

50lin105 15073577.9 18619720.9 0.15 12435688.7 17134173.1 0.15 13574535.9 18447964.4 0.13

50rat99 893463.0 1299325 0.15 861555.2 1169691.2 0.15 1011872.1 1266109.5 0.15

5berlin52 872174.2 1099731.5 0.02 916097.0 1089938 0.02 910127.2 1138311.5 0.02

5eil51 54876.1 69552.6 0.02 51640.7 66775.5 0.02 54916.6 68553.1 0.02

5eil76 159213.2 186874.1 0.03 163540.7 189590.1 0.03 158062.0 191326.2 0.03

5pr76 31210870.0 41050974.8 0.03 31235143.3 40849463 0.03 30754662.4 40766023 0.03

5st70 191689.3 228669.2 0.03 178043.5 223776.9 0.03 188860.3 229533 0.03

Table 8 InterCluMRCT’S results obtained by single task on instances in Type 5

Instances Prüfer Code Dandelion Code Blob Code

BF Avg Time BF Avg Time BF Avg Time

10i120-46 6824402.6 8467621.1 0.07 7034856.6 8617081.5 0.10 6907481.4 8836473.3 0.10

10i45-18 670232.5 791809 0.02 661873.4 822888.2 0.03 699077.3 805769.4 0.03

10i60-21 1595726.5 1769811.2 0.03 1514518.4 1753339.3 0.03 1502691.2 1725612.3 0.03

10i65-21 1747048.7 2125538.4 0.03 1712375.6 2159277.8 0.05 1753710.3 2024495.4 0.05

10i70-21 1889135.5 2344561.7 0.03 1922651.3 2344844.3 0.05 2053948.1 2385415.6 0.05

10i90-33 3274350.0 3979138.6 0.05 3362592.3 3907614.6 0.07 3335125.1 3907300.4 0.07

5i120-46 5094230.5 6245030.4 0.08 4993145.2 6268512.6 0.10 5169899.8 6251659.6 0.10

5i30-17 211380.1 260666.6 0.02 211397.1 266981.9 0.02 223833.1 268543.2 0.02

5i45-18 472667.1 660714.7 0.02 534147.9 669612.7 0.03 497659.8 642935 0.03

5i60-21 1192221.8 1474762.6 0.03 1182136.1 1448177.2 0.03 1248651.0 1499027.6 0.03

5i65-21 1357589.0 1670700.8 0.03 1254074.3 1698251.5 0.05 1404842.2 1685034.5 0.03

5i70-21 1664789.5 2082563.3 0.03 1805550.2 2126418.5 0.05 1797140.8 2119328 0.05

5i75-22 1851383.3 2500164.3 0.03 2109987.4 2490614.9 0.05 2116155.1 2501844.7 0.05

5i90-33 2770257.3 3258250.6 0.05 2506432.2 3231446.7 0.07 2591577.0 3239316 0.07

7i60-21 1348066.8 1574816.5 0.03 1285355.4 1602551.3 0.03 1253996.4 1617098.8 0.03

7i65-21 1597584.5 1907126.4 0.03 1542184.8 1885584.3 0.03 1466751.4 1898387.3 0.03
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Table 9 InterCluMRCT’S results obtained by single task on instances in Type 6

Instances Prüfer Code Dandelion Code Blob Code

BF Avg Time BF Avg Time BF Avg Time

10berlin52-2x5 1140052.7 1361030.6 0.02 1104343.8 1365297.6 0.03 1127904.6 1359052.8 0.03

12eil51-3x4 66649.8 76266.4 0.02 66696.7 76374 0.03 68473.6 77301.6 0.03

12eil76-3x4 172400.9 201436.8 0.05 168784.8 198603.7 0.05 167095.7 200373.3 0.05

12pr76-3x4 36169117.0 44045982.4 0.05 37317537.7 43716173.7 0.05 37724322.6 43453583.2 0.05

12st70-3x4 211691.9 236117.5 0.03 200523.6 232949.1 0.05 208799.4 236681.7 0.05

15pr76-3x5 38339513.5 44573369.7 0.05 37648842.0 45577478.1 0.05 39989085.6 46864019 0.05

16eil51-4x4 65847.9 82175.1 0.03 67430.3 80433.7 0.03 70019.3 81640.9 0.03

16eil76-4x4 182349.8 222359.5 0.05 191031.3 218976.4 0.05 175988.5 222384.3 0.07

16lin105-4x4 11289300.3 13843221 0.07 11935794.2 13676727.1 0.08 11860484.3 13503620.2 0.08

16st70-4x4 212835.0 239932.2 0.05 205291.7 246809.1 0.05 207937.4 244510 0.05

18pr76-3x6 39845642.1 47281209.2 0.05 38661052.9 48371882.1 0.05 38469508.1 47289023.3 0.07

20eil51-4x5 72259.1 84701.2 0.03 72763.9 85757.1 0.03 72913.1 87367 0.05

20eil76-4x5 185956.9 230027.2 0.05 192716.0 231254.6 0.05 198690.1 230352.6 0.07

20st70-4x5 228864.6 278513.4 0.05 227233.3 259492.4 0.05 226995.0 264383.6 0.05

25eil101-5x5 398649.6 485888.5 0.07 442646.3 485930.1 0.07 403997.5 481192.1 0.08

25eil51-5x5 72992.5 94947.6 0.03 74214.8 89979.5 0.03 77283.9 93512.4 0.03

25eil76-5x5 191113.1 241099.7 0.05 210432.0 248977.5 0.05 205127.4 249123.2 0.05

25rat99-5x5 871893.4 1008712.9 0.07 880323.2 988345.9 0.07 885567.7 1031054.7 0.07

28kroA100-4x7 16340000.7 20243861.6 0.07 16036172.5 20158800.9 0.08 15839245.3 19923884.2 0.07

30kroB100-5x6 16860172.3 20439054.5 0.08 15635937.5 19359205.2 0.08 15935680.9 19905827.5 0.08

35kroB100-5x5 15960189.5 19265632.3 0.07 15988573.7 19053165 0.07 14955246.4 19389989 0.07

36eil101-6x6 443323.4 524565.8 0.10 457212.6 522975.8 0.10 401033.0 523380.3 0.10

42rat99-6x7 1024158.8 1242803.5 0.12 1024908.1 1184611.1 0.12 970807.6 1208429.7 0.10

4berlin52-2x2 907425.9 1124634 0.02 905153.4 1133389.8 0.02 889462.2 1123350 0.02

4eil51-2x2 56459.2 74854.5 0.02 58505.9 72206.9 0.02 52288.9 74762 0.02

4eil76-2x2 160715.6 195154.7 0.03 147420.9 187954.3 0.03 156467.5 193645.5 0.03

4pr76-2x2 32689617.2 43385238.1 0.03 32119944.7 42506559.6 0.03 31044018.0 41670527.5 0.03

6berlin52-2x3 972924.2 1185002.8 0.02 896361.7 1206810.3 0.02 1037577.5 1213282.5 0.02

6pr76-2x3 33564662.7 43174503.3 0.03 32209495.7 42994204.3 0.03 32625734.1 42284141.5 0.03

6st70-2x3 211351.4 244688.3 0.03 208281.3 239580.6 0.03 208027.5 247581.4 0.03

8berlin52-2x4 1224228.2 1383237.7 0.02 1086319.5 1358871.1 0.02 1115977.8 1366045.4 0.02

9eil101-3x3 327227.3 398819.2 0.05 317411.2 392483.3 0.05 345169.4 406165.2 0.05

9eil51-3x3 63735.2 76139.3 0.02 65287.6 75633.9 0.02 69260.5 76391.5 0.02

9eil76-3x3 170199.5 187158.2 0.03 171578.0 196198.3 0.03 169731.9 192252.2 0.03

while the “Dandelion”, “Blob” and “Prüfer” columns show
the number of instanceswhere the encoding type outperforms
the two remaining codes.

Tables 13, 14 and 15 show more detail of the results
obtained by 3 different types of Cayley codes on instances of
Type 1, Type 5 and Type 6. In those tables, the selection of
pairs of instances to apply CC-MFEA is chosen randomly.
For the convenience of tracking, pairs of instances of the
CluSPT problem and the InterCluMRCT problem appear in
the corresponding order of occurrence of instances of each
problem. For example, Instance 10berlin51 in the first row

in the result table of the CluSPT is matched with Instance
10Eil51 in the first row in the result table of the InterCluM-
RCT problem. Similarly, Instance 10Eil76 is paired with
instance 10KroA100, etc.

Results on those tables point out that on the CluSPT
problem, the Blob Code achieves the best results, while the
performance of Prüfer Code is the worst. CC-MFEA using
BlobCode exceeds both theDandelionCode andPrüferCode
on 7 out of 12 instances of Type 1, 5 out of 8 instances of
Type 5 and 11 out of 18 instances of Type 6.
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Table 10 Statistical analysis on the effect of 3 Cayley Codes for CluSPT in singletasking

Prufer Code Dandelion Code Blob Code

Friedman Test Mean 184825.4378 179898.7216 183283.1108

Median Percentiles 37542.25 36455.35 36870.25

Mean Rank 2.2297 1.7162 2.054

Number of instances 74

Chi-square 10.0811

df 2

Asymp. Sig. 0.0065

Dandelion–Prufer Blob–Dandelion Prufer–Blob

Negative Positive Negative Positive Negative Positive

Wilcoxon Number of instances 50 24 29 45 33 41

Signed Mean Ranks 41.24 29.71 31.34 41.47 33.85 40.44

Ranks Test Sum of Ranks 2062 713 909 1866 1117 1658

Z −3.634 -2.578 -1.457

(based on) (positve rank) (negative rank) (negative rank)

Asymp. Sig. (2-tailed) 0.0003 0.0099 0.145

Negative Rank: former encoding’s Avg < latter encoding’s Avg
Positive Rank: former encoding’s Avg > latter encoding’s Avg

Table 11 Statistical analysis on the effect of 3 Cayley Codes for InterCluMRCT in singletasking

Prufer Code Dandelion Code Blob Code

Friedman Test Mean 7978735.7649 7918805.3203 7943743.8473

Median Percentiles 1112182.75 1111663.90 1130830.75

Mean Rank 2.0811 1.8243 2.0946

Number of instances 74

Chi-Square 3.4324

df 2

Asymp. Sig. 0.0179

Dandelion–Prufer Blob–Dandelion Prufer–Blob

Negative Positive Negative Positive Negative Positive

Wilcoxon Number of instances 43 31 30 44 37 37

Signed Mean Ranks 40.35 33.55 42.59 34.09 41.38 33.62

Ranks Test Sum of Ranks 735 1040 1275 1500 1531 1244

Z −1.872 −0.606 −0.773

(based on) (positve rank) (negative rank) (positive rank)

Asymp. Sig. (2-tailed) 0.0161 0.5445 0.4395

Negative Rank: former encoding’s Avg < latter encoding’s Avg
Positive Rank: former encoding’s Avg > latter encoding’s Avg

Table 12 Comparison among 3
Cayley Codes to summarize the
number of instances in which
one encoding type outperforms
the other two when performing
in multi-task

Types CluSPT InterCluMRCT Num.Ins

Dandelion Blob Prüfer Dandelion Blob Prüfer

Type 1 3 5 4 5 3 4 12

Type 5 2 4 2 2 5 1 8

Type 6 5 8 4 4 5 8 17
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Table 13 Results of CluSPT and InterCluMRCT obtained by multitasking in Type 1

Instances Prüfer Code Dandelion Code Blob Code

BF Avg Time BF Avg Time BF Avg Time

CluSPT 10berlin52 49171.8 57723 0.02 49068.3 58599.4 0.03 51017.3 59520.4 0.02

10eil76 2821.9 3562.1 0.03 2762.6 3447.1 0.10 2970.1 3576.1 0.05

10pr76 615090.9 891572.8 0.05 644302.7 828170.9 0.10 686257.4 876266.3 0.07

15eil51 1963.1 2571.3 0.03 2125.2 2758.5 0.07 1915.2 2621.8 0.03

15pr76 924602.5 1243668.1 0.03 952262.1 1214188.8 0.08 892070.6 1153573.3 0.05

25eil101 7361.5 9524 0.08 6708.3 9294 0.15 6366.4 9073.5 0.10

25lin105 200038.7 283849.1 0.08 155233.0 281917 0.15 222637.2 273875.1 0.10

50eil101 10303.0 13901.6 0.10 9788.0 12654 0.20 10448.3 13736.1 0.13

50kroB100 466620.5 597271.3 0.10 491024.2 606069.8 0.20 471673.5 609307.2 0.17

5berlin52 26908.4 32936.3 0.07 27351.5 32335.8 0.15 28618.6 32145.8 0.12

5eil51 1956.3 2134.6 0.02 1955.0 2198.5 0.07 1928.1 2159.6 0.05

5pr76 696302.8 833947.7 0.03 667837.8 822934.7 0.08 700079.7 817502.7 0.05

CluMRCT 10eil51 50068.5 61907.6 0.02 50494.5 62486.8 0.03 52288.7 62395.7 0.02

10kroB100 10681358.7 12034128.9 0.03 9405236.7 12039989.7 0.10 9655529.9 11725746.2 0.05

10rat99 648755.1 754502.2 0.05 589667.7 749772.7 0.10 656638.0 748928.5 0.07

15eil76 151472.3 180803.1 0.03 146785.6 181834.5 0.07 151820.9 179928 0.03

15st70 154134.6 200761.1 0.03 149009.4 203731.9 0.08 153113.6 202267.5 0.05

25kroA100 12731472.8 18556355.8 0.08 12872635.2 18974511.3 0.15 14045547.0 19684920.5 0.10

25rat99 640757.7 947489.7 0.08 638380.1 968377.2 0.15 767393.0 967642.1 0.10

50kroA100 23367861.1 32942804.3 0.10 22757582.7 30014740.7 0.20 22739300.1 31405049.2 0.13

50lin105 16160280.4 24914576.8 0.10 14536077.1 23186711.8 0.20 17307668.0 23414936.6 0.17

50rat99 1139849.3 1617337.4 0.07 1040326.9 1404530 0.15 1150837.1 1462733.9 0.12

5eil76 128634.6 151316.2 0.02 129445.0 143326.5 0.07 122439.5 146601.8 0.05

5st70 170213.3 192282.7 0.03 168499.6 187038.6 0.08 166349.8 189877.4 0.05

Table 14 Results of CluSPT and InterCluMRCT obtained by multitasking in Type 5

Instances Prüfer Code Dandelion Code Blob Code

BF Avg Time BF Avg Time BF Avg Time

CluSPT 10i120-46 119274.5 139729.8 0.05 118007.6 140695.5 0.08 115367.0 142599 0.07

10i60-21 39534.4 47114.1 0.03 37250.3 44523.4 0.05 39775.1 45504.2 0.03

10i70-21 48511.5 59162.3 0.05 50452.1 59659.1 0.07 49256.1 59607.2 0.05

5i120-46 80064.0 89246.7 0.05 79175.5 87539.1 0.08 78417.2 86796.3 0.07

5i45-18 16027.7 19156.8 0.02 16808.7 19140.4 0.03 17164.5 19213.8 0.03

5i65-21 35443.2 39918 0.03 34721.1 40453.4 0.05 35242.6 39240.6 0.05

5i75-22 41200.5 49636 0.05 42183.6 50163.9 0.07 41935.5 47678.7 0.05

7i60-21 41187.9 48769 0.03 41137.8 48030.8 0.03 40475.1 47654.2 0.03

CluMRCT 10i45-18 567251.9 679895.5 0.05 544324.8 684692.6 0.08 569770.7 707540 0.07

10i65-21 1818548.3 2100265.2 0.03 1814976.1 2025563.9 0.05 1759075.8 2069747.6 0.03

10i90-33 2820389.7 3205787.6 0.05 2792129.1 3169196.4 0.07 2660942.6 3234809.2 0.05

5i30-17 210324.6 243252.3 0.05 218646.8 238543.8 0.08 204029.1 236567.3 0.07

5i60-21 1102170.0 1228521.7 0.02 1053277.3 1192616.8 0.03 987225.0 1170107.7 0.03

5i70-21 1670976.7 1954677.7 0.03 1611844.7 1916022.8 0.05 1644466.2 1892638.6 0.05

5i90-33 2322865.9 2686761.9 0.05 2382107.8 2728685.9 0.07 2362352.9 2676810 0.05

7i65-21 1496971.5 1726105.2 0.03 1399396.7 1685914.9 0.03 1487345.1 1677823.4 0.03

123



Memetic Computing (2020) 12:185–217 207

Ta
bl
e
15

R
es
ul
ts
of

C
lu
SP

T
A
N
D
In
te
rC

lu
M
R
C
T
ob

ta
in
ed

by
m
ul
tit
as
ki
ng

in
Ty

pe
6

In
st
an
ce
s

Pr
üf
er

C
od
e

D
an
de
lio

n
C
od
e

B
lo
b
C
od
e

B
F

A
vg

T
im

e
B
F

A
vg

T
im

e
B
F

A
vg

T
im

e

C
lu
SP

T
10
be
rl
in
52
-2
x5

35
83
4.
9

46
93
1.
4

0.
03

34
86
3.
0

46
74
1.
1

0.
03

33
90
5.
9

54
97
3.
2

0.
03

12
ei
l7
6-
3x
4

32
57
.3

40
56
.1

0.
03

33
87
.9

42
51
.7

0.
07

34
18
.4

41
73
.2

0.
05

12
st
70
-3
x4

50
68
.7

59
33
.6

0.
03

50
63
.0

59
19
.9

0.
07

47
77
.0

57
52
.8

0.
05

16
ei
l5
1-
4x
4

21
36
.3

27
93
.1

0.
03

22
09
.2

29
52
.3

0.
05

21
83
.9

27
66
.5

0.
05

16
lin

10
5-
4x
4

19
87
17
.1

24
82
86
.2

0.
07

19
70
83
.0

24
36
95
.8

0.
08

18
18
40
.8

23
77
64
.6

0.
08

18
pr
76
-3
x6

99
26
77
.4

12
52
08
1.
2

0.
03

95
63
50
.5

12
56
94
7

0.
07

10
13
35
5.
5

12
55
23
1

0.
05

20
ei
l7
6-
4x
5

33
94
.7

53
88
.2

0.
05

37
42
.1

56
09
.2

0.
07

40
13
.9

52
32
.6

0.
05

25
ei
l1
01
-5
x5

60
08
.2

87
99
.4

0.
05

68
84
.9

89
15
.7

0.
07

63
97
.2

85
46
.7

0.
07

25
ei
l7
6-
5x
5

42
95
.7

57
26
.3

0.
05

43
06
.2

56
84
.3

0.
07

46
55
.6

59
61
.3

0.
07

28
kr
oA

10
0-
4x
7

31
81
42
.2

40
26
37
.9

0.
07

26
41
52
.5

37
59
28
.5

0.
07

30
42
85
.8

39
87
13
.1

0.
12

35
kr
oB

10
0-
5x
5

35
04
46
.9

41
44
69
.1

0.
07

28
50
71
.3

36
41
20
.4

0.
08

27
62
42
.1

37
65
15

0.
13

4b
er
lin

52
-2
x2

29
13
1.
2

35
85
0.
2

0.
07

30
75
9.
0

36
40
5.
7

0.
07

26
91
9.
7

34
16
2.
2

0.
10

4e
il5

1-
2x
2

22
04
.9

24
44
.7

0.
02

21
93
.6

24
18
.4

0.
03

22
42
.3

24
03
.1

0.
05

4p
r7
6-
2x
2

61
35
29
.3

71
97
10
.4

0.
02

62
68
90
.3

71
81
92

0.
03

61
04
40
.0

70
01
49
.8

0.
05

6p
r7
6-
2x
3

77
43
95
.7

89
14
98
.1

0.
03

75
66
20
.4

85
72
82
.9

0.
03

77
73
67
.1

86
42
82
.5

0.
05

8b
er
lin

52
-2
x4

32
41
5.
0

46
14
2.
7

0.
03

36
34
6.
7

46
56
3.
1

0.
03

33
56
2.
9

47
65
2

0.
05

9e
il5

1-
3x
3

22
32
.0

26
64
.8

0.
02

22
19
.6

26
98
.3

0.
03

22
60
.7

27
18
.1

0.
03

123



208 Memetic Computing (2020) 12:185–217

Ta
bl
e
15

co
nt
in
ue
d In
st
an
ce
s

Pr
üf
er

C
od
e

D
an
de
lio

n
C
od
e

B
lo
b
C
od
e

B
F

A
vg

T
im

e
B
F

A
vg

T
im

e
B
F

A
vg

T
im

e

C
lu
M
R
C
T

12
ei
l5
1-
3x
4

49
48
4.
7

62
77
7.
3

0.
03

54
57
9.
6

64
79
2.
1

0.
03

52
81
7.
0

67
51
8.
3

0.
03

12
pr
76
-3
x4

26
32
64
04
.7

31
14
10
01
.1

0.
03

28
91
97
86
.3

33
43
16
00
.9

0.
07

24
62
82
12
.0

31
51
43
78

0.
05

15
pr
76
-3
x5

33
42
03
79
.8

42
11
61
43
.5

0.
03

34
81
75
55
.1

41
84
57
23
.8

0.
07

34
80
93
92
.6

43
09
78
42

0.
05

16
ei
l7
6-
4x
4

15
76
54
.8

19
61
31
.1

0.
03

15
60
72
.8

19
87
50
.1

0.
05

15
02
17
.8

19
44
84
.1

0.
05

16
st
70
-4
x4

16
75
67
.1

23
25
38

0.
07

17
42
56
.0

23
58
53
.1

0.
08

20
58
18
.5

23
99
04
.2

0.
08

20
ei
l5
1-
4x
5

59
59
1.
2

89
01
8.
8

0.
03

71
20
2.
0

93
13
9.
4

0.
07

66
92
5.
9

85
37
8

0.
05

20
st
70
-4
x5

18
36
33
.7

26
01
85

0.
05

20
32
20
.6

27
51
38

0.
07

21
75
63
.2

27
44
36
.4

0.
05

25
ei
l5
1-
5x
5

83
19
4.
3

10
74
79
.5

0.
05

72
07
8.
3

10
45
34
.7

0.
07

75
27
0.
7

10
07
90
.1

0.
07

25
ra
t9
9-
5x
5

68
37
75
.3

87
72
28
.6

0.
05

68
13
91
.6

90
44
44
.6

0.
07

63
46
51
.2

93
29
73
.7

0.
07

30
kr
oB

10
0-
5x
6

15
72
23
76
.8

22
04
51
20
.6

0.
07

15
50
66
18
.6

20
38
52
94
.4

0.
07

15
60
10
02
.1

20
40
03
29
.2

0.
12

36
ei
l1
01
-6
x6

41
39
91
.1

59
02
40
.3

0.
07

46
27
53
.3

57
66
25
.8

0.
08

43
51
98
.2

61
13
59
.3

0.
13

42
ra
t9
9-
6x
7

97
81
51
.6

13
81
00
0.
5

0.
07

94
30
34
.6

12
72
38
8.
1

0.
07

10
11
09
9.
0

13
10
77
3.
6

0.
10

4e
il7

6-
2x
2

13
21
84
.5

15
13
24
.7

0.
02

13
04
75
.7

15
25
63
.8

0.
03

12
72
17
.3

14
89
38
.6

0.
05

6b
er
lin

52
-2
x3

10
31
30
8.
7

11
28
05
1.
5

0.
02

10
18
40
8.
3

11
54
61
2.
3

0.
03

10
20
15
2.
7

11
15
26
6.
8

0.
05

6s
t7
0-
2x
3

18
11
25
.4

20
21
59
.3

0.
03

17
66
41
.0

20
28
86
.1

0.
03

17
74
50
.3

20
49
43
.5

0.
05

9e
il1

01
-3
x3

26
24
59
.3

31
96
20
.2

0.
03

29
30
09
.2

33
70
25
.8

0.
03

27
32
40
.1

32
89
33
.3

0.
05

9e
il7

6-
3x
3

14
29
09
.2

16
35
13
.1

0.
02

14
43
34
.4

16
37
73
.9

0.
03

14
16
93
.7

16
14
41
.4

0.
03

123



Memetic Computing (2020) 12:185–217 209

Unlike the CluSPT, with the InterCluMRCT problem,
the Dandelion Code achieves worst performance while the
results obtained by Prüfer Code is the best on instances of
Type 6. However, the difference between results obtained by
Prüfer Code and Blob Code are not large since Prüfer Code
outperformsBlobCode on 9 out of 17 instances.On instances
of Type 1 and Type 5, the Blob Code exceeds two remaining
ones.

Comparisons among three different encoding techniques
on instances of Type 1, Type 5 and Type 6 are shown in
Fig. 9. In this figure (also similar mean for other figures in
this subsection), the symbol “>>” denotes “outperform”,
i.e. “Prüfer Code >> Dandelion Code” means that results
obtained by CC-MFEA using Prüfer Code outperform those
using Dandelion Code”.
B. The influence of the number of clusters

To analyze the relationship between the number of clusters
and the results obtained by different types of Cayley codes
on both CluSPT and InterCluMRCT problems, we created
scattered plots of results obtained by those types according
to the number of clusters and problems instances as shown
in Figs. 10, 11 and 12.

Figure 10 illustrates the comparison between the results
obtained by Prüfer Code andDandelion Code. The triangular
symbols indicate those instances where Dandelion Code out-
performed Prüfer Code. As can be seen from Fig. 10b, since
all of the symbols on the right of the vertical red line are trian-
gle, in the InterCluMRCT, Dandelion Code produces better
results than Prüfer Code on all instances with the number of
clusters above 25. In Fig. 10a, most of the symbols on the
right of the vertical red line are triangular symbols. There-
fore, it can be inferred that in the CluSPT, Dandelion Code
also outperforms Prüfer Code on most instances with over
20 clusters.

Figure 11 shows the comparison between Dandelion and
Blob Code. In the CluSPT (Fig. 11a), Blob Code exceeds
Dandelion Code on most instances with the number of clus-
ters under 7 (the left of vertical red line) or in a range from 12
to 25 (between the vertical green and blue line). In the Inter-
CluMRCT (Fig. 11b), Blob Code performs not as well as
Dandelion Code on all instances with the number of clusters
above 25.

The comparison between Blob and Prüfer Codes is
depicted in Fig. 12. In the CluSPT (Fig. 12a), Blob Code out-
performs Prüfer Code onmost instanceswith over 12 clusters
(on the right of the vertical red line). In the InterCluMRCT
(Fig. 12b), the results obtained by Blob Code are not as good
as Prüfer Code onmost instances with the number of clusters
between 9 and 25 (between two vertical lines in the figure).
C. The influence of the number of vertices

Figures 13, 14 and 15 depict scattered plots of results
obtained by those types according to the average number of
vertices and problems instances.

A notable point in Fig. 15b is that in the InterCluMRCT,
Blob Code outperforms Prüfer Code on all instances with the
average number of vertices under 2.5 or over 12.

In comparison to Dandelion Code, Blob Code exceeds it
on all instances with the average number of vertices above
12.8 in theCluSPT (seeFig. 14a)while in the InterCluMRCT,
Blob Code outperforms Dandelion Code on most instances
with the average number of vertices above 4.7 (see Fig. 14b).

In comparison between Blob Code and Prüfer Code, in
the CluSPT, Blob Code exceeds Prüfer Code on all instances
with the average number of vertices above 12.7 (see Fig. 15a).
A remarkable point in the InterCluMRCT is that performance
of Blob Code is better than that of Prüfer Code on instances
which have the smallest or the largest average number of
vertices, i.e. those instances with the average of under 2.5 or
above 12 vertices (see Fig. 15b).

6.3.4 Comparison of the performances of Single-tasking
andMulti-tasking

A. Results obtained by Single-tasking and Multi-tasking
The summary of comparison between results obtained by

single-task and multi-task is presented in Table 16 in which
the number of instances that multi-task outperforms single-
task is presented. The results show that multi-task is better
than single-task for most of the test cases on both the CluSPT
and the InterCluMRCT problems. The reason behind this
is that, due to the similarity of the solution structures of
the CluSPT problem and the InterCluMRCT problem, when
encoded in the USS, these problems support each other in
the process of finding the optimal solutions. In particular,
with the solution representation mechanism proposed in the
paper, larger tasks contain part of the solution of smaller
tasks. Therefore, genes having satisfied values in the number
of dimensions of the problems construct part of the shared
gene structure. These shared genes are reused among tasks
leading to better interaction among them. More specifically,
if the shared gene structure contains many gene segments
that have good characteristics for the problems then the pro-
cess of exchanging genetic material is the effectiveness when
properties of the input data of two tasks are similar.

A notable point in the results shown on the Table 16 is that
inType 5, single-task exceedsmulti-task on only one instance
in Blob code. For instances of Type 6, the results are slightly
similar to Type 5 when multi-task outperforms single-task
on most of the test cases. However, the gap between results
obtained by those algorithms is not as large as in Type 5,
i.e. In the InterCluMRCT, multi-task surpasses single-task
on 11 out of 17 instances (for the Dandelion code), on 12
out of 17 instances (for the Blob code and the Prüfer Code).
In the CluSPT, multi-task also exceeds single-task on two
encoding techniques which are Dandelion code and Blob
code on 9 out of 17 instances but multi-task performs not as
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Fig. 9 Comparisons among
three different encoding
techniques on instances of each
Type

(a) CluSPT problem (b) InterCluMRCT problem

Fig. 10 Comparison between Prüfer and Dandelion Code on the scatter of Instances and Number of clusters
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(a) CluSPT problem (b) InterCluMRCT problem

Fig. 11 Comparison between Dandelion and Blob Code on the scatter of Instances and Number of clusters

Table 16 Summary of the number of instances that multitasking outperforms singletasking on each Type

CluSPT InterCluMRCT Num.Ins

Dandelion Code Blob Code Prüfer Code Dandelion Code Blob Code Prüfer Code

Type 1 5 6 6 7 7 7 12

Type 5 8 8 8 8 7 8 8

Type 6 9 9 7 11 12 12 17

Num.Ins: Number of instances in a Type

well as single-task on the Prüfer Code when it is only better
on 7 out of 17 instances. Last but not least, for instances of
type 1, although multi-task is still superior to single-task, the
difference is not as significant as in the cases of Type 5 and
Type 6. For the InterCluMRCT problem, multi-task achieves
better results than single-task in 7 out of 12 instances for all 3
encodings. For the CluSPT problem, with the total number of
12 instances, each of single-task and multi-tasks has 6 better

cases with the encoding types of Blob code and Prüfer code.
With the Dandelion code, single-task outperforms multi-task
in 7 out of 12 instances.

In the InterCluMRCT, the results in all 3 Types are slightly
similar where multi-task exceeds single-task in all test cases.
More specifically, in three encoding techniques, there are 7
out of 12 instances on which multi-task outperforms single-
task. However, in the CluSPT, unlike Type 5 and Type 6, in
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(a) CluSPT problem (b) InterCluMRCT problem

Fig. 12 Comparison between Blob and Prüfer Code on the scatter of Instances and Number of clusters

Type 1, single-task using Prüfer Code is slightly better than
the multi-task on 5 out of 12 instances. From the comparison
between single task and CC-MFEA, we find that CC-MFEA
may not always be beneficial due to the possibility of nega-
tive knowledge transfer. Negative knowledge transfer occurs
when the genotype of two optimal solutions of CluSPT and
InterCluMRCT are too different from each other. The solu-
tions of CluSPT and InterCluMRCT are encoded into an
individual in the shared representation. For each generation,
each task adjusts and exchanges its valuable genes in shared
representation to converge toward its optimal solutions. In
particular case of the optimal solutions corresponding to tasks
converged, if genotypes are too different from other tasks,
incompatible partial solutions transferred among tasks could
lead to bad results. As a result, the combination of unrelated
problems in CC-MFEA only expands search space without
obtaining better solutions. Thus, single task can obtain better

solutions thanmultitasking in those cases. In this experiment,
those CluSPT and InterCluMRCT instances with close num-
ber of clusters are selected in the same type of instances to
solve simultaneously.However, inferring the underlying sim-
ilarity between tasks is extremely challenging in the case of
combinatorial optimization like CluSPT and InterCluMRCT.
B. Convergence trends

To analyze convergence performance of single task and
multi-task, a methodology based the use of Page’s trend
test [7] is selected. The results obtained by proposed algo-
rithms on Dandelion code of all instances in Type 1, Type 5
and Type 6 are selected for analyzing the convergence trend.
The number of cut-points has been fixed at 10, one after each
10% of fitness function evaluations.

Table 17 presents the sum of ranks at cut-points while
Table 18 shows the comparison of the convergence of the
multi-task (MT) and single task (ST) on Types 1, 5 and 6.
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(a) CluSPT problem

(b) InterCluMRCT problem

Fig. 13 Comparison between Prüfer and Dandelion Code on the scatter of Instances and Number of vertices

Table 17 Sum of ranks for the experiments on Dandelion code

Algorithms C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Type 1

MT–ST 100 49 27 21 28 36 54 69 78 88

ST–MT 10 61 83 89 82 74 56 41 32 22

Type 5

MT–ST 142 83 47 43 54 72 89 107 116 127

ST–MT 34 93 129 133 122 104 87 69 60 49

Type 6

MT–ST 120 48 27 29 46 54 66 80 92 98

ST–MT 12 84 105 103 86 78 66 52 40 34
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(a) CluSPT problem

(b) InterCluMRCT problem

Fig. 14 Comparison between Dandelion and Blob Code on the scatter of Instances and Number of vertices

Table 18 Convergence results
(p values) for the experiments
on Dandelion code

Type 1 Type 5 Type 6

MT–EA ST–MT MT–ST ST–MT MT–ST EA–MT

L Statistic 3231 2819 5116 4564 3877 3383

p value 0.009 0.991 0.006 0.994 0.0048 0.995

Table 18 points out that the comparison MT–ST shows an
increasing trend in the rankswhich is confirmed by a very low
p value. Moreover, the opposite comparison ST–MT, shows
clearly that the ranks are not increasing, which is rejected by
a p value near to 1.0. These results show that the algorithm
MT is converging faster than algorithm ST.

We use the functions in Gupta et al. [11] for computing
the normalized objectives and averaged normalized objec-
tives and analyzing the convergence trends of the proposed
algorithms.

Figure 16 depicts the convergence trends during the ini-
tial stages of the multi-task for instances 5eil51 (the input of
the CluSPT) and 5eil76 (as the input of the InterCluMRCT)
in Type 1; instances 5i45-18 (as the input of the CluSPT)
and 5i60-21 (as the input of the InterCluMRCT) in Type 5;
instances 4berlin52-2x2 (as the input of the CluSPT) and
4eil51-2x2 (as the input of the InterCluMRCT) in Type 6.
This figure illustrates the main convergence trends when
comparing single task and multi-task.
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(a) CluSPT problem

(b) InterCluMRCT problem

Fig. 15 Comparison between Blob and Prüfer Code on the scatter of Instances and Number of clusters

Fig. 16 Convergence trends of f̃ in multi-tasks and serial single task
for instances 5eil5 and 5eil76 in Type 1; instances 5i45-18 and 5i60-21
in Type 5; instances 4berlin52-2x2 and 4eil51-2x2 in Type 6

– The first trend of convergence: multi-task converges
faster than single task. This case is shown in Fig. 16
which corresponds to the convergence curves of Type
1 and Type 5 instances.

– The second trend of convergence: single task has a faster
convergence speed than multi-task. This case is illus-
trated by the convergence curves of instances of Type 6.
Note that, not all of cases when single task converges
faster than multi-task are similar to the case of con-
vergence curves of Type 6 instances in Fig. 16. Since
initially, the convergence rate of single task is slower
in early generations; however, in later generations, the
convergence curve of single task converges faster than
multi-task.

Refer to Fig. 17 for a better understanding of the improved
performance as a consequence of multi-task. The figure
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Fig. 17 Comparing convergence trends of f̃1 and f̃2 in multi-tasks and serial single task for instances 5eil5 and 5eil76 in Type 1; instances 5i45-18
and 5i60-21 in Type 5; instances 4berlin52-2x2 and 4eil51-2x2 in Type 6

depicts the convergence trends corresponding to each indi-
vidual task.

One remark in Fig. 17 is the normalized objective values
difference between single-task and multi-task at start time.
The cause of this difference is that the initial individual of
a task obtained by decoding from unified search space may
differ from initial solution in single-task.

According to the Fig. 17c, multi-task is compared with
single-task, the convergence speed on instance 4Berlin54-
2x2 is slightly slower. The explanation for this phenomenon
is that the evolutionary multitasking does not necessarily
guarantee the improvement of performance for every task
in MFEA [2,27]; some tasks are positively impacted, while
other tasks may be negatively impacted by the implicit
genetic transfer available during multitasking. In contrast, as
shown in Fig. 17a, b, the convergence rate of each task in CC-
MFEA is better than the corresponding task in single-task.
Because the multitasking and the single-task use the same
evolutionary operators, the improvement can be attributed
entirely to the exploitation of multiple function landscapes
via implicit genetic transfer, as it is afforded by the evolu-
tionary multitasking paradigm.

7 Conclusion

This paper introduces an algorithm based on MFEA with
the Cayley Code encoding mechanism to solve clustered tree
problems. Evolutionary operators are proposed to exploit the
advantages of theCayley code. Those operators are applied to
find solutions to the clustered problems in two nested levels:
the first level constructs the tree which spans all clusters,
while the second level builds the spanning tree in each cluster.
The performance of the proposed algorithm is analyzed on
variant types of problem instances.

This paper focuses on analyzing the effectiveness of differ-
ent encoding types in theCayleyCodes (includingDandelion
Code, Prüfer Code and Blob Code) when applying the CC-
MFEA algorithm to solve 2 problems: the CluSPT and the

InterCluMRCT problem. Experimental results show that the
Dandelion Code has superior performance over the remain-
ing encoding types, while the Prüfer Code has the lowest
efficiency. The dependence of the encoding performance on
some factors such as: the number of clusters, the average
number of vertices in a cluster is analyzed. The obtained
results also indicate that the selection of problems with sim-
ilar properties of the data and solution structure help them to
find better solutions.

In the near future, we are going to continue researching on
MFEA in order to resolve the clustered tree problems with
a variety of different representation methods, especially the
representation of an arbitrary graph.
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