
Memetic Computing (2019) 11:439–452
https://doi.org/10.1007/s12293-019-00296-z

REGULAR RESEARCH PAPER

Genetic algorithms with greedy strategy for green batch scheduling
on non-identical parallel machines

Mao Tan1 · Hua-Li Yang1 · Yong-Xin Su2

Received: 7 November 2018 / Accepted: 15 October 2019 / Published online: 24 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Large scale batch scheduling problems with complex constraints are difficult and time-consuming to solve. Therefore, this
paper addresses the green batch scheduling problem on non-identical parallel machines with time-of-use electricity prices.
The objective of the problem is to minimise total electricity costs (TEC) in production. Two kinds of algorithms—single-
population genetic algorithms (SPGA) and multi-population genetic algorithm (MPGA)—are proposed to solve the problem.
In the algorithms, the products are allocated into batches and are then allocated to machines randomly. A greedy strategy
is designed to arrange the production sequence and the starting time of the batches. Furthermore, a self-adaptive parameter
adjustment strategy is proposed to enhance the adaptability of the algorithm. Computational experiments with CPLEX solver
have been conducted to evaluate the performance of the algorithms. On small instances, both SPGA and MPGA can achieve
approximate results compared with those obtained by CPLEX, and can also achieve smaller TEC on large instances with less
computing time. In addition, the proposed MPGA implemented by parallel computing outperforms SPGA in getting better
results with nearly the same computing time.

Keywords Batch scheduling · Green scheduling · Genetic algorithm · Greedy strategy · Time-of-use electricity price

1 Introduction

The rapid development of many industrial sectors has led
to the continuous growth of energy consumption. Although
electrical power energy is the main kind of energy in indus-
try, it cannot be stored efficiently: when it has been produced,
it is immediately transmitted to the customers. It is particu-
larly important to maintain a balance between the supply
and demand for electricity because they constantly change.
In this context, scheduling with the integration of industrial
production and power system operation has been studied
for many years [1,2], and it has been shown to be effec-
tive in reduce the energy consumption or energy cost in

B Mao Tan
mr.tanmao@gmail.com

Yong-Xin Su
suyongxin@163.com

1 Laboratory of Intelligent Computing and Information
Processing of Ministry of Education, Xiangtan University,
Xiangtan 411105, China

2 Hunan Province Cooperative Innovation Center for Wind
Power Equipment and Energy Conversion, Xiangtan
University, Xiangtan 411105, Hunan, China

production, which is usually called green scheduling. Tra-
ditional energy-efficient scheduling models mainly consider
the internal parameters of the production. Furthermore,much
research on energy-efficient scheduling has been conducted
to optimise the quantity of energy consumed in industrial pro-
duction [3–5], However, external factors, such as the modern
electricity market policy, are never considered in these mod-
els.

In recent years, demand response (DR) is considered to be
a most cost-effective and reliable way in the electricity mar-
ket to maintain the power balance [6,7], of which one of the
most important implementations is time-of-use (TOU) elec-
tricity pricing. Unlike traditional energy conservation, TOU
electricity pricing is dedicated to motivating electricity users
to optimise their energy consumption patterns by avoiding
peak hours, and therefore reduce their electricity costs [8]. In
recent years, the issue of production scheduling under TOU
electricity prices has become an attractive area of research.
For the basic single-machine scheduling problem, Mitra et
al. [9] studied continuous industrial production planning over
1weekwith hourly changes in electricity prices, and theypro-
posed a mixed integer linear programming (MILP) model to
formulate this problem. They also discuss models for deter-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-019-00296-z&domain=pdf
http://orcid.org/0000-0002-2246-440X

440 Memetic Computing (2019) 11:439–452

ministic and stochastic demand. Fang et al. [10] considered
a job scheduling problem to minimise electricity costs under
TOU electricity prices, and proposed an algorithm to solve
the problem. They highlight that a variable job processing
speed is introduced into the implemented production load
allocation. Che et al. [11] proposed a continuous-time MILP
model and an efficient greedy insertion heuristic algorithm.
They reported that the proposed algorithm is highly efficient
at solving large scale problems, and has very short com-
puting time. Kurniawan et al. [12] studied a single machine
scheduling problem to minimise the total tardiness and cost
of electricity under TOU electricity prices. They formulated
the problem as an MILP model and used the CPLEX solver
to validate the model on small size instances. Furthermore,
they proposed a genetic algorithm (GA) to obtain the set of
Pareto solutions for large instances. Although singlemachine
scheduling is very common and important in production,
the development of integrated production means that sin-
gle machine scheduling is not good enough to treat multiple
production lines or multiple production equipment, which is
characterised as scheduling on parallel machines.

Production scheduling on parallel machines under TOU
prices has also been studied. Some of these studies sim-
ply consider scheduling on two machines [2,13], while
many others focus on scheduling more machines. Ding
et al. [14] focused on an efficient MILP formulation of
the parallel machine scheduling problem. They proposed
a time-interval-based MILP formulation to solve the prob-
lem without knowing the exact starting (or stopping) time
of every job in each pricing interval, and a column gen-
eration heuristic algorithm to solve the problem. Cheng et
al. [15] improved the model of [14] by reducing the number
of decision variables, thus obtaining greater computational
performance. Che et al. [16] studied an energy-conscious
unrelated parallel machine scheduling problem under TOU
electricity pricing and proposed anMILPmodel to formulate
the problem and a two-stage heuristic algorithm to solve it.
Multi-objective parallel machine scheduling problem have
been studied [17,18], many of which have focused on min-
imising two objectives: first, the traditional performance
metric makespan and a green metric; and second, the total
electricity cost (TEC). For the optimisationofmulti-objective
parallel machine scheduling, a heuristic algorithm is usually
effective and efficient. In [19,20], multi-objective scheduling
problems with energy consumption threshold were studied
and heuristic algorithms, such as meta-heuristic algorithms
and multi-population genetic algorithms, were proposed to
solve the problem. Hadera et al. [21] investigated a multi-
stage parallel machine scheduling problem with energy-cost
optimisation, which was generated from practical steel pro-
duction and extendedwithminimum-cost networkflow.They
proposed a bi-level heuristic algorithm that can efficiently
solve large scale practical problems.

Many papers only consider a scheduling problem inwhich
products are processed continuously or allocated tomachines
freely, but never consider batch production. As described
in [22], batch scheduling can be defined as arranging prod-
ucts to inseparable production batches, and arranging and
sequencing production batches on machines. Batch produc-
tion is processed in batch mode if small amounts of a large
number of products are required. It is particularly common
in energy-intensive industries, such as steel, chemicals, food,
and so on.Greenbatch scheduling has also received attraction
from academia in recent years. Shrouf et al. [23] focused on
the batch scheduling problemona singlemachine underTOU
electricity prices.Minimising electricity costs and traditional
scheduling performance are both considered as the objectives
of the optimisation model. The algorithm that they proposed
to solve the model is efficient at running the production
scheduling in real time.Wang et al. [24] consideredminimis-
ing energy consumption in heat treatment batch scheduling,
but they only considered the optimisation of internal energy
utilisation, and not the electricity prices in the energymarket.
In [25], a bi-objective batch scheduling problem on a single
machine was investigated, for which the ε-constraint method
was adopted and two heuristic methods were developed to
obtain approximate Pareto fronts. This was useful in deal-
ing with large scale real-world problems. Cheng et al. [26]
also studied the single-machine batch scheduling problem. In
their paper, the load shifting was implemented by switching
a machine on and off under TOU prices, while a bi-objective
MILPmodel and a heuristic based ε-constraint algorithmwas
proposed to implement the optimal scheduling.

In addition to these papers, we would like to point out
that the meaning of green scheduling can be expanded from
economic aspects to ecological aspects, such as carbon foot-
print and carbon emission optimisation in green scheduling
[27,28]. The batch scheduling problem is NP-hard even on
single machine, while multiple parallel machines make the
problem evenmore complex. Considering the green schedul-
ing under TOU electricity prices, which means allocating the
idle time of each batch to avoid on-peak hours, the green
batch scheduling becomes a planning problem with mixed
continuous and discrete variables but it is hard to find the opti-
mal solution for such as large scale problem. In our previous
paper [29], we studied and proposed an MILP optimisation
model of the parallel machine batch scheduling problem
under TOU electricity prices. The proposed model can be
solved by the CPLEX solver but it is too time consuming for
larger scale instances. To achieve good solutions in a limited
time, more efficient algorithms are required for large scale
engineering problems. If the computing resources are suffi-
cient, then someperformance acceleration technologies (e.g.,
parallel computing) can also be integrated into the algorithm.

In the present paper, we propose efficient algorithms for
the green parallel machine scheduling problem with the

123

Memetic Computing (2019) 11:439–452 441

objective of minimising TEC. GA is adopted as the basis of
our approach to the algorithm. Products are first assigned to
batches and allocated to parallel machines. A greedy strategy
is then used to adjust the starting time of the batches to min-
imise the TEC. Because it is easy to fall into a local optimum
for single-population genetic algorithm (SPGA) , we pro-
pose another multi-population genetic algorithm (MPGA) to
improve the performance.

The main contributions of this work can be summarised
as follows: (1) a greedy strategy is designed to adjust the
starting time of batches to minimise the total electricity cost;
(2) a self-adaptive parameter adjustment strategy is proposed
to enhance the adaptability of the algorithm; and (3) a multi-
population algorithm is proposed to improve the performance
of algorithm and the information exchange between popula-
tions is performed to maintain population diversity.

The rest of this paper is organised as follows. Section 2
recalls the problem description and model formulation. The
design of the algorithms is proposed in Sect. 3. The results
of the computational experiments are provided in Sect. 4.
Lastly, we conclude this paper in Sect. 5.

2 Problem description

To clarify the problem, we first recall the model formulation
that has been proposed in our previous paper [29]. Gener-
ally, the tasks of conventional batch scheduling are to select,
group, and sequence products into batches and then allo-
cate the batches to multiple machines to minimise one or
more production objectives. In this paper, we consider green
scheduling to be optimising batch scheduling to minimise
the energy consumption or costs in production. The power
load units are considered as the product batches. If there are
TOU electricity prices, then the batches are assigned to the
time periods when the electricity prices are as low as possi-
ble to minimise the total energy cost. In addition, allocating
products to the machines that can process it most efficiently
also reduces the energy cost. We refer to this kind of prob-
lem as green scheduling, and we refer to the other problems
that only consider traditional objectives (e.g., makespan or
tardiness) as non-green scheduling.

Let us consider the capacity of each production machine.
If all the machines have the same capacity (e.g., processing
velocity, equipment power, etc.), then we say these machines
are identical; otherwise, non-identical.

The notation used in the formulation of the model is pre-
sented in Table 1. Five assumptions are defined to detail our
problem, as follows:

– There are M parallel machines to process P kinds of
products; each kind of product can be processed on any
machine.

Table 1 Notation

Indices

m Index of batch production machine,m = 1, 2, . . . , M

p Index of required product categories, p = 1, 2, . . . , P

n Index of batch number on machine m, n =
1, 2, . . . , Nm , where Nm represent the upper bound
of the number of batches on machine m

k Index of time period, k = 1, 2, . . . , K

Parameters

H Duration of time horizon for production

τ Duration of a time period

λk Electricity price in time period k

lbasek Basic production load in time period k

Qmd Maximum power demand in production

Dp Quantity demanded of product p

Umin
m,p Minimum batch size of product p on machine m

Umax
m,p Maximum batch size of product p on machine m

αm,p Preparation time required to process a batch of product
p on machine m

βm,p Time required to process a single product p on
machine m

d̄m,p Average production load while processing product p
on machine m

Decision variables

lm,n,k Positive variable to indicate average production load
of batch n on machine m in time period k

tsm,n Positive continuous variable to indicate production
starting time of batch n on machine m

tdm,n Intermediate variable to indicate processing duration
of batch n on machine m

om,n,k,p Positive continuous variable to indicate processing
duration of batch n on machine m to process prod-
uct p in time period k

om,n,k Intermediate variable to indicate processing duration
of batch n on machine m in time period k, om,n,k =∑

p∈P om,n,k,p

Xm,n,p A binary variable, equal to 1 when product p is
arranged in batch n on machine m

Bm,n,p Positive integer variable to indicate the quantity of
product p arranged for batch n on machine m

– The machines are non-identical with different time dura-
tions and power demands to process a product.

– There is abundant production capacity so that all products
can be processed within the specified time horizon.

– The time horizon is separated into K time periods with
different electricity prices; the duration of each period is
the same.

– There is maximum power demand constraint on the pro-
duction, in that we cannot allocate too much production
load in one time period.

123

442 Memetic Computing (2019) 11:439–452

The objective of themodel is tominimise the TEC by opti-
mally planning the batches, assign the batches to machines
that have different production capacity, and allocate the start-
ing time periods with high electricity prices. In this context,
the problem is formulated as

min TEC =
∑

k∈K
ø˘k

⎛

⎝
∑

n∈M

∑

n∈Nm

lm,n,k + lbasek

⎞

⎠ (1)

s.t.
∑

p∈P

Xm,n,p ≤ 1, ∀m ∈ M, n ∈ Nm (2)

∑

m∈M

∑

n∈Nm

Bm,n,p = Dp, ∀p ∈ P (3)

Umin
m,p Xm,n,p ≤ Bm,n,p ≤ Umax

m,p Xm,n,p, p ∈ P (4)

t sm,n ≤ H ·
∑

p∈P

Xm,n,p, n ∈ Nm (5)

om,n,k,p ≤ H · Xm,n,p, ∀m ∈ M, n ∈ Nm, k ∈ K , p ∈ P

(6)

t sm,n + αm,p Xm,n,p + βm,p Bm,n,p ≤ H ,

∀m ∈ M, n ∈ Nm, k ∈ K , p ∈ P (7)

t sm,n−1 + αm,p Xm,n−1,p + βm,p Bm,n−1,p ≤ t sm,n,

∀m ∈ M, n ∈ Nm, n > 1, p ∈ P (8)

lm,n,k =
∑

p∈P

d̄m,p · om,n,k,p/τ, ∀m ∈ M, n ∈ Nm, k ∈ K

(9)
∑

m∈M

∑

1≤n≤Nm

lm,n,k + lbasek ≤ Qmd , k ∈ K (10)

In the model, Eq. (1) is the objective function to minimise
TEC, which consists of two parts—the cost of production
load and the basic load—and it accumulates over time peri-
ods. Given TOU prices, the TEC mainly depends on the
distribution of production load over the time periods, deter-
mined by lm,n,k . There are some constraints to be satisfied:
Eq. (2) means that each batch on each machine consists of
no more than one kind of product. Equation (3) ensures that
all products are assigned to batches. Equation (4) restricts
the lower and upper bounds of the batch size. Equations (5)–
(8) and (11) are constraints on the batch production time.
The total production time for each batch consists of prepa-
ration time and processing time, and all the batches should

be completed within the given time horizon H without over-
laps between adjacent batches. The distribution of the load
of machine m over the time periods depends on the product
processing time, which can be expressed as in Eq. (9). Equa-
tion (10) is the constraint of the maximum power demand
for industrial electricity users. The production duration of
each batch in time period k can be class piecewise function
Eq. (11).

om,n,k =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if t sm,n + tdm,n ≤ τ(k − 1) ,

tdm,n if τ(k − 1) < t sm,n, τk ≤ t sm,n + tdm,n ,

0 if t sm,n ≥ τk ,

τ if t sm,n ≤ τ(k − 1), τk ≤ t sm,n + tdm,n ,

(tdm,n − (τ (k − 1) − t sm,n)) if t sm,n < τ(k − 1), τ (k − 1) < t sm,n + tdm,n < τk ,

(τk − t sm,n) if τ(k − 1) < t sm,n < τk, τk < t sm,n + tdm,n

(11)

It is known that the parallel-machine batch scheduling
problem is NP hard [30], so we try to propose an efficient
algorithm to solve large scale problems and compare it with
a mathematical programming solver (e.g., CPLEX). It can
be seen that Eq. (11) is a piecewise non-linear function. To
facilitate MILP solving, the key point of the problem formu-
lation is the linearisation of this equation. The details of the
problem formulation and linearisation can be found in [29].

To describe the problem more clearly, a simple example
of scheduling solution is presented as Fig. 1. As is shown
in the figure, there are two machines—M1 and M2—to pro-
duce two different kinds of products. Each rectangular box
in the figure represents a production batch, the length of the
box represents the production time of the batch, and the two
numbers in the box represent the product type and quantity
demand. It can be clearly seen that the size and the starting
time of batches are changed after optimisation. The produc-
tion is arranged as far as possible to avoid the on-peak time
period, thus to reduce the total electricity cost.

Fig. 1 An example of scheduling solution

123

Memetic Computing (2019) 11:439–452 443

3 Methodology

Because it is known that batch scheduling is a classical NP
hard problem, itmight take a long time to compute an optimal
solution to large instances and even to find a feasible solution.
How to quickly and reliably search for an approximately
optimal solution is important in engineering. GA, which is
oneof the classical intelligent algorithms for solving complex
problem, is adopted as the basis of our method. Because it is
easy for a GA to fall into a local optimum, amulti-population
algorithm is proposed to solve the problem. In this section,we
will introduce the encoding scheme, the genetic operators, the
population interaction, and the parameter settings of single-
population algorithm and multi-population algorithm.

3.1 Algorithm flow

In this paper, two kinds of algorithms, SPGA andMPGA, are
proposed to solve the problem. Figure 2 shows the flowchart
of a two-population genetic algorithm. SPGA has the same
processes as shown in the figure but only has one population
without information between populations. From Fig. 2 it can
be seen that the basic operators of each population are the
same as for the standard algorithm but two additional meth-
ods are used to enhance population diversity and decrease the
chance that the algorithm falls into a local optimum. The first
additional method is to add some new individuals to the pop-
ulation when a certain number of iterations is reached; the
method to generate a new individual is consistent with that in
the population initialisation. The second additional method
is to exchange information between populations after a cer-
tain number of iterations; that is, to let the two populations
exchange excellent individuals regularly. In this way, the best
individuals in one population are likely to be merged into the
other population, so as to implement an elite guided search.
In addition, we use a post-processing procedure to treat a
violation of a constraint if one happens, and a self-adaptive
parameter adjustment strategy to enhance the adaptivity of
the algorithm.

Based on the flow of the algorithm and the population
updating methods mentioned above, several specific oper-
ators and strategies to implement the algorithm have been
designed and will be presented in the remaining parts of this
section.

3.2 Chromosome coding and population
initialisation

Asolution to a batch scheduling problem indicates the alloca-
tion of each product to themachines, aswell as the processing
sequence. In the MPGA, each individual Xk denotes a solu-
tion, which is encoded as a vector M = [m1,m2, ...,mM]T ,
whereM is the number ofmachines. The vectormi represents

Fig. 2 Flowchart of the proposed MPGA

Table 2 An example of the encoding of a batch solution

[4,30] [1,37] [1,45] [1,36] [3,30] [3,30] [2,35] [2,35]

[4,40] [4,40] [4,40] [1,43] NA NA NA NA

[4,50] [1,39] [3,50] [2,35] [2,40] NA NA NA

[3,40] [3,50] [2,55] NA NA NA NA NA

the batch sequence on machine i . It can be further encoded
as an n dimensional vector [b1, b2, ..., bn], where n is the
number of batches on machine i , and b j represents a batch.
In addition, b j is a two-dimensional vector with entries of
the form [p, B], where p represents the product type and
B represents the amount of the product. In this problem, all
products should be allocated to batches. Each product can be
produced on different machines, but each batch can only be
produced on one machine.

Given four machines and four products, Table 2 shows
an example of a batch solution, where [2, 53] represents a
batch, 2 is the product type, 53 represents the amount of the
product, andNAmeans an empty allocation with no products
allocated to the batch.

In population initialisation, for each specific kind of prod-
uct, a machine is randomly selected. Then, under the premise
that the machine has a batch size constraint [Umin

m,p ,Umax
m,p],

123

444 Memetic Computing (2019) 11:439–452

the products are randomly assigned to the selected machine.
Algorithm 1 shows the detailed process of population ini-
tialisation. In addition, each machine has limitations on its
production time and the number of product batches. It is nec-
essary to guarantee the feasibility of each solution; that is, all
the constraints should be fulfilled during the genetic opera-
tions. The details of the satisfaction of the constraints will be
provided in Sect. 3.5.

3.3 Production time arrangement with greedy
strategy

To calculate the TEC, the production starting time of the
batches should be determined first by using Eqs. (1), (9)
and (11). Naturally, we know that if the products are arranged
as far as possible fromon-peak periods, the electricity cost for
processing the products will decrease but, at the same time,
two problems may appear: the first is how to determine the
optimal sequence and starting time of the batches on each
machine, and the second is how to coordinate the alloca-
tion on parallel machines to satisfy the constraint defined in
Eq. (10).

In this context, a greedy strategy is designed to deter-
mine the production starting time of the batches, as shown
in Algorithm 2, to solve the first problem. The operation is
carried out for the machines individually. Given machine m,
the batches assigned to the machine are chosen sequentially
according to their original order. For a given time period k,
we try to put the selected batch n into period k if there is
enough idle time, and then the current optimal starting time
of batch n can be decided if the TEC for batches 1 − n is
minimised. It should be noted that the successive batches
arranged after batch n could be moved if required. After the
iterative greedy operation, the sequence and starting time of
the batches on machine m are optimally rearranged. Finally,
with the assumption that global optimality of production time
arrangement on all machines is a set of local optimality on a
single machine, t sm,n—which is the decision variable of the
staring time—can be determined for the obtained allocation.

For the second problem, when the maximum energy
demand constraint in Eq. (10) is violated, the post-processing
as described in the next section, Sect. 3.5, will be performed
to modify the batch solution encoding.

3.4 Genetic operators

In this part, we will introduce the selection, crossover and
mutation operators of the proposed MPGA.

Due to the complexity of themodel,when the population is
updated, some excellent individuals need to be reserved in the
population to guide the direction of the evolution. Thewidely
used roulette selection method [31] is adopted to reserve the

Algorithm 1: Population initialisation

Input: The parameters of machines and products.
Output: The batch parameters and the assignment to machines.
1. For p = 1 to P do
2. d = Dp

3. While d > 0 do
4. m = rand()%M + 1
5. If d ≥ Umin

m,p then
6. If d < Umax

m,p then
7. B = rand()%(d + 1 −Umin

m,p) +Umin
m,p

8. Else
9. B = rand()%(Umax

m,p + 1 −Umin
m,p) +Umin

m,p

10. End If
11. d = d − B
12. Else
13. Assign the remaining d products to batches of
14. product type p and modify the batch size;
15. End If
16. End While
17. End For

Algorithm 2: Starting time arrangement with greedy strategy

Input: The batch parameters and the assignment to machines.
Output:The sequence and starting time of batches on eachmachine.
1. For m = 1 to M do
2. Define costn , cost

′
n to zero, 1 ≤ n ≤ Nm ;

3. For n = 1 to Nm do
4. Define Ck , cost1k to zero, 1 ≤ k ≤ K ;
5. For k = 1 to K do
6. Calculate the cost of allocating batch n to period
7. k if there’s enough idle time in or after period k,
8. assign the cost to cost1k ;
9. Ck = n > 1 ? cost1k + costn−1 : cost1k ;
10. Move the successive batches if necessary;
11. IF n > 1 and batch moving exists
12. Calculate the additional cost for moving
13. batches 1 to n − 1, and set it to cost

′
n−1;

14. Ck = cost1k + costn−1 + cost
′
n−1;

15. End If;
16. Record the starting time of allocated n batches;
17. End For
18. kmin = argmin

k≤K
Ck , costn = Ckmin ;

19. If n = Ni , update t sm,n according to the recorded
20. starting time of batches related to Ckmin ;
21. End For
22. End For

elite individuals, and thus to prevent the population from
falling into a local optimum.

For the crossover operation, the batch allocations in the
codes of the individuals are exchanged with the optimal
individual according to a dynamic crossover probability.
This operation must satisfy the constraint of the product

123

Memetic Computing (2019) 11:439–452 445

Ta
bl
e
3

C
on
st
ra
in
ts
at
is
fa
ct
io
n
du
ri
ng

al
go
ri
th
m

pr
oc
es
s

O
pe
ra
tio

n
E
qu
at
io
n
(2
)

E
qu
at
io
n
(3
)

E
qu
at
io
n
(4
)

E
qu
at
io
n
(5
)

E
qu
at
io
n
(6
)

E
qu
at
io
n
(7
)

E
qu
at
io
n
(8
)

E
qu
at
io
n
(1
0)

In
iti
al
is
at
io
n

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

M
ay

vi
ol
at
e

M
ay

vi
ol
at
e

M
ay

vi
ol
at
e

Sa
tis
fy

M
ay

vi
ol
at
e

C
ro
ss
in
g
op

er
at
or

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

M
ay

vi
ol
at
e

M
ay

vi
ol
at
e

M
ay

vi
ol
at
e

Sa
tis
fy

M
ay

vi
ol
at
e

M
ut
at
io
n
op

er
at
or

1
Sa

tis
fy

Sa
tis
fy

M
ay

vi
ol
at
e

M
ay

vi
ol
at
e

M
ay

vi
ol
at
e

M
ay

vi
ol
at
e

Sa
tis
fy

M
ay

vi
ol
at
e

M
ut
at
io
n
op

er
at
or

2
Sa

tis
fy

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

M
ay

vi
ol
at
e

Po
pu

la
tio

n
in
te
ra
ct
io
n

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

Sa
tis
fy

b11M1

M2

b21 b32

b31 b12 b42

b41

b22

b31 b21 b32

b13 b22 b41

b42

b12

M1

M2

b11M1

M2

b21 b32

b12 b42

b41

b22

b31

b21 b32

b13 b22 b41

b42

b12

M1

M2 b31

Individual 1

Individual 2

b32

b31

b32

b31

Fig. 3 Crossover operation (left: before crossing, right: after crossing)

b11M1

M2

b21 b22 b32

b31 b41 b13 b42 b12

b11M1

M2

b21

b32b31 b13 b42

b12b41

b22

Fig. 4 Mutationoperation1 (left: beforemutation, right: aftermutation)

M1 b12b11 b21 b31 M1 b12b11 b21b31b41 b41

Fig. 5 Mutationoperation2 (left: beforemutation, right: aftermutation)

demand for each individual. Figure 3 gives an example of the
crossover operation, in which bi, j refers to batch j , which
consists of product i . In the example, the batches of product
3 in two individuals are exchanged.

For the mutation operation, to increase the diversity of
the populations of individuals, two mutation operators have
been designed on the two populations. The first is randomly
swapping batches on different machines, and the second is
swapping batches on the same machine. Two simple exam-
ples of these operations are illustrated in Figs. 4 and 5.

3.5 Constraint satisfaction

In the present paper, the constraints of the model can be
classified into two types: the product allocation constraints
[i.e., from Eqs. (2) to (4)] and the production time constraints
[i.e., Eqs. (5)–(8), and (10)]. In the process of population
initialisation and iterative evolution, some constraintsmay be
broken and, therefore, an operation of constraint satisfaction
check is required to guarantee the feasibility of the solutions.
Equations (9) and (11) are actually decision expressions that
depend on the chromosome code: they will not be violated in
a genetic operation. Table 3 lists the satisfaction or violation
of the constraint in the evolution process.

According to the definitions of the genetic operators,
we know that mutation operator 2, which exchanges the
sequence of batches on a single machine, and population

123

446 Memetic Computing (2019) 11:439–452

interaction, which exchanges individuals between popula-
tions, will not violate any constraints. In addition, it is easy
to conclude from the definitions of the genetic operators that
Eqs. (2), (3) and (8) will always be satisfied and will not be
broken during the evolution.

Equation (4) will only be broken when the mutation oper-
ator 1 is performed; that is, batches are exchanged between
different machines, but each machine has its own upper
bound and lower bound for its batch size for any given prod-
uct. When violating the constraint in Eq. (4), the batch size
should be adjusted tomeet the constraints. If Bm,n,p > Umax

m,p ,
the excess Bm,n,p − Umax

m,p products are randomly allocated
to other batches of product p, while other batches satisfy the
constraint. If Bm,n,p < Umin

m,p , then U
min
m,p − Bm,n,p products

will be taken from other batches of product p while no batch
violates the batch size constraint.

In the operations of initialisation, crossover, and mutation
operator 1, the total production time on each machine is not
taken into account, so the batches allocated to amachinemay
not be finished in the given time horizon. Then the constraints
Eqs. (5), (6), and (7) may be broken. In these situations, the
overdue batches will be randomly assigned to a machine that
has sufficient production capacity to accept the batch. If no
machine accepts the batch, then it also needs to resize and
transfer some products to other batches so as to arrange that
all batches on each machine can be completed within the
given time. In addition, for a given time period t , if Eq. (10)
is broken, then we randomly select one or more batches that
start from period t and move them by increasing their pro-
duction starting time, as well as the starting time of their
successive batches.

3.6 Self-adaptive parameter adjustment

To enhance the adaptability of the algorithm, some of the
parameters of the algorithm should not be static but should
constantly change with the degree of convergence or the
speed of the evolution of the population. In conventional GA,
the most direct criterion to judge this is to see whether the
optimal individual in the current iteration is better than the
previous optimal individual, although this does not always
guarantee the global search performance of the algorithm.
To facilitate the description of the strategy for the parameter
adjustment, the notation is given in Table 4. The parameter
adjustment criteria are illustrated in Fig. 6, where the param-
eters in dashed line boxes are the value to be observed, and
those in red solid line boxes are the value to be adjusted
while the observation changes. The specific rules for param-
eter adjustment, as shown in subfigures (a)–(c), are described
as follows.

Figure 6a: In the iterative process, when the global optimal
individual fitness value repeat number SN increases; that is,
the population may be falling into a local optimum, at this

(a)

(b)

(c)

Fig. 6 Parameter adjustment criteria

point the strategy is to reduce the crossover probability and
increase the mutation probability, and vice versa.

Figure 6b:When |Fbest1−Fbest2 |—the difference between
the two populations—becomes greater and this increases the
cross probability, mutation probability, and the number of
individuals to exchange during population interaction, and
vice versa.

Figure 6c: When the difference between the worst indi-
vidual and the optimal individual in the population becomes
smaller, this means that the population may be falling into a
local optimum, and so the mutation probability and the num-
ber of new individuals to add should be increased, and vice
versa.

Given anyparameterv,weuse a simple linear rule to adjust
its value within the range [v, v]. Based on the changing of
observed variables or expressions, while v needs to increase,
v = min{v, v + �v}, and while v needs to decrease, v =
max{v, v − �v}, where �v is the step size for parameter
adjustment.

4 Experimental results and analyses

In this section, the results of the computational experiments
are provide to evaluate the effectiveness and efficiency of
the proposed algorithm. The proposed MPGA will also be
compared with CPLEX and SPGA. The MPGA and SPGA
algorithms are both implemented in C++ and the compu-
tational experiments were conducted on a PC with 3.2GHz
CPU and 16.0GB RAM.

123

Memetic Computing (2019) 11:439–452 447

Table 4 Algorithm parameters
Fbest Fitness value of current global optimal individual

SN Number of iterations in which the global optimal indi-
vidual fitness value has not changed

Fbest1, Fbest2 Fitness values of the current best individual in popu-
lation 1 and 2, respectively

Fworst1, Fworst2 Fitness value of the current worst individual in popu-
lation 1 and 2, respectively

PC1, PC2 Cross probability of populations 1 and 2, respectively

PM1, PM2 Mutation probability of populations 1 and 2, respec-
tively

Ninter Number of individuals to exchange during population
interaction

Ninit1, Ninit2 Numbers of new individuals to be added to popula-
tions 1 and 2, respectively

Table 5 Instance data

Dataset Machines Product types Product demand

1 4 4 200 ∗ 4 = 800

2 6 8 200 ∗ 8 = 1600

3 8 8 200 ∗ 8 = 1600

4 10 12 200 ∗ 12 = 2400

5 12 12 200 ∗ 12 = 2400

6 16 16 200 ∗ 16 = 3200

7 20 20 200 ∗ 20 = 4000

4.1 Description of the data and parameter settings

As shown in Table 5, the dataset used in the present
paper consists of seven groups of datasets. The properties
of the production machines, product types, and quantities
demanded are given. For each dataset, the upper bound of
the number of batches on each machine is set to 8. The pro-
cessing duration and electricity demand for each product on
the different machines were generated randomly within a
reasonable range.

The TOU electricity price λk and base load lbasek come
from the practical settings applied in an iron and steel mill,
the details of the parameters are provided in Table 6. All
products should be processed within the given time horizon
of 24 h.

The algorithm parameters are set in accordance with our
existing knowledge and experimental experiences. The pop-
ulation size of the proposed MPGA is 50, and the number of
iterations is 3000 for datasets 1–6, and 5000 for dataset 7. The
settings of the self-adaptive parameters are given in Table 7,
and they change as introduced in Sect. 3.6. The parameter
settings of SPGA and MPGA are the same.

Table 6 TOU electricity prices and base loads

Time period Type λk /(CNYKWh−1) lbasek /(MWh)

00:00–02:00 Mid-peak 0.8 2.4

02:00–04:00 Off-peak 0.45 1.5

04:00–06:00 Flat-peak 0.6 2

06:00–08:00 Mid-peak 0.8 2.5

08:00–10:00 On-peak 1.2 3

10:00–12:00 On-peak 1.2 3.5

12:00–14:00 Off-peak 0.45 1.6

14:00–16:00 Mid-peak 0.8 2.5

16:00–18:00 On-peak 1.2 3.5

18:00–20:00 Off-peak 0.45 1.6

20:00–22:00 Mid-peak 0.8 2.8

22:00–24:00 Off-peak 0.45 1.5

Table 7 Settings of self-adaptive parameters

Parameter Range Step size Initial value

PC1, PC2 [0.3, 0.8] 0.05 0.8

PM1, PM2 [0.1, 0.3] 0.02 0.1

Niter , Ninit1, Ninit2 [1, 5] 1 1

4.2 Experimental results

The objective of the model in this paper is to minimise TEC
on the premise of processing all products within a given time
horizon. The problems were solved by CPLEX, MPGA and
SPGA, and the results are provided in Table 8. In the table,
CPLEX0 represents the model with the objective of min-
imising the makespan and without consideration of the TOU
electricity price based DR is solved by CPLEX. This model
can be simply expressed as

min max
m,n,p

(tsm,n + αm,p · Xm,n,p + βm,p · Bm,n,p)

123

448 Memetic Computing (2019) 11:439–452

Table 8 Scheduling results (Time/(s), TEC/(106 ∗ CNY), gap/(%), gap′/(%))

Inst CPLEX0 CPLEX1 CPLEX2 SPGA MPGA

Makespan TEC Time TEC Gap Time TEC Gap Time TEC Gap′ Time TEC Gap′

Inst1 17.97 3.5586 3600 2.8349 0.02 34.8 2.8451 3.13 44.7 2.9041 2.44 42.5 2.8675 1.15

Inst2 19.10 5.2827 3600 4.1483 2.85 66 4.2148 5.63 78.0 4.2836 3.26 80.2 4.2438 2.3

Inst3 17.08 6.3294 3600 4.8290 2.50 83 4.9801 6.14 82.3 5.0955 5.52 91.7 4.9827 3.18

Inst4 20.11 9.5404 3600 8.0617 2.32 320 8.4009 6.35 136.2 8.6632 7.46 142.9 8.4678 5.04

Inst5 17.86 10.5431 3600 8.0752 4.85 2530 8.2406 6.91 129.1 8.4376 4.49 123.3 8.2535 2.21

Inst6 15.58 11.2004 3600 8.1048 6.24 2880 8.2098 7.44 320.5 8.4869 4.71 303.1 8.2616 1.93

Inst7 17.70 15.9367 3600 11.4279 19.73 5534 10.0097 8.35 395.3 10.3028 − 9.85 435.5 10.0764 − 11.83

s.t. Equations (2)–(5), (7)–(8), (10).
CPLEX1 indicates that the problem is solved by CPLEX

with a computing time limit up to 3600 s, and CPLEX2
denotes using CPLEX to get an approximate solution as
MPGA. The MPGA and SPGA algorithms were executed
100 times to compute themean of the results. It can be clearly
seen that the TEC obtained by CPLEX0 without DR is obvi-
ously greater than with DR, which is the meaning of the
model in this paper.

With a growth of the size of the problem, the solving time
needed by CPLEX increases significantly, what leads to this
is the increasing number of constraints and variables, par-
ticularly the integer variables, which significantly affects the
efficiency of solving an MILP. But for the GAs, we can see
that the computing time is approximately linearly related to
the problem size, and all the instances can be solved within
a reasonable computing time.

ForMPGA and SPGA, it should be noted that the property
gap′ is different from gap in CPLEX solving. In this context,
gap′ represents the difference between the GA based solution
and the CPLEX1 solution, which is defined as

gap′ = FAVG − FCPLEX1

FCPLEX1
× 100%,

where FAVG is the mean TEC over 100 runs of MPGA or
SPGA, and FCPLEX1 is the result obtained byCPLEX1when
the computing time limit is 3600s.

From Table 8, we can see that gap′ for theMPGA solution
ranges from − 11.67 to 5.04%, and for the SPGA solution
it is from − 9.49 to 7.5%, where the negative value means
the MPGA outperforms CPLEX1, with a smaller TEC. At
the same time, with an increase in the size of the problem,
MPGA has a more significant advantage in terms of com-
puting time needed to find an approximate solution when
compared with CPLEX2. For datasets 1–6, MPGA gets a
small gap′, which indicates that theMPGA solutions are near
to the CPLEX1 solution, and the negative gap′ for dataset 7
means a better solution than CPLEX1. In addition, we can
also see that the proposed MPGA, which is implemented

Fig. 7 Visual chart of scheduling results

by parallel programming, outperforms SPGA in getting a
smaller TEC on all datasets with no more computing time.
The results obtainedby thedifferent approaches are also illus-
trated in Fig. 7, where the bars represent the TEC for the
different instances, and the solid lines denote the required
computing time. From the figures, we can also conclude that
the proposed MPGA can achieve a TEC that approximately
same as CPLEX1 on small size instances, but a smaller TEC
on large size instances.

The iterative convergence curves of both GAs are given
in Fig. 8. For dataset 7, the largest problem size, the iteration
is empirically set to 5000, and the others are set to 3000.
The figures show that MPGA can achieve smaller fitness
value, and has better exploration ability during the middle
stage.Overall, SPGAgets earliermaturity thatMPGA.These
results indicate that our proposedmulti-population algorithm
is able to improve the algorithm performance. We also find
that the fitness difference between early stage and late stage
is not very large because the cost saving mainly depends on
production time arrangement, while the production time of
each batch has been optimised through the greedy strategy
while initialising population.

However, our algorithms still have some disadvantages.
From our results, we can conclude that, when compared with

123

Memetic Computing (2019) 11:439–452 449

0 500 1000 1500 2000 2500 3000
2.85

2.9

2.95

3

3.05

3.1
x 10

6

Iterations

T
E

C
 (

C
N

Y
)

MPGA
SPGA

(a)

0 500 1000 1500 2000 2500 3000
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9
x 10

6

Iterations

T
E

C
 (

C
N

Y
)

MPGA
SPGA

(b)

0 1000 2000 3000 4000 5000
1

1.01

1.02

1.03

1.04

1.05

1.06
x 10

7

Iterations

T
E

C
 (

C
N

Y
)

MPGA
SPGA

(c)

Fig. 8 Iterative convergence curves of algorithms a dataset 1, b dataset 4, c dataset 7

mathematical programmingmethods, ourmethods havegreat
advantage in solving large problems but have no obvious
advantage in solving small-scale problems. Another dis-
advantage is that our methods are essentially a GA-based
random search, and the stopping criterion is based on a fixed
number of iterations, so there is still a problem in how to
evaluate the gap between the current solution and the real
optimal solution, and when to stop the iterations. Actually, it
could be expected that our algorithms could bemore adaptive
if some automatic stopping criteria are introduced.

4.3 Batch allocation and load distribution

This paper aims to minimise the TEC by dispatching the
production load as much as possible to low-priced time peri-
ods. In this section, we try to analyze the feasibility and the
energy efficiency of the results. Figures 10, 11 and 12 give
the Gantt charts (see subfigure a) and load distribution charts
(see subfigure b) for three representative datasets 1, 4 and
7, respectively, where dataset 1 is the smallest size instance,
dataset 4 is of medium size, and dataset 7 is the largest. In the
Gantt charts, each rectangle box represents a product batch,
the batches made up of the same kind of product are filled
with the same color. The numbers in each box represent the
product type of the batch and its quantity demand; for exam-
ple, for the first batch on machine 1, the numbers 1,35 mean
the batch consists of 35 product 1.

From the Gantt charts it can be summarised that for each
kind of product, the amount of products in different batches
equals to the quantity demand, and all the batches are fin-
ished in given time horizon. In addition, we can see that
any adjacent batches on each machine do not overlap in the
Gantt charts, which shows that the scheduling results meet
the production constraint that defined as Eq. (8). Further-
more, the other constraints, such as batch size constraint,
power demand constraint, and so on, are also satisfied for the

results. We can now conclude that our scheduling solutions
are feasible to meet the production process.

Another problem is the energy efficiency of the results.
Unlike conventional energy conservation, which usually
reduces the absolute energy consumption, industrial DR
under TOU pricing focuses on motivating users to change
their production schedule to avoid on-peak time periods,
which have significant effects on cutting electricity costs. For
each dataset, from whether subfigure (a) or (b) we can see
that the product batches are obviously allocated to low-price
periods.

In fact, it is natural to think of that the lower saturation
of production, the more able it is to avoid the high electric-
ity price periods. To analyze the trend of cost saving versus
production saturation, we define two coefficients—ProdSat1
and ProdSat2—to represent the production saturation.

ProdSat1 =
∑

k∈K Lk · τ

Lmax
k · H × 100%,

where Lk is the average power load in time period k, and
Lmax
k is the maximum of Lk, k ∈ K .

ProdSat2 = minimalmakespan

H
× 100%,

ProdSat1 represents the production capacity margin, and
ProdSat2 means the production time margin. A cost saving
ratio CSR is defined as

CSR = FCPLEX0 − FAVG

FCPLEX0
× 100%,

The cost saving ratio and production saturation of all
datasets are shown in Fig. 9. It can be seen that the curve
of cost saving ratio curves corresponds to ProdSat1 curve
closely, basically the curves are symmetrical in vertical direc-
tion. At the same time, ProdSat2 is also related to cost saving
but it does not reflect the cost saving ratio accurately; for

123

450 Memetic Computing (2019) 11:439–452

Fig. 9 The trend of cost saving versus production saturation

Time/(h)

0

1

2

3

4

M
ac

hi
ne

1,35 3,361,393,40 1,451,44 1,37

3,59 4,452,48

3,65 4,502,47

4,554,50 2,552,50

(a)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time/(h)

0

50

100

150

200

250

300

P
ow

er
 lo

ad
/(

M
W

)

0

250

500

750

1000

1250

1500

P
ric

e/
(C

N
Y

/M
W

h)

Power load
TOU Price

(b)

Fig. 10 Scheduling result for dataset 1. aGantt chart,b load distribution
chart

example, the results on datasets 5 and 7 have nearly the same
ProdSat2 but the cost saving ratio is very different. This
should be due to their different production load although
nearly the same makespan. The observed result implies a
linear relationship between cost saving ratio and production
capacity margin, and indicates that less production satura-
tion, especially ProdSat1, will lead to lower energy costs.
This result is also consistent with the experimental results
and provides us a good guide to analyze the energy efficiency
for different datasets.

Time/(h)

0

1

2

3

4

5

6

7

8

9

10

M
ac

hi
ne

11,30 11,3711,40 10,359,359,38 5,41

3,40 4,448,401,35

11,5312,54 7,608,50

11,40 4,402,55 6,492,50 6,456,50

1,41 9,44 1,45 5,5212,36 9,461,44 9,37

7,60 10,42 4,52

12,60 12,508,608,50

3,49 3,403,41 2,506,56

5,35 10,39 3,307,40 10,441,35 5,36 5,36

4,64 10,407,40 2,45

(a)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time/(h)

0

200

400

600

800

P
ow

er
 lo

ad
/(

M
W

)
0

250

500

750

1000

1250

1500

P
ric

e/
(C

N
Y

/M
W

h)

Power load
TOU Price

(b)

Fig. 11 Scheduling result for dataset 4. aGantt chart,b load distribution
chart

Time/(h)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

M
ac

hi
ne

16,40 3,456,40 11,561,4019,40 6,40

20,60 18,5118,40

4,5018,50 8,35

5,50 4,47 15,407,40

11,45 16,396,40 1,402,4019,40 10,401,40

6,40 12,385,40 20,5020,40

14,50 4,589,45

15,40 13,40 4,457,4013,40

3,35 10,40 2,40 5,3010,40 1,4019,40 17,35

3,45 8,353,40 12,44

14,50 18,599,45

13,40 7,40 15,4013,407,40

16,39 12,3610,40 2,402,40 17,4517,36

5,40 6,4020,50 12,37

14,50 8,45 9,50

12,45 16,4013,40

2,40 10,40 17,3919,401,40 17,4519,40 11,45

5,40 11,54 8,403,35

9,6014,50 8,45

16,42 15,4015,40 7,40

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time/(h)

0

300

600

900

1200

1500

P
ow

er
 lo

ad
/(

M
W

)

0

250

500

750

1000

1250

1500

P
ric

e/
(C

N
Y

/M
W

h)
Power load
TOU Price

(b)

Fig. 12 Scheduling results for dataset 7. a Gantt chart, b load distribu-
tion chart

123

Memetic Computing (2019) 11:439–452 451

In summary, from the figures and analyses we can say
that our proposed algorithms guarantee that all products be
processed in a given time and can effectively optimise the
production starting time of product batches to avoid on-peak
time periods, thus reducing the energy cost of the production.

5 Conclusion

In this paper, we studied the green batch production schedul-
ingproblemonmultiple parallelmachines.A single-population
algorithm and a multi-population genetic algorithm are pro-
posed to solve the problem efficiently. Our experimental
results show that both the SPGA and MPGA can achieve
approximateTECcomparedwithCPLEXon small instances,
and smaller TECon large scale instanceswith less computing
time. In addition, the proposedMPGA implemented byparal-
lel computing outperforms SPGA with no more computing
time. However, we agree that parallel programming based
MPGA needs more computing resources than SPGA, so
people can choose one of them to solve the problem accord-
ing to different preferences in engineering. Multi-population
algorithms with different operation strategies and automatic
stopping criteria could be examined in future research to
improve performance and strengthen self-adaptive ability.

Acknowledgements This work is partially supported by National Nat-
ural Science Foundation of China (61873222) and Hunan Provincial
Key Research and Development Program (2017GK2244).

References

1. Nghiem T, Behl M, Pappas GJ, Mangharam R (2011) Green
scheduling: scheduling of control systems for peak power reduc-
tion. In: 2011 international green computing conference and
workshops (IGCC), pp 1–8

2. Mansouri SA, Aktas E, Besikci U (2016) Green scheduling of a
two-machine flowshop: trade-off between makespan and energy
consumption. Eur J Oper Res 248(3):772–788

3. Li Y,Wang Y, Zhao X, RenM (2013) Multi-objective optimization
of rolling schedules for tandem hot rolling based on opposition
learning multi-objective genetic algorithm. In: The 25th Chinese
control and decision conference. IEEE, pp 846–849

4. Lu C, Gao L, Li X, Chen P (2016) Energy-efficient multi-pass turn-
ing operation using multi-objective backtracking search algorithm.
J Clean Prod 137:1516–1531

5. Aghelinejad M, Ouazene Y, Yalaoui A (2018) Energy optimiza-
tion of a speed-scalable andmulti-states singlemachine scheduling
problem. In: Daniele P, Scrimali L (eds) New trends in emerging
complex real life problems. Springer, Cham, pp 23–31

6. Abikarram JB, McConky K, Proano R (2019) Energy cost mini-
mization for unrelated parallel machine scheduling under real time
and demand charge pricing. J Clean Prod 208:232–242

7. Desta AA, Badis H, George L (2018) Demand response scheduling
in industrial asynchronous production lines constrained by avail-
able power and production rate. Appl Energy 230:1414–1424

8. Wang Y, Li L (2015) Time-of-use electricity pricing for industrial
customers: a survey of US utilities. Appl Energy 149:89–103

9. Mitra S, Pinto JM, Grossmann IE (2014) Optimal multi-scale
capacity planning for power-intensive continuous processes under
time-sensitive electricity prices and demand uncertainty. Part I:
modeling. Comput Chem Eng 65:89–101

10. Fang K, Uhan UA, Zhao F, Sutherland JW (2015) Scheduling on a
single machine under time-of-use electricity tariffs. Ann Oper Res
238(1):199–227

11. CheA, ZengY, LyuK (2016)An efficient greedy insertion heuristic
for energy-conscious single machine scheduling problem under
time-of-use electricity tariffs. J Clean Prod 129:565–577

12. Kurniawan B, Gozali AA,WengW, Fujimura S (2018) Amix inte-
ger programming model for bi-objective single machine with total
weighted tardiness and electricity cost under time-of-use tariffs. In:
2018 IEEE international conference on industrial engineering and
engineering management. IEEE, pp 137–141

13. Wang S, Zhu Z, Fang K, Chu F, Chu C (2018) Scheduling on a
two-machine permutation flow shop under time-of-use electricity
tariffs. Int J Prod Res 56(9):3173–3187

14. Ding JY, Song S, Zhang R, Chiong R, Wu (2016) Parallel machine
scheduling under time-of-use electricity prices: new models and
optimization approaches. IEEE Trans Autom Sci Eng 13(2):1138–
1154

15. Cheng J, Chu F, Zhou M (2018) An improved model for parallel
machine scheduling under time-of-use electricity price. IEEETrans
Autom Sci Eng 15(2):896–899

16. Che A, Zhang S,WuX (2017) Energy-conscious unrelated parallel
machine scheduling under time-of-use electricity tariffs. J Clean
Prod 156:688–697

17. ZarandiMHF,Kayvanfar V (2015) A bi-objective identical parallel
machine scheduling problem with controllable processing times: a
just-in-time approach. Int J Adv Manuf Technol 77(1–4):545–563

18. Zhou S, Li X, Du N, Pang Y, Pang Y, Chen H (2018) A
multi-objective differential evolution algorithm for parallel batch
processing machine scheduling considering electricity consump-
tion cost. Comput Oper Res 96:55–68

19. Lei D, Li M, Wang L (2018) A two-phase meta-heuristic for mul-
tiobjective flexible job shop scheduling problem with total energy
consumption threshold. IEEE Trans Cybern. https://doi.org/10.
1109/TCYB.2018.2796119

20. ZhangW,Wen JB, Zhu YC, Hu Y (2017) Multi-objective schedul-
ing simulation of flexible job-shop based on multi-population
genetic algorithm. Int J Simul Model 16(2):313–321

21. Hadera H, Harjunkoski I, Sand G, Grossmann IE, Engell S (2015)
Optimization of steel production scheduling with complex time-
sensitive electricity cost. Comput Chem Eng 76:117–136

22. Schwindt C, Trautmann N (2000) Batch scheduling in process
industries: an application of resource constrained project schedul-
ing. OR-Spektrum 22(4):501–524

23. Shrouf F, Ordieres-Meré J, García-Sánchez A, Ortega-Mier M
(2014) Optimizing the production scheduling of a single machine
to minimize total energy consumption costs. J Clean Prod 67:197–
207

24. Wang J, Qiao F, Zhao F, Sutherland JW (2016) Batch scheduling
for minimal energy consumption and tardiness under uncertainties:
a heat treatment application. CIRP Ann 65(1):17–20

25. Wang S, Liu M, Chu F, Chu C (2016) Bi-objective optimization
of a single machine batch scheduling problem with energy cost
consideration. J Clean Prod 137:1205–1215

26. Cheng J, Chu F, Liu M, Wu P, Xia W (2017) Bi-criteria single-
machine batch scheduling with machine on/off switching under
time-of-use tariffs. Comput Ind Eng 112:721–734

27. Sharma A, Zhao F, Sutherland JW (2015) Econological schedul-
ing of a manufacturing enterprise operating under a time-of-use
electricity tariff. J Clean Prod 108:256–270

123

https://doi.org/10.1109/TCYB.2018.2796119
https://doi.org/10.1109/TCYB.2018.2796119

452 Memetic Computing (2019) 11:439–452

28. Tan M, Chen Y, Su YX, Li S, Li H (2019) Integrated optimiza-
tion model for industrial self-generation and load scheduling with
tradable carbon emission permits. J Clean Prod 210:1289–1300

29. TanM,DuanB, SuY (2018) Economic batch sizing and scheduling
on parallel machines under time-of-use electricity pricing. Oper
Res Int J 18(1):105–122

30. Yin Y, Wang Y, Cheng TCE, Wang DJ, Wu CC (2016) Two-agent
single-machine scheduling to minimize the batch delivery cost.
Comput Ind Eng 92:16–30

31. Lipowski A, Lipowska D (2012) Roulette-wheel selection via
stochastic acceptance. Physica A 391(6):2193–2196

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Genetic algorithms with greedy strategy for green batch scheduling on non-identical parallel machines
	Abstract
	1 Introduction
	2 Problem description
	3 Methodology
	3.1 Algorithm flow
	3.2 Chromosome coding and population initialisation
	3.3 Production time arrangement with greedy strategy
	3.4 Genetic operators
	3.5 Constraint satisfaction
	3.6 Self-adaptive parameter adjustment

	4 Experimental results and analyses
	4.1 Description of the data and parameter settings
	4.2 Experimental results
	4.3 Batch allocation and load distribution

	5 Conclusion
	Acknowledgements
	References

