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Abstract
The problem of integrated project portfolio selection and scheduling (PPSS) is among the most important and highly pursed 
subjects in project management. In this study, a mathematical model and algorithm are designed specifically to assist deci-
sion makers decide which projects are to be chosen and when these projects are to be undertaken. More specifically, the 
PPSS problem is first formulated as a nonlinear multi-objective model with simultaneous consideration of benefit and risk 
factors. Due to the complexity and uncertainty involved in most real life situations, fuzzy numbers are incorporated into the 
model, which can provide decision makers with more flexibility. Then, an inverse modeling based multi-objective evolu-
tionary algorithm using a Gaussian Process is presented to obtain the Pareto set. Finally, an illustrative example is used to 
demonstrate the high efficacy of the foregoing approach, which can provide decision makers with valuable insights into the 
PPSS process. The proposed algorithm is found to be more effective compared with two other popular algorithms.

Keywords  Project portfolio selection and planning · Multi-objective optimization · Fuzzy numbers · Inverse modeling · 
Gaussian process

1  Introduction

Project portfolio selection and scheduling (PPSS) strives to 
choose appropriate projects from a given set of competing 
alternatives and make an overall development plan. Obvi-
ously, excellent project systems are regarded as critical to 
organizations as poorly selected projects are often dysfunc-
tional and may even compromise other projects [1]. How-
ever, decision makers (DMs) often face a difficult tradeoff 
during a project management process. On the one hand, they 
cannot afford to develop an indiscriminately large number 
of projects subject to scarce resources, such as money, 

manpower, and equipments. On the other hand, they need 
to develop the right types of projects to maximize their con-
tributions. Therefore, there is a great demand for an overall 
plan for the selection and scheduling of multiple projects to 
form an effective and efficient portfolio solution.

The PPSS process, however, is difficult to carry out for 
DMs, as they may have to take into account extensive data 
as well as conflicting criteria. Another issue in the problem 
is associated with the uncertainty of the decision-making 
environment. In most real-life situations, it is often difficult 
or even impossible, for DMs to provide complete and pre-
cise information regarding project management problems 
due to complexity, time pressure or limited expertise. Fuzzy 
set theory was proposed to handle this, because it can pro-
vide DMs with more freedom to represent uncertainty and 
flexibility regarding information [2, 3]. Some authors have 
focused on PPSS problem under a fuzzy environment. In 
general, a great deal of attention in the literature has been 
devoted to the selection, ranking, or scheduling problem in 
various fields, under both crisp and fuzzy environments. 
The common approaches toward the problem can be clas-
sified into three categories: multi-criteria decision making 
(MCDM), mathematical programming models, and intel-
ligent optimization algorithms. Please refer to Sect. 2 for a 
detailed literature review.
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Normally, the PPSS problem consists of selecting the 
appropriate projects from a given set of alternatives and 
scheduling their development time under various constraints. 
One of the main goals is to maximize the project benefits 
to the highest possible extent. Meanwhile, uncertainties 
may arise in the development of the selected projects. The 
risk of some projects’ failure to provide desired benefits is 
another important factor that cannot be overlooked. In other 
words, various criteria need to be considered throughout the 
PPSS process. Thus, the PPSS problem could be treated as 
a multi-objective optimization problem which is NP-hard 
in nature. In the currently existing studies, two solutions 
are mostly applied in solving the foregoing problems. The 
first one focuses on transforming multi-objective problems 
into a single objective. The key limitation is that each opti-
mization run finds only one single solution and knowledge 
of the problem is required to solve it. However, the PPSS 
problem may consist of contradictory objectives (like ben-
efit and risk). Quite often, these objectives contradict each 
other. That is, the larger benefit often means a higher cor-
responding risk. An increment in one feature could be done 
at the cost of the other. Therefore, it is unreasonable to mix 
these objectives into one objective. The second approach 
uses population based multi-objective optimizing algorithms 
to search for a set of Pareto optimal solutions.

Although research has been carried out in the PPSS field, 
several issues remain to be elucidated. First, most existing 
studies focused only one the selection or scheduling of pro-
ject portfolios. However, it makes more sense to take into 
account the selection and scheduling of project portfolios 
simultaneously. Next, benefit is mostly treated as the main 
objective in the evaluation of various solutions whereas risk 
is seldom considered, which may cause unreasonable or inef-
fective solutions to be recommended [1]. In addition, most 
existing studies used crisp values in the PPSS modeling and 
solving process, which is difficult or impossible in real life 
situations. Thus, incorporating uncertainties regarding infor-
mation in the decision making process is more realistic and 
natural. Last, most algorithms proposed to tackle the PPSS 
problem often entail great computational costs, especially 
when the number of objectives is large [4].

To address all the aforesaid research void, a quantitative 
mathematical model and an inverse modeling based multi-
objective evolutionary algorithm (IMMOEA) are proposed 
in this paper to solve the PPSS problem. First, the PPSS 
problem is formulated as an optimization problem with new 
objectives under fuzzy constraints. Then, a novel algorithm, 
named IMMOEA, is used and modified to solve the model 
in order to obtain the Pareto set. Comparable experiments 
are also executed to verify its effectiveness. To the best of 
our knowledge, this is the first time that such an algorithm 
has been designed specifically for solving the PPSS problem 
within a fuzzy environment.

The rest of the paper is organized as follows. In Sect. 2, a 
brief review of different methods developed for the project 
portfolio selection and/or scheduling problem is presented. 
Subsequently, the PPSS problem is briefly described and 
a quantitative model is designed having appropriate con-
straints and formulations. The proposed algorithm for solv-
ing the PPSS problems is then explained in detail in Sect. 4. 
In Sect. 5, an illustrative example is studied to verify the 
algorithm’s feasibility and practicality. Comparative studies 
are carried out to demonstrate its usefulness and efficacy. 
Finally, conclusions and suggestions are made in Sect. 6.

2 � Literature review

To date, a great deal of attention in the literature has been 
devoted to tackling the evaluation, selection or scheduling of 
project portfolios in various fields. In general, DMs need to 
evaluate project portfolios and execute the selection (sched-
uling) process based on certain criteria or try to find the 
most appropriate set of solutions that can better meet their 
special requirements. To sum up, all these methods used to 
tackle this area can be classified into three categories: (1) 
MCDM methods, (2) mathematical programming models, 
and (3) intelligent optimization algorithms. In the follow-
ing part, this paper reviews and analyzes some popular and 
representative methods adopted in existing studies for each 
category mentioned above as explained in the following 
three paragraphs.

Within different MCDM methods, Analytic Hierarchy 
Process (AHP) and Analytic Network Process (ANP) are 
two of the most widely used approaches in the literature. 
For both methods, the relative importance for a given set 
of projects should be determined. Some other distance-
based approaches, like TOPSIS, VIKOR or outranking 
methods, like ELECTRE, PROMETHEE, are also used 
to evaluate and select an appropriate set of projects. For 
example, Vetschera and de Almeida [5] studied the use 
of PROMETHEE outranking methods for portfolio selec-
tion problems. Likewise, Tavana et al. [6] combined Data 
Envelopment Analysis (DEA), the Technique for Order of 
Preference by Similarity to Ideal Solution (TOPSIS), and 
linear Integer Programming (IP) for the screening, ranking, 
and selecting of appropriate project portfolios in a fuzzy 
environment. Recently the use of hybrid methods combining 
two or more techniques has recently received more atten-
tion. Overall, numerous approaches can be applied to solve 
MCDM problems associated with project portfolio selection 
or scheduling [7, 8].

In the second category, researchers have proposed dif-
ferent mathematical programming models based on real-
ity and solved the models to obtain appropriate solutions. 
Hassanzadeh et al. [9] developed a multi-objective integer 
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programming model with imprecise information both in 
objectives and constraints for use with Research and Devel-
opment (R&D) project portfolio selection problems. Schaef-
fer and Cruz-Reyes [10] proposed a mathematical model 
framework for portfolio optimization in which projects were 
allowed to be divided into different tasks and dependencies 
within tasks could be handled as well. Sefair et al. [11] 
developed a mean-semivariance project portfolio selection 
model and used the model in the oil and gas industry. Chen 
et al. [12] formulated a mixed integer linear programming 
model considering multiple concurrent projects with the 
objective of minimizing the total tardiness of all projects. 
In summary, researchers have been focusing on proposing 
various models to represent the real world situations and 
trying to solve the associated models to obtain appropriate 
solutions [13–16].

As for the third category, some intelligent optimization 
algorithms have been designed to tackle the complexity of 
the problem, especially as the number of projects grows. 
Yassine et al. [17] proposed two new genetic algorithm 
approaches for scheduling project activities under a multi-
project, resource-constrained, and iterative environment. 
Xiong et al. [18] addressed the problem of R&D project 
selection associated with resource allocation and activity 
scheduling by using a cooperative coevolutionary multi-
objective algorithm to obtain high-quality solutions. Kumar 
et al. [19] proposed three meta-heuristics for the solution 
of project portfolio selection and scheduling problem. The 
performance of the proposed algorithms has been found to 
be promising in terms of quality and convergence. Overall, 
the advantage of using intelligent optimization algorithms in 
the PPSS problem is their high efficiency in finding appro-
priate solutions.

Despite the considerable amount of research in the PPSS 
field, more comprehensive quantitative model under uncer-
tainty and corresponding algorithms are needed to conduct 
selection and scheduling processes. Thus, an improved sci-
entific model and algorithm for making reasonable decisions 
for the PPSS problem could prove to be very useful.

3 � Problem formulation

In this section, the mathematical model about the PPSS 
problem is proposed. First, common notations used through-
out this paper are listed. Then, the portfolio definition, objec-
tives, and constraints are given with explanations in the fol-
lowing subsections.

3.1 � Notations

In this section, some common notations used in the model 
formulation are explained (Table 1).

3.2 � Portfolio definition

In the PPSS problem, a DM or organization needs to select 
one or more projects from a set of I candidate projects and 
subsequently schedule the starting time of each selected 
project within a time of period of length T under various 
constraints. Thus, the associated decision variables, xit , can 
be defined as

where i = 1, 2,… , I and t = 1, 2,… , T .

In this situation, any vector x = {x11, x12,… , x1T ;x21,

x22, … , x2T ;… , x
I1, xI2,… , x

IT
} with a length of I ⋅ T  vari-

ables, denotes a portfolio. Note that the duration of each 
project di(i = 1, 2,… , I) , where di can be a time unit such as 
months or years, is given. Hence, in this study, we focus on 
the starting period of each project if it is chosen.

For example, a DM in an armament company may have a 
budget to develop some new weapons to meet the capability 
requirements of military operations over the next 5 years. 
Ten possible candidate types of weapons are under consider-
ation. However, only a small set of weapons (projects) can be 
chosen and developed due to budget constraints. In this case, 
there are altogether 2I⋅T = 210×5 = 250 vectors or solutions. 
Then, the vector x = {0, 0, 1, 0, 0;1, 0, 0, 0, 0;… , 0, 0, 0, 0, 0} 
is an example of a profile. It denotes that the first weapon is 
chosen in the third year, the second weapon is selected in the 
first year, and the last weapon is not chosen. However, DMs 
need to evaluate different portfolios based on appropriate 
criteria under various constraints.

Note that each project can provide corresponding benefits 
during its duration. In addition, these projects have specific 
resource requirements in different periods and may possess 
risks that should be taken into account when they arise. Nor-
mally, higher benefits for a project mean more resources 
are needed and the risks are greater. In general, benefits, 
resource requirements, and risks are time-dependent.

3.3 � Objectives

Different portfolios need to be evaluated by the DMs based 
on a set of criteria over T time periods. There are two main 
types of criteria: benefit type such as profits and market 
shares, for which one desires higher values, and cost type 
like risks which one wishes to minimize.

To begin with, consider the first type of criterion. Assume 
that there are Q kinds of benefits that DMs want to maximize 
simultaneously. Each benefit is represented by an objective 
function. For a specific time period, each benefit contains 
two main components. On the one hand, for each feasi-
ble portfolio, the individual contributions of the selected 

(1)xit =

{
1 if project i starts at time t

0 otherwise
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projects based on their implementation periods, should be 
considered. On the other hand, synergies may exist between 
certain projects, which will result in additional positive or 
negative effects [20]. Let cq,i,k+1−t be the value of benefit 
q provided by project i in period k. Note that in period k, 
the implementation time of that project is k + 1 − t if it is 
selected (starts) at time t.

Based on the foregoing discussion, the time-dependent 
objective function associated with benefit q in period k is 
defined as

(2)
Fqk(x) =

I∑
i=1

k∑
t=1

cq,i,k+1−t ⋅ xit +

J∑
j=1

gjk(x)aqjk

q = 1, 2, … ,Q, k = 1, 2,… , T ,

certain projects. Note that gjk represents whether synergy 
j comes into effect in period k, and it takes value 1 if syn-
ergy j is activated and 0 otherwise. In other words, only 
when the portfolio contains all the projects that belong to the 
set Aj(j = 1, 2,… , J) in period k ( k = 1, 2,… , T  ), is gjk(x) 
instrumental.

Then, each benefit value q that a portfolio x can provide 
throughout entire periods should be aggregated as

Now consider the second type of criterion, mainly asso-
ciated with risk of failure. Throughout the entire process, 
there exist some probabilities that projects may fail to pro-
vide corresponding benefits due to various causes (such as 

(3)

Fq(x) =

T∑
k=1

(
I∑

i=1

k∑
t=1

cq,i,k+1−t ⋅ xit +

J∑
j=1

gjk(x)aqjk

)

=

T∑
k=1

Fqk(x) q = 1, 2,… ,Q,

Table 1   Notations used in this 
paper Indices

i Index of projects (i = 1, 2, …, I)
t Index of time (t = 1, 2, …, T)
k Index of periods (k = 1, 2, …, T)
q Index of benefits (q = 1, 2, …, Q)
j Index of synergies (j = 1, 2, …, J)
u Index of resources (u = 1, 2, …, U)
Parameters
I Number of projects
T Length of periods associated with time
Q Number of benefits (risks)
J Number of possible synergies
U Number of different types of resources
di Duration of project i
cq,i,k+1−t Value of benefit q provided by project i in period k if selected at time t
aqjk Value of additional benefit q arising from synergy j in period k
gjk Possible value denoting whether synergy j is activated in period k
Fqk Value of benefit q a portfolio can provide in period k
Fq Value of benefit q a portfolio can provide throughout all periods
rq,i,k+1−t Probability of project i failing to provide benefit q in period k if selected at time t
Rq Probability of a portfolio having at least one project that fails to provide benefit q 

throughout all periods
RĨuk Fuzzy minimum amount of resource u in period k

RS̃uk Fuzzy maximum amount of resource u in period k
rs̃u,i,k+1−t Fuzzy amount of resource u needed by project i in period k if selected at time t
h̃ujk Fuzzy amount of resource u needed by synergy j in period k
αu Confidence level for resource u
Sets
Aj Set of all the related projects for synergy j to be activated
Decision variable
xit Whether project i starts at time t

where the double summation term on the left denotes the 
sum of the benefit value that each individual project can 
provide, and the summation on the right represents the sum 
of the benefit value arising from the interactions between 
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technology, cost, organization), which is also an important 
factor that needs to be considered. Herein, we assume that 
failure or success of a project does not affect other projects. 
This does not contradict interactions between projects in terms 
of providing benefits. For example, a reconnaissance plane 
and an attack plane, working together, can assist in identify-
ing and destroying certain targets more easily. However, the 
former does not affect the attack ability of the latter, whereas 
the latter does not affect the detection ability of the former.

In this study, the term risk specifically stands for the 
probability of failing to provide certain benefits arising 
from internal factors (e.g. equipment aging or malfunction) 
throughout this paper. In addition, we assume that once a 
project fails to provide certain benefits, it can no longer pro-
vide benefits later on. In this case, if a portfolio works as 
planned and provides proper benefits in period k, then all the 
projects in this portfolio must work properly in the previous 
period k-1. Thus, we consider only the risk value of a given 
portfolio throughout the entire period T. In this reason, the 
total risk objective associated benefit q for a given portfolio 
x can be formulated as

where rqit denotes the probability of project i failing to pro-
vide benefit q in implementation period t, di is the duration 
of project i. 

∏di
t=1

(1 − rqit) denotes the probability of project 
i working properly throughout its lifecycle. 

∑T

t=1
xit repre-

sents the selection status of project i. It takes value 1 if pro-

ject i is selected and 0 otherwise. 
∏I

i=1

�∏di
t=1

(1 − rqit)
� T∑

t=1

xit 
denotes the probability that all the selected projects work as 
planned and provide proper benefits throughout the entire 
period. This process can be treated as a series system with ∑I

i=1

∑T

t=1
xit elements. Thus, the whole formula represents 

the probability of having at least one project failing to pro-
vide benefit q throughout the entire period.

Then, different portfolios can be evaluated based on their 
values associated with these two criteria. DMs always want 
to select appropriate portfolios with greater benefit values 
while having lower risk values at the same time. However, 
as mentioned above, the larger benefit often means a higher 
corresponding risk. That is, an increment in one feature 
could be done at the cost of the other. Therefore, it is unrea-
sonable to mix these objectives into one objective.

3.4 � Constraints

PPSS is a complicated process consisting of choosing the 
most appropriate projects and scheduling their starting 

(4)

Rq(x) = 1 −

I�
i=1

�
di�
t=1

(1 − rqit)

� T∑
t=1

xit

q = 1, 2,… ,Q,

times. It often takes place under a limited development time 
and constrained resources throughout the entire decision-
making process. In most real-life situations, some param-
eters cannot be fully known due to a lack of knowledge, 
time pressure or limited expertise in the problem domain, 
in which case there exists uncertainty. To handle this, spe-
cial attention is paid to the uncertainty on parameters in the 
resource constraints in this study. Next, some preliminaries 
on fuzzy set theory are first given in the following subsec-
tions. Subsequently, different constraints in conformity with 
real-life situations are proposed.

3.4.1 � Fuzzy resource constraints

To begin with, the definition of a triangular fuzzy number 
(TFN) is given as displayed in Fig. 1. A TFN ã on R can be 
expressed as a triplet (a, a

−
, ā) when its membership function 

𝜇ã(x) ∶ R → [0, 1] is equal to

where a is deemed as the middle value, and a
−
 and ā are the 

left and right spreads from a , respectively.
Based on the forgoing definition, fuzzy numbers are used 

in this study to model uncertainty. Hence, the constraint 
associated with each resource spent on all the selected pro-
jects in each period is given as

where rs̃u,i,k+1−t means the fuzzy amount of resource u 
needed by project i in period k if it is selected at time t, 

(5)𝜇ã(x) =

⎧
⎪⎪⎨⎪⎪⎩

0 x ≤ a − a,

1 −
a−x

a
, a − a < x ≤ a,

1 −
x−a

ā
, a < x ≤ a + ā,

0 x > a + ā,

,

(6)
RĨ

uk
≤

I∑
i=1

k∑
t=1

rs̃
u,i,k+1−t ⋅ xit ≤ RS̃

uk

u = {1, 2,… ,U}, k = {1, 2,… , T},

1

a x

Fig. 1   A triangular fuzzy number
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also denoted as a triplet (rsu,i,k+1−t, rsu,i,k+1−t, rsu,i,k+1−t) . RĨuk 
and RS̃uk are the fuzzy minimum and maximum amount of 
resources that DMs can provide in period k for resource u, 
also expressed as (RIuk,RIuk,RIuk) and (RSuk,RSuk,RSuk) , 
respectively. In general, the amount of resource in each 
period should not vary a lot.

Moreover, synergies between certain projects can also 
consume some resources. In this situation, extra resources 
are needed in order to come into effect and provide corre-
sponding benefits. Using the same logic as was applied in 
the first objective function, the resource constraint should 
be modified as

where the double summation term denotes the sum of all the 
selected projects’ individual resource requirements associ-
ated with resource u in period k, and the summation on the 
right part represents the amount of resource u needed by all 
the activated synergies in period k. In addition, given that 
resources may not be fully utilized at the end of each period, 
we assume that the remaining resources would not be used 
again at the next time point.

To tackle the TFNs used in the above constraint, the 
comparison method [21] is used, for which main idea is to 
enable a comparison between two fuzzy numbers using �
-cuts without creating extra elements. Specifically, given a 
TFN, ã = (a, a

−
, ā) , set a confidence level � ∈ [0, 1] . Then, the 

triangular fuzzy intervals under �-cut, as shown in Fig. 2, 
can be expressed in mathematical form as

Given two TFNs ã = (a, a
−
, ā) and b̃ = (b, b

−
, b̄) , ã ≤ b̃ at the 

confidence level � ∈ [0, 1] , if the following two conditions 
are satisfied:

(7)
RĨuk ≤

I∑
i=1

k∑
t=1

rs̃u,i,k+1−t ⋅ xit +

J∑
j=1

gjk(x)h̃ujk ≤RS̃uk ,
u = {1, 2,… ,U}, k = {1, 2,… , T},

(8)
ã𝛼 = {x||𝜇ã(x) ≥ 𝛼 } = [aL

𝛼
, aR

𝛼
] = [a − (1 − 𝛼)a

−
, a + (1 − 𝛼)ā]

for all � ∈ [�, 1].

Thus, given a confidence level �u ∈ [0, 1] for resource 
u, the resource constraint (7), as mentioned above, can be 
transformed into the following two parts, shown as

where �u ∈ [�u, 1] , constraint (11) is obtained based on con-
straint (9) and constraint (12) is obtained based on constraint 
(10), both of which denote the constraint associated with 
resource u in period k.

3.4.2 � Other constraints

(1)	 Constraints on synergies between projects
	   As mentioned above, gjk represents whether synergy j 

comes into effect in period k. It takes value 1 only when 
the portfolio x contains all the projects simultaneously 
belonging to the set Aj in period k so that synergy j can 
be activated. Based on above, gjk(x) can be represented 
in mathematical form as

where di denotes the duration of the ith project as 
before, 

∑k

t=max (1, k−di+1)
xit takes value 1 if project i 

exists in a portfolio in period k, k − di + 1 is the earliest 
starting time for project i so that it is still executed in 
period k. In case that k − di + 1 is smaller than 1, which 
is meaningless, t takes the maximum of 1 and 
k − di + 1 . In other words, this constraint ensures that 
the function gjk(x) takes value 1 only when the portfolio 
x verifies the synergy j.

(9)a + (1 − 𝛽)ā ≤ b + (1 − 𝛽)b̄

(10)a − (1 − �)a
−
≤ b − (1 − �)b

−

(11)

RIuk + (1 − 𝛽u)RIuk ≤
I∑

i=1

k∑
t=1

(rsu,i,k+1−t + (1 − 𝛽u)rsu,i,k+1−t) ⋅ xit

+

J∑
j=1

gjk(x) ⋅ (hujk + (1 − 𝛽u)h̄ujk)

≤ RSuk + (1 − 𝛽u)RSuku = {1, 2,… ,U}, k = {1, 2,… , T},

(12)

RIuk − (1 − �u)RIuk ≤
I∑

i=1

k∑
t=1

(rsu,i,k+1−t − (1 − �u)rsu,i,k+1−t) ⋅ xit

+

J∑
j=1

gjk(x) ⋅ (hujk − (1 − �u)h−
ujk

)

≤ RSuk − (1 − �u)RSuk u = {1, 2,… ,U}, k = {1, 2,… , T},

(13)

gjk(x) =
∏
i∈Aj

k∑
t=max (1, k−di+1)

xit j = 1, 2,… , J, k = 1, 2,… , T,

1

Fig. 2   Triangular fuzzy intervals under �-cut
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(2)	 Constraints on the simultaneous execution of projects
	   Sometimes, DMs may impose restrictions on the 

number of projects that can be carried out at the same 
time in a certain period k. In this case, lower and upper 
bounds are defined as n

−
(k) and n̄(k) .

where 
∑k

t=max (1, k−di+1)
xit takes value 1 if project i is 

executed in period k, and 0 otherwise.
(3)	 Constraints about uniqueness
	   Each project can at most be executed only once. 

However, DMs may demand that certain projects must 
be executed. For a particular project, this restriction 
can be implemented by setting its lower bound NLi as 
1. Otherwise, NLi equals 0.

Notice that the above constraint on the lower bound 
permits them to have a value of 1 when certain projects 
must be implemented.

(4)	 Constraints about the starting period
	   This constraint ensures that the starting periods of 

certain projects are within the given intervals if chosen 
by using the following inequality:

where �i and �i are the lower and upper bounds associ-
ated with the starting time for project i.

(5)	 Constraints about precedence
	   Like other project scheduling problems, in some 

cases there may exist some precedent constraints 
among certain projects. For example, suppose that pro-
ject i must be executed prior to project m. Then, it can 
be expressed in a mathematical form as

In summary, this PPSS model can be formulated with the 
objectives given in Eqs. (3) and (4), subject to the constraints 
provided in constraints (11)–(17) inclusive.

(14)

n
−
(k) ≤

I∑
i=1

k∑
t=max (1, k−di+1)

xit ≤ n̄(k), k = 1, 2,… , T ,

(15)NLi ≤
T∑
t=1

xit ≤ 1 i ∈ {1, 2, … , I}

(16)�i

T∑
t=1

xit ≤
T∑
t=1

t ⋅ xit ≤ �i i ∈ {1, 2,… , I},

(17)
T∑
t=1

t ⋅ xit ≤
T∑
t=1

t ⋅ xmt 1 ≤ i,m ≤ I

4 � An inverse modeling‑based 
multi‑objective evolutionary algorithm

The classic PPSS problem is very complex. Several fac-
tors regarding benefit, risk, and resource constraints need 
to be considered simultaneously. Furthermore, additional 
constraints associated with time, the interrelationships 
between different projects, make the problem more compli-
cated. Traditional mathematical programming methods are 
inefficient or limited in the application. In contrast, multi-
objective evolutionary algorithms (MOEAs) have proven to 
be highly efficient in solving this kind of problem. However, 
unlike most MOEAs that store non-dominated solutions dur-
ing the search, the IMMOEA proposed by Cheng et al. [22] 
uses Gaussian process based inverse modeling to create new 
solutions, which has exhibited robust search performance 
on a variety of multi-objective optimization test problems. 
Accordingly, the existing IMMOEA is used and modified in 
this paper to handle the new PPSS problem.

4.1 � Overview of the proposed IMMOEA

Model-based algorithms have been demonstrated to be 
very effective in approximating the Pareto front for multi-
objective problems [23]. A new model based algorithm 
with regard to IMMOEA is introduced in this section to 
obtain the Pareto solutions. Its main idea lies in mapping 
non-dominated solutions from the objective space (OS) to 
the decision space (DS) based on some constructed inverse 
models [22]. To the best of the authors’ knowledge, there is 
no prior study using IMMOEA to solve the multi-objective 
PPSS problem under uncertainty.

Figure 3 displays an overview of the proposed IMMOEA, 
for which the pseudo code is given in Algorithm 1 [22] for 
the PPSS problem. To begin with, an initial population is 
generated, which is then partitioned into different groups 
based on some reference vectors (item 4 in Algorithm 1). 
Note that DMs’ preferences can be incorporated in the 
initialization process by setting certain constraints on the 
values used to encode various projects. The population is 
then evaluated by estimating each solution’s objectives and 
constraints. Herein, objectives refer to the benefits and risks 
of different PPSS solutions, whereas constraints refer to the 
extent to which different constraint limits are exceeded. As 
traditional IMMOEA focuses on solving optimization prob-
lems without considering the constraints. Thus, the penalty 
function is used to address various constraints associated 
with the PPSS problem. More specifically, the penalty func-
tion f is defined as
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(18)

f =

U∑
u=1

T∑
k=1

max

(
0,RĨuk −

I∑
i=1

k∑
t=1

rs̃u,i,k+1−t ⋅ xit −

J∑
j=1

gjk(x)h̃ujk

)

+

U∑
u=1

T∑
k=1

max

(
0,

I∑
i=1

k∑
t=1

rs̃u,i,k+1−t ⋅ xit +

J∑
j=1

gjk(x)h̃ujk − RS̃uk

)

+

T∑
k=1

max

(
0, n

−
(k) −

I∑
i=1

k∑
t=max (1, k−di+1)

xit

)
+

T∑
k=1

max

(
0,

I∑
i=1

k∑
t=max (1, k−di+1)

xit − n̄(k)

)

+

I∑
i=1

max

(
0,NLi −

T∑
t=1

xit

)
+

I∑
i=1

max

(
0,

T∑
t=1

xit − 1

)

+

I∑
i=1

max

(
0, 𝜐i

T∑
t=1

xit −

T∑
t=1

t ⋅ xit

)
+

I∑
i=1

max

(
0,

T∑
t=1

t ⋅ xit−𝜔i

)

+

I∑
i=1

I∑
m=1

max

(
0,

T∑
t=1

t ⋅ xit −

T∑
t=1

t ⋅ xmt

)
,

violation of the constraint is triggered. The same logic 
applies to the other constraints. Then, the penalty value is 
incorporated into the objective value of each solution. The 
greater (smaller) is the new benefit (risk) value, the better is 
the individual (solution).

Then, a selection procedure is carried out within each 
group to make up the parents of each group (item 5 in Algo-
rithm 1). Next, a Gaussian process (GP) based inverse model 
is designed with regard to the generation of offspring in 
each group. Finally, the offspring and their parents are put 
together to form a new combined population. Some details 
of IMMOEA are provided as in Sects. 4.2–4.4 inclusive.

Fig. 3   Overview of IMMOEA 
based on [22]
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...
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where each part in Eq. (18) denotes the extent to which the 
corresponding limit is exceeded in terms of the minimum 
resource constraint, the maximum resource constraint, the 
simultaneous execution of projects, the uniqueness of pro-
jects, the starting periods, and the precedence of projects, 
respectively. Taking the first term 

∑U

u=1

∑T

k=1
max

�
0,RĨ

uk
−∑I

i=1

∑k

t=1
rs̃u,i,k+1−t ⋅ xit −

∑J

j=1
gjk(x)h̃ujk

�
 as an example, for 

each resource u in each period k, the resource used in total 
cannot be lower than the fuzzy minimum amount of resource 
RĨuk  ,  otherwise,  the cor responding penalty is 
RĨuk −

∑I

i=1

∑k

t=1
rs̃u,i,k+1−t ⋅ xit −

∑J

j=1
gjk(x)h̃ujk . Conversely, 

the corresponding penalty function is 0, meaning that no 
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4.2 � Partitioning the combined population

As illustrated in Algorithm 1, the combined population is 
first divided into several partitions. To begin with, S uniform 
reference vectors v⃗s are generated for a problem having m 
objectives [24]. More precisely, a set of S uniformly distrib-
uted points w⃗s = (w1

s
,w2

s
,… ,wm

s
), s = 1, 2,… , S are first 

generated, where each of the weight vectors wi
s
 selects a 

value from 
{

0

H
,
1

H
,… ,

H

H

}
 , 
∑m

i=1
wi
s
= 1 , and H is a param-

eter controlling the number of vectors. After that, the uni-
formly distributed reference vector v⃗s can be obtained by 
mapping w⃗s from the unit hyperplane to a unit hypersphere 
as

Once the reference vectors have been obtained, the total 
combined population is then partitioned into S subpopula-
tions. This step is done by comparing their relative posi-
tions in the OS between each individual solution with the 
predefined reference vectors mentioned above [22]. More 
specifically, consider an arbitrary solution xi as an example, 
which is assigned to reference vector v⃗s under the condition 
that the angle between its position with that of v⃗s is the mini-
mum among all the reference vectors by calculating the sine 
function value of their angles using

(19)v⃗s =
w⃗s

||w⃗s||
s = 1, 2,… , S

(20)si = argmin
s=1,…,S

(
x⃗i

||x⃗i||
× v⃗s

)

4.3 � Inverse modeling

Let X denote a set of the decision vectors (i.e., PPSS solu-
tions as defined in Eq. (1)) and Y denote a set of objective 
objectives associated with benefits and risks, both of which 
represent the current parent population. To generate the off-
spring X0 , a group of generated objective vectors Y0 in the 
OS is mapped back to the DS using P(X|Y ) associated with 
the Bayes’ Theorem [22]. Herein, P(X|Y ) is the conditional 
probability distribution, which can be estimated by a proba-
bilistic inverse model mapping Y back to X. In fact, P(Y|X ) 
is the priori knowledge, i.e., the objectives functions map-
ping X to Y.

In general, the probabilistic inverse model P(X|Y ) is 
decomposed into m × n univariate models P(xi

|||fj ) . Note that 
m equals 2 ⋅ Q (associated with Q benefits and Q risks) and 
n equals I ⋅ T  (length of the decision variable) as mentioned 
in Sect. 3. However, it is very hard or impossible to estimate 
the inverse model for a problem with m objectives and n 
variables, especially those associated with large-scale opti-
mization problems. In this reason, random grouping technol-
ogy [25] is used for the building of multiple inverse models. 
Each univariate model takes only one single objective and 
one decision variable into account. More specifically, a total 
of m groups of inverse models are built for a problem having 
m objectives, where the jth objective fj would be treated as 
the input variable in group j, and L variables are randomly 
picked as well. As can be seen, the total number of inverse 
models now decreases from m × n to m × L , where L is much 
smaller than n.

Assume that Nt pairs of data are needed for training L GP 
models. Then, Tj,i is denoted as the specific training data set 
used for training P(xi

|||fj ) in the jth group as

where fj = [f 1
j
,… , f

Nt

j
]T and xi = [x1

i
,… , x

Nt

i
]T , f h

j
 is the jth 

objective value of the hth individual, and xh
i
 is the ith deci-

sion variable of the hth individual.
The inverse mapping P(xi

|||fj ) can be assumed to be a 
latent function g(⋅) , represented by a number of arbitrary 
function variables g = {g1, g2,… , gNt

} , which follows a joint 
Gaussian distribution [26]:

where N(ḡ,C) represents the multivariate Gaussian distribu-
tion, ḡ denotes the mean vector, and C is the covariance 
matrix. P(g|||fj ) stands for the conditional probability associ-
ated with the training data fj . In order to decrease the 

(21)P(X0) =
P(X|Y )P(Y0)

P(Y|X )
,

(22)Tj,i = [fj, xi],

(23)P(g
|||fj ) = N(ḡ,C),

Algorithm 1: Pseudo code of IMMOEA for the PPSS problem
1: Input: population size Pop, maximum number of generations MaxGen, number 

of reference vectors S, random group size L; 
2: Initialization: n = 0, initialize population P(0) and estimate each individual’s 

corresponding benefit, risk, and penalty, generate the S uniform reference vectors;
3: while n MaxGen< do
4: Population Partition: partition current population P(n) by comparing each 

individual’s relative position with the S predefined reference vectors;
5: Selection: Perform selection process in each group to generate their subparent 

population P1(n),…, PS(n);
6:  for s = 1, 2,…, S, do
7: Inverse Modeling: apply random grouping technique for each subpopulation 

Ps(n) to determine the inverse models; Moreover, a GP is trained for each 
inverse model; 

8: Reproduction: for each subpopulation Ps(n), sample the objective space and 
then map them back to the decision space to generate new offspring Os(n) 
using the inverse models; Execute mutation process if it is not the final 
generation; 

9: end for
10: Update: a new combined population is generated by incorporating the offspring 

and their current parents for the next generation; 
11:  n = n + 1; 
12: end while
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computational burden of training a GP model, the mean 
function �(fj) which calculates the mean value of all the 
training data, is usually set to 0 by means of subtracting 
certain offset from Tj,i . Thus, Eq. (23) can be transformed to

A linear covariance function is used in this study for sav-
ing computational cost as

Assume that xi = g(fj) + � is affected by white noise 
� ∼ N(0, (�n)

2Z) . Then, a proper noise model can be 
expressed as

where Z is an identity matrix. Thus, the following equality 
associated with the marginal likelihood is obtained:

Based on (27), given a test input fj,∗ , a Bayesian inference 
can be utilized to achieve the corresponding output xi,∗ . The 
following equation is used to obtain the mean and variance, 
correspondingly.

where C∗∗ = [c(f 1
j
, f 1
j
),… , c(f

Nt

j
, f

Nt

j
)] is composed of all the 

covariance values between each pairs of elements among fj , 
and C∗ = [c(f 1

j,∗
, f 1
j
),… , c(f

Nt

j,∗
, f

Nt

j
)] consists of the covari-

ance values between each pair of elements associated with 
the test input fj,∗ and that of the training data fj . In this way, 
the inverse model P(xi

|||fj ) is then transformed into a set of 
normal distributions as shown in Eq. (28).

In this study, the following equation is used to sample the 
input points fj,∗ as

where Ns is the sample size, which is usually set to Nt , fmax
j

 
and fmin

j
 are the maximum and minimum values, respec-

tively, associated with objective j in fj , and �j = fmax
j

− fmin
j

.

4.4 � Reproduction

Once the inverse models have been obtained, the test input 
points fj,∗ can be mapped to the DS xi,∗ by means of adding 

(24)P(g
|||fj ) = N(0,C)

(25)C(f
p

j
, f

q

j
) = (f

p

j
)T f

q

j

(26)P(xi|g ) = N(g, (�n)
2Z),

(27)P(xi|fj) = ∫ P(xi|g)P(g|fj)dg =N(0,C + (�n)
2Z).

(28)
�j,i = CT

∗
(C + (�n)

2Z)−1xi

(�j,i)
2 = C∗∗ − CT

∗
(C + (�n)

2Z)−1C∗,

(29)fj,∗ =

⎧⎪⎨⎪⎩

�
fmin
j

− 0.5�j, f
max
j

+ 0.5�j

�

Ns

⎫⎪⎬⎪⎭
,

the mean values �j,i = (�1

j,i
,… ,�Ns

j,i
) with white noise 

z ∼ (N(0, (�1
j,i
)2),… ,N(0, (�

Ns

j,i
)2)) using

where �1

j,i
,… ,�Ns

j,i
 and (�1

j,i
)2,… , (�

Ns

j,i
)2 are the outputs asso-

ciated with a trained GP model in Eq.  (28). After that, 
replace the current values xi = (x1

i
, … , x

Ns

i
) of each sub-

populat ion with the new generated solutions 
xi,∗ = (x1

i,∗
,… , x

Ns

i,∗
) . Then, a new combined population is 

formed by integrating the offspring individuals produced by 
each subpopulation with their parents. A new round is initi-
ated until the termination condition is satisfied. For more 
details, please refer to [22, 27].

5 � Illustrative example

Assume that an investor has a budget to renovate some of 
the projects over the next five years. However, due to limited 
resources (mainly associated with money, in thousands of 
monetary units), only a set of projects can be selected. Two 
objectives are taken into account as maximizing benefits (in 
thousands of monetary units) and minimizing risks under 
various constraints. The main values of the projects associ-
ated with benefits that each project can provide and the risks 
that each project may possess in failing to provide benefits 
in different periods are given in Tables 2 and 3, respectively. 
In general, the risk values increase as time goes by. Next, 
portfolios are evaluated based on the two objectives under 
the conditions of satisfying various constraints.

Regarding the first objective for each portfolio, the sum 
of all the benefit values that each individual project can pro-
vide is

(30)xi,∗ = �j,i(fj,∗) + zj,i,

(31)
5∑

k=1

10∑
i=1

k∑
t=1

c1,i,k+1−t ⋅ xit,

Table 2   Benefit values of projects

Year of imple-
mentation

1 2 3 4 5

c11t 0.6 0.8

C12t 0.7
c13t 0.5 0.6 0.7 0.5 0.3
c14t 0.6 0.8 0.6
c15t 0.45 0.7
c16t 0.8 0.4
c17t 0.7
c18t 0.6 0.7 0.7 0.5
c19t 0.45 0.8 0.7 0.8 0.6
c1,10,t 0.6 0.75 0.8
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where the values for c1,i,k+1−t are given as tabulated in 
Table 2.

Moreover, additional benefit (0.7, in this case) can be 
expected arising from the interactions between Projects 4 
and 6. Therefore, the benefit value throughout the entire 
period should be aggregated as

where g1k(x) equals 1 if the fourth and sixth projects exist 
simultaneously in period k. Otherwise, it takes a value of 0, 
where A1 = {4, 6} , and g1k =

∏
i∈A1

∑k

t=max (1, k−di+1)
xit,

k = 1, 2,… , 5.

Regarding the second objective for each portfolio, the 
probability of failure associated with projects should be 
expected to increase as time passes. The risk value corre-
sponding to the second objective is formulated as

(32)MaxF(x) =

5∑
k=1

10∑
i=1

k∑
t=1

c1,i,k+1−t ⋅ xit +

5∑
k=1

0.7g1k(x),

where the probabilities for each project to become invalid in 
different periods r1it are given as tabulated in Table 3.

As for the resources, the fuzzy estimated amount of 
resources required for each project in different periods rs̃1it are 
given in Table 4. The fuzzy amount of resource for the synergy 
h̃11k , as well as the fuzzy minimum and maximum amount of 
resources available in different periods are also given.

As mentioned above, the remaining resource at the end 
of each year will not be re-used in the next year. Based on 
constraint (7), the set of constraints on resources in each year 
can be obtained as

(33)Min R(x) = 1 −

10�
i=1

�
di�
t=1

(1 − r1it)

� 5∑
t=1

xit

,

(34)

k = 1 ∶ 0̃ ≤ 25̃x11 + 42̃x21 + 24̃x31 + 40̃x41 + 15̃x51 + 30̃x61 + 45̃x71 + 50̃x81 + 18̃x91 + 32̃x10,1 + 15̃g11 ≤ 10̃0

k = 2 ∶ 0̃ ≤ 32̃x11 + 25̃x12 + 42̃x22 + 37̃x31 + 24̃x32 + 45̃x41 + 40̃x42 + 18̃x51 + 15̃x52 + 24̃x61 + 30̃x62

+ 45̃x72 + 43̃x81 + 50̃x82 + 23̃x91 + 18̃x92 + 36̃x10,1 + 32̃x10,2 + 15̃g12 ≤ 12̃0

k = 3 ∶ 0̃ ≤ 32̃x12 + 25̃x13 + 42̃x23 + 40̃x31 + 37̃x32 + 24̃x33 + 48̃x41 + 45̃x42 + 40̃x43 + 18̃x52 + 15̃x53

+ 18̃x52 + 15̃x53 + 24̃x62 + 30̃x63 + 45̃x73 + 52̃x81 + 43̃x82 + 50̃x83 + 34̃x91 + 23̃x92 + 18̃x93

+ 46̃x10,1 + 36̃x10,2 + 32̃x10,3 + 15̃g13 ≤ 13̃0

k = 4 ∶ 0̃ ≤ 32̃x13 + 25̃x14 + 42̃x24 + 35̃x31 + 40̃x32 + 37̃x33 + 24̃x34 + 48̃x42 + 45̃x43 + 40̃x44 + 18̃x53

+ 15̃x54 + 24̃x63 + 30̃x64 + 45̃x74 + 20̃x81 + 52̃x82 + 43̃x83 + 50̃x84 + 45̃x91 + 34̃x92 + 23̃x93

+ 18̃x94 + 46̃x10,2 + 36̃x10,3 + 32̃x10,4 + 15̃g14 ≤ 11̃5

k = 5 ∶ 0̃ ≤ 32̃x14 + 25̃x15 + 42̃x25 + 42̃x31 + 35̃x32 + 40̃x33 + 37̃x34 + 24̃x35 + 48̃x43 + 45̃x44 + 40̃x45

+ 18̃x54 + 15̃x55 + 24̃x64 + 30̃x65 + 45̃x75 + 20̃x82 + 52̃x83 + 43̃x84 + 50̃x85 + 40̃x91 + 45̃x92

+ 34̃x93 + 23̃x94 + 18̃x95 + 46̃x10,3 + 36̃x10,4 + 32̃x10,5 + 15̃g15 ≤ 95̃

Table 3   Risk values of projects

Year of imple-
mentation

1 2 3 4 5

r11t 0.15 0.20
r12t 0.10
r13t 0.05 0.08 0.10 0.12 0.15
r14t 0.08 0.12 0.10
r15t 0.05 0.10
r16t 0.10 0.11
r17t 0.10
r18t 0.08 0.08 0.10 0.10
r19t 0.02 0.08 0.12 0.12 0.15
r1,10,t 0.05 0.10 0.13

Table 4   Fuzzy resource coefficients for projects

Year of imple-
mentation

1 2 3 4 5

rs̃11t 25̃ 32̃

rs̃12t 42̃

rs̃13t 24̃ 37̃ 40̃ 35̃ 42̃

rs̃14t 40̃ 45̃ 48̃

rs̃15t 15̃ 18̃

rs̃16t 30̃ 24̃

rs̃17t 45̃

rs̃18t 50̃ 43̃ 52̃ 20̃

rs̃19t 18̃ 23̃ 34̃ 45̃ 40̃

rs̃1,10,t 32̃ 36̃ 46̃

h̃11k 15̃ 15̃ 15̃ 15̃ 15̃

RĨ1,k 0̃ 0̃ 0̃ 0̃ 0̃

RS̃1,k 10̃0 12̃0 13̃0 11̃5 95̃
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where g11 = x41 ⋅ x61, g12 =
�∑2

t=1
x4t

�
⋅

�∑2

t=1
x6t

�
, g13 =�∑3

t=1
x4t

�
⋅

�∑3

t=2
x6t

�
, g14 =

�∑4

t=2
x4t

�
⋅

�∑4

t=3
x6t

�
 and 

g15 =
�∑5

t=3
x4t

�
⋅

�∑5

t=4
x6t

�
 , denoting whether the synergy 

takes place in the corresponding period. In general, the left 
side of (34) represents the fuzzy minimum amount of 
resources available in each period, whereas the right side 
limits the fuzzy maximum amount of resources available in 
each period. This set of constraints ensures that the resources 
used for a portfolio x in each period are within the given 
intervals.

Fuzzy constraints have to be transferred to crisp values 
for comparison. As mentioned above, a parameter � = 0.9 is 
given, which can also be deemed as a confidence level. Sup-
pose that the resources required for each project can increase 
or decrease both by 25% of their middle values, whereas the 
resource available in each year can increase or decrease by 
up to 20% and 30%, respectively. Thus, the above constraint 
on resources (34) should be transferred to two parts based 
on (11) and (12) for comparison. Next, some additional con-
straints are given by DMs by taking some real life situations 
and individual preferences into consideration.

DMs determined that at least two projects, whereas five 
projects at most, can be executed simultaneously in the sec-
ond and third years. Thus, the following two inequalities are 
obtained using constraint (14):

DMs found that Project 6 must be selected and sched-
uled, whereas there are no mandatory constraints on other 
projects.

(35)

2 ≤
2∑
t=1

x1t +

2∑
t=2

x2t +

2∑
t=1

x3t +

2∑
t=1

x4t +

2∑
t=1

x5t

+

2∑
t=1

x6t +

2∑
t=2

x7t +

2∑
t=1

x8t +

2∑
t=1

x9t +

2∑
t=1

x10,t ≤ 5

(36)

2 ≤
3∑
t=2

x1t +

3∑
t=3

x2t +

3∑
t=1

x3t +

3∑
t=1

x4t +

3∑
t=2

x5t

+

3∑
t=2

x6t +

3∑
t=3

x7t +

3∑
t=1

x8t +

3∑
t=1

x9t +

3∑
t=1

x10,t ≤ 5

(37)0 ≤
5∑
t=1

xit ≤ 1 i = 1, 2, 3, 4, 5, 7, 8, 9, 10

(38)1 ≤
5∑
t=1

x6t ≤ 1 ⇒

5∑
t=1

x6t = 1

Some limitations on the starting periods of each project 
are given if selected:

As Project 3 can provide Project 8 with some additional 
support, the former one should be scheduled earlier before 
project 8 if chosen. Thus, a new constraint about precedence 
is given as

The bi-objective optimization model is now built with 
the objectives contained in (32) and (33), subject to the 
constraints (34)–(40). Then, IMMOCA is used to solve it 
using Matlab Version R2016a. Additionally, two other tra-
ditional multi-objective optimization algorithms, namely a 
multi-objective evolutionary algorithm based on decompo-
sition (MOEA/D) [28] and non-dominated sorting genetic 
algorithm II (NSGA-II) [29], are also independently used 
to solve the problem under the same constraints for com-
parison purposes. MOEA/D decomposes a multi-objective 
optimization problem into a number of scalar optimization 
sub-problems and optimizes them simultaneously, whereas 
NSGA-II uses a fast non-dominated sorting procedure and 
an elitist-preserving approach to create a diverse Pareto-
optimal front.

Three metrics, namely convergence (γ), diversity (Δ) and 
Generational Distance (GD), are calculated to measure the 
results of the aforementioned three different algorithms. 
More specifically, convergence (γ) is used to evaluate the 
accuracy of approximating the obtained results to the global 
Pareto-optimal front. If γ equals 0, it means that the obtained 
Pareto set is the actual Pareto set. Diversity (Δ) is used to 
evaluate the diversity among the obtained non-dominated 
solutions using Eq. (41), where n is the number of solutions, 
hi is the distance between two adjacent solutions, h̄ is the 
average value of hi , hf  and h1 are distances between extreme 
solutions and boundary solutions, respectively. According to 
this metric, the smaller the diversity, the better is the diverse 
set of the obtained solution.

(39)

5∑
t=1

t ⋅ x1t ≤ 3, 3

5∑
t=1

x3t ≤
5∑
t=1

t ⋅ x3t ≤ 4,

5∑
t=1

t ⋅ x5t ≤ 3

2

5∑
t=1

x6t ≤
5∑
t=1

t ⋅ x6t ≤ 3,

5∑
t=1

x8t

≤
5∑
t=1

t ⋅ x8t ≤ 4, 3

5∑
t=1

x9t ≤
5∑
t=1

t ⋅ x9t ≤ 5

(40)
5∑
t=1

t ⋅ x3t ≤
5∑
t=1

t ⋅ x8t

(41)Δ =
hf + h1 +

∑n−1

i=1
�hi − h̄�

hf + h1 + (n − 1)h̄
.
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GD is used to describe the distance between the obtained 
Pareto set and the true Pareto set using (42), where dist

i
 is 

the shortest distance between the ith Pareto set and the true 
Pareto set. This one is used to evaluate not only convergence, 
but also diversity. In the following equation, a lower value 
is better.

There are two major objectives in this example, listed as 
benefit and risk. The former one illustrates the sum of all the 
overall benefit values that a portfolio solution can provide in 
a given period, and the latter one represents the probability 

(42)GD =

�∑n

i=1
dist2

i

n

of having at least one project failing to provide its expected 
benefit throughout the entire period.

In what follows, set the population size at Pop = 100, the 
total number of generations at MaxGen = 500, and the ran-
dom group size L = 3. Then, each algorithm is independently 
executed 10 times and its best results are recorded as shown 
in Fig. 4.

As shown in Fig. 4, the bottom-left points of IMMEOA, 
MOEA/D, and NSGA-II are (2.35, 0.32), (3.35, 0.40), and 
(4.85, 0.53), respectively. The top-right points of these three 
algorithms are (10.50, 0.79), (9.30, 0.70), and (10.55, 0.81), 
respectively. It is obvious that the Pareto set obtained by 
IMMOEA has the longest distribution curve among the 
three, followed by MOEA/D and NSGA-II. Hence, the 
Pareto set obtained by IMMOEA contains more portfolio 
solutions.

In most situations, the exact Pareto set is not known, and 
consequently, it is necessary to propose a reference set for 
the calculation of the above three metrics. To this aim, the 
above three algorithms are independently executed 10 times, 
and the best Pop non-dominated solutions are taken as the 
reference set. Moreover, Pop * 10 solutions are obtained for 
each algorithm. Then, the best, worst, mean, and standard 
deviation (std) among these solutions for each algorithm are 
recorded, as tabulated in Table 5. For all of the three metrics, 
a lower value is better.

As can be seen, the worst occurs with NSGA-II for all 
different measures for the three metrics compared with 
that of IMMOEA and MOEA/D, though the best value in 
convergence is not the worst. IMMOEA has the smallest 
mean value of the convergence metric, which means that 
IMMOEA has the best convergence. As for the diversity 
metric, IMMOEA also outperforms the others, followed by 
MOEA/D and NSGA-II. The best, worst, and mean values 
of GD for these measures having the smallest values are 
also recorded for IMMOEA, which in a way indicates the 
good convergence and diversity of IMMOEA. Moreover, 
Table 6 displays the average time for each round of these 
different algorithms. Note that the efficiency of IMMOEA is 
more superior to the other algorithms. Therefore, IMMOEA 
stands out from the other two algorithms regarding conver-
gence and diversity, which means that it can produce more 
robust solutions in a shorter time.

After obtaining the Pareto set by IMMOEA, we continue 
the process to obtain a compromise solution using the TOP-
SIS approach [30], for which the criteria are benefit and risk. 

Fig. 4   The best results of three algorithms

Table 5   Statistical comparisons among three different algorithms

Metrics Measures Performances

IMMOEA MOEA/D NSGA-II

γ (convergence) Best 0.0101 0.0140 0.0079
Worst 0.1378 0.1318 0.2772
Mean 0.0523 0.0555 0.1471
Std 0.0342 0.0451 0.0973

Δ (diversity) Best 0.0410 1.3551 1.6742
Worst 0.0955 1.5918 1.8403
Mean 0.0738 1.4982 1.7779
Std 0.0184 0.0694 0.0470

GD (generational 
distance)

Best 0.0035 0.0056 0.0084

Worst 0.0186 0.0283 0.0474
Mean 0.0102 0.0161 0.0250
Std 0.0039 0.0087 0.0151

Table 6   Average computation time (t) among the three different algo-
rithms (in seconds)

Algorithms IMMOEA MOEA/D NSGA-II

t/s 10.44 26.05 45.44
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The main idea of this MCDM approach lies in selecting the 
most appropriate alternative that is the nearest to the positive 
ideal solution, while farthest from the negative ideal one as 
well. Set the relative importance of these two criteria as 0.6 
and 0.4, for the benefit criterion and risk criterion, respec-
tively. Note that various algorithms and methodologies, 
especially preferences based multi-objective optimization, 
have been designed in recent decades to obtain a representa-
tive subset of the Pareto front or even certain compromise 
solutions [31].

Details of the compromise solution are shown in Table 7. 
The symbol of “√” indicates the starting time of its cor-
responding project. As shown in Table 7, six out of ten 
projects are chosen to be developed throughout the given 
period. More specifically, Projects 1 and 5 are selected to be 
developed in the first year, whereas Project 8 is developed in 
the second year, Projects 4 and 6 in the third year, and Pro-
ject 2 in the fourth year. Taking the duration of each project 
into consideration, the numbers of projects existing in each 
year are 2, 3, 3, 4, and 2, respectively. Note that Projects 4 
and 6 occur simultaneously in the third and fourth years. 
Thus, additional benefit can be raised from the interactions 
between them.

As mentioned above, fuzzy numbers are used in this 
model, and the confidence level � is utilized to transform 
them into precise values. It is logical to think that different 
efficient frontiers can be obtained at different confidence lev-
els given by DMs. Thus, we continue the experiment using 
IMMOEA at different confidence levels for comparison 
purposes, while the other parameters used in the algorithm 
remain the same. The algorithm is re-executed 10 times at 
each value of � to get a 100 × 10 Pareto sets. However, some 
of the solutions are the same, the number of unique Pareto 
solutions under different circumstances need to be identified. 
After that, TOPSIS approach is used to get the compromise 
solutions under each circumstance, whose values associated 
with the two objectives are listed in Table 8. The solution 
number of each Pareto set varies each other. The statistical 
results are shown in Table 8.

It is apparent that when � equals 1, the fuzzy resource 
constraints are transformed into precise values. As � 
decreases, the number of total unique solutions under differ-
ent confidence levels decreases as well. The variation range 
of the compromise solutions at different confidence levels is 
[10.30, 13.85] associated with the benefit value, and [0.77, 
0.92] for the risk value. Actually, the compromise solutions 
obtained at different confidence levels are quite similar. For 
example, the corresponding compromise solutions are the 
same when � equals 0.8, 0.4, and 0.3. The same situation 
occurs when � is equal to 0.6 and 0.2. However, the unique 
solution number obtained when � equals 0.2 is lower than 
that of 0.6. In fact, as � decreases, the fuzzy resource con-
straints become more and more restrictive. Thus, the unique 
solution numbers should decrease as well. Note that the effi-
cient Pareto solutions obtained at a higher confidence level 
are also feasible for any lower confidence level. Therefore, 
some of the solutions may be a part of different Pareto fron-
tiers even under different confidence levels.

Table 7   Details of the 
compromise solution

Project Selected Year

First Second Third Fourth Fifth

1 Yes ✓
2 Yes ✓
3 No
4 Yes √
5 Yes ✓
6 Yes ✓
7 No
8 Yes ✓
9 No
10 No

Table 8   Statistical data at different confidence levels

� Benefit Risk SolutionNum

1 10.30 0.77 84
0.9 10.35 0.78 80
0.8 11.25 0.83 77
0.7 11.00 0.79 77
0.6 11.70 0.84 71
0.5 12.40 0.86 65
0.4 11.25 0.83 63
0.3 11.25 0.83 64
0.2 11.70 0.84 56
0.1 12.45 0.87 54
0 13.85 0.92 49
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6 � Conclusions

PPSS is an important strategic problem having significant 
impacts on the running efficiency of organizations. In this 
paper, a mathematical PPSS model is constructed as a bi-
objective optimization problem under a fuzzy environment. 
As an extension to existing studies, the model focuses on 
maximizing various solutions’ overall benefits and lowering 
the risk values simultaneously. Specific resource limitations 
and DMs’ preferences are taken into account. To address 
the uncertainties regarding information, fuzzy numbers are 
also incorporated into the model, enabling DMs with more 
flexibility.

A hybrid algorithm called IMMOEA is used and modi-
fied to obtain the Pareto set, which is the first time that such 
an algorithm has been used to solve the PPSS problem. 
Three algorithms are employed in an example and different 
metrics are used simultaneously to compare their efficacy. 
The results show that IMMOEA outperforms MOEA/D 
and NSGA-II with respect to diversity, spread, and conver-
gence. NSGA-II is the worst compared with the other two 
algorithms used in this study. Finally, details regarding the 
corresponding compromise solution are determined. Certain 
conclusions and suggestions are proposed based on the cal-
culations. Hence, this research can provide project managers 
with additional insights into this PPSS procedure.

In future studies, the authors will consider projects with 
multiple activity relationships, various constraints, and 
even dynamic events occurring during the project execu-
tion time. These challenges will certainly contribute to the 
expansion of this methodology for tackling a broader range 
of problems.
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