Memetic Computing (2020) 12:73-86
https://doi.org/10.1007/s12293-019-00279-0

REGULAR RESEARCH PAPER

@ CrossMark

DSM-DE: a differential evolution with dynamic speciation-based
mutation for single-objective optimization

Libao Deng'® - Lili Zhang" - Haili Sun’ - Liyan Qiao’

Received: 12 April 2018 / Accepted: 3 January 2019 / Published online: 11 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

A new differential evolution algorithm with two dynamic speciation-based mutation strategies (DSM-DE) is proposed to
solve single-objective optimization problems. An explorative mutation “DE/seeds-to-seeds” and an exploitative mutation
“DE/seeds-to-rand” are employed simultaneously in DSM-DE in the evolutionary process. A Dynamic Speciation Technique
is designed to assist the two mutations in order to utilize the potential of selective portioning of critical individuals in the
population. It dynamically divides the population into numbers of species whilst taking species seeds as centers. The best
individuals for each species are used as base vectors in each species in the proposed mutation strategies. “DE/seeds-to-seeds”
selects individuals from species seeds and current species to constitute difference vectors whereas “DE/seeds-to-rand” selects
from the whole population. Thus the two mutation strategies can accelerate the convergence process without decreasing
diversity of the population. Comparison results with four classic DE variants, one state-of-art DE variant and two improved
non-DE variants on CEC2014, CEC2015 benchmark, and Lennard-Jones potential problem reveal that the overall performance
of DSM-DE is better than that of the other seven DE algorithms. In addition, experiments also substantiate the effectiveness

and superiority of two seeds-guided mutation strategies in DSM-DE.

Keywords Differential evolution - Mutation strategy - Dynamic speciation - Single-objective optimization

1 Introduction

Differential evolution (DE) is a simple yet powerful algo-
rithm firstly proposed by Storn and Price in 1997 [27]. It has
attracted extensive attention of scholars to find new variants
because of its excellent performance and has been used in
various engineering fields [8,23]. DE is a population-based
stochastic search technique employing mutation, crossover,
and selection operators at each generation to evolve the pop-
ulation to the global optimum. The classic DE employs
“DE/rand/1/bin” mutation in which three parent vectors
are randomly chosen from the current population. It is of
robust capacity in exploring the whole solution space and
locating the global optimal region but of less efficient con-
vergence rate when exploiting the optimal solution. Greedy

This work was supported in part by National Natural Science
Foundation of China (61401121).

B Libao Deng
denglibao_paper@163.com

School of Information Science and Technology, Harbin
Institute of Technology, Weihai, Shandong, China

mutation strategies such as “DE/current-to-best/bin” and
“DE/best/bin”, which utilize the best solution information in
the current population, usually display higher convergence
rate but less reliable. However, the reliability of the greedy
mutation DE/current-to-pbest/bin [32] is highly improved by
utilizing the information of p% good solutions and incorpo-
rating the archived inferior information into the mutation. In
CoDE [31], SaDE [25], several well-studied mutation strate-
gies are incorporated into these algorithms through various
mechanisms to generate trial vectors.

In order to be successful, an improved DE variant needs to
achieve a good balance between exploration and exploitation,
where exploration is the algorithm’s capability of search-
ing for new regions, whilst exploitation is the algorithm’s
capability of searching for the neighboorhoods of the pre-
viously visited points [20]. To excavate potential of better
information in the population and balance explorative and
exploitative capacity of the algorithm, in this paper, two
seeds-based mutation strategies ‘“DE/seeds-to-seeds” and
“DE/seeds-to-rand” are employed simultaneously in evolu-
tionary process. Furthermore, the two mutation strategies
greatly dependent on a specially designed population struc-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-019-00279-0&domain=pdf
http://orcid.org/0000-0003-0076-4054

74

Memetic Computing (2020) 12:73-86

ture derived from Dynamic Speciation Technique (DST),
which is mainly used to locate elicits in different regions of
the search space and obtain a hierarchical population struc-
ture. Speciation [18]is a niching technique originally used to
solve multimodal optimization problems. The fact that local
optimal solutions quite close to the global optimal solution
in terms of value or position exist commonly in many prac-
tical functions makes it difficult for classical DE to find the
real global optimal solution in single-objective optimization.
Thus using the grouping idea in speciation may be benefit
to locate the real global optimal position accurately among
numerous local optimal solutions.

Numerous experimental studies and theoretical analysis
[5,9,22,32] have been conducted to investigate mechanism
of effects the setting of control parameters on the DE perfor-
mance because there is no fixed parameter setting suitable
for all kinds of problems or even different evolution phases
of the same problem. For example, literature [1] comprehen-
sively presented the parameter adaptation schemes in recent
years. jDE [5] introduced two new parameters as possibili-
ties to adjust F and C R and ZEPDE [9] generates F' and CR
according to Cauchy and Normal distribution and combines
parameters adaptation with zoning. Parameter adaptation
mechanism in this paper adopts a mechanism using Levy
distribution. It can be categorized as deterministic parameter
control because it adjusts parameters without feedback from
the evolutionary search into account.

Finally, a novel DE variant with dynamic speciation-
based mutation for single-objective optimization (DSM-DE)
isdesigned. Itis tested on two benchmarks CEC2014 [15] and
CEC2015 [16] and Lennard-Jones problem to compare with
other four classic DE variants, one state-of-art DE variant
and two improved non-DE variants. The simulation results
show that DSM-DE achieves an excellent optimization per-
formance no matter in convergence speed or accuracy.

The layout of the rest of the paper is as follows: Sect. 2
gives a brief introduction of the classical DE algorithm.
Section 3 reviews the related works on DE mutation strate-
gies. Section 4 elaborates the algorithm with dynamic
speciation-based mutations (DSM-DE). Comparative exper-
iments results for the proposed algorithm are conducted in
Sect. 5. Finally, a conclusion is made in Sect. 6.

2 Basic operations of DE

In this section, basic operations of DE dealing with the con-
tinuous optimization problem is introduced.

2.1 Initialization

o . = = D
The objective function f(X), X = (x1,x2,...Xp) € R
whose feasible solution space is £2 =]_[il):][Li, U;] is

@ Springer

assumed to be minimized in this paper. D is the dimension of
the problem. DE algorithm aims at evolving the population
to find the global optimal of the function. In classical DE,
the initial population 3()[,0 = (X1,;,0.%2,i,0---XD,i.0)|i =
1,2,...NP is randomly generated by a uniform distri-
bution within the search space constrained by the pre-
scribed minimum and maximunl) parameter bounds X i, =
(xl,min’ X2, min - - ~xD,min) and X ,4x = (xl,ma)cv X2, maxs « -« -
XD.max)- N P is the population size. Mutation, crossover, and
selection operations are adopted in a loop program after ini-
tialization.

2.2 Mutation

—
At each generation g, a mutant vector V'; ¢ is produced for
each target vector X ; , through the combination of different
individuals in the population. The five most frequently used
mutation operators are shown as follows:

“DE/rand/1”:

— — - -

Vi,g= Xrl,g+F'(Xr2,g_ Xr3,g) (1)
“DE/best/1”’:

— — - -

Vi,g = Xbest,g +F- (Xrl,g - Xr2,g) (2)

“DE/rand-to-best/1”:

— — - - - -
Vi,g = Xi,g+F'(Xbest,g_Xi,g)+F'(Xr1,g_Xr2,g)
3

“DE/best/2”:

— — — - - —
Vi,g=Xbest,g+F°(Xr1,g_Xr2,g)+F’(Xr3,g_ Xr4,g)

“

“DE/rand/2”:

— — - - — -
Vi,g = Xr1,g+F’(Xr2,g—Xr3,g)+F'(Xr4,g_XrS,g)

&)

Indices r0, r1, r2, r3, r4, and r5 are distinct integers ran-
domly generated in the range [1, N P]. They are different
from the index i. F' is a positive control parameter used to

scale the difference vector. X ey, is the best individual in
the population at generation g.

2.3 Crossover

After mutant vectors are generated, binomial crossover oper-
o 73 - .
ator is implemented on X;, and V ;. to generate trial

%
vectors U g = (Ui 1,6, Ui 2,9, Ui D,g)-

Memetic Computing (2020) 12:73-86

75

Vi jg ifrand;j(0,1) < CRor j = jrana (6)

Uij.g = .
Xi,j,¢ otherwise

wherei =1,2,...NP,j=1,2,...D.rand;(0, 1) is ran-
domly chosen from O to 1 for each j and each i according to
a uniform distribution. j.4,q is @ random number between 1
and D newly generated for each i. The crossover probability
CR € [0, 1] scales the amount of changed components in a
target vector. jrqnq keeps that at least one different parame-

ter exists between the trial vector U ; ; and its target vector

—
Xig

2.4 Selection

Competition is performed between target vector X ; o and

mutation vector U ; o through selection operator and the indi-
vidual with better fitness value enters the next generation.

— . — —
> Ui it Ui < f(Xiy)
Xz,g—H = 1= . @)
X ¢ otherwise

3 Previous work related to DE

Firstly, this section introduces some mutation strategies in
DE variants with single population. Then mutation strategies
in structural population constructed by niching technique are
listed. Finally, the original motivation to design DSM-DE is
interpreted.

3.1 Mutation strategies in single population

Mutation operation randomly changes elements in target vec-
tor to generate a new individual, so it is critical in diversifying
the population. Improving mutation strategy has become an
important aspectin researchers’ study of DE. A well designed
mutation strategy (both explorative and exploitative) will
greatly improve the searching efficiency and accelerate the
convergence of DE. DE/current-to-better/1 is proposed in
[13], where p% better solutions are sampled by a Gaussian
distribution to guide the search. UDE [26] selects parents
according to fitness space criterion and design space criterion
to enhance exploration and exploitation. Another operation
that improved the selection of parents is ranking-based muta-
tion strategy in DE with ranking-based mutation operators
[11]. In order to utilize the information of good vectors,
it selected parents proportionally according to their fitness
rankings from current population in mutation operation.
Moreover, many researchers combined several existing muta-
tion strategies in their algorithms [9,25] to make different
mutant vectors compete with each other.

3.2 Mutation strategies in structural population

A structured EA refers to decentralizing the population into
subpopulations which may have different evolutionary roles
and can interact with each other. It is also an important
method for DE algorithms. Neighborhood concept, which
includes two categories namely index-based and distance-
based, is extensively used to get a structural population.

3.2.1 Index-based neighborhood

Index-based neighborhood separates the population based
on the code number or the fitness value of the individuals.
Zheng [33] divided the current population into superior and
inferior subpopulations based on evolution metrics. Mutation
operations in the two subpopulations selected parent indi-
viduals from different population sets to make better use of
superior individuals. Gao et al. [10] separated the population
based on the solutions’ feasibility and parent individuals were
selected from the m_th subpopulation and whole population.
CMODE [30] used cooperative populations in their algorithm
and adopted JADE’s mutation in each subpopulation. Cui et
al. [7] split the population into three sub-populations based
on fitness values and introduced three novel mutation strate-
gies for each subpopulation. In [28], a multi-topology and a
topology-dependent mutation strategy are combined to uti-
lize the information of topology adaptation.

3.2.2 Distance-based neighborhood

Generally, distance-based neighborhood divides the pop-
ulation based on the Euclidean distance. Niching is a
distance-based neighborhood technique commonly used in
multimodal optimization to form a structural population.
Cluster-based methods were also adopted to divide the pop-
ulation [24].

Sheldon and Suganthan [14] apply arithmetic recombi-
nation with speciation in their algorithm. Mutation with
ensemble strategies were employed to enhance exploration
and exploitation. Li et al. [19] utilize the clearing niche mech-
anism in the existing mutation strategies, in which the niche
individuals are utilized as base vectors. A parent-centric
mutation operator combined with synchronous population
update rule was proposed by Biswas et al. [3] where the
offspring was produced in the region of dominating parent
updated by the dominated parent. Biswas et al. [4] integrated
an improved information-sharing mechanism with DE algo-
rithm for inducing efficient niching behavior. In mutation
operator, the probability of picking relatively fitter individ-
uals was higher than the less fit individuals lying closely to
the target vector.

@ Springer

76

Memetic Computing (2020) 12:73-86

3.3 Motivation for the mutation strategies and DST

From the studies mentioned above, many DE variants with
single population modified parent selection methods in muta-
tion to utilize the information that can navigate the searching
direction. In DE variants with structural population, hier-
archical structure is mainly used for mutation operation to
select useful information according to different criteria for
classification i.e. generations, fitness values, code numbers or
spatial distance etc. Constructing a structural population is an
effective way to maintain the diversity since it could increase
the selection diversity. In the author’s view, using distance-
based neighborhood concept is a more suitable way to
group the population compared to index-based neighborhood
because a population structure that each subpopulation con-
tains individuals which are different in fitness values but simi-
lar in spacial positions is wanted to fully utilize better individ-
uals in different regions. In this paper, distance-based neigh-
borhood concept is adopted in DST to construct the popula-
tion structure. It is known that the idea of grouping population
in DST is borrowed from speciation but the specific steps of
DST are totally different from speciation. Here it is necessary
to explain the differences between two techniques.

Firstly, sizes of species in DST are flexible and various
while they are fixed and the same in speciation. Secondly,
DST reduces a deterministic parameter rg in speciation,
which denotes the radius from the species seeds to its bound-
ary. DST selects as a number of closest individuals to the
seeds to constitute species. Furthermore, speciation need
to regenerate (discard) vectors if the number of vectors in
boundary r is more than (less than) the predefined species
size while DST do not need this operation. Additionally, SDE
runs a basic DE in each species independently to locate mul-
tiple optimal simultaneously. In DSM-DE, parent individuals
in mutation are selected from different species.

The structure constructed by DST is served for the muta-
tion process in our proposal. Two new mutation strategies
both take the best individuals in each species as basic vectors
under this structure so that the algorithm could exploitate bet-
ter individuals located in different areas in the search space
which play an important role in leading the searching direc-
tion and accelerating the convergence speed.

4 DSM-DE

In this section, DSM-DE utilizing two new mutation strate-
gies is proposed. Firstly, the steps of DST designed to locate
various better individuals in different regions are introduced.
Secondly, the basic of DSM-DE two mutation strategies are
presented. Two generated trial vectors compete with each
other and the better one is used in the selection. Finally, the
adaptive parameter control mechanism is introduced.

@ Springer

4.1 DST

In evolutionary process, a new population is generated at
the end of each iteration. DST is designed to classify the new
generated population at the beginning of each iteration. These
species with different sizes can be identified by determining
their own species seeds and calculating their own sizes. The
steps of DST can be summarized as follows.

First of all, fitness values of all individuals and Euclidean
distance between each two individuals in population P are
calculated. Distance is computed using the following equa-
tion:

—> i = . A\ 2
dist (XD, XDy = |37 (5 — x)
k=1

®)

where ?()(i) = (xf), xéi), o xg)) and X)) = (xfj), xéj),

, xg)) are D-dimensional vectors of real numbers rep-
resenting two individuals i and j from population P. The
minimum individual is removed as the first species seed from
current population P to cells S which saves all species includ-
ing their members. The next step is to evaluate size of the first
species based on the percentage of the fitness value of the first

seed using (9).

Algorithm 1 Pseudo Code of Dynamic Speciation Technique
Input:
P-A population containing N P individuals in the search space
Di-A NP % N P array storing the Euclidean distance between
each individual in set P
Set S_num =0andm =0
Set S_min =3 and S_max = NP/5

Output:
S- A cell includes S_num elements
while population P is not empty do

1. S_num = S_num + 1

2. Find the fittest individual 3() seedi 1N population P as the
S_numyy, species seed and remove it from P to S

3. Calculate the size of the S_num,j, species as in (9)

4. Incorporate m(i) — 1 individuals remained in population P to
S, which are nearest to 7() seeqi measured in Euclidean distance,
with 7() seedi to form the iy, species and meantime eliminate
these selected individuals from population P

end while

valparents(i) — min(valparents)

m(i) = round -
max (valparents) — min(valparents)

(S_max — S_min) + S_minpg}
)

where m (i) is size of the iy, species, valparents is set of
fitness values of the whole parent population, S_max and

Memetic Computing (2020) 12:73-86

77

Best Seeds Fitness

Species Seeds

Small Species Size

Fig.1 Sketch map of Dynamic Speciation Technique

S _min are the maximum and minimum number of indi-
viduals in each species. Sizes of all species m (i) fall into
the maximum and minimum boundary. S_min is set as 3
to guarantee there are alternatives for parent individuals in
“DE/seeds-to-rand” mutation”, in which two parent vec-
tors are selected from the current species. When S_min is
less than 3, the second parent has only two or one option.
Experiment results show that N P /5 is the most appropri-
ate number for S_max. Additionally, max (valparents) =
min(valparents) indicates all individuals in the population
have the same fitness values. Clearly, itis no sense to calculate
m(i) using (9) because the calculated result will be infinite.
Under this circumstance, S_num will be set as N P /10 and
all sizes of species will be same because a uniform species
allocation is expected to obtain at this time. The formula that
limits the species including at least S_min and not exceed-
ing S_max individuals is of great importance to balance the
species allocation i.e. a species with a fitter seed will have
a smaller size. A species is formed after removing the near-
est m(i) — 1 individuals to the species seed measured by
Euclidean distance from P into the i;;, species. When form-
ing a new species, the best one among the rest individuals in
population P is always selected as the seed of that species.
Species is formed following the same steps mentioned above
until population P becomes a empty set. Note that if the
number of individuals left in population P is less than the cal-
culated number m (i) when the last species is generated, the
left number is assigned to m (i) to guarantee the total number
of the population not to change. Algorithm 1 is the process of
DST and Fig. 1 illustrates its sketch map. Obviously, species
seeds with higher fitness will circle fewer individuals in their
groups.

4.2 Mutation strategies

Two mutation strategies “DE/seeds-to-seeds” and “DE/
seeds-to-rand” are implemented simultaneously to main-
tain explorative and exploitative capacity of the algorithm.
Studies indicate that compared to the most frequently used
classical mutation strategy “DE/rand/1”, greedy strategy
“DE/best/2” has a higher convergence rate. However, incor-

Algorithm 2 Pseudo code of DSM-DE algorithm

Input:
FES: Function Evaluations
D: Dimension of the problem
FES,;;,,=D*100000: Maximal Function Evaluations
g: Current generation
NP =5 x D: Population size
m: Speciation size
S_num: Number of speciation
S_min = 3: The minimum size of the speciation
S_max = 10/N P: The maximum size of the speciation
Initialization
— — —
Generate arandom initial population Py = { X 1,0, X 2,0, ... X NP0}
while FES < MaxFES do
Calculate the Euclidean distance between each individual in popu-
lation P
Execute DST in Algorithm 1 to get cell S = Sy, Sz, ...Ss num With
S_num species
fori =1:S_numdo
for j =1:m(i) do

Fi j¢ =randl(ucg,0.1)

CR; j ¢ =randlur,0.1)

Mutation

— — .

Generate V1; j ; and V2; ; o for X; ; ¢ using

(10) and (11) respectively

Crossover

— —
Generate trial vector Ul; j o and U2; ; . for

7() i.j.g through binomial crossover (6)

Evaluate the fitness values of U1 i,j.g and

—

Uzl’.l.g =

Choose the better one (denoted as U ; j ¢)
— —

from Ul; j o and U2; j ¢

Selection

if f_()U,'A,j.g) < f(X,‘,ng) then

—
Xijg+r1=Uijg
else
= —
Xijegr1 = Xijg
end if
end for
end for

end while

porating the only best solution can also be a defect because
the best individual may lead the population to wrong direction
due to the resultant reduced population diversity. To avoid
weakness of existing greedy strategies, two new mutation
strategies are proposed to serve as the basic of the algorithm.

The first mutation “DE/seeds-to-seeds” is relatively
exploitative. It is designed to accelerate convergence of the
algorithm. Species seeds are elite individuals in the pop-
ulation so it will dominate the evolutionary process and
lead the population into global optimum quickly. Figure 2
demonstrates this mutation in 2-Dimensional plane picture.
Current seeds are taken as basic vectors and random seeds in
other species will cooperate with random individuals in cur-
rent species to give directions, guiding the currents seeds to
promising areas. Since the two mutation strategies are both
species dependent, it is necessary to indicate in which species

@ Springer

78

Memetic Computing (2020) 12:73-86

| 3| {m
i |
o 2|
| —
‘5‘3;‘ =] [o0
|
A 2l [
e 5
703 S)
| | 120
0) J) |
5 & m Y 0 100 110
Fig.2 DE/seeds-to-seeds
T
RUS A1
N — 3 M
'50;' 71 a0
e &)
q0E 4
; 0
Es S
120
0) |) I
[EY Y 0 Y Y 100

Fig.3 DE/seeds-to-rand

the mutation operation is performed. Thus index is added i in
the subscript to represent the current species. The first muta-
tion strategy generate mutation vector in the i;, species as
follows:

“DE/seeds-to-seeds”:

— — — —
ViJ,g = Xi,seedi,g + Fij,g'(X i,seedrl,g — Xi,er,g) (10)

where j stands for j;; individual in current species, X; seedi, g
is seed of the species current target vector belongs to,
and F; j , denotes mutation factor that is updated at each
generation adaptively. Indices seedr1 and sr2 are integers
uniformly chosen from set of other S_num — 1 species seeds
and current species respectively. On the one hand, it combines
the best solution in current species and the best solution of
other species, which leads to a fast convergence and guide the
population to multiple promising regions. On the other hand,
it does not merely rely on information provided by the best
solution so it relieves the premature convergence problem.
The second mutation “DE/seeds-to-rand” is relatively
explorative. In this mutation, current species seeds are also
taken as base vectors. The two individuals used to consti-

@ Springer

tute difference vector are selected from the whole population
randomly rather than be restricted in the species seeds set
or current species. It is designed to diversify the population
in later evolution stage and help the population jump out
of local optimum because it expands searching ranges com-
pared with the first mutation. Figure 3 illustrates this mutation
in 2-dimensional plane picture. The more arbitrary combina-
tions of individuals in this mutation make it could generate
more beneficial directions to base vectors. A mutation vector
is generated as follows:

“DE/seeds-to-rand”:
— — — —
Vijeg = Xiseedig + Fijg- (Xi,rl,g - Xi,rZ,g) (11)

where 7() i,seedi,g 18 seed of the species target vector belongs
to, indices seedr 1 and sr2 are integers both randomly chosen
from the whole parent population. It increases randomness
of the searching process and enhance the diversity of off-
spring population through involving individuals from the
whole population.

At each generation, “DE/seeds-to-seeds” and “DE/seeds-
to-rand” are employed to produce two offspring. Fitness
values of the two offspring are compared and the better one
could enter final selection process to against with target vec-
tor, which will promote search capacity and robustness of the
algorithm because their explorative and exploitative charac-
teristics are complementary. Experiments conducted in Sect.
5.3 illustrates that two mutation strategies can not be replaced
by other strategies because of their powerful exploration and
exploitation capability.

4.3 Parameter adaptation

Reference [17] adopted mutation based on Levy probabil-
ity distribution. In this paper, Levy distribution is used to
generate I and CR.

Levy distribution is a special case of Cauchy probability
distribution. It will lead to larger variation and enable the
evolution to discover a wider search space. Therefore, Levy
distribution is used in ¥ and CR adaptation to assist two
mutation operations escaping from local optimal when the
whole population is of highly cluster intensity. The location
parameters up and pcp are set to be 0.6 and 0.8 respec-
tively. The standard deviation of the two parameters are both
set to be 0.1. Experiments proved that DSM-DE are not sen-
sitive to the feedback from previous generations thus fixed
parameter setting do not impair the performance of DSM-DE.
Conversely, it reduces calculation time and improves the pro-
gram efficiency. The pseudo code of DSM-DE is presented
in Algorithm 2.

Memetic Computing (2020) 12:73-86

79

4.4 The time complexity of DSM-DE

Compared with classical DE, DSM-DE demands additional
computations on species division process. In each generation,
DST is executed to divide the population into several subpop-
ulations. Sorting the individuals based on fitness values will
need N P log(N P) times. In order to find the nearest indi-
viduals to the species seeds, the Euclidean distances between
each individuals are calculated. The average complexity of
this process is O(D - NP - (NP — 1)/2) [6] because of the
symmetric property of the distance measure. The time com-
plexity of classical DE is O(Gmax - NP - D) and the total
time complexity of DSM-DE is O(Gmax - [NP-D+ NP -
log(NP)+ D - NP - (NP — 1)/2]) which can be simpli-
fied to O(Gmax - D - N P?). It should be emphasized that
the computational complexity of DSM-DE is mainly derived
from the function evaluation when the function evaluation is
costly. Furthermore, the additional computation cost by dis-
tance computing is proved to be negligible for the functions
with costly evaluation.

5 Simulation results

In this section, comprehensive assessments for DSM-DE are
carried out on CEC2014 and CEC2015 benchmark func-
tions and Lennard-Jones potential problem by dividing the
experiment results into three subsections. References [15,16]
introduced benchmark functions in CEC2014 and CEC2015
exhaustively. Section 5.1 compares the overall performance
of DSM-DE with four classical DE variants. Section 5.2 com-
pares DSM-DE with one state-of-art DE algorithm and two
improved non-DE variants. Section 5.3 testifies the effective-
ness and superiority of the two mutation strategies adopted
in DSM-DE through designing DSM-DE variants as com-
parison.

5.1 Comparison with JADE, CoDE, SaDE, and jDE on
30-D, 50-D, and 100-D problems in CEC2014 and
CEC2015 and 38 atom Lennard-Jones potential
problem

JADE, CoDE, SaDE , jDE are four acknowledged classical
DE variants that have been widely used in the literatures to do
comparative experiments because of their excellent optimiza-
tion performance. Four algorithms are employed the same
parameters as in their original paper. All DE algorithms and
variants of DSM-DE are programmed in MATLAB R2014a
and run on a Windows 7 system.

In this experiment, five DE algorithms are tested on 30-
D, 50-D, and 100-D problems in CEC2014 and CEC2015.
The number of decision variables D is set to be 30, 50, and
100. MaxFES is set to be 300000 for 30-D, 500000 for 50-D,

Table1 Friedman’s test ranking of DSM-DE and four DE variants ON
CEC2014 and CEC2015 functions

Algorithm Ranking in CEC 2014 Ranking in CEC 2015
30-D 50-D 100-b 30-D 50-D 100-D
DSM-DE 23667 2.1 1.85 1.6667 1.6333 1.5667
JADE 2.8333 2.6667 2.35 29333 23 1.7667
CoDE 2.9 33 4.4 2.8 4.2 4.4
SaDE 3.6667 3.7 32 3.9333 33 3.6
JjDE 3.2333 3.2333 3.2 3.6667 3.5667 3.6667

and 1000000 for 100-D. Each algorithm on each test func-
tion terminates when reaching MaxFES or the error value is
smaller than 1E—08. Each algorithm is executed for 50 inde-
pendent runs to obtain the average and standard variance error
values. Non-parameter statistical analysis are conducted on
the results to distinguish the optimization performance of
different algorithms. The experiment results of average and
standard error values of five algorithms on CEC2014 bench-
marks (30-D and 50-D results on CEC2014 and all results on
CEC2015 benchmarks are in the supplement due to the page
limit) are presented in Table 2.

Firstly, Friedman’s test is implemented on the statistic
results to see the overall performance of all compared algo-
rithms. It could be observed from Table 1 that the overall
performance of DSM-DE is the best among the compared
algorithms both on lower or higher dimensional problems
in CEC2014 and CEC2015. JADE ranks second except for
30-D test in CEC2015 and its performance is becoming rela-
tively better with dimension increasing. CoDE ranks second
or third in 30-D and 50-D test but it is exceeded by SaDE
and jDE in 100-D test and ranks the last.

Wilcoxon signed-rank test is also implemented on the
results at a 0.05 significance level and the overall results are
recorded in the last three rows in Table 2. Comparison results
on each function are given in supplementary. ‘+’, ‘—’, and
‘=" denotes DSM-DE is better than, worse than, or equal to
other algorithms respectively. Boldface font is used to indi-
cate the best performance among five algorithms in terms of
mean solution error. Figure 4 demonstrates convergence pro-
cess for functions in different dimensions in CEC2014 and
CEC2015 benchmarks. The figures graph mean error value
curves for all five DE variants over 50 independent runs.

Unimodal functions In CEC2014 30-D test, global optimal
solution of F2 is found by five algorithms and the global
optimum of F3 is found by four algorithms except for JADE.
But in 50-D and 100-D test, only JADE reaches the global
optimum of F2. DSM-DE reduces the mean error value of F2
to 1IE—07 in 50-D test and 1E—01 in 100-D test. Similarly,
DSM-DE finds the global optimum of F3 in 30-D and 50-D
test and reduces the mean error of F3 to 1E—05 in 100-D

@ Springer

Memetic Computing (2020) 12:73-86

80

z z 0 14 =

€ L z 1 -

T K4 8T <1 +
T0+EEYL €0+H06F TO+ASy'S €0+ASI'S TO+H00E €0+AT6T €0+ASOT vO+ASTT TO+AI0S €0+HELL 0€d
T0+d00C €0+AICT 10+d86'6 €0+AL6T €O+ALTT €o+dOLY co+dALyE €0+d68T Co+AYOT T0+HASTS 674
T0+dL0T €0+HITT 10+HL6'S €O+AIET 10+d899 T0+AI06 I0+AIYS €0+H9CE TO+ASY'T €0+ASIT 8Td
10+996'8 20+dIL9 TO+ATL'S €0+A89T TO—HEFT T0+H00T 10+d6y'S co+dAvl's 10+dS9Y Co+ALYY LTd
10+d1%' T 20+d86’T 10+dv0's T0+ATST 80—H69T T0+H00T 10+d0Lt CO0+ASYT T0—ASEE T0+H00T 9Td
10+d€0C co+ApI'T 10+ASTT co+AveT 00+d9C€ TO+ALL’E 10+AvTT T0+dA90°T 10+d06'T To+ALTT STd
00+dL0¥ TO+AISE 00+dAI€T c0+dEoe o+APIT Co+ASE’E 00+AIlY TO+ASS’E 00+AS9T CO+ASSE vTd

€1-av6'c Co+Asy’s 90—H08'S TO+ASK'E PO—HA90C CO+ASy's €0—HLI'S CO+ASY’E €I1-dET co+AskE £od suonouny uonisodwo)
T0+A01C €O+AIET CO+A9ET €0+ASST Co+ASST €o+A8IT To+ASIT €0+A0IS Co+ASIT €0+dAIET Ted
€0+ASOS €0+d09'8 vO+HA69T vO+HASLY €0+ASS’S pO+ASOT €0+A9IE HO+ASIT T0+AVTS €0+AMKT 1Td
10+d66'€ C0+ASST 10+dE6'S To+ASIy 10+dS8'6 co+dATy’s 10+dI9E TO+ALTE PO+AS0T pO+AROT 0Td
00+ds€’6 10+AS¥'6 00+d6Tt 10+dLL6 10+F00C TOHAOSL 00+dI6T TO+AIOT 00+AL9T 10+ASE6 614
T0+A0IE To+APLE T0+AS0E TOHHES'€ Co+ASSE co+dAset co+dOFT T0+d999 To+A9l'E co+Arst 814

PO+A9L'E VO+ACOL SOHASST SO+APLT PO+HOSE O+ASEL vO+d60'L SO+HASET €0+ASI'S pO+ASTT LId suonouny pLqAH
10-d67°L T0+A9T'Y 10—dese 10+d9CH 10—dL0€ l0+avb't 10—d08C 10+d6st 10—de€8'€ 10+dAITy 914
00+dS9C TO+ALKT 00+dCLT 10+AL8Y 00+dCo€ 10+d66'S 00+AIIT 10+ASKL 00+A89T 10+dISE SIA
0-ar9T T0—AILT T0—d89'l 10—d9y'€ Co—Av8T [0—AII'E To—dLI'E 10-dL9C T0—dITT 10—-d60°€ bld
0-996'€ 10—AI9E C0—dISE 10—dy'S 0—dL9T 10—d6v't TO—HELS 10—HA9Y9 T0—dA8ST 10—HOLE €14
109171 T10-d6Sv TO—H90'6 O00+ASI'T C0—dII'6 00+d86'I 10—dcL'T 00+d6LT CO—dpTL 00+HOI'T TId
€O+AI0T POHASTT T0+H66'S vO+ALST TOHASEY pO+H6TT COHESS'S HO+HELT CO+HTSY vO+HAEST 114
T0+HLE'S €0+HI89 TOHHEYT €0+HTO'T TO+HS0E €0+HOI'9 co+ASSt vO+HASST TO+HLTT €0+ASLT 014
10+a¥0C TO+ATET 10+A9€T co+dler 10+A90C T0+d06'S [0+dALy'T To+dASI'8 10+AS9T T0+H6ST 64
[0+90€T To+d6ST 00+Ave’s 10+dLTE 00+d6TL TOHASKT 10+dASTT To+dArLt 00+A89T T0+A0T'E 84
01-92ST 60—HT96 90—d19CT 90—dsy’'s €0—HOVL €0—dPLT TO—AITT TO—HIOS €0—HOKI YO—dAL6'] Ld
00+dSLy TO+A6TT 00+d96L 10+H99'8 00+HC8Y [0+d80F 00+HA9S'S TOHASIT [0+AIlE [0+AbLE 94
10—d€€c T10+d€0C CO—dSk'T 10+H80CT To—dovz 10+dil'c C0—dOLT 10+dclT T0—H06L 10+H60T Sd

10+d.S°€ To+dek T 1o+avsT co+del'c 10+AOFY Co+AcEe 10+d9€T co+dAvI'T 10+ATlE C0+HACET p4 suonouny [epownnu S[dwrg
PO—API'T SO—A96'8 00+AS0'T 00+HAL9T TO+AEST Co+A60E 10+AF9'6 TO+HA66'T €0+AvTT €0+H6S8 €
00+d6€T 10—HSLE $O+A60'T POFASET €0+HOSS O+ATET vO+A6I'T vOFAELY'S OI—dIET 60—HOL'6 T

So+avTy 90+dALST 90+d6TT 90+APS'6 90+ASTT 90+t 90+AISS LOHHOIT pO+H69S SO+HEST 14 suonouny [epowtu)

PIs uedN pIs U PIs ueIN UN ueIN pIs ueN
aa-Wsa aal aaes aaod aavi oN uonoun,

suni Juopuadapur (g 1940 $1(0ZIHD Ul SuOnouNy 1831 4-001 U0 AA-INSA ANV ‘AAf “AAES ‘AA0D ‘AAVI JO AM[eA JOLID UOHRIASD PIEPUE)S PUE UBIN T 3|qeL

pringer

as

Memetic Computing (2020) 12:73-86

81

Fig.4 Evolution of the mean
function error for DE variants
on 30-D, 50-D, and 100-D
benchmarks in CEC2014 and
CEC2015

Average Function Error Value
5

10

Average Function Error Value Average Function Error Value

Average Function Error Value

102

1015

100

Average Function Error Value

9

10710
0

2014 30-D F5

1 1.5 2 25
FES

0.5

1 15 2 25
FES

2014 50-D F14

0.5

1 15 2 25
FES

2014 50-D F22

1 15 2 25

FES
2015 30-D F2

Average Function Error Value

Average Function Error Value

Average Function Error Value

Average Function Error Value

Average Function Error Value

1010

1010
0

104

02

2014 50-D F3

200 400 600 800 1000 1200 1400 1600 1800 2000

FES
2014 50-D F9
—&A— JADE
—%— CoDE
——+— saDE
iDE
—%— DSM-DE

L A

05 1 1.5 2 25 3
FES x10°

2014 50-D F28

2014 100-D F20

05 1 15 2 25 3
FES x10°

2015 100-D F10

@ Springer

82

Memetic Computing (2020) 12:73-86

test. Other four algorithms only reach the global optimum in
30-D test. F3 is a rotated discus unimodal function that has a
sensitive direction. DSM-DE is seeds-guided algorithm so it
can tread on the heels of the evolutionary path of better solu-
tions (i.e. the sensitive direction of the function) and diversify
the population through selecting mutation individuals from
a wider region at the same time. In CEC2015 30-D and 50-D
tests, only DSM-DE and JADE find the global optimum of
the rotated cigar function F2 which is smooth but with narrow
ridge. Overall, JADE performs best on unimodal functions
among five algorithms. DSM-DE is the second best but it per-
forms better than JADE on rotated discus unimodal function.

Simple multimodal functions In CEC2014 30-D test, DSM-
DE outperforms JADE on 7 functions and other three
algorithms on 10 functions. It is worth pointing that there
are 11 good results in 50-D test and 13 good results in 100-
D test compared to CoDE on total 13 simple multimodal
functions, which proves DSM-DE’s superiority in solving
multimodal problems. In CEC2015, there are only 3 multi-
modal functions. DSM-DE performs better than JADE on
F3 and F4 and it surpasses other three algorithms on all
multimodal functions in all dimensional tests. Obviously,
the overall performance of DSM-DE on basic multimodal
functions is extremely better than other algorithms. It is not
surprising to obtain these results. Most multimodal func-
tions have a large number of local optima and it is easily
to trapped in local optimum for most algorithms. DSM-DE
is skilled in exploiting those huge amount of local optimums
and diversifying the population with the perfect cooperation
of the explorative and the exploitative mutation strategies.
“seeds-to-seeds” mutation leads the population to promis-
ing area and “‘seeds-to-rand” mutation enable the evolution
escape from local optimum through selecting parent individ-
uals from larger ranges.

Hybrid functions In CEC2014 30-D test, DSM-DE is better
than JADE on all 6 hybrid functions. It outperforms SaDE
and jDE on 4 functions. In 50-D, DSM-DE also has over-
whelming superiority compared to JADE, SaDE and jDE. In
100-D test, JADE is equally better with DSM-DE. Although
DSM-DE is defeated by CoDE in 30-D test with 3 bad results
and 2 good results, it succeeds CoDE in 50-D test with 3
good results and 1 bad result and in 100-D test with 6 good
results.In CEC2015 test, DSM-DE gains a complete victory
against JADE, SaDE, and jDE in 30-D test because it is sig-
nificantly better than these three algorithms on all hybrid
functions. Similarly, CoDE performs better than DSM-DE
in 30 dimensional test, but it loses the dominance in 50-
D and 100-D tests. Obviously, DSM-DE’s performance on
higher dimension is remarkable. In summary, DSM-DE ranks
second to CoDE and outperforms three other variants on
lower dimensional functions. However, it surpasses CoDE

@ Springer

and exhibits excellent performance on higher dimensional
hybrid functions.

Composition functions In CEC2014, composition functions
are made up of 3 or 5 functions. No method could reduce
the mean error value of these functions below 1E+02. In
30-D test, CoDE performs best, which defeats other algo-
rithms on five functions. SaDE ranks second and DSM-DE
ranks third. In 50-D test, CoDE and jDE perform best and
SaDE is surpassed by DSM-DE. In 100-D test, DSM-DE and
JADE perform best and CoDE again loses its dominance. In
CEC2015, DSM-DE is better than JADE, CoDE, SaDE and
JDEon 4, 5,5 and 6 functions respectively among 7 compo-
sition benchmarks in 30-D test. It is better than CoDE and
SaDE on all composition functions in 100-D test. F12 is a
composition function including 5 functions and DSM-DE
wins four variants on all dimensional tests.

In summary, DSM-DE performs best on simple multi-
modal benchmarks in all dimensional tests. For other kinds
of benchmarks, DSM-DE performs best on 50-D and 100-D
tests in most cases. It ranks fourth on CEC2014 composition
in 50-D test, which is not so desirable. Overall, the num-
ber of better results of DSM-DE is always more than worse
results compared with four DE variants. JADE performs
better on higher dimensional functions than on lower dimen-
sional functions since the total good results are increasing
and bad results are decreasing with the growth of dimen-
sion. CoDE, SaDE, and jDE perform much worse on higher
dimension than on lower dimension. DSM-DE always keeps
its leading position in all dimensional tests on two set of
benchmarks.

In order to present the effectiveness of DSM-DE over
real-world problems, it is tested on Lennard-Jones potential
problem together with other four algorithms. Lennard-Jones
Potential problem is a potential energy minimization prob-
lem, which deals with the minimization of molecular poten-
tial energy relating to pure Lennard-Jones cluster. It consists
of numerous number of local minimum and have brought
many optimizers to harsh tests. According to the description
given in CEC2011 [29], an algorithm can be tested on this
function for confirming its ability in conforming molecular
structure. When such a structure is obtained, the atom has the
minimum energy. In this experiment, a well-known atomic
cluster with 38 atoms is considered, which means the prob-
lem dimension is 38 * 3. Thus, the maximum FES is set to be
38*3*10000. Each algorithm is executed for 50 indepen-
dent runs to obtain the average and standard error values.

Table 3 illustrates the mean and standard deviation val-
ues optimized by four classic DE algorithms and DSM-DE
through 50 independent runs. The optimum potential for
the 38 atom Lennard-Jones cluster reported up to now is
—173.928427. It is clearly from the table that DSM-DE
obtains the closest result to the optimum and SaDE ranks

Memetic Computing (2020) 12:73-86

83

Table 3 Mean and standard deviation value of JADE, CoDE, SaDE,
jDE, and DSM-DE on Lennard-Jones potential problem over 50 inde-
pendent runs

Algorithms Mean Std

JADE —54.35438 1.6438809
CoDE —19.94183 0.8391038
SaDE —70.50709 1.3925378
jDE —47.72489 4.5662838
DSM-DE —99.2301 7.215996

second. CoDE performs worst in solving this practical prob-
lem. Thus, this experiment demonstrates that the proposed
method works in hard real life optimization problem.

5.2 Comparison with the state-of-art DE variant and
non-DE algorithms

EFADE [21], EABC [12], and RW-GWC [2] are selected for
comparison in this experiment. EFADE is the ensemble of
fundamental DE and a fitness-adaptive mechanism. EABC
includes four selection schemes to improve exploitation
capability and convergence guided by the search process of
onlooker bee. RW-GWC, which is a relatively new algorithm
in the field of swarm intelligence, focuses on enhancing the
search ability using random walk technique and a better lead-
ership method. In the experiment, DSM-DE, EFADE and two
non-DE variants are tested on 30-D functions in CEC2014
and CEC2015. We run EFADE on CEC2014 benchmark for
50 times to obtain the average and standard error values.
However, the original codes of EABC and RW-GWC were
not provided by the authors, so the results provided by these
methods were directly taken from their references to conduct
comparison (EABC was tested on CEC2015 and RW-GWC
was tested on CEC2014, so DSM-DE can only be compared
with them on the two benchmarks respectively).

Table 4 summarizes the Wilcoxon’s test results for DSM-
DE and other three algorithms. Rt and R~ is the positive
and negative rank sum respectively. It shows that DSM-DE
obtains larger R™ values than R~ values no matter when it is
compared with EFADE and EABC on CEC2014 or it is com-
pared with RW-GWC on CEC2015 benchmark functions.
The reason is that DSM-DE performs better than other three
algorithms in most cases. Besides, p-values of EFADE and
RW-GWC are all less than 0.05, which indicates that DSM-

Table 5 Friedman’s test ranking of DSM-DE and its variants on 30-
dimensional CEC2014 and CEC2015 functions

DSM-DE v.s. Ranking in CEC2014 Ranking in CEC2015
30-D 30-D

DSM-DE 1.6667 1.8333

DSM-DEL1 3.0167 3.0333

DSM-DE2 2.5333 2.5

DSM-DE3 2.7833 2.6333

DE significantly surpasses these two algorithms. Although
there is not 95% for us to conclude that DSM-DE is sig-
nificantly better than EABC, the results of DSM-DE are
competitive (R™ is larger than R™). In conclusion, DSM-
DE outperforms the state-of-art DE variant EFADE and one
non-DE variant RW-GWC and has comparable or even better
optimization ability when comparing with EABC.

5.3 Testifying the effectiveness and superiority of
the two mutation strategies

To testify the mechanism of effect of the two mutation
strategies in DSM-DE, three variants of DSM-DE which
adopt different mutation combinations are designed in this
experiment. Two frequently used strategies “DE/rand/1” and
“DE/best/1” are introduced for comparison. “DE/best/1”
takes internal individuals of each species as parent individ-
uals. “DE/rand/1” selects parent individuals from the whole
population. In this case, “DE/best/1” is more exploitative and
“DE/rand/1” is more explorative. Each variant will combine
an exploitative mutation and an explorative mutation as in
DSM-DE. The first variant DSM-DE1 adopts “DE/best/1”
and “DE/rand/1”. Similarly, DSM-DE2 adopts “DE/best/1”
and “DE/seeds-to-rand/1”. DSM-DE3 employs “DE/seeds-
to-seeds/1” and “DE/rand/1”. Except for employing different
mutation strategies, other steps in these variants are rigorous
the same as in DSM-DE. All variants are tested on 30-D
functions in CEC2014 and CEC2015. The statistic results
are given in supplementary due to pages limit.

Friedman’s ranking results of DSM-DE and three vari-
ants of DSM-DE are listed in Table 5. DSM-DE ranks first
and DSM-DE2 ranks second in terms of the overall per-
formance. Table 6 summarizes Wilcoxon’s test results for
DSM-DE, which shows that DSM-DE obtains larger R

Table 4 Results obtained by

) _ ! + -] _
Wilcoxon’s test for DSM-DE, Benchmarks DSM-DE v.s. R R p-value At =0.05
EFADE, EABC, and RW-GWC cg2014 30-D EFADE 355.0 80.0 0.002845 +
on 30-dimensional CEC2014
and CEC2015 functions EABC 70.0 35.0 0.258486 =
CEC2015 30-D RW-GWC 386.0 79.0 0.001537 +

@ Springer

84

Memetic Computing (2020) 12:73-86

Table 6 Results obtained by

- + - _ -
Wilcoxon’s test for DSM-DE. Benchmarks DSM-DE v.s. R R p-value a =0.05
DSM-DE1, DSM-DE2, and CEC2014 30-D DSM-DEI 351 84 0.003761 +
DSM-DE3 ON 30-dimensional
functions DSM-DE3 360 75 0.001987 +
CEC2015 30-D DSM-DE1 86 19 0.03281 +
DSM-DE2 60 45 0.615519 =
DSM-DE3 99 6 0.003173 +

Table7 Adjusted p-values obtained by the post hoc methods for DSM-DE1, DSM-DE2, and DSM-DE3 on 30-dimensional CEC2014 and CEC2015

functions

Benchmarks DSM-DE v.s. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p

CEC2014 30-D DSM-DEL1 4.05 0.000051 0.000154 0.000154 0.000154
DSM-DE2 3.35 0.000808 0.002424 0.001616 0.001616
DSM-DE3 2.6 0.009322 0.027967 0.009322 0.009322

CEC2015 30-D DSM-DEL1 2.545584 0.010909 0.032728 0.032728 0.032728
DSM-DE2 1.697056 0.089686 0.269058 0.179372 0.157299
DSM-DE3 1.414214 0.157299 0.471898 0.179372 0.157299

values than R~ values compared to all variants. Clearly,
DSM-DE is overly superior to the designed variants. The
p values in Table 7 obtained by Bonferroni—Dunn’s, Holm’s
and Hochberg’s procedures indicate that DSM-DE is signif-
icantly better than all variants with a level of significance
a =0.05.

The mean number of successful trial vectors generated by
two mutations at each generation in 50 independent runs is
recorded to observe the mechanism of effects of the muta-
tion combinations. From the Wilcoxon signed-rank results,
DSM-DE1, DSM-DE2, and DSM-DE3 all perform worse
than DSM-DE on function 4 in CEC2014. The first line
in Fig. 5 shows the evolutionary process of two mutation
strategies on F4. There is a dominant strategy, i.e. the more
exploitative mutation, for all variants, which means the suc-
cessful rate of the exploitative mutation is always higher than
that of the explorative mutation. The differences of DSM-DE
and three variants is that the proportion gap of the two suc-
cessful rates is decreasing in DSM-DE whereas it does not
show no signs of decreasing in three variants. The gap in
DSM-DE2 even shows to be increasing. For function 8 in
CEC2014, DSM-DE1 and DSM-DE2 performs better than
DSM-DE while DSM-DE3 performs worse than DSM-DE.
In this case, it can be seen from the second line in Fig. 5
the proportion gap in DSM-DE and DSM-DES3 is increas-
ing whereas DSM-DEI and DSM-DE2 shows no signs of
increasing.

Experiments on other functions are also conducted and
the records are given in supplementary. In most cases, the
gap tendency of the two mutations affect the variants’ per-
formance. Variants with decreasing proportion gap perform

@ Springer

better than that with increasing gap. The results are rea-
sonable because explorative mutation is used to expand the
search scope and diversify the population. The algorithm is
more likely to jump out of the local optimum with higher
employment of explorative mutation because it is helpful in
the later stage of evolution when the population is of highly
cluster intensity. Thus, variants with higher successful rate of
explorative mutation perform better. For the three variants,
the number of trial vectors generated by explorative mutation
in later evolution is usually small. It means the effect of explo-
rative mutation is overly impaired by the dominant mutation
in the final period. However, in DSM-DE, the successful
rate of explorative mutation is increasing with the evolu-
tionary process, which suggests that “DE/seeds-to-rand” is
not totally surpassed by “DE/seeds-to-seeds”, so DSM-DE
could continually generate better individuals in the later evo-
lution. Therefore, the algorithm achieves a good balance of
exploration and exploitation and the combination of the two
mutations is perfect and irreplaceable.

6 Conclusion

Mutation is of great importance in collecting and allocating
information. Good mutation strategies will highly improve
the convergence rate and reliability of the DE algorithm. The
mutation strategies “DE/seeds-to-seeds” and “DE/seeds-to-
rand” in this paper accomplished this goal with the assistance
of DST, which is designed to find better individuals located
at different areas so that two mutation strategies can uti-
lize the better individual’s location information to guide

Memetic Computing (2020) 12:73-86

85

Mean number of successful trial vectors

Mean number of successful trial vectors

Mean number of successful trial vectors

Mean number of successful trial vectors

DSM-DE on F4
120 T T T T T T " " "

o

2
5§ 100
s
> 9
€
o
2 80
>
o
> 70f 1
2
©
o 60f 1
c
5
50 - 1
40| 4
30 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Generation
DSM-DE2 on F4
140

DE/best/1
D/seeds-to-rand

120

100

80

60

generated by two mutations

40

20

0 100 200 300 400 500 600 700 800 900 1000
Generation
DSM-DE on F8

140

N}
=]

o
S

generated by two mutations

80|

60 -

40

20

0

0 100 200 300 400 500 600 700 800 900 1000
Generation
DSM-DE2 on F8

140

DE/best/1
D/seeds-to-rand

120

100

80

generated by two mutations

20

' ' ' ' ' ' ' '

0
0 100 200 300 400 500 600 1000

Generation

700 800 900

Mean number of successful trial vectors

Mean number of successful trial vectors Mean number of successful trial vectors

Mean number of successful trial vectors

DSM-DE1 on F4

>
[}

N
o

80

60

40

generated by two mutations

20

0
0 100 200 300 400 500 600 700 800 900 1000
Generation
DSM-DE3 on F4
140
DE/seeds-
D/rand/1
120 [a AHAUM v o Sl ot
12}
c
o
=
£ 1001
S
o
2
Z g}
>
o
o
L
T 60[
[
c
[}
o
40+
WWMMM#"‘P_..A AN Ang M "
20 L L L L L L L L L ,
0 100 200 300 400 500 600 700 800 900 1000
Generation
DSM-DE1 on F8
140
120 |

=)
S

generated by two mutations
©
o

0 100 200 300 400 500 600 1000

Generation
DSM-DE3 on F8

700 800 900

— DE/seeds-t
D/rand/1

generated by two mutations

200 300 400 500 600 700 800 900 1000
Generation

0
0 100

Fig.5 Mean number of successful trial vectors generated by two mutations in DSM-DE and three variants at each generation on F4 and F8

@ Springer

86

Memetic Computing (2020) 12:73-86

the evolution. Comparison experiments have shown that the
combination of the two mutations achieves well balance
between exploration and exploitation. DSM-DE is tested
on a serious of benchmark functions and one well-known
harsh real-world problem with four classical DE algorithms,
one newly publicized DE variant and two improved non-
DE algorithms. It demonstrates better performance in terms
of convergence and accuracy compared with JADE, CoDE,
SaDE, jDE, EFADE, RW-GWC, and EABC. It is worth
to note that DSM-DE performs especially better on higher
dimensional problems when compared with those DE vari-
ants. Although DSM-DE has shown promising results, the
mechanisms of mutation strategies will be further studied
in the future research in order to enhance the determining
method of species sizes.

References

1. Al-Dabbagh RD, Neri F, Idris N, Baba MS (2018) Algorithmic
design issues in adaptive differential evolution schemes: review
and taxonomy. Swarm Evol Comput 43:284-311
2. Awadallah MA, Al-Betar MA, Bolaji AL, Alsukhni EM, Al-Zoubi
H (2018) Natural selection methods for artificial bee colony with
new versions of onlooker bee. Soft Comput. https://doi.org/10.
1007/s00500-018-3299-2
3. Biswas S, Kundu S, Das S (2014) Animproved parent-centric muta-
tion with normalized neighborhoods for inducing niching behavior
in differential evolution. IEEE Trans Cybern 44(10):1726-1737
4. Biswas S, Kundu S, Das S (2015) Inducing niching behavior in dif-
ferential evolution through local information sharing. IEEE Trans
Evol Comput 19(2):246-263
5. Brest J, Greiner S, Bokovic B, Mernik M, Zumer V (2006) Self-
adapting control parameters in differential evolution: a comparative
study on numerical benchmark problems. IEEE Trans Evol Comput
10(6):646-657
6. Cai Y, Wang J (2013) Differential evolution with neighborhood
and direction information for numerical optimization. IEEE Trans
Cybern 43(6):2202-2215
7. Cui L, Li G, Lin Q, Chen J, Lu N (2016) Adaptive differential
evolution algorithm with novel mutation strategies in multiple sub-
populations. Comput Oper Res 67:155-173
8. Das S, Mullick SS, Suganthan PN (2016) Recent advances in differ-
ential evolution-an updated survey. Swarm Evol Comput 27:1-30
9. Fan Q, Yan X (2016) Self-adaptive differential evolution algorithm
with zoning evolution of control parameters and adaptive mutation
strategies. IEEE Trans Cybern 46(1):219-232
10. Gao WF, Yen GG, Liu SY (2015) A dual-population differen-
tial evolution with coevolution for constrained optimization. I[EEE
Trans Cybern 45(5):1094-1107
11. Gong W, Cai Z (2013) Differential evolution with ranking-based
mutation operators. IEEE Trans Cybern 43(6):2066—-2081
12. Gupta S, Deep K (2018) A novel random walk grey wolf optimizer.
Swarm Evol Comput 44:101-112
13. He X, Zhou Y (2018) Enhancing the performance of differential
evolution with covariance matrix self-adaptation. Appl Soft Com-
put J 64:227-243
14. Hui S, Suganthan PN (2016) Ensemble and arithmetic
recombination-based speciation differential evolution for multi-
modal optimization. IEEE Trans Cybern 46(1):64-74

@ Springer

15. Liang JJ, Qu BY, Suganthan PN (2014) Problem definitions and
evaluation criteria for the CEC 2014 special session and compe-
tition on single objective real-parameter numerical optimization.
Technical report

16. Liang JJ, Qu BY, PNSQC (2015) Problem definitions and eval-
uation criteria for the CEC 2015 competition on learning-based
real-parameter single objective optimization. Technical report

17. Lee CY, Yao X (2004) Evolutionary programming using mutations
based on the Levy probability distribution. IEEE Trans Evol Com-
put 8(1):1-13

18. Li X (2005) Efficient differential evolution using speciation for
multimodal function optimization. In: Proceedings of the confer-
ence on genetic and evolutionary computation

19. Li Y, Guo H, Liu X, Li Y, Pan W, Gong B, Pang S (2017) New
mutation strategies of differential evolution based on clearing niche
mechanism. Soft Comput 21(20):5939-5974

20. Liu SH, Mernik M (2013) Exploration and exploitation in evolu-
tionary algorithms: a survey. ACM Comput Surv 45, Article 35

21. Mohamed AW, Suganthan PN (2018) Real-parameter uncon-
strained optimization based on enhanced fitness-adaptive differ-
ential evolution algorithm with novel mutation. Soft Comput
22(10):1-21

22. Neri F, Tirronen V (2009) Scale factor local search in differential
evolution. Memet Comput 1(2):153-171

23. NeriF, Tirronen V (2010) Recent advances in differential evolution:
a survey and experimental analysis. Artif Intell Rev 33(1-2):61-
106

24. Poikolainen I, Neri F, Caraffini F (2015) Cluster-based popula-
tion initialization for differential evolution frameworks. Inf Sci
297:216-235

25. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution
algorithm with strategy adaptation for global numerical optimiza-
tion. IEEE Trans Evol Comput 13(2):398-417

26. Sharifi-Noghabi H, Rajabi Mashhadi H, Shojaee K (2017) A novel
mutation operator based on the union of fitness and design spaces
information for differential evolution. Soft Comput 21(22):6555—
6562

27. Storn R, Price K (1997) Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Optim 11(4):341-359

28. Sun @G, CaiY, Wang T, Tian H, Wang C, Chen Y (2018) Differential
evolution with individual-dependent topology adaptation. Inf Sci
450:1-38

29. Swagatam D, Suganthan PN (2010) Problem definitions and eval-
uation criteria for CEC 2011 competition on testing evolutionary
algorithms on real world optimization problems. Technical report

30. Wang J, Zhang W, Zhang J (2015) Cooperative differential evo-
lution with multiple populations for multiobjective optimization.
IEEE Trans Cybern 46(12):1-14

31. Wang Y, Cai Z, Zhang Q (2011) Differential evolution with com-
posite trial vector generation strategies and control parameters.
IEEE Trans Evol Comput 15(1):55-66

32. Zhang J, Sanderson AC (2009) Jade: adaptive differential evo-
lution with optional external archive. IEEE Trans Evol Comput
13(5):945-958

33. Zheng LM, Zhang SX, Zheng SY, Pan YM (2016) Differential
evolution algorithm with two-step subpopulation strategy and its
application in microwave circuit designs. IEEE Trans Ind Inform
12(3):911-923

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00500-018-3299-2
https://doi.org/10.1007/s00500-018-3299-2

	DSM-DE: a differential evolution with dynamic speciation-based mutation for single-objective optimization
	Abstract
	1 Introduction
	2 Basic operations of DE
	2.1 Initialization
	2.2 Mutation
	2.3 Crossover
	2.4 Selection

	3 Previous work related to DE
	3.1 Mutation strategies in single population
	3.2 Mutation strategies in structural population
	3.2.1 Index-based neighborhood
	3.2.2 Distance-based neighborhood

	3.3 Motivation for the mutation strategies and DST

	4 DSM-DE
	4.1 DST
	4.2 Mutation strategies
	4.3 Parameter adaptation
	4.4 The time complexity of DSM-DE

	5 Simulation results
	5.1 Comparison with JADE, CoDE, SaDE, and jDE on 30-D, 50-D, and 100-D problems in CEC2014 and CEC2015 and 38 atom Lennard-Jones potential problem
	5.2 Comparison with the state-of-art DE variant and non-DE algorithms
	5.3 Testifying the effectiveness and superiority of the two mutation strategies

	6 Conclusion
	References

