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Abstract
For cloud-based, large-scale complex manufacturing system simulation (CMSS), allocating appropriate service instances
(virtual machines or nodes) is a promising way to improve execution efficiency. However, the complex interactions among
and frequent aperiodic synchronizations of the entities of a CMSS make it challenging to estimate the influence of service
instances’ computing power and network latency on the execution efficiency. This hinders the appropriate allocation of service
instances for CMSS. To solve this problem, we construct a performance estimation model (PEM) using the executed events
and synchronization algorithms to evaluate the running time of CMSS on different service instance combinations. Further, an
intelligent scheduling algorithm that introduces PEM as fitness function is proposed to search for a near-optimal allocation
scheme of CMSS service instances. To be specific, the PEM-based optimization algorithm (PEMOA) incorporates simulated
annealing into the mutation phase of a genetic algorithm to strengthen its local searching ability. A series of experiments were
performed on a computer cluster to compare the proposed PEMOAwith two representative algorithms: an adapted first-come-
first-service-based and the max-min-based allocation algorithms. The experimental results demonstrate that the PEMOA can
reduce the running time by more than 7%. In particular, the improvement of PEMOA increases when the manufacturing
system simulation is communication-intensive or spans a small number of service instance combinations.

Keywords Frequent synchronizations · Intelligent manufacturing · Manufacturing system · Performance estimation · Parallel
and distributed simulation · Resource allocation

1 Introduction

In a manufacturing system, the life-time of a product often
involves various stages, such as design, simulation, manu-
facturing, transportation, and management [1]. Simulation
has an important role in this process and can benefit the
design and optimization of a manufacturing system. Thus, it
has attracted much attention from researchers [2]. Negahban
[3] demonstrated that simulation is helpful during short- and
long-term production planning for manufacturing decision-
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makers. For a manufacturing system, reducing the time to
market of products is a constant challenge [4]. A key strat-
egy is to accelerate the simulation execution, and hence
more efficient simulation execution is constantly pursued.
In the literature [5], discrete event simulation was proposed
as a feature of next-generation simulations in manufactur-
ing systems. Parallel and distributed simulation (PADS), an
important branch of discrete event simulation, can effectively
improve the simulation efficiency, and thus is a promising
approach to large-scale complex manufacturing system sim-
ulation (CMSS). Therefore, this paper focuses on large-scale
CMSS based on PADS (referred to as simply CMSS here-
after).

A large-scale complexmanufacturing system usually con-
tains a large number of entities that need to, on the one hand,
carry out complex operations and, on the other hand, inter-
act with the outside frequently. The logistics system of a
manufacturing system supply chain typically includes vari-
ous warehouses, and each warehouse needs to receive/send
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goods from/to other warehouses. Once a batch of goods
arrives, the warehouse needs to perform a series of complex
goods-management operations, such as unloading, classifi-
cation, calculation of the optimal scheduling scheme, and
dispatch scheduling. In the simulation of such a complex
manufacturing system, each simulation entity1 needs to
perform complex computations and communicate with the
outside, placing a high demand on computing resources.
Meanwhile, frequent time synchronizations among entities
are performed to ensure the causal correctness of simulation
results obtained by parallel execution. The efficient execution
of such simulation requires sufficient computing resources.
A cloud is usually scalable and able to provide unlimited
computing resources, and thus deploying CMSS on a cloud
is an attractive option. In a cloud environment, computing
resources are usually provided for customers in the form
of service instances (i.e., virtual machines or nodes in this
paper), and multiple service instances are often combined to
offer sufficient computing resources. However, the frequent
synchronizations among entities in CMSS mean that both
the computing power of service instances and the network
latency among them highly influence execution efficiency.
As a consequence, different service instance combinations
(a service instance combination refers to a group of service
instances used in one single execution) can result in different
running times, and inappropriate computing resource alloca-
tion can even lead to low execution efficiency. Hence, it is
necessary to allocate proper resources for CMSS for the sake
of efficiency. Further, owing to frequent synchronizations,
the time consumed by one entity in a synchronization cycle
is affected by those of the others, increasing the difficulty
of estimating the influence of service instance’s computing
power and network latency on running time. Consequently,
it is challenging to allocate appropriate service instances
(i.e., allocating coordinated computing resources) for CMSS
to ensure execution efficiency. Hence, it is necessary to
investigate service instance allocation for CMSS. Existing
methods do not take the frequent synchronizations among
entities in CMSS into consideration when allocating service
instances, and thus are not suitable approaches. To fill the
gap left by current approaches, this paper proposes an intel-
ligent scheduling algorithm for allocating appropriate service
instances to reduce CMSS application running time (the time
consumed by the execution of the application) in a cloud
environment. The main contributions are as follows:

1. A performance estimation model is developed. It can be
used to estimate the running time of a CMSS application
on a service instance combination.

1 Each entity in real system is modeled as a simulation entity. For
simplicity, when referring to simulation, a simulation entity is referred
to as an entity.

2. The mutation phase of a genetic algorithm (GA) is
adapted for this model. For the selected gene, the adap-
tation aims to obtain an optimal service instance combi-
nation that minimizes the running time.

3. An intelligent scheduling algorithm called the per-
formance estimation model (PEM)-based optimization
algorithm (PEMOA) is proposed. It is used to search for
the optimal service instance allocation scheme that will
minimize the running time of a CMSS application in a
cloud environment.

4. A series of experiments were performed that demon-
strates the advantage of PEMOA with respect to running
time.

This paper is organized as follows. Section 2 reviews the
related work. Section 3 first describes the performance esti-
mation model for different service instance combinations
and then presents the resource allocation algorithm. Sec-
tion 4 presents the results of experiments to demonstrate the
advantage of the proposed algorithm. Finally, this paper is
concluded and future tasks are discussed in Sect. 5.

2 Related works

Existing resource allocation schemes consist of dispatch-
ing tasks to resources or allocating resources for tasks. The
scheduling of tasks usually covers one ormultiple objectives.
For example, Han et al. [6] studied a scheduling strategy to
improve the robustness and stability. Chen et al. [7] proposed
an uncertainty-aware scheduling approach to balance cost,
deviation, resource efficiency, and fairness. Gong et al. [8]
developed an artificial bee colony algorithm with two con-
flicting objects: minimum of the makespan and maximum of
the workload. Further, the allocation of resources for tasks
can be divided into the allocation of service instances for
tasks and the allocation of hosts for service instances. This
paper focuses on allocating service instances for tasks, which
has also been used to improve execution efficiency in a cloud
environment in some studies. For instance, Mezmaz et al.
[9] proposed an algorithm to obtain an resource allocation
scheme that minimizes consumed time and energy. Jena et
al. [10] proposed a GA-based resource allocation and task
scheduling scheme to minimize the execution time and max-
imize satisfaction. Dam et al. [11] presented an algorithm to
minimize execution time while simultaneously minimizing
the number of service instances. However, all these meth-
ods consider the case in which one task occupies only one
service instance. The allocation of multiple service instances
for a task has also been studied by many researchers. Wei
et al. [12] discussed a scheduling scheme for collaborative
tasks in a grid environment and Chen et al. [13] described
a computing technique for the collaboration of multiple ser-
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vice instances. Beaumont et al. [14] developed an algorithm
to schedule a bag of tasks in a cloud. Nevertheless, these
methods are suitable for a task composed of multiple highly
independent subtasks among which there are no frequent
interactions. During deployment, each subtask is dispatched
to a service instance. Essentially, it is similar to allocating a
service instance for a task.When allocating service instances
for tasks, these methods are more concerned with network
bandwidth than network latency. In contrast, in CMSS, enti-
ties are synchronized frequently and there are many short
messages [15]. Hence, network latency can clearly influ-
ence execution efficiency and should be carefully considered
during resource allocation. For a task consisting of subtasks
with complex interactions, such asmassage passing interface
(MPI) or work-flow tasks, advance-reservation or work-flow
scheduling schemes are utilized in resource allocation [16]
[17]. These strategies assume that the time consumed by
each subtask remains constant in different service instance
combinations, and minimize completion time by changing
the times at which subtasks arrive. However, in CMSS, the
time consumed by each entity is affected by the network
latency andother entities, and thus changeswith respect to the
service instance combination. In other studies [18], authors
proposed a scheduling strategy for co-simulation tasks that
comprise multiple federates and deployed these federates
to service instances. Considering the frequent interactions
among federates, the method migrated federates to as few
service instances as possible. However, this method does not
take the network latency into accountwhen allocating service
instances for tasks.

In summary, current resource allocation strategies are
still not suitable for allocating service instances for efficient
CMSS execution, and a resource allocation algorithm specif-
ically for this goal is necessary.

3 Intelligent resource allocation for CMSS

This section first presents the PEM used to estimate the
running time ofCMSSondifferent service instance combina-
tions. Then, an intelligent scheduling algorithm is proposed
for searching for the optimal service instance allocation. The
proposed algorithm combines simulated annealing (SA) and
a GA to obtain the optimal resource allocation scheme. In
the proposed algorithm, the PEM is introduced as the fitness
function.

3.1 Performance estimationmodel of CMSS

This paper focuses on the CMSS based on PADS, and thus
analyzing PADS execution in advance is necessary. Next, the
influence of the computing power of service instances as well
as the network latency among them on the running time is

described, i.e., the PEM is developed to estimate the running
time on different service instance combinations.

3.1.1 Analysis of PADS

During a PADS execution, entities are frequently syn-
chronized by time synchronization algorithms that mainly
include the optimistic time synchronization algorithm and
the conservative time synchronization algorithm. Because
the optimistic time synchronization algorithm is less effi-
cient than the conservative time synchronization algorithm
[15] in a cloud environment, this study considers only the lat-
ter one. In the conservative time synchronization algorithm,
each entity repeats four operations: i.e., receive events, exe-
cute safe events, update global safe time (GST) and release
events, until the simulation ends. The conservative synchro-
nization algorithm is as shown in Algorithm 1, where “end”

Algorithm 1: Conservative Time Synchronization
Algorithm

1 while GST <end do
2 //step 1: execute all safe events
3 execute safe events;
4 //step 2: synchronize with other entities and update GST
5 update GST;
6 //step 3: release events to outside
7 release events;
8 //step 4: receive events from outside
9 receive events;

10 end

is the end time of the simulation. During execution, GST
is used to detect the termination of the program and deter-
mine whether an event is safe. A safe events is one that can
be executed safely without incurring rollback. That is, if the
timestamp of an event is less than the minimum timestamp
of future events, the event is called a safe event.

In a distributed execution, a server is required to ensure
entities are synchronized. If a PADS application is executed
on multiple service instances, a service instance is needed
perform the role of the server. Synchronization occurs in two
cases: one is when all entities are synchronized to ensure that
all sent events have been received to avoid straggler events,
and the other occurs when the GST is calculated. During the
GST update phase, each entity sends a GST update request to
the server and waits for the new GST from the server. When
the server has received GST update requests from all entities,
it calculates a new GST and then broadcasts the new GST to
all entities. This process is shown in Fig. 1, and the details
are as follows: (1) All entities execute all their safe events
independently. (2) Each entity sends a GST update request
to the server and then waits in the GST barrier. (3) After
the server receives GST update requests from all entities, it
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Fig. 1 Operations in a simulation cycle

calculates a new GST and broadcasts the new GST to each
entity. (4) Each entity releases events, and notifies the server
of the number of received or released events (this notifica-
tion is called as a “REPORT”message), and then waits in the
event barrier. (5) After all the sent events have been received,
the server broadcasts a message to tell the entities to exit the
event barrier. This message is called a “READY” message.
Then, the next simulation cycle begins. In each simulation
cycle, after an entity sends out the GST request or releases
all the events targeting outside, it is blocked in the barrier
until a new GST or a “READY” message arrives. For conve-
nience, this paper treats the gap between two GST barriers
as the time consumed in a simulation cycle, as illustrated in
Fig. 2.

As Fig. 2 shows, the time consumed in each simulation
cycle is the sum of the time consumed in each phase, as
follows:

Ti = T g
i + T s

i + T r
i + T e

i + T u
i , (1)

where, for the i th simulation cycle, Ti is the total time
elapsed; T g

i is the duration from the time at which the server
sends out the GST to the time at which the entity receives
GST; T s

i is the duration from the time at which the entity
sends out events to the time at which the server receives the
“REPORT” message; T r

i is the duration from the time at
which the server sends out “READY” messages to the time
at which the entities receive them; T e

i is the time required to
execute events; T u

i is the duration from the time at which the
entity sends out a GST update request to the time at which the
server receives the GST requests from all the entities in i th
simulation cycle. As shown in Fig. 2, there are two barriers
in each simulation cycle: an event barrier and a GST bar-
rier. Each barrier creates the synchronization of the entities:
a fast entity must wait for the slower ones. Therefore, the
time consumed in a simulation cycle can be divided into two
parts according to the barriers. The first part starts with GST
broadcast and ends with the event barrier. This stage mainly
consists of communication, and the time it consumes is called
the communication cost. The second part lasts from the start

of the “READY”broadcast to the end of theGSTbarrier. This
stagemainly consists of event execution, and the correspond-
ing time consumed is called the computation cost. Thus, the
costs can be expressed as follows: T p

i = T r
i + T e

i + T u
i and

Tm
i = T g

i + T s
i , where T

m
i is the communication cost in the

i th simulation cycle and T p
i is the computation cost in the i th

simulation cycle. Then, Ti = T p
i + Tm

i , and the execution
time of application T can be expressed as follows, where C
is the number of simulation cycles.

T =
∑C

i
Ti =

∑C

i
(T p

i + Tm
i ). (2)

To estimate Ti , the key is to determine the number of
simulation cycles and estimate both the computation and
communication costs.

3.1.2 Running time estimation

According to formula (2), the first step in estimating the run-
ning time is to obtain the number of simulation cycles. This
section describes how to obtain the GST sequence using
collected events. Using the GST sequence, the number of
simulation cycles canbeobtainedbecause twoadjacent simu-
lation cycles are separated by aGTS.Once theGST sequence
is known, the processed events in each simulation cycle can
be acquired as well. Then, the communication and computa-
tion costs for different service instance combinations can be
determined, based on which the time consumed for a service
instance combination can be estimated.

Obtaining the GST sequence based on executed events
Obtaining the GST sequence, in this paper, depends on the
collected event information. This information should include
the event id, entity id, timestamp, and consumed time. Each
event has a unique id, so does the entity. The timestamp rep-
resents the simulation time at which the event is executed,
and the consumed time is the time consumed by event execu-
tion. To obtain the GST sequence according to the executed
events, the internal structure of an entity should be studied
in advance.

Each entity consists of a local queue, an input queue, and
an output queue, as shown in Fig. 3. The input queue is used
to store events received from outside, the local queue is used
to store events that the entity schedules itself, and the output
queue is used to store events scheduled for the outside. Dur-
ing execution, each entity maintains a local safe time (LST),
which denotes the minimum timestamp of future events and
can be calculated according to the GST. In each entity, events
with a timestamp less than its LST are treated as safe events
and can be executed. After completing the execution of the
safe events, new events are generated and are pushed into the
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Fig. 2 Consumed time in a
simulation cycle
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Fig. 3 Internal structure of a simulation entity

output queue or the local queue. Afterwards, the new GST
is calculated as the minimum timestamp of the events exist-
ing in the output queue, local queue, and input queue of all
entities. Then, the next simulation cycle begins. Obviously,
GST calculation needs to be combined with LST calculation
of each entity.

The analysis above indicates that newly generated events
by the execution of an event must be obtained. Thus, it is nec-
essary to use the event information to establish a scheduling
relationship among the events. The procedure for calculat-
ing the GST is shown in Algorithm 2. First, for each entity, a
corresponding class “simEntity” is constructed and stored in
list “enlist”. Class “simEntity” contains six variables: “id”,
“lst”, “minTime”, “inputQueue”, “localQueue”, and “out-
putQueue”. Variable “id” is the entity id, and “lst” represents
LST, and “minTime” is the minimum timestamp of events.
The “inputQueue”, “localQueue” and “outputQueue” are
used to represent the local, input and output queues respec-
tively as shown in Fig. 3. Then, for each entity, its LST is
updated according to last LST, as lines 6–9 show. Here, L A
is the lookahead used in CMSS. The “lastLSTList” stores the
last LST for all entities. Line 8 selects the value of GST or
LST, whicherver is larger, so that more events can be pro-
cessed safely. Then, each entity executes its safe events, and
the events newly generated according to the scheduling rela-
tionship are put into “localQueue” or “outputQueue”. Next,
“lst” is saved to update the LST, the “minTime” is calculated,
and the GST is updated to the minimum of the “minTime” of
all entities after they have completed safe event execution, as

lines 11–13 show. Afterwards, each entity releases the events
in “outputQueue”, and they are added to the “inputQueue” of
the destination entities, as lines 16–18 show. Finally, “lastL-
STList” is updated and the GST is stored, as lines 19 and
20 show. Then, the next round starts. Through this method,
the GST sequence can be obtained according to the collected
events, and the gap between two GSTs is a simulation cycle.
Moreover, the events processed in each simulation cycle can
be obtained, and the time consumed by event execution can
be calculated.

Communication cost estimation According to the definition
of Tm

i , the communication cost is the time consumed from
the start of GST broadcast to the end of the event barrier.
When an entity receives a new GST, it releases events to the
outside, transmits a red “REPORT” message to the server,
and then is blocked in the event barrier. Thus, the commu-
nication cost includes the overhead caused by transmitting a
GST from the server to all entities, transmitting the events
released from the source entity to the destination entity, and
transmitting a “REPORT” message to the server when an
entity receives events, i.e., the overheads in steps 4.1, 4.2,
and 3 in Fig. 1. While the entities wait for a “READY” mes-
sage from the server, they are blocked in the event barrier,
but the server broadcasts the “READY” message only when
it receives a “REPORT” message indicating that all the sent
events have been received. Therefore, the communication
cost in each simulation cycle is the maximum of the sum of
these three overheads. To account for the overhead caused
by some other basic operations performed at this stage, such
as sending or receiving a message in the server, the method
proposed in this paper includes an additional variable that
represents their sum of them. Using this method, the time
consumed during this stage can be estimated by following
formula.

Tm
i = max

1≤ j,k≤n
(Ok + Ojk + Oj ) + T a

i , (3)

Here, Ok is the overhead of transmitting a message from the
server to entity k, Ojk is the overhead from entity j to entity
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Algorithm 2: calculation of GST based on collected events
1 GSTList=0; lastLSTList=0; GST=0;
2 while GST <tend do
3 LSTList=0;
4 foreach entity en in enList do
5 en.lst = en.minT ime = ∞;
6 foreach lastLst in lastLSTList do
7 en.lst = min(en.lst, last Lst + L A);
8 en.lst = max(en.lst,GST );
9 end

10 en.executeSafeEvents();
11 LSTList[en.id] = en.lst ;
12 en.minT ime = minimum timestamp of events;
13 GST = min(GST , en.minT ime);
14 end
15 //release events
16 foreach element en in enList do
17 en.releaseEvents();
18 end
19 copy LSTLst to lastLSTList;
20 GSTList.add(GST);
21 end

k, T a
i is the time consumed by additional operations in the

i th simulation cycle, and n is the number of entities.
According to the LogP model [19], the overhead of trans-

mitting a message of size L from one terminal to another is
O = Onull + k ∗ L , where Onull is the overhead of trans-
mitting a null message and k is a coefficient that denotes the
overhead of handling a message of unit size. In PADS, mes-
sages are usually a few bytes long [15], and thus this paper
assumes O ≈ Onull . Further, the overhead of transmitting
a null message mainly includes the sending, propagation,
and receiving overheads, of which the sending and receiving
overheads are much lower than the propagation overhead.
Therefore, the proposed method mainly considers the prop-
agation overhead when estimating Onull . To include the
influence of other auxiliary information transmissions that
ensure the correctness of the simulation execution in each
simulation cycle, the proposed model integrates a factor in
the transmission overhead calculation for a message (which
can be treated as a null message because it is usually short)
and assumes O ≈ λDsd , where Dsd is the network delay
from the source to the destination and λ is a coefficient that
is determined by the simulation engine and can be obtained
through linear fitting.

Computation cost estimation According to the definition
of T p

i , the computation cost includes the overhead caused
by transmitting a “READY” message from the server to the
entity, executing the safe events, and transmitting a GST
update request to the server. Each entity starts to execute
events when it receives a “READY”message from the server.
Upon completing the event execution, the entity sends a GST

update request to the server, and then is blocked in the GST
barrier while waiting for new GST, as shown in Fig. 1. At
this stage, the new GST will not be broadcast until the server
receives the GST requests from all entities, and all entities
will exit GST barrier only when they receive the new GST.
Hence, the computation cost in each simulation cycle is the
maximum of the sum of these three overheads above, as fol-
lows.

T p
i = max

1≤ j≤n
(Oj + T e

i j + Oj )

= max
1≤ j≤n

(2 ∗ Oj + T e
i j ),

(4)

where Oj is the overhead of transmitting a message from
the server to entity i , T e

i j is the time consumed by executing
events of the j th entity in the i th simulation cycle, and n is
the number of entities.

Considering that the service instances in a cloud envi-
ronment are homogeneous, their different computing powers
mainly influence the time consumed by events. If the com-
puting power of a service instance A and the time consumed
by an event on this service instance are known, then the time
consumed by the event on another service instance B can
be estimated if the computing power of service instance B
is known. That is, given two service instances SIi and SI j ,
andWi , the computing power of SIi , andWj , the computing
power of SI j , if the execution time of event E on service
instance SIi is Ti , then the execution time Tj of event E on
the service instance SI j is:

Tj = (Wi ∗ Ti )/Wj . (5)
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Formulas (2)–(5) are combined to form the PEM that can be
used to estimate the running time of CMSS applications on
a cloud.

To verify the effectiveness of the PEM, a group of CMSS
applications based on the PHOLDmodel [20], which is used
as benchmark in PADS, were implemented. In each event,
105 addition computations were performed. The applica-
tions were executed on three, four, and sixe service instances,
respectively. The network latency was set using the tc com-
mand. Then, the estimated running time based on PEM was
determined and compared with the actual running time. The
correlation coefficients between the estimated running time
and actual running times are 0.988, 0.989, and 0.989, respec-
tively. The high correlation between these values shows that
the estimated running time can be used as a guideline for
allocating resources to reduce the actual running time.

3.2 Optimization via genetic algorithm

Typically, a CMSS application needs to be executed many
times and one single execution requires multiple service
instances. Assume that a CMSS application needs to be exe-
cuted m times simultaneously and that a single execution
needs n service instances. In this case, the overall running
time TD of executing a CMSS application on a cloud can be
expressed as follows.

TD = max
1≤v≤M

T v, (6)

where T v is the time consumed by the execution on service
instance combinationv and there arem∗n service instances in
total thatmust be chosen from the provided service instances.
Formula (6) infers that an appropriate service instance allo-
cation can reduce the running time of a CMSS application on
a cloud. To obtain the optimal scheme, this section presents
PEMOA, inwhichSA is incorporated into themutation phase
of a GA, with PEM introduced as the fitness function for
assessing a service instance combination.

Here, assume that the service instances in the cloud
environment is sufficient. The service instances provided
by the cloud service providers are expressed as P =
(P1, P2 · · · PQ), and network latency among them is
expressed as a two-dimensional array D = [delayi j ](Q∗Q),
where 1 ≤ i, j ≤ Q, Q is the number of service instances,
and delayi j is the network latency between service instance
i and j . The service instances required to execute a CMSS
application are expressed as R = (R1, R2 · · · Rm∗n), where
m∗n denotes the number of service instances required by exe-
cuting aCMSSapplication in a cloud environment.Usually, a
service instance is represented by a triplet< cp, disk, bw >,
where cp, disk, and bw represent the computing power,
disk capacity, and bandwidth of the service instance, respec-

tively. Therefore, the allocation of service instances can be
expressed as follows.

Minimize TD (7)

subject to

Rd
i ≤ Pd

i (1 ≤ i ≤ m ∗ n), (8)

Rb
i ≤ Pb

i (1 ≤ i ≤ m ∗ n), (9)

where Rd
i and Rb

i denote the disk and bandwidth of the i th
required service instance. Similarly, Pd

i and Pb
i represent the

disk and bandwidth of the i th provided service instance. The
selection of service instances tominimize the time consumed
by a CMSS application is an NP-hard problem. SA and GA
are two common algorithms used for searching for an optimal
solution to such problems. However, GA is strong at global
searches but weak at local searches, and SA is effective for
local searches [21]. The proposed method hence combines
SA and GA to utilize their respective advantages. The main
steps include coding, mutation, and crossover. Except for the
mutation phase, in which SA is introduced, the phases are
similar to those of GA. The details are as follows.

– Coding: Because a CMSS needs to be executed m times
simultaneously and a single execution needs n service
instances, a chromosome is expressed as a list of quali-
fied service instances with a length of m ∗ n. Each gene
of a chromosome is a service instance (SI). A service
instance is qualified if it satisfies the requirement of
(8) and (9). Then, each chromosome can be expressed
as [SI11, SI12 · · · SI1n · · · SIi j · · · SIm∗n], as shown in
Fig. 4. For simplicity, a chromosome is expressed as
[SIi j ](m∗n), where 1 ≤ i ≤ m, 1 ≤ j ≤ n, i is the service
instance combination index, and j is the service instance
index in the service instance combination (SIC). Each
gene in one chromosome is from the provided service
instances (the provided service instances are contained in
a set of SIs ) and a SI can be “used” in one chromosome
only once. Thus, when selecting a SI for a gene in one
chromosome, the “unused” SIs are first determined, and
then, a qualified SI is chosen from them. If a SI is selected
to constitute a chromosome, it is marked as “used” in this
chromosome. In this way, one “unused” SI can be found
for each gene.

– Mutation:As shown inFig. 4, the first step of themutation
phase is to randomly choose a chromosome and clone it.
The clone is denoted as chromo. Then, a gene SIi j in
chromo is randomly selected and the service instance
combination that contains SIi j is determined i.e., the i th
service instance combination SICi of chromo. Next,
according to SICi , the “unused” SIs, i.e., the SIs that
are not contained by SI j (1 ≤ j < i , or i < j ≤ m),
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are obtained. The third step is to utilize SA to obtain
n service instances from the “unused” SIs to replace
SICi and hence minimize the running time on the i th
service instance combination of chromo. After muta-
tion, the clone is added into the chromosome set, and
the chromosome with the least fitness is removed from
the chromosome set.

– Crossover: Two chromosomes are chosen and cloned.
The clones are called chromoa and chromob. Then,
the positions where the crossover starts and ends,
expressed as st and end, are determined. Next, each
pair < chromoa[i], chromob[i] >, where st ≤ i ≤
end, are checked to determine if they are interchange-
able. Here, chromoa[i] and chromob[i] represent the
i th gene of chromoa and chromob, respectively. If
they are interchangeable, the i th gene of chromoa is
replaced with chromob[i] and the i th gene of chromob
is replaced with chromoa[i], as shown in Fig. 4. If
they are not interchangeable, this pair is skipped. A pair
< chromoa[i], chromob[i] > are interchangeable if
chromob[i] is not contained in chromoa and chromoa[i]
is not contained in chromob. After crossover, chromoa
and chromob are added to the chromosome set, and the
two chromosomes with least fitness are removed from
the chromosome set.

The operations above, which form the intelligent resource
allocation algorithm for CMSS, are listed in Algorithm 3.

In Algorithm 3, the function calcAverageFitness deter-
mines the average fitness of all the chromosomes and the
calcMaxFitness obtains the maximum fitness of all the chro-
mosomes. The value of i teration is set by the user to denote
the number of iterations. When the loop has been executed
a specified number of times, the algorithm is terminated and
the best chromosome is the final result. To avoid premature
convergence, a self-adaptive strategy is adopted [22]. In this
algorithm, the strategy adjusts the mutation probability and
crossover probabilities adaptively, as shown in lines 15 and
21. When all the chromosomes converge to a local opti-
mum, i.e., when the difference between the maximum and
average fitnesses is similar, both the mutation and crossover
probabilities increase. In other words, both mutation and
crossover probability vary inversely according to the differ-
ence between the maximum and average fitness. Moreover,
this algorithm is designed to protect the “good” chromo-
somes. The closer the fitness of selected chromosomes are
to the maximum fitness, the smaller both the mutation and
crossover probabilities should be. Therefore, the values of
the mutation probability and crossover probability vary in
direct proportion to the difference between the fitness of the
selected chromosomes and the maximum fitness. Mutation
and crossover are performed according to the mutation and
crossover probabilities, respectively. In addition, in themuta-

Algorithm 3: Intelligent resource allocation algorithm
Output: bestChromo

1 Init_pop(); //initialize the population
2 preAverageFitness = calcAverageFitness();
3 //iteration is set by user
4 while iteration >0 do
5 curAverageFitness = calcAverageFitness();
6 //function abs is to obtain absolute value
7 preAverageFitness = curAverageFitness;
8 maxFitness = calcMaxFitness();
9 switch PHASE do

10 case MUTATION
11 //fitness is fitness value of selected solution.
12 fitness = getFitness(selectOne());
13 pro_mutation =

k1 ∗ (maxFitness − f i tness)/(maxFitness −
cur AverageFitness);

14 mutate(pro_mutation);//perform muatation
operation

15 endsw
16 case CROSSOVER
17 //fitness is the larger fitness value of the two

parents to be crossed.
18 fitness = getLargerFitness(selectTwo());
19 pro_crossover =

k2 ∗ (maxFitness − f i tness)/(maxFitness −
cur AverageFitness);

20 crossover(pro_crossover);//perform crossover
operation

21 endsw
22 endsw
23 iteration = iteration-1;
24 end
25 bestChromo = getBestChromosome();

tion and crossover phases, all the operations are performed
on the clones so that the good chromosomes are preserved.
Using this method, global convergence can be achieved [23].
During the calculation of the fitness of one chromosome, the
estimated running time (i.e., the maximum of the result of
PEM on the m service instance combinations) is utilized.
The fitness is the inverse of the running time for this chro-
mosome. Finally, based on the output of Algorithm 3, the
best chromosome is obtained and its contained m ∗ n service
instances are used as the allocation scheme of PEMOA.

4 Experiments and analysis

4.1 Experiment design

Currently, gang scheduling is often used to schedule par-
allel tasks. A gang represents the resources required by an
application, i.e., a service instance combination for a CMSS
application. Because CMSS often needs to be executed mul-
tiple times simultaneously, multiple gangs are required. For
a bag of gangs, an adapted first come first served (AFCFS)
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Fig. 4 Adaptation of genetic algorithm

scheme is often adopted [24]. In addition, a max-min-based
algorithm (MMBA) [25] is often used to allocate service
instances in a cloud environment to minimize the run-
ning time. This paper compares PEMOA with AFCFS and
MMBA.

The PHOLDmodel [20] is usually used as a benchmark in
PADS to model the computation within and communication
among entities, and is suitable for studying manufacturing
systems, which have entities that need to perform complex
computations and communicate with the outside frequently.
To verify the performance of PEMOA, a PHOLDmodel and
a logistics system model (LSM) for the supply chain were
adopted and a series of experiments with different scenar-
ios were performed. In the experiments, the entity groups
do not vary, i.e., the entities contained in each group do not
vary. Each entity group, as a whole, is dispatched to a ser-
vice instance before the simulation execution. In the PHOLD
model, there aremultiple objects. Initially, each object sched-
ules a certain number of events. In each event, a specified
number of addition operations are handled and a few events
are scheduled. As with an LSM, it is utilized to study the
transportation strategy in a supply chain. In an LSM, each
warehouse is modeled as an entity, and the transportation of
goods from one warehouse to another is modeled as com-
munication among the entities. Each time goods arrive at a
warehouse, some computations such as updating the state
of the goods and recalculation of the next station toward
their destination are performed. Then, goods with the same
next station are packed into a batch and sent out as a whole.

Initially, the goods are generated according to a specified
number and randomly assigned to different starting ware-
houses and destinations. During the execution, the goods are
distributed to the entity according to their startingwarehouses
and each batch of goods is transported only to the adjacent
warehouse, as shown inFig. 5. In the experiments, the simula-
tion engine was YH-SUPE [26] and the corresponding value
of λwas about 6 (measured through linear fitting). The simu-
lation applications were executed on a cluster in which each
node was used as a service instance. The operating system of
the service instances was Linux Server release 5.5, and each
service instance had 4GRAM,whichwasmore than required
by the applications above. All the service instances were
homogeneous and only the CPU frequency was adjusted.
Hence, the computation power of a service instance can be
represented by its CPU frequency. The distance between ser-
vice instances was generated randomly within the range 0 to
10ms. The CPU frequency and network latency of service
instances could be adjusted using the cpufrequtils package
[27] and tc command. Here, both k1 and k2 in Algorithm 3
were set to 0.5 and 1.0, respectively, according to practical
considerations [28]. The variable i teration was set to 1,000.
The initial population size in the GA was set to 40. For the
SA, the initial temperature was 100 and initial size was 50.
The rate of temperature decline is 0.999 and the termination
temperature was 1. In the experiments, each application for
a resource allocation scheme was executed ten times and the
average running time is reported.
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Fig. 5 Simplified model of the transportation in supply chain

4.2 Performance analysis

Using the above two prototypes, a series of applications
were designed and executed on different numbers of service
instances (i.e., different sizes of service instance combina-
tions), as shown in Table 1. For each application, 40 copies
were simultaneously run on different service instance combi-
nations. An explanation of each variable is given in Table 2.
“AppName” is the name of the designed CMSS application
in subsequent experiments. For each designed application,
the three strategies mentioned above (MMBA, AFCFS, and
PEMOA)were used to search for the optimal service instance
allocation scheme. The average running times of ten execu-
tions on the allocated service instances obtained by the three
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Fig. 6 Comparison of running time on allocated service instances by
three strategies

strategies are shown in Fig. 6. Compared with MMBA and
AFCFS, PEMOA can reduce the running time by more than
7% (or even by 35% for some applications). Tt is not certain
whether AFCFS or MMBA performs better than the other,
but, in general, MMBA outperforms AFCFS. This is because
they both select service instances randomly, but AFCFS
selects the qualified ones among all the service instances
whereas MMBA selects service instances among those with
greatest computing power. The computing power is an impor-
tant factor that influences the running time. Hence, MMBA
is better overall, but this cannot be guaranteed in all cases
because both of methods ignore the distance among service
instances, which is also important. Nevertheless, in PEMOA,
both the computing power and distances between service
instances are considered, and thus PEMOA can find a bet-
ter service instance allocation scheme than both AFCFS and
MMBA.

Table 1 Configuration of experiments based on PHOLD and LSM

Application prototype PHOLD Application prototype LSM

AppName App-1 App-2 App-3 AppName App-4 App-5 App-6

NO 6 8 10 NG 50 200 200

NE 8 10 10 NW 25 50 100

NAO 1.00E4 1.00E6 1.00E7 NSI 2 5 6

NSI 3 4 6 SET 10000 5000 5000

SET 10000 10000 10000 LA 3 2 1

LA 1 2 3

Table 2 Explanation of
variables NO Number of objects NG Number of goods

NE Number of events NW Number of warehouses

NAO Number of addition operations SET Simulation end time

NSI Number of service instances LA Lookahead
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Table 3 Configuration of
experiments for analyzing
influence of computation load

Application prototype PHOLD

NO 8

NE 10

NSI 4

SET 5.00E3

LA 1

AppName NA-5E4 NA-1E5 NA-5E5 NA-1E6 NA-5E6 NA-1E7 NA-5E7

NAO 5.00E4 1.00E5 5.00E5 1.00E6 5.00E6 1.00E7 5.00E7
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Fig. 7 Comparison of three strategies for analyzing influence of com-
putation load

Because CMSS applications may be computation inten-
sive or communication intensive, different CMSS applica-
tionsmayplace different requirements on the service instance
combination. To evaluate the adaptability of PEMOA for dif-
ferent CMSS applications, the impact of the computing load,
event density, and number of service instances required on
PEMOAperformance are considered, and a series of applica-
tions with different configurations were designed according
to PHOLD. The computation load is the number of oper-
ations performed in an event, and the event density is the
number of events processed in a simulation cycle. For con-
venience, the running time on the service instances allocated
according to one strategy is called the running time for this
strategy.

4.2.1 Computation load

This section reports the result of a group of experiments
designed to investigate the influence of computation load
on the performance of PEMOA, as shown in Table 3. Dif-
ferent values of NAO indicate different computation loads
in each event. Figure 7 compares the running time for the
service instances allocated by the three strategies. PEMOA
allocates service instances that reduce the running time of
CMSS applications better than the service instances allo-
cated by MMBA and AFCFS. In addition, as Fig. 7 shows,
MMBA is better than AFCFS in most case for various kinds
of computation load, which is similar to the conclusion in
Sect. 4.2. Moreover, Fig. 7 indicates that, overall, the perfor-
mance increase obtained by PEMOA compared with those
of bothMMBA and AFCFS declines as NAO increases. This
is because, when NAO increases, each event consumes more
time and accounts for a larger proportion of the running time,
increasing the impact of computingpower on service instance
selection inPEMOA(which considers both computing power
and network latency). Nevertheless, in MMBA and AFCFS,
computing power is the only factor considered in service
instance selection. Hence, the impact of computing power
of the three strategies becomes closer as NAO increases.
As a result, the performance gap between PEMOA and the
other two strategies narrows, and the advantage of PEMOA
is weakened. In other words, PEMOA performs better for
communication-intensive CMSS applications.

Table 4 Configuration of
experiments for analyzing
influence of event density

Application prototype PHOLD

NO 8

NAO 5.00E5

NSI 4

SET 1.00E4

LA 3

AppName NE-5 NE-10 NE-15 NE-20 NE-25 NE-30 NE-35

NE 5 10 15 20 25 30 35
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Fig. 8 Comparison of three strategies for analyzing influence of event
density

4.2.2 Event density

This section reports the result of a group of experiments
designed to investigate the influence of event density (num-
ber of events, NE) on the performance of PEMOA, as shown
in Table 4. The running times on the service instances allo-
cated by the three strategies are shown in Fig. 8. Compared
with MMBA and AFCFS, PEMOA can better reduce the
running time of CMSS applications. Moreover, MMBA is
better than AFCFS in most cases, which is similar to the
results above. In addition, Fig. 8 shows that the number of
events has little influence on the performance of PEMOA.
This is because, even though the event density increases, the
time consumed for event execution does not increase much
due the strong computing power of the CPUs. Consequently,
the ratio of communication overhead to the time consumed
for event execution does not vary much, either. Therefore,
and the gap between the performance of PEMOA and those
of the other two strategies does not change much when NE
increases.

4.2.3 Number of service instances

This section reports the result of a group of experiments
designed to investigate the influence of the number of service
instances (NSI) on the performance of PEMOA, as shown in
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Fig. 9 Comparisonof three strategies for analyzing influence of number
of service instances

Table 5. The results, shown in Fig. 9, indicate that the run-
ning time for the service instances allocated by PEMOA is
less than those for the service instances allocated by MMBA
and AFCFS. In addition, the relationship between MMBA
and AFCFS is similar to that in above experiments. How-
ever, as the size of service instance combinations increases,
the relative amount of time saved by PEMOA compared with
the results of using MMBA and AFCFS declines. This is
because for a CMSS application, fewer copies must be exe-
cuted simultaneously, and increasing theNSIwill result in the
selection of more service instances. Given a specific number
of service instances, selectingmore of themwill lead to a less
efficient service instance combination. As a result, the gap
between PEMOA and other two strategies reduces, as can
also be inferred from formula (6). Therefore, for an applica-
tion that requires fewer service instances, the PEMOA yields
greater improvements.

5 Conclusion and future works

Simulation is an important stage in a manufacturing sys-
tem. It can contribute to the design and optimization of the
manufacturing system and should be executed as quickly
as possible to shorten the time to market. For large-scale
CMSS operated in a cloud environment, its execution usually

Table 5 Configuration of
experiments for analyzing
influence of number of service
instances

Application prototype PHOLD

NO 16

NE 10

NAO 1.00E6

SET 1.00E4

LA 2

AppName NSI-2 NSI-3 NSI-4 NSI-5 NSI-6 NSI-7 NSI-8

NSI 2 3 4 5 6 7 8
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requires multiple service instances to obtain sufficient com-
puting resources, but the computing power and the network
latency of the service instances greatly affect the running
time, making the appropriate allocation of service instances
necessary. However, the frequent synchronizations in CMSS
lead to entity lifetime interdependencies, which makes the
estimation a service instances computing power and network
latency on the running time challenging. Hence, it is diffi-
cult to appropriately allocate service instances for CMSS. To
solve this problem, this study proposed a PEM based on exe-
cuted events and the synchronization algorithm for a service
instance combination. Then, based on PEM, a resource opti-
mization algorithm called PEMOA that incorporates SA into
a GA was proposed to allocate appropriate service instances
for reducingCMSS running time in a cloud environment. The
experimental results show that PEMOA can reduce the run-
ning times of the AFCFS scheme and MMBA by more than
7%. In addition, the influence of event density, computation
load, and the number of service instances was analyzed. The
results indicate that event density does not affect the perfor-
mance of PEMOA relative to those of MMBA and AFCFS,
but the relative performance declines when either the compu-
tation load or the size of the service instance combinations
increase. Because only the conservative time synchroniza-
tion algorithm was studied in this paper, the optimistic time
synchronization algorithmwill be considered in future work.
Moreover, in addition to the resource allocation strategy, fault
tolerance and task migration are two factors that should also
be considered to ensure efficientCMSSexecution. Therefore,
they are also directions of our future work.
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