
Memetic Computing (2019) 11:305–315
https://doi.org/10.1007/s12293-018-0271-8

REGULAR RESEARCH PAPER

A unified distributed ELM framework with supervised, semi-supervised
and unsupervised big data learning

Zhiqiong Wang1 · Luxuan Qu1 · Junchang Xin2 · Hongxu Yang2 · Xiaosong Gao1

Received: 6 November 2017 / Accepted: 10 July 2018 / Published online: 13 July 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Extreme learning machine (ELM) as well as its variants have been widely used in many fields for its good generalization
performance and fast learning speed. Though distributed ELM can sufficiently process large-scale labeled training data, the
current technology is not able to process partial labeled or unlabeled training data. Therefore, we propose a new unified
distributed ELM with supervised, semi-supervised and unsupervised learning based on MapReduce framework, called U-
DELM. The U-DELM method can be used to overcome the existing distributed ELM framework’s lack of ability to process
partially labeled and unlabeled training data. We first compare the computation formulas of supervised, semi-supervised and
unsupervised learning methods and found that the majority of expensive computations are decomposable. Next, MapReduce
framework based U-DELM is proposed, which extracts three different matrices continued multiplications from the three
computational formulas introduced above. After that, we transform the cumulative sums respectively to make them suitable
for MapReduce. Then, the combination of the three computational formulas are used to solve the output weight in three
different learning methods. Finally, by using benchmark and synthetic datasets, we are able to test and verify the efficiency
and effectiveness of U-DELM on learning massive data. Results prove that U-DELM can achieve unified distribution on
supervised, semi-supervised and unsupervised learning.

Keywords Distributed ELM · Supervised learning · Semi-supervised learning · Unsupervised learning · MapReduce

1 Introduction

Internet of Things, Cloud Computing and Mobile Internet
have developed rapidly in recent years, which have led to an
explosive growth in the amount of information. This is the
era of Big Data [3]. Data acquisition and storage technolo-
gies have been developing so quickly that it is very common
to obtain large quantities of unlabeled data. Human interven-
tions are the prerequisites of gaining labeled data, which have
two obvious disadvantages: time consuming and error-prone.
If partial labeled data and unlabeled data can be used for train-
ing, it will not have these disadvantages. Currently, big data
analysis only supports massive labeled data training, and has

B Junchang Xin
xinjunchang@mail.neu.edu.cn

1 Sino-Dutch Biomedical and Information Engineering School,
Northeastern University, Shenyang, China

2 School of Computer Science and Engineering, Key
Laboratory of Big Data Management and Analytics (Liaoning
Province), Northeastern University, Shenyang, China

not been able to support partial labeled or unlabeled training
data [7,19,22–24]. Therefore, we reviewed the centralized
and distributed semi-supervised and unsupervised methods
on training massive partial labeled or unlabeled data to find
a solution.

In recent years, extreme learning machine (ELM) [9] has
drawn wide attention among researchers for its good gen-
eralization performance, fast learning speed and minimum
human intervention. Centralized learning methods which
include weighted learning W-ELM [26], semi-supervised
learningSS-ELM[8], andunsupervised learningUS-ELM[8]
have been widely used in biomedical science [18,20,25],
voice and image recognition [5], industrial control [21],
and geographic information [14], and have seen fruitful
achievements. However, analyzing massive data is beyond
the capability and computation ability of a single com-
puter. Distributed computing framework which is applied on
skyline query processing [11], scalable subgraph enumera-
tion [12], and parallel Genetic Algorithms [4] shows good
performance on overcoming big data processing issue. So
distributed ELM algorithms have been proposed, including

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-018-0271-8&domain=pdf
http://orcid.org/0000-0003-2077-8269

306 Memetic Computing (2019) 11:305–315

the parallel training method PELM [7] and ELM∗ [22], data
increment, decrement and correctional method E2LM [23],
weighted learning method DW-ELM [19], network hidden
layers increment, decrement adaptive method A-ELM∗ [24].

However, the current distributed ELMs can only support
supervised learning on labeled training datasets and unsu-
pervised learning [16] on unlabeled training datasets, but not
semi-supervised learning. There is a void on massive partial
labeled data training. We are here to expand the distributed
ELM on semi-supervised and unsupervised learning with
MapReduce framework. We have found a notable similarity
among all three ELM learning methods, that is the out-
put weight computational formulas originate from the same
matrix multiplication outcome, but with different combina-
tions. Therefore, we propose a unified distributed extreme
learning machine for supervised, semi-supervised and unsu-
pervised learning, which has filled the void in distributed
ELM’s processing of massive partial labeled or unlabeled
datasets, enhanced the extendibility of traditional distributed
ELMs and solved the classification, regression and cluster-
ing of big data. The three contributions of this paper are as
follows.

1. The outputweight computational formulas of supervised,
semi-supervised and unsupervised learning methods had
been compared. From these formulas, three different
types of matrix multiplication were extracted. Then, the
cumulative sums were rewritten separately to make them
suitable for MapReduce.

2. A unified distributed extreme learning machine (U-
DELM) based on MapReduce framework with super-
vised, semi-supervised and unsupervised learning, which
can fill the void to help distributed ELM process massive
partial labeled or unlabeled datasets.

3. Finally, by using benchmark and synthetic datasets, we
were able to test and verify the efficiency and effective-
ness of U-DELM on learning massive data. Results have
proved that U-DELM can achieve unified distribution on
supervised, semi-supervised and unsupervised learning.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the traditional supervised, semi-
supervised, and unsupervised ELM. Section 3 introduces the
theoretical principles and algorithm implementation on U-
DELM. Section 4 shows the experimental results and verifies
the performance ofU-DELM.Finally, Sect. 5 summarizes the
entire paper.

2 Background

In this section, we give a brief overview of the traditional
supervised, semi-supervised, and unsupervised ELM, and
then we introduce the MapReduce framework.

2.1 Extreme learningmachine

ELM has been proposed for training single layer feedfor-
ward networks (SLFNs), which has very fast learning speed,
good generalization performance and general approximation
ability [1]. ELM first randomly generates the parameters of
hidden layers, including the input weights and the hidden
layer biases, then directly calculates the output weight by
matrix operations, so that the structure of the entire network
is determined. ELM has avoided the issues in traditional
neural network that it has to change the network parame-
ter iteratively during network structure confirmation, until it
reaches convergence. Compared with traditional neural net-
works, ELM has extremely short training time and minimum
training errors.All the supervised, semi-supervised andunsu-
pervised ELMs can be divided into two stages: (1) random
feature mapping; (2) output weights solving.

2.1.1 Supervised ELM

For any given training datasets with N samples {X,T} =
{xi , ti }Ni=1, the optimization goal of ELM is to minimize the
training errors, and to minimize the 2-norm of the output
weight matrix, which maximizes the separate margins of two
different classes in ELM feature space [26]. As a result, the
optimization problem of ELM for supervised learning can be
described as,

Minimize: 1
2‖β‖2 + 1

2

N∑

i=1
Ci‖ei‖2

Subject to: h (xi) β = tTi − eTi , i = 1, . . . , N ,

(1)

where Ci is the penalty coefficient corresponding to the i th
training point, ei is the error vector with respect to the i th
training point.

The problem described above is a normalized least square
problem. First, the constraint condition is substituted into
the objective function, and then we solve the gradient of the
objective function, afterwards, the gradient of the value is set
as zero, and finally we get the output weight of the supervised
ELM.

β =
(
HTCH + I

)−1
HTCT (2)

when N is large or

β = HT
(
CHHT + I

)−1
CT (3)

when N is small.

123

Memetic Computing (2019) 11:305–315 307

2.1.2 Semi-supervised ELM

The semi-supervisedELM learning originated from theMan-
ifold Regularization Theory, which aims at maintaining the
original ELM geometric properties of feature space for the
training data in decision space [8]. In the semi-supervised
training sets, there is a scarcity of labeled data and an abun-
dance of unlabeled data. The labeled data as {Xl ,Tl} =
{xi , ti }li=1, and unlabeled data as Xu = {xi }ui=1, where l
and u respectively represent the number of labeled data and
unlabeled data. The formulation of semi-supervised ELM is
given by,

Minimize: 1
2‖β‖2 + 1

2

l∑

i=1
Ci‖ei‖2

+ λ
2Tr

(
FTLF

)

Subject to: h (xi) β = tTi − eTi , i = 1, . . . , l,
f (xi) = h (xi) β , i = 1, . . . , l + u

(4)

whereL ∈ R(l+u)×(l+u) is the Laplacian matrix built by both
labeled and unlabeled data. F ∈ R(l+u)×m is the ELM output
with its i th row equal to f (xi), and Tr (·) denotes the trace
of a matrix based on manifold regularization framework. λ

is a tradeoff parameter.
Similarly, the output weight of the semi-supervised ELM

can be represented as,

β =
(
IL + HTCH + λHTLH

)−1
HTCT (5)

when N is large or

β = HT
(
Il+u + CHHT + λLHHT

)−1
CT (6)

when N is small.

2.1.3 Unsupervised ELM

The primary task of unsupervised learning is tomap the train-
ing data from the input space into the ELM feature space,
then cluster them in the new projection space using k-means
algorithm [8]. In an unsupervised dataset X = {xi }Ni=1, all
training data are unlabeled, the purpose of training is to find
the potential structure for the original data. The formulation
of unsupervised ELM is given by.

Minimize: ‖β‖2 + λTr
(
βTHTLHβ

)

Subject to: (Hβ)THβ = Im .
(7)

The above optimization problem is based on Rayleigh–
Ritz theory which exists to resolve the eigenvalue and corre-
sponding eigenvector in the followinggeneralized eigenvalue
problem.

(
IL + λHTLH

)
v = γHTHv. (8)

First, we findm+1 generalized eigenvectors, which corre-
sponded tom+1 smallest eigenvalues. After that, Laplacian
eigenmaps algorithm has abandoned the first eigenvector,
then the 2nd eigenvector to the m + 1 eigenvectors are used
for calculating the output weight, thus, the output weight is,

β = [
ṽ2, ṽ3, . . . , ṽm+1

]
(9)

ṽi = vi
/ ‖Hvi‖ , i = 2, . . . ,m+1 is the standard eigenvec-

tor. If the amount of trainingdata is smaller than the amount of
hidden neurons, the following generalized eigenvalue prob-
lem can be solved as

(Iu + λLHHT)u = γHHT u. (10)

Similarly, the output weight is,

β = HT [
ũ2, ũ3, . . . , ũm+1

]
(11)

where ũi = ui
/ ∥

∥HHT ui
∥
∥ , i = 2, . . . ,m + 1.

2.2 MapReduce framework

The MapReduce framework is first proposed by Google,
which has been used for distributed computation [2]. So
far, MapReduce is used to conduct big data issue in various
research fields [6,15]. A significant open source implemen-
tation of MapReduce is Hadoop [10]. The main idea of
MapReduce is to encourage users to only care about data
processing and ignore the detailed problems in execution.
MapReduce provides two original functions to execute the
tasks of distributed computation, namely map and reduce.
The map function takes key/value pairs (k1, v1) as input and
creates temporary key/value pairs [(k2, v2)], the reduce func-
tion receives key/value pairs (k2, [v2]), andmerges themwith
the same keys, which creates the key/value pairs [(k3, v3)]
that contain the same keys as input. By using these two
functions, researchers can accomplish the required tasks or
programs. When MapReduce is in operation, it will auto-
matically distribute and execute tasks with no additional
human input. Thus, the complexity of parallel programming
is greatly reduced. Non-professional programmers can also
achieve their desired parallel operations easily by using the
pointed map and reduce functions. MapReduce automati-
cally takes care of task scheduling, data distributing, loading
balancing, and has fault tolerance capability.

The execution procedure of MapReduce can be divided
into the following phases: first, the input data is separated
into several data blocks stored in the Hadoop Distributed
File System (HDFS) [17] at the bottom layer. These data are
input into one MapReduce task (Phase I: Input). Then, the

123

308 Memetic Computing (2019) 11:305–315

Table 1 Output weight of ELM Variety Output weight

Supervised ELM β = (
HTCH + I

)−1
HTCT

Semi-supervised ELM β = (
IL+HTCH+λHTLH

)−1
HTCT

Unsupervised ELM
(
IL + λHTLH

)
v = γHTHv ⇒ β = [

ṽ2, ṽ3, . . . , ṽm+1
]

MapReduce tasks are divided into a certain amount of map
tasks, each of them takes charge of a logic data block. Every
map task reads the data block and processes according to
the pointed map function given by the user, then outputs the
result. Thedata in between is stored, segmented, andprepared
for the reduce stage (Phase II: Map). Next, we use the data
in between, to continue the corresponding storage (Phase
III: Shuffle). Afterwards, the data is passed on to the reduce
task to create the corresponding output (Phase IV: Reduce).
Finally, the output is written back to the HDFS (Phase V:
Output).

3 Unified distributed ELM

Section 3.1 introduces the theory supporting distributed uni-
fication on the three ELM learning methods; Sect. 3.2 talks
about the matrix multiplier parallel calculation method ofQ;
Sect. 3.3 describes the implementation of the entireU-DELM
method.

3.1 Preliminaries

All the three traditional ELM learning methods cannot avoid
an important problem: when training data amount is larger
than the capability of one single computer, there would be
a challenge in calculating the output matrix H of the hid-
den layer and the output weight β. Therefore, it is very
important to conduct parallel computation, and we have
accomplished this task using the MapReduce framework.
By doing so, while learning massive data, the training data
amount is always much larger than the feature dimensions,
which means N � L . Since N � L , for supervised ELM,
the dimension of matrixHTH is way smaller than the dimen-
sion of matrix HHT . As a result, we can use Eq. (2) to
calculate the output weight. Similarly, for semi-supervised or
unsupervised ELM output weight calculation, L is a matrix
of N ×N dimension, so the matrix dimensionHTLH is way
smaller than LHHT . Therefore, Eqs. (5) and (8) can be used
separately to calculate the output weight of semi-supervised
and unsupervised ELM. Below, we use Table 1 to sum up the
description above.

As it shows in the table,while computing the outputweight
β of the supervised, unsupervised and semi-supervised learn-
ing methods, the related matrix multiplication factors U =

HTCH, V = HTCT, P = HTH and Q = HTLH are
repeated in calculation. Therefore, we propose a separate
distributed computation method using U = HTCH, V =
HTCT, P = HTH andQ = HTLH. We first detect whether
the data is supervised, semi-supervised or unsupervised, then
use the correspondingmultiplication factorsU,V,P andQ to
compute the output weightβ. Using these factors, we achieve
the unified processing of supervised, unsupervised and semi-
supervised learning.

Based on the above analysis, we have two discoveries:

– Through the entire computation progress of ELM’s three
learning methods, the most expensive computation is
solving the output weight β of matrix multiplication
operator U = HTCH, V = HTCT, P = HTH and
Q = HTLH. Since the matrix multiplication is decom-
posable, it forms the required condition for distributed
computation.

– The three ELM learning methods can compute the out-
put weight of different combinations of U, V, P and
Q, indicating that the three learning methods can select
matrix multiplication operators according to their needs
to achieve the unification.

Furthermore, references [19,22] respectively describes the
decomposition of matrixU,V and P. MatrixU andV can be
decomposed according to reference [19], and matrix P can
be decomposed according to reference [22].

Therefore, we can prove that Q = HTLH is decompos-
able, and it can be transformed according to the laws ofmatrix
multiplication.

Q = HTLH =
(
LTH

)T
H = RTH. (12)

SincematrixL in Eq. (12) is not a diagonalmatrixwhereas
C in matrix U is diagonal. Therefore, it is not possible to
decompose thematrixQ by the proposedmethod in reference
[19]. Equation (12) first calculates LTH, then multiplies the
result with matrix H. The answer is defined as matrix Q.
Therefore, the computation of matrixQ can be separated as,

1. R = LTH
2. Q = RTH.

123

Memetic Computing (2019) 11:305–315 309

These two steps are both the transposition of the leftmatrix
multiplied with the right matrixH. MatrixAwas used to rep-
resent the left matrix, each step can be abstracted as ATH.
As a result, the decomposition of matrixQ equaled to matrix
ATH. But ATH is not the transposition of matrix multiplied
with itself. Thus, we cannot use the proposed method in ref-
erence [22] which calculates HTH to compute the matrix.
Now that only one matrix is involved, we can clearly see it is
easier to allocate data in MapReduce usingHTH than ATH.
Therefore, the decomposition ofmatrixATH ismore difficult
thanHTH andwe need to find amore suitable decomposition
method to calculate matrix ATH.

The decomposition of matrix ATH is shown in Eq. (13).

ATH =

⎡

⎢
⎢
⎢
⎣

a (x1)
a (x2)

.

.

.

a (xN)

⎤

⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎣

h (x1)
h (x2)

.

.

.

h (xN)

⎤

⎥
⎥
⎥
⎦

= [
a (x1)T a (x2)T · · · a (xN)T

]

⎡

⎢
⎢
⎢
⎣

h (x1)
h (x2)

.

.

.

h (xN)

⎤

⎥
⎥
⎥
⎦

= a (x1)T h (x1) + a (x2)T h (x2)

+ · · · + a (xN)T h (xN)

=
N∑

k=1

a (xk)T h (xk)

=
N∑

k=1

⎡

⎢
⎢
⎢
⎣

ak1
ak2
.
.
.

akN

⎤

⎥
⎥
⎥
⎦

× [
g (w1xk + b1) g (w2xk + b2) · · · g (wLxk + bL)

]

=
N∑

k=1

a
(
xk j

)
g (wixk + bi) . (13)

According to Eq. (13),

Q =
N∑

k=1

⎡

⎣

(
N∑

k=1

l(xk)T h (xk)

)T

h (xk)

⎤

⎦. (14)

Furthermore,

Qi j =
N∑

k=1

[(
N∑

k=1

l
(
xk j

)
g (wixk + bi)

)

g (wixk + bi)

]

.

(15)

According to the equations above, every element l
(
xk j

)

of the kth row in matrix L is the kth neighbor which corre-
lates with training data xk . g (wixk + bi) referred as the i th
element of kth row in hidden layer output matrix H, which
is computed by input training data xk . Both matrix correlate

with the same group of input training data xk , and have no
relation with other groups of training data.

3.2 Distributedmatrix multiplication onMapReduce

From the analysis above, the computation of matrix Q
can be achieved through MapReduce framework. Here is a
detailed description of accomplishing distributed computa-
tion in matrix Q.

3.2.1 Distributed computing of Q

The distributed computation of matrix Q =HTLH can be
accomplished using four rounds of MapReduce, which is
shown in Algorithm 1.

Algorithm 1MR jobs of Q
1 class L&H
2 method map(rowID, values)
3 if filename is fileL
4 context.write(rowID, L#values)
5 else if filename is fileH
6 context.write(rowID, H#values)
7 method reduce(rowID, values)
8 for all values do
9 context.write(rowID, L&H)
10 class LTH
11 method map(rowID, L&H)
12 (l,h) =Parse(L&H)

13 (j, v) =Parse(l)
14 for i = 0 to l.size() do
15 context.write(j, vi · h)

16 method reduce(columnID, list[values])
17 sum=0
18 for all value ∈ list[values] do
19 sum=sum+value
20 context.write(columnID, sum)
21 class LTH&H
22 R = LTH
23 method map(rowID, values)
24 if filename is fileR
25 context.write(rowID, R#values)
26 else if filename is fileH
27 context.write(rowID, H#values)
28 method reduce(rowID, values)
29 for all values do
30 context.write(rowID, R&H)
31 class RTH
32 method map(rowID, R&H)
33 (r,h) =Parse(R&H)

34 for i = 0 to r .size() do
35 context.write (i, ri · h)

36 method reduce(i , list[values])
37 sum=0
38 for all value ∈ list[values] do
39 sum=sum+value
40 context.write(i , sum)

123

310 Memetic Computing (2019) 11:305–315

Algorithm1describes the four jobs ofMapReduce, among
which job1 (lines 1–9) and job3 (lines 21–30) are mainly
used for operation joint, job2 (lines 10–20) and job4 (lines
31–40) are mainly used for matrix multiplication operations.
The algorithm logic of job1 and job3 are exactly the same.
There are two component methods, namely map method and
reduce method. Map method can read both fileL and fileH at
the same time. The line numbers in the two files are used as
keys and the data of the line are used as values. In order to
distinguish the key/value pairs from different sources, every
piece of data is marked with a label tag, if tag=L, then it
came from fileL; if tag=H, then it came from fileH. The
major task for map stage is to tag data from different files.
Reduce method receives the same value list from file fileL
and fileH, then for the same key, the Cartesian product of
the data from fileL and fileH are calculated, which means
real connection operation is conducted in the reduce stage.
The purpose of the job is to ensure the input training data
xk and lk are related and hk can be distributed in the same
map.

Job2 mainly calculates the multiplication of LT with H.
Both matrixL andH are stored on HDFS by row, the column
of matrix L is the row of matrix LT . Thus the matrix exterior
product method can be used to multiply the columns of the
left matrix with the rows of the right matrix, which forms
a partial matrix sharing the same rows and column as the
outcome matrix. Finally, the partial matrixes are added up
together to form the final matrix multiplication result. The
matrix exterior product method can reduce the amount of
transmit data on the shuffle stage of job comparedwithmatrix
inner product method. The algorithm contains two methods.
Map method first connects the outcome of matrices L and
H which we utilize in the reduce stage of job1. It has been
resolved as one line lk of Laplacian matrix L and one line hk
of hidden layer output matrix H (line 12). Since matrix L is
not only sparse matrix but also symmetric matrix, the non-
zero elements of lk are separated as the pairs of (j, v). Among
them, j is the column number where the matrix elements
are located; v is the value of the element (line 13). Finally,
the value of vi × hk corresponding to each j is calculated
as the value output of map method, line number j being
the key output of map method (line 15). In reduce method,
differentMappers are combinedwith samekeyvalue and thus
the final cumulated the sum of the key value corresponding
element.

The map method of job3 receives the output from the
reduce stage of job2 and the initial input matrix H, which
conducts the connection operation according to themethodof
job1. Job4mainlymultiplies the transposition ofLTH output
matrix and matrixH. The algorithm logic are similar to job2,
when the four rounds of MapReduce tasks are finished, the
final result is stored in HDFS.

3.2.2 Improved distributed computing of Q

To reduce the computation and transmit cost of the entire
computation, job2 and job3 in the Algorithm 1 are combined
together, which forms the improved MapReduce algorithm.
By using these 3 jobs we can compute the matrix Q =
HTLH. Algorithm 2 execution is as follows.

Algorithm 2 Improved MR jobs of Q
1 class LTH&H
2 method map(rowID, L&H)
3 (l,h) =Parse(L&H)

4 (j, v) =Parse(l)
5 for i = 0 to l.size() do
6 context.write(j,R#vi · h)

7 context.write(rowID, H#h)
8 method reduce(columnID, list[values])
9 sum=0
10 if value is startwith R
11 for all value ∈ list[values] do
12 sum=sum+value
13 linkR.add(sum)
14 else if value is startwith H
15 linkH.add(value)
16 for (r : linkR)

17 for (h : linkH)

18 context.write(columnID, r&h)

In Algorithm 2, there are three jobs of MapReduce. The
job1 and job3 are consistent with job1 and job4 in Algorithm
1, the key difference of the two algorithms is in job2 of the
Algorithm2. Inmap stage of job2,we first receive the outputs
from job1 reduce stage, which is the joint result of matrix
L and H. Then came resolving, multiplication, tagging and
exporting of the output (lines 3–7). In the reduce stage, if
the data came from matrix HTL, then sum up is conducted
first, and then the results are put into linked list linkR (lines
10–13). If the data is from matrix H, then the data are put
directly into linked list linkH (lines 14, 15). Afterwards, the
two linked list were combined together and the combination
result is passed into the next job task as the output of reduce
stage.

3.3 A unified distributed ELM framework

Unified distributed ELM framework with supervised, semi-
supervised and unsupervised learning is described in Algo-
rithm 3. First, randomly generate L pairs of hidden layer
nodes parameters (wi , bi) (lines 1, 2); then the training data
undergoes processing and is distributed into their own cat-
egories. X1 = {xi , ti }Ni=1 is labeled training dataset, X2 =
{xi }Ni=1 is unlabeled training dataset. If the training dataset
X1 was nonempty set and X2 is empty set, which indicates
that the training data are all labeled, then calculate matrix U
and V. Equation (2) is used to calculate output weight (lines

123

Memetic Computing (2019) 11:305–315 311

3–6). If the training dataset X1 and X2 are all nonempty set,
which indicates that some of the input training data has labels
the others are still unlabeled, then first separately calculate
matrixU,V and use Algorithm 1 to calculate matrixQ. After
that, Eq. (5) calculates the output weight (lines 7–10). If the
training dataset X1 is an empty set and X2 is nonempty set,
which indicates that all training data are unlabeled, then cal-
culate matrix P and use Algorithm 1 to calculate matrix Q
separately. The result is put into Eq. (8), to get the eigenvector
and the outputweight (lines 11–14). Since themost expensive
computation is accomplished using the MapReduce frame-
work, the result is a relative small matrix. As a result, the
computation of output weight β on line 6, 10 and 14 can be
completed in the centralized environment. The unified dis-
tributed ELM framework with supervised, semi-supervised
and unsupervised learning is finished as the training process
is finished.

Algorithm 3 U-DELM

1 Input: Training data X1 = {xi , ti }Ni=1, X2 = {xi }Ni=1
2 Output: Output weight vector β

3 for i = 1 to L do
4 Randomly generate hidden node parameters (wi , bi)
5 if X1 �= ∅ then
6 if X2 = ∅ then
7 calculate U = HTCH, V = HTCT
8 calculate the output weight vector

β =(U + I)−1V
9 else
10 calculate U = HTCH, V = HTCT
11 calculate Q = HTLH using Algorithm 1
12 calculate the output weight vector

β =(IL+U+λQ)−1V
13 else
14 calculate P = HTH
15 calculate Q = HTLH using Algorithm 1
16 substitute (IL + λQ) v = γPv

calculate β = [
ṽ2, ṽ3, . . . , ṽm+1

]

4 Results

In this section, the performance of U-DELM is evaluated.
First,we introduce the platformused in the experiments, then,
we give an analysis and evaluation of the experiment results.
Section 4.1 shows the experimental platform and Sect. 4.2
shows the experimental results.

4.1 Experimental platform

The experiments conducted in the paper were all based on
Hadoop cluster server which was connected by 9 computers
with up to Gigabit speeds. The configuration of the cluster
server was Intel Quad Core 2.66GHz CPU, 4GB memory

with CentOS Linux 5.6 system. Among them, one computer
was set as the Master node, the others as Slave nodes. The
cloud computation environment was built on Hadoop1.0.4.
The semi-supervised and unsupervised benchmark data used
in the experiments came from the experimental database from
reference [8]. The big data experiment section used synthetic
data and the experimental platform described above to test
the performance of U-DELM in processing big data.

There are three explanations for experiment set up they
are as follows,

– Since the successful learning of supervised data has
already been proven on ELM∗ [22], this paper only
focuses on the test and verification ofU-DELMalgorithm
based on semi-supervised and unsupervised datasets.
The MapReduce framework for matrix Q computa-
tion which uses Algorithm 1 is called U-DELM-Naive,
while using Algorithm 2 for matrix Q computation is
called U-DELM-Improved. Thus, U-DELM-Naive and
U-DELM-Improved will be used as names in the follow-
ing experiments.

– Both U-DELM and traditional ELM algorithms have
used the same model for calculating the output weight.
The only difference is U-DELMusesMapReduce frame-
work for computation of matrix U, V, P and Q, while
traditional ELM algorithms only uses single machine
environment for computation. As a result, when all
relative parameters of U-DELM and traditional ELM
algorithms remained the same, same output weight is
received. In other words, U-DELM will not change the
traditional ELM training results, and it will not influence
the accuracy of classifier and clustering. As a result, it
is not necessary to compare the accuracy between the
U-DELM method and traditional ELM algorithms.

– Since the distributed computation efficiency of matrixU,
V and P has been proven in [19,22], the experiment only
evaluated the computation efficiency and speedup ratio
of matrixQ = HTLH. Here, matrix L originated from k
nearest neighbor algorithm of training data [13], matrix
H is the output of training data through ELM feature
space.

Table 2 summarizes the parameters used in our exper-
imental evaluation. In each experiment, we vary a single
parameter while setting all others to their default values.
And the speedup achieved by an m computer mega system
is defined as,

speedup (m) = computing time on 1 computer

computing time on m computers
(16)

123

312 Memetic Computing (2019) 11:305–315

Table 2 Experimental
Parameters

Parameter Range Default

Dimensionality 100, 200, 300, 400, 500 500

Number of hidden nodes 100, 200, 300, 400, 500 300

Number of samples (× 106) 3, 4, 5, 6, 7 5

Number of slave nodes 1, 2, 3, 4, 5, 6, 7, 8 8

Fig. 1 Training time of SS-ELM benchmark datasets

4.2 Experimental results

There were two type of datasets in the experiment. The per-
formance of uniformed centralized and distributed ELMwas
examined with both of the benchmark datasets. Synthetic
data was used to test the performance of U-DELM-Naive and
U-DELM-Improved in processing bigdata. The experimen-
tal training time under uniformed semi-supervised ELM and
unsupervised ELM benchmark datasets are shown respec-
tively in Figs. 1 and 2. We did not show the speedup results
because we only used one computer in the experiment. The
experiment of uniformed semi-supervisedELMandunsuper-
vised ELM which is centralized ELM is defined as unified
ELM in the following paragraph.

Figure 1 shows 5 groups of experiments with the semi-
supervised ELM benchmark datasets. As we can see in Fig. 1
the training time of U-DELM-Improved is always shorter
than U-DELM-Naive. The execution time of unified ELM
under SS-ELM benchmark database is around 0–2s [8],
while for U-DELM the result is around 17–66s. Similarly,
under unsupervised ELM benchmark datasets in Fig. 2, there
were 7 groups of experiments conducted to examine the
training time of U-DELM-Improved and U-DELM-Naive.
The training time of U-DELM-Improved is also shorter than
U-DELM-Naive. The execution time of unified ELM under

Fig. 2 Training time of US-ELM benchmark datasets

SS-ELM benchmark datasets is around 0–4s [8], while the
results for U-DELM is around 6–110s.

Comparing the development environment of unifiedELM,
which utilizes MATLAB against the development environ-
ments of unified distributed ELM, which utilizes JAVA.
MATLAB is more suitable for computing matrix multipli-
cation than JAVA. More importantly, U-DELM requires the
communication and transformation of data between various
nodes in the cluster while unified ELM do not. Thus, in the
experiment of small data sample experiments, the time for
communication and transformation of data between nodes
is way longer than the time for just computation. Therefore,
the training time of U-DELM is higher than unified ELM in
training small sets of data.

From the results of benchmark datasets experiments, U-
DELM does not have an obvious advantage. However, when
the amount of data is enlarged to a much larger scale, the uni-
fied supervised, semi-supervised and unsupervised ELMwill
have to face the reality of overextended computation time,
or overloaded data which is already beyond the capabilities
of the unified ELM. The computation ability of U-DELM
would not be affected under a larger dataset scale, And as the
data amount increased, the performance of U-DELM will
gradually turn into an obvious advantage. The experiment
below summarizes the performance ofU-DELMunder larger
dataset.

123

Memetic Computing (2019) 11:305–315 313

Dimensionality

600

700

800

900

1000

1100

1200
Ti

m
e(

s)
U-DELM-Naive
U-DELM-Improved

(a)

100 200 300 400 500

100 200 300 400 500
Dimensionality

1

2

3

4

5

6

7

8

Sp
ee

du
p

U-DELM-Naive
U-DELM-Improved

(b)

Fig. 3 The influence of dimensionality: a running time, b speedup

First, we studied the training data dimensionality’s influ-
ence on the running time of U-DELM shown in Fig. 3. As it
is shown in Fig. 3a, as data dimensionality increases, the
running time of U-DELM-Naive and U-DELM-Improved
grows. We can also see U-DELM-Improved has a better
performance than U-DELM-Naive. As data dimensional-
ity changes, the speedup tendency of these two methods is
given in Fig. 3b. Both methods have a stable speedup, the
performance of U-DELM-Improved is slightly better than
U-DELM-Naive.

As data dimensionality grows, there are more elements in
the corresponding hk line of hidden layer output matrix H.
The dimensionality of matrix L also grows, which increases
the amount of computation needed for matrix multiplica-
tion of HTLH. Due to these factors, the running time also
increases. Therewere 4MapReduce jobs inU-DELM-Naive,
but only 3 jobs were used in U-DELM-Improved, which
indicates that the data transmission time between machines
has been shortened and the performance has been improved.
Therefore, U-DELM-Improved has a better performance
than U-DELM-Naive. As for speedup, theoretically speak-
ing, a system of m computers equals to m speedup. But in
reality, the increase of computers would only add additional

100 200 300 400 500
Number of Hidden Nodes

400

600

800

1000

1200

1400

Ti
m

e(
s)

U-DELM-Naive
U-DELM-Improved

(a)

100 200 300 400 500
Number of Hidden Nodes

1

2

3

4

5

6

7

8

Sp
ee

du
p

U-DELM-Naive
U-DELM-Improved

(b)

Fig. 4 The influence of number of hidden nodes: a running time, b
speedup

communication cost between computers, thus it is very hard
for the system to gain linear speedup.

Second, we studied the number of hidden nodes and their
influence on the running time of U-DELM in Fig. 4. As it
shown in Fig. 4a, as the number of hidden nodes increases,
the running timeofU-DELM-Naive andU-DELM-Improved
grows. The running time of U-DELM-Improved is shorter
than U-DELM-Naive. As the number of hidden nodes
changes, the speedup stays constant as shown in Fig. 4b.

As the number of hidden nodes grows, the dimensional-
ity of hidden layer output matrixH also increased. While the
dimension ofmatrixL remained unchangedwhich causes the
dimension of matrixHTLH to increase. Thus, the amount of
in between results inMapReduce also increases, thus increas-
ing the data transmission time inside the cluster server. As
a result, as the number of hidden nodes increases, the run-
ning time also increases. While calculating matrix HTLH,
U-DELM-Improved saves one round ofMapReduce job than
U-DELM-Naive, thus has shorter running time.

Next, we studied the number of training records, influence
on the running time of U-DELM in Fig. 5. As the num-
ber of training records increases, the increased running time
is shown in Fig. 5a. U-DELM-Improved has a better per-

123

314 Memetic Computing (2019) 11:305–315

3 4 5 6 7
Number of Samples(106)

700

800

900

1000

1100

1200

1300
Ti

m
e(

s)
U-DELM-Naive
U-DELM-Improved

(a)

3 4 5 6 7
Number of Samples(106)

1

2

3

4

5

6

7

8

Sp
ee

du
p

U-DELM-Naive
U-DELM-Improved

(b)

Fig. 5 The influence of number of samples: a running time, b speedup

formance than U-DELM-Naive. As the number of training
records changes, the speedup of these two methods is shown
in Fig. 5b. Though the change was not linear, the speedup
of U-DELM-Improved was slightly better than U-DELM-
Naive.

As the number of training samples grow, the lines of
matrix H and matrix L increased as well, which increases
the amount of computation needed in the matrix multiplica-
tion of HTLH. Thus, the amount of in between results in
MapReduce increases and the running time also increases.
Due to these factors, the training time also increases. U-
DELM-Improved saves one round of MapReduce job than
U-DELM-Naive, which decreases the data transmission time
in between clusters, so U-DELM-Improved has a better per-
formance than U-DELM-Naive.

Finally, there was a discussion in the number of working
slave nodes in the cluster and their influence on the run-
ning time of U-DELM in Fig. 6. As it is shown in Fig. 6a,
as the number of slave nodes increased, the running time
decreases, so U-DELM-Improved has a better performance
than U-DELM-Naive. In Fig. 6b, we can see the change in
speedupwhen the number of slave nodes increases. The trend
of speedup is close to linear growth.

1 2 3 4 5 6 7 8
Number of Slave Nodes

600

1000

1400

1800

2200

Ti
m

e(
s)

U-DELM-Naive
U-DELM-Improved

(a)

1 2 3 4 5 6 7 8
Number of Slave Nodes

1

2

3

4

5

6

7

8

Sp
ee

du
p

U-DELM-Naive
U-DELM-Improved

(b)

Fig. 6 The influence of number of slave nodes: a running time, b
speedup

As thenumber of slavenodes grows, the ability of conduct-
ing map and reduce tasks rapidly increases, thus enhancing
the ability of MapReduce in conducting parallel computa-
tion and improving computation efficiency. As a result, the
training time sharply decreases as the number of slave nodes
increases.

To summarize, no matter the change to the experimental
parameters, both U-DELM-Naive and U-DELM-Improved
are able to complete the learning of massive data in a short
period of time. And bothU-DELMmethods have good scala-
bility, thus can effectively deal with themassive data learning
problem and have a wide range of practical application.

5 Conclusions

In order to overcome the disadvantage that distributedELMis
unable to deal withmassive partial labeled or unlabeled train-
ing data, a unified distributed ELM with supervised, semi-
supervised and unsupervised learning method U-DELM is
proposed. The U-DELM can support massive dataset super-
vised, semi-supervised and unsupervised learning at the same
time. By using comparison and analysis of the characters

123

Memetic Computing (2019) 11:305–315 315

of the solution for the output weight formula, we found the
most expensive computations of the calculation process were
caused by the different combination of samematrix multipli-
cation outcome. First, we rewrote the matrix multiplication
into a cumulative sum that was suitable for MapReduce.
Next, by combining the results in between, we were able to
reduce the number of jobs in the calculation process, which
shortened the transition time in between and improved the
training efficiency of U-DELM. Finally, the test results sup-
port that U-DELMcan be used effectively in trainingmassive
datasets for supervised, semi-supervised and unsupervised
learning.

Acknowledgements This research was partially supported by the fol-
lowing foundations: the National Natural Science Foundation of China
under Grant Nos. 61472069, 61402089, and U1401256. The Fun-
damental Research Funds for the Central Universities under Grant
Nos. N161602003, N171607010, N161904001, and N160601001. The
Natural Science Foundation of Liaoning Province under Grant No.
2015020553.

References

1. ChengX,LiuH,XuX, SunF (2017)Denoising deep extreme learn-
ing machine for sparse representation. Memet Comput 9(3):199–
212

2. Dean J, Ghemawat S (2010)MapReduce: a flexible data processing
tool. Commun ACM 53(1):72–77

3. Elsayed S, Sarker R (2016) Differential evolution framework for
big data optimization. Memet Comput 8(1):17–33

4. Ferrucci F, Salza P, Sarro F (2017) Using hadoop MapReduce for
parallel genetic algorithms: a comparison of the global, grid and
island models. Evol Comput 1:421–446

5. HanM,YangX, JiangE (2016)An extreme learningmachine based
on cellular automata of edge detection for remote sensing images.
Neurocomputing 198:27–34

6. Hashem IAT, Anuar NB, Gani A, Yaqoob I, Xia F, Khan SU
(2016) MapReduce: review and open challenges. Scientometrics
109(1):389–422

7. He Q, Shang T, Zhuang F, Shi Z (2013) Parallel extreme learn-
ingmachine for regression based onMapReduce. Neurocomputing
102:52–58

8. Huang G, Song S, Gupta J, Wu C (2014) Semi-supervised and
unsupervised extreme learning machines. IEEE Trans Cybern
44(12):2405–2417

9. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine:
theory and applications. Neurocomputing 70(1–3):489–501

10. Huang S, Wang B, Chen Y, Wang G, Yu G (2017) An efficient
parallel method for batched OS-ELM training using MapReduce.
Memet Comput 9(3):183–197

11. Koh JL, ChenCC, ChanCY,ChenALP (2017)MapReduce skyline
query processingwith partitioning and distributed dominance tests.
Inf Sci 375:114–137

12. Lai L, Qin L, Lin X, Chang L (2017) Scalable subgraph enumera-
tion in MapReduce: a cost-oriented approach. VLDB J 26(3):421–
446

13. Lu W, Shen Y, Chen S, Ooi BC (2012) Efficient processing of
k nearest neighbor joins using MapReduce. Proc VLDB Endow
5(10):1016–1027

14. Lu X, Zou H, Zhou H, Xie L, Huang GB (2016) Robust extreme
learning machine with its application to indoor positioning. IEEE
Trans Cybern 46(1):194–205

15. Park Y, Min JK, Shim K (2017) Efficient processing of sky-
line queries using MapReduce. IEEE Trans Knowl Data Eng
29(5):1031–1044

16. RizkY,AwadM (2015)On the distributed implementation of unsu-
pervised extreme learning machines for big data. Proc Comput Sci
53(1):167–174

17. ShvachkoK,KuangH,Radia S, Chansler R (2010) The hadoop dis-
tributed file system. In: Proceedings of the 26th IEEE symposium
on mass storage systems and technologies (MSST 2010). Incline
Village, pp 1–10

18. Wang Z, Qu Q, Yu G, Kang Y (2016) Breast tumor detection in
double views mammography based on extreme learning machine.
Neural Comput Appl 27(1):227–240

19. Wang Z, Xin J, Yang H, Tian S, Yu G, Xu C, Yao Y (2017) Dis-
tributed and weighted extreme learning machine for imbalanced
big data learning. Tsinghua Sci Technol 22(2):160–173

20. Wang Z, Yu G, Kang Y, Zhao Y, Qu Q (2014) Breast tumor detec-
tion in digital mammography based on extreme learning machine.
Neurocomputing 128:175–184

21. Wong KI, Vong CM, Wong PK, Luo J (2015) Sparse Bayesian
extreme learning machine and its application to biofuel engine per-
formance prediction. Neurocomputing 149(Part A):397–404

22. Xin J,WangZ,ChenC,DingL,WangG,ZhaoY (2013)ELM*:dis-
tributed extreme learning machine with MapReduce. World Wide
Web 17(5):1189–1204

23. Xin J, Wang Z, Qu L, Wang G (2015) Elastic extreme learn-
ing machine for big data classification. Neurocomputing 149(Part
A):464–471

24. Xin J, Wang Z, Qu L, Yu G, Kang Y (2016) A-ELM*: adaptive
distributed extreme learning machine with MapReduce. Neuro-
computing 174(Part A):368–374

25. Zhao Y, Wang G, Yin Y, Li Y, Wang Z (2016) Improving
ELM-based microarray data classification by diversified sequence
features selection. Neural Comput Appl 27(1):155–166

26. Zong W, Huang GB, Chen Y (2013) Weighted extreme learning
machine for imbalance learning. Neurocomputing 101:229–242

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A unified distributed ELM framework with supervised, semi-supervised and unsupervised big data learning
	Abstract
	1 Introduction
	2 Background
	2.1 Extreme learning machine
	2.1.1 Supervised ELM
	2.1.2 Semi-supervised ELM
	2.1.3 Unsupervised ELM

	2.2 MapReduce framework

	3 Unified distributed ELM
	3.1 Preliminaries
	3.2 Distributed matrix multiplication on MapReduce
	3.2.1 Distributed computing of Q
	3.2.2 Improved distributed computing of Q

	3.3 A unified distributed ELM framework

	4 Results
	4.1 Experimental platform
	4.2 Experimental results

	5 Conclusions
	Acknowledgements
	References

