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Abstract
A differential evolution algorithm (DE) is proposed to exactly satisfy the linear equality constraints present in a continuous
optimization problem that may also include additional non-linear equality and inequality constraints. The proposed DE
technique, denoted by DELEqC-II, is an extension of a previous method developed by the authors. In contrast to the previous
approach, it uses both mutation and crossover strategies that maintain feasibility with respect to the linear equality constraints.
Also, a procedure to correct numerical errors detected in the previous approach was incorporated in DELEqC-II. In the
numerical experiments, scalable test-problems with linear equality constraints are used to analyze the performance of the new
proposal.

Keywords Constraint handling · Linear equality constraints · Differential evolution

1 Introduction

Most real world problems in areas such as management,
physics, chemistry, and biology, involvefinding optimal solu-
tions to an optimization problem. Such solutions are not only
optimal, they also must satisfy a set of constraints. Due to the
growing complexity of the applications, leading to complex
search spaces, it is clear that solving this kind of problems
may be a challenging task. The difficulty level depends on
the dimension of the problem, the number and complexity
of equality and inequality constraints, the sparsity of the fea-
sible space, and the location of the global optimum, among
other features [1].
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The general constrained optimization problem (COP) can
be formulated as follows:

minx f (x)
s.t. gi (x) ≤ 0, i = 1, . . . , p

h j (x) = 0, j = 1, . . . ,m
(1)

where x = {x1, . . . , xn} is the decision variable. The feasible
region� is defined by the p inequality constraints gi (x), and
the m equality constraints h j (x), with m < n.

Evolutionary algorithms (EAs) are increasingly popular
for solving COPs, because of their robustness and adapt-
ability to different kinds of problems. However, one of the
greatest difficulties in EAs involves constraint handling. As
they are unconstrained search techniques and lack an explicit
mechanism to bias the search in constrained search spaces,
they need additional mechanisms to deal with the constraints
when solving COPs [2]. Furthermore, there are no guidelines
to address the issue of handling unfeasible solutions, making
this process a non trivial task.

The most common approach is the use of a penalty func-
tion which is considered easy to implement but usually
requires extensive experimentation in order to set up the
required parameter(s) of the method in a given problem
[3]. Besides penalty methods, other approaches used in EAs
include [4]: special representation schemes and move opera-
tors, that guarantee the generation of feasible solutions; repair
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techniques, to “correct” unfeasible solutions; handling con-
straints and objectives separately; and hybrid approaches.
For additional literature on constraint handling, the reader is
referred to [5,6].

Linear equality constraints are extremely common in sev-
eral areas such as Operations Research, Economics and
Engineering, and we focus in this paper on obtaining solu-
tions that automatically satisfy all linear equality constraints
(in the form Ex = c, where E ∈ R

m×n , x ∈ R
n and

c ∈ R
m , withm < n). They are very hard to be satisfiedwhen

metaheuristics in general, and evolutionary computation in
particular (differential evolution included), are adopted. Such
constraints are usually approximated by inequality con-
straints (i.e. |h j (x)| ≤ ε) where the small tolerance value
ε > 0 is set by the user. This approach temporarily increases
the feasible space, nevertheless, either feasible or good qual-
ity candidate solutions are still difficult to be obtained [7].

An interesting EA algorithm that handles linear equality
constraints was proposed in [8]. The GENOCOP method,
based on a genetic algorithm (GA), eliminates all linear
equality constraints and writes the corresponding variables
as a function of the remaining ones. Thus, the number of
variables is reduced and the inequality constraints have to be
appropriately modified.

In [9] two methods based on particle swarm optimization
(PSO) were proposed to tackle linear equality constraints.
The LPSO and the CLPSO methods start from a feasible
initial population and the feasibility is maintained by mod-
ifications in the standard PSO formulas for velocity and
position updates. This is done by only using linear combina-
tions of other particle positions.

Another approach used in PSO was proposed in [10],
where a technique called homomorphous mapping converts
problems with linear equality constraints into unconstrained
and lower-dimensional problems. This is a decoder-based
approach that imposes a mapping between a feasible solu-
tion and a decoded solution, that is, it transforms an n-
dimensional hypercube [−1, 1]n into a feasible search space
(which can be convex or non-convex). Then, standard evolu-
tion operations are performed in the hypercube.

In [9,11] the Linear PSO was proposed as a constraint-
preserving method, i.e., a method that preserves solutions
satisfying all linear constraints. Starting from a set of feasi-
ble points, the idea is that the velocity updates are calculated
as a linear combination of feasible position and velocity vec-
tors, thus maintaining feasibility. This idea is closely related
to the one proposed in this paper: by only using linear com-
binations among the members of the population, which is
easy to implement in DE, the optimization method is capable
of maintaining feasibility with respect to the linear equality
constraints.

In our first attempt tomaintain feasibility [12]with respect
to linear equality constraints, a procedure for generating a

random feasible initial population was proposed, and the
algorithm developed, DELEqC, performed only mutation,
avoiding the standard DE crossover operation. The results
were compared with other procedures available in the lit-
erature [10,11]. In addition, the proposed method was also
compared with a DE using a tournament selection approach
[3] and another DE using an adaptive penalty method [13]
to enforce the linear equality constraints. The computational
results indicate that DELEqC outperforms those few alterna-
tives thatwere found in the literature.However, during further
experiments, numerical errorswere observed that allowed the
population to drift away from the feasible set if the algorithm
runs a higher number of generations. This is one of the issues
that we intend to solve here.

Therefore, this paper is concerned with efficiently obtain-
ing solutions that satisfy all linear equality constraints of
an optimization problem by improving the previously devel-
oped algorithm. In contrast to DELEqC, the new proposal,
DELEqC-II, allows for the utilization of both mutation and
crossover operators, and provides a projection procedure to
correct the solutions that “escape” from the feasible set. In
this paper, scalable test-problems, both in the number of vari-
ables as in the number of constraints, are introduced and the
performance of DELEqC-II is compared to that of the previ-
ous version.

The remainder of this paper is organized as follows: in
Sect. 2 we briefly describe the differential evolution algo-
rithm. Section 3 presents the proposed solution method,
describing the procedure for generating a feasible initial
population, the crossover and mutation operations, and the
strategy for projecting the population back to the feasi-
ble space. In Sect. 4 we show some numerical results and
comparisons on test problems containing only linear equal-
ity constraints, where the effectiveness and efficiency of
DELEqC-II is studied. The test-problems are described in
“Appendix A and B”. Finally, the conclusion and possible
paths for future research are given in Sect. 5.

2 Differential evolution

Differential evolution (DE) [14,15] is a simple and effective
population-based stochastic algorithm originally designed
for optimizing functions of continuous variables. DE uti-
lizesNPmembers/vectors as a population for each generation
G. Each new vector is generated by adding the scaled dif-
ference between two members of the population to a third
one. If the resulting vector yields a better objective function
value, then it replaces the vector with which it was compared.
The number of differences applied, the way individuals are
selected, and the crossover operation define the different DE
variants.
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In the mutation process of the simplest DE variant
(DE/rand/1/bin), for each vector xi, j,G , i = 1, . . . ,NP,
j = 1, . . . ,N a vector v is generated according to

vi, j,G+1 = xr1, j,G + F × (xr2, j,G − xr3, j,G) (2)

where r1, r2 and r3 are distinct and randomly selected
indexes, different from index i . The scale parameter F con-
trols the magnitude of the difference operation.

In addition, the crossover operation is controlled by the
parameter CR. According to a given probability CR, the trial
vector ui,G+1 is generated from the elements of the target
vector xi,G and the elements of the donor vector vi,G+1, as
follows

ui, j,G+1 =

⎧
⎪⎪⎨

⎪⎪⎩

vi, j,G+1, if Rand(0, 1) < CR

or j = j Rand

xi, j,G , otherwise

(3)

i = 1, . . . ,NP; j = 1, . . . ,N.

where Rand(0, 1) is a random real number from [0, 1] and
j Rand is a random integer from [1, . . . ,N]. Note that j Rand
ensures that vi,G+1 �= xi,G .

Then, the target vector xi,G is compared with the trial
vector ui,G+1 and the one with the better objective func-
tion value is selected to the next generation. Mutation,
crossover and selection continue until a stopping criterion
is reached.

As inmost standard evolutionarymethods, themove oper-
ators in DE are totally blind to the constraints, i.e., when
applied to feasible members they do not necessarily generate
feasible offspring.Keeping inmind that standardmetaheuris-
tics must be equipped with a constraint handling technique,
here our focus is to obtain solutions automatically satisfy-
ing all linear equality constraints. The remaining constraints
present in the problem can be dealt with constraint handling
techniques available in the literature. The numerical experi-
ments performed focus on optimization problems with linear
equality constraints.

In this paper, four variants of the DE were tested:
DE/rand/1/bin: described in Eq. (2).
DE/best/1/bin

vi, j,G+1 = xbest, j,G + F × (xr1, j,G − xr2, j,G) (4)

DE/target-to-rand/1/bin

vi, j,G+1 = xi, j,G + F × (xr1, j,G − xri , j,G)

+ F × (xr2, j,G − xr3, j,G) (5)

DE/target-to-best/1/bin

vi, j,G+1 = xi, j,G + F × (xbest, j,G − xri , j,G)

+ F × (xr2, j,G − xr3, j,G) (6)

3 The proposed solutionmethod

Although DELEqC-II can be applied to problems involving
additional constraints, we will focus on optimization prob-
lems of the form

minx f (x)
s.t. Ex = c

(7)

where f : Rn → R, E ∈ R
m×n , x ∈ R

n and c ∈ R
m , with

m < n. It is assumed that E has full rank, that is, the rows of
E are linearly independent. Any additional constraints can
be dealt with using standard constraint handling techniques
from the evolutionary computation literature. A candidate
solution x ∈ R

n is said to be feasible if x ∈ S, where S
denotes the feasible set

S = {x ∈ R
n : Ex = c} (8)

A vector d ∈ R
n is said to be a feasible direction at the

point x ∈ S if x + d is feasible, that is, E(x + d) = c. It
follows that d must satisfy Ed = 0 or, alternatively, that any
feasible direction belongs to the null space of the matrix E ,
defined as

N (E) = {x ∈ R
n : Ex = 0} (9)

Given two feasible vectors x1 and x2 it is clear that d =
x1−x2 is a feasible direction, as E(x1−x2) = 0. As a result,
the standard mutation operations adopted in DE (see Sect. 2)
always generate feasible candidate solutions whenever the
vectors involved in the differences are feasible, and no errors
due to floating-point arithmetic are introduced.

3.1 Generating a feasible initial population

Algorithm 1, proposed in [12], is used to generate a feasible
(with respect to the linear equality constraints) initial popu-
lation of size NP. The main idea is to start from a feasible
vector x0 and proceed by moving from x0 along random fea-
sible directions di : xi = x0 + di ; i = 1, 2, . . . ,NP. The
feasible vector x0 can be computed as x0 = ET (EET )−1c,
where the superscript T denotes transposition. In fact, Ex0 =
EET (EET )−1c = c.
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Random feasible candidate solutions can then be gener-
ated as

xi = x0 + PN (E)vi , i = 1, 2, . . . ,NP

where vi ∈ R
n is randomly generated (here, these values

are randomly generated using a uniform distribution within
a given hypercube) and the projectionmatrix [16] is given by

PN (E) = I − ET (EET )−1E . (10)

Also, in Algorithm 1, the matrix inversion in Eq. 10 is not
actually performed.

Algorithm 1: GenerateInitialPopulation.
input : NP (population size), matrix E , vector c

1 M = EET;
2 Perform LU Decomposition: M = LU ;
3 Solve My = c (Lw = c and Uy = w);
4 x0 = ETy;
5 for i ← 1 to NP do
6 d ∈ R

n is randomly generated;
7 z = Ed;
8 Solve Mu = z (Lw = z and Uu = w);
9 v = ETu;

10 xi = x0 + d − v;

output: Feasible initial population

3.2 Mutation and crossover operators

At generation G, for each vector xi, j,G , with i = 1, . . . ,NP
and j = 1, . . . ,N, the mutation scheme applied can be one
of those described in Sect. 2 by Equations (2), (4), (5) or (6).

In the sequel, the crossover operation is performed:

ui, j,G+1 = (1 − CR) × xi, j,G + CR × vi, j,G+1 (11)

The crossover operation is a linear combination of the
target vector xi,G and the donor vector vi,G+1. In fact, with
CR ∈ (0, 1], the proposed crossover (Eq. 11) is a convex
combination of xi,G and vi,G+1.

The twooperators are thus able tomaintain feasibilitywith
respect to the linear equality constraints.

3.3 Projecting the population into the feasible space

Despite the good results obtained by DELEqC in [12], we
observed that numerical errors can arise during mutation. All
the mathematical operations of the proposal are theoretically
designed so that feasibility with respect to Ex = c is always

maintained. This is equivalent to having Ed = 0 for any vec-
tor d obtained as a difference of two feasible solutions from
the population.However, floating-point arithmetic errorswill
occur in any finite arithmetic computer. Such errors will lead
to a difference vector d ′ slightly outside of the null space of
the matrix E , that is, Ed ′ is not exactly zero. As a result, an
unfeasible individual is created in the population. From this
point on, additional difference vectors not in the null space
of E will appear. That is illustrated in Fig. 1.

An example of an optimization problem with an equality
constraint is solved using DELEqC to illustrate the effect
of the numerical error in the search. Consider the simple
problem

min (x1 − 2)2 + (x2 − 1)2

s.t. x1 + x2 − 1 = 0.
(12)

Figure 1 shows the initial population (50 individuals) and the
candidate solutions after 50, 100, 150, and 200 generations.
One can see by this illustrative example that DELEqC (i)
creates feasible individuals in the initial population, (ii) keeps
all individuals feasible during up to 100 generations, and (iii)
is able to find the solution of the problem.

However, after some generations, unfeasible candidate
solutions appear in the population and the technique is no
longer able to enforce the constraint of the problem.

As pointed out, floating-point errors, such as loss of signif-
icant digits (in subtraction) and in the summation of numbers
of very different magnitudes, may appear in any finite arith-
metic computer. Although in Fig. 1 the unfeasible solutions
appear when the candidate solutions became similar, this
is only one example of the effect of floating-point errors.
The adoption of diversity preservation techniques is not suf-
ficient to avoid this issue. In fact, the floating-point errors
may appear even when the candidate solutions are not close
to each other in the search space. In order to demonstrate
that, Fig. 2 shows the violation of the fittest individual (best
objective function value) along the generations (i) when
the selection pressure in DELEqC is removed (offspring
always replace the target individuals), and (ii) adopting
F = 0.3, 0.5, 0.7, 0.9. Due to (i), the differences between
the candidate solutions increase along the generations. It is
also seen that as the values of F increase, the constraint vio-
lation of the best candidate solution also increases, in spite
of the diversity of the population.

One way to fix the generation of unfeasible candidate
solutions is to project the created individuals back into the
feasible space. The lines 5–10 of the Algorithm 1 can be
used to perform these projections. However, running these
additional operations increases the computational cost of the
search technique. In fact, for each candidate solution, two
linear systems must be solved, but the time complexity is
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Illustration of DELEqC’s search behavior caused by numerical
errors. In (a), values are randomly generated in [0, 3] × [0, 3] and, in
(b), their projection onto the feasible domain. The solution of the prob-
lem is found in up to 50 generations, as presented in (c). However, after
some generations e shows that floating-point errors from the mutation

operation (Equations 2, 4, 5, and 6) are introduced. Such errors make
individuals unfeasible and, eventually, all the population is unfeasible,
and f converges to the solution of the unconstrained version of the
problem

Fig. 2 Violation of the fittest individual along the evolution for different
values of F

O(m2), as the factorization (O(m3)) is performed only once
(see Algorithm 1). Also, eachmodified (projected) candidate
solution must be evaluated at this point.

3.4 DELEqC-II

In order to reduce the additional computational cost of pro-
jecting the candidate solutions back to the feasible region,

we propose here to check the feasibility of the best (with
respect to the objective function value) candidate solution in
the population. If the best individual is unfeasible, then the
population is projected onto the feasible region. Thus, the
number of projections required is substantially reduced.

After projecting the population onto the feasible region,
the best individual in the projected population can be worse
than the best one from the previous generation. When this
situation occurs, the best solution in generation G,−→x pbest ,G ,
ismaintained in generationG+1. Thus, the quality of the best
feasible solution never decreases along the generations and
the best solution in each generation is feasible with respect
to the linear equality constraints. That is performed in lines
26–30 of Algorithm 2.

An additional proposal is the incorporation to DELEqC of
the crossover operator presented in Sect. 3.2. Thus, the pro-
posedDELEqC-II performsbothmutation and crossover, and
keeps the generated candidate solutions feasible with respect
to the linear equality constraints. Algorithm 2 presents a
pseudo-code of DELEqC-II.

4 Computational experiments

Computational experiments were performed in order to (i)
compare the results obtained byDELEqC-IIwith those found
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Algorithm 2: DELEqC-II.
input : Problem data (E, c), NP (population size), GEN (# of

generations), F (mutation scaling), CR (crossover rate),
ε (small tolerance value).

1 G ← 1;
2 GenerateInitialPopulation(NP,E,c); /* Algorithm 1

*/
3 EvaluatePopulation(NP);
4 rbest ← FindBestIndividual(NP);
5 for G ← 1 to GEN do
6 for i ← 1 to NP do
7 SelectRandomly(r1, r2, r3);

/* r1 �= r2 �= r3 �= i */
8 for j ← 1 to n do
9 vi, j,G+1 = xr1, j,G + F .(xr2, j,G − xr3, j,G);

/* mutation */
10 ui, j,G+1 = (1 - CR).xi, j,G + CR.vi, j,G+1;

/* crossover */

11 Evaluate f (−→u i,G+1);
12 if f (−→u i,G+1) < f (−→x i,G) then
13 −→x i,G+1 =

−→u i,G+1;
14 f (−→x i,G+1) = f (−→u i,G+1);
15 else
16 −→x i,G+1 =

−→x i,G ;
17 f (−→x i,G+1) = f (−→x i,G);

18 pbest ← rbest ;
19 rbest ← FindBestIndividual(NP);
20 if IsUnfeasible(−→x rbest ,G+1,ε) then
21 GEN ← GEN −1;
22 if G ≤ GEN then
23 ProjectionOperation (NP); /* Projecting

the population in the feasible
space */

24 for i ← 1 to NP do
25 Evaluate f (−→x i,G+1);

26 rbest ← FindBestIndividual(NP);
27 if f (−→x pbest ,G) < f (−→x rbest ,G+1) then
28 −→x pbest ,G+1 ← −→x pbest ,G ;
29 f (−→x pbest ,G+1) ← f (−→x pbest ,G);
30 rbest ← pbest ;

31 else
32 −→x rbest ,G+1 ← −→x pbest ,G ;
33 f (−→x rbest ,G+1) ← f (−→x pbest ,G );

output: −→x rbest ,G+1, f (
−→x rbest ,G+1)

by DELEqC; (ii) examine the performance of DELEqC-II
when different DE variants are used; (iii) analyze the sen-
sitivity of DELEqC-II with respect to its parameter values;
(iv) compare DELEqC-II to an approach where all the candi-
date solutions are projected to the feasible search space; and
(v) inspect the quality of the results achieved by DELEqC-
II in problems with different sizes, and with different ratios
between the dimension of the problem and the number of
linear equality constraints.

In [12], it was shown that DELEqC performed better
than other techniques from the literature. Hence, the results

found by DELEqC-II are compared only to those achieved
by DELEqC.

Five test-problems from [10] (and also used in [12]) were
adopted here; we used only the scalable functions from [12].
The test-problems and the procedure used to re-scale themare
presented, respectively, in “Appendices A and B”. The pair
(n,m) formed by dimension (n) and number of constraints
(m) of the test-problems used here are {(10, 5), (20, 5),
(20, 10), (30, 5), (30, 15), (40, 5), (40, 20)}. Thus, the num-
ber of test-problems is 5 × 7 = 35. The original problems
have n = 10 and m = 5. The new test-problems were gen-
erated increasing the dimension by 2, 3, and 4 times the
original size. The number of constraints of the re-scaled test-
problems are 5 (the original value) and n/2. The vectors
v ∈ R

n used to create the initial population are randomly
sampled from a hypercube bounded in every dimension by
[−100, 100], [−100, 100], [2.56, 5.12], [−100, 100], and
[300, 600], respectively, for the test-problems from 1 to
5 [12].

A maximum number of objective function evaluations is
used here as the stop criterion. From the literature, no more
than 5000, 20,000, 20,000, 40,000, and 20,000 objective
function calls are allowed for the original versions of the
test-problems 1-5, respectively. These limitations are modi-
fied for the scaled test-problems in viewof the dimensionality
of the problem. The budget is 5, 10 and 20 times that of the
maximum original value for n = 20, 30, 40, respectively.
In Algorithm 2, GEN is defined as the maximum number of
objective function evaluations alloweddivided by the popula-
tion size (NP).Also, the best solution is considered unfeasible
when any of its constraints is violated bymore than 10−6 (line
20 of Algorithm 2).

The source-code of DELEqC and DELEqC-II as well as
all the data of the results presented in this paper are avail-
able on-line.1 Also, a Supplementary Material is provided
in order to support the analysis and conclusions presented
here. There, boxplots of the parameter analysis, statistical
values as well as non-parametric tests of the results found
by DELEqC and DELEqC-II are included together with pro-
cessing times and statistical results of DELEqC-II and of an
approach in which all the candidate solutions are projected
into the feasible search space.

4.1 Preliminary results

The first part of the computational experiments involves an
analysis of DELEqC-II’s parameters and their performance
when different DE variants are used.

We also tested the following parameter values: F =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, NP = {10,

1 http://github.com/ciml.
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20, 30, 40, 50, 60, 70, 80, 90, 100}, andCR = {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

As handling the numerical issue discussed above is crucial
to the application of DELEqC [12] in practical situations,
here we take DELEqC as being DELEqC-II with CR = 1.
Hence, DELEqC can be recovered when using CR = 1 (no
crossover) in DELEqC-II, and when the candidate solutions
are not projected into the feasible region of the search space.

Five independent runs were performed for each parameter
setup when solving each one of the 35 test-problems. Thus,
a total of 4 × 10 × 10 × 10 × 35 × 5 = 700000 runs were
preliminary performed.

Due to the large number of combinations, performance
profiles [17] were used to identify the parameters which
obtained the best results. Given a set A of algorithms to
be tested on a set P of problems, the performance indi-
cator (to be maximized) tp,a of algorithm a ∈ A when
applied to test-problem p ∈ P is the median of the inverse
of the minimum objective function value found by algo-
rithm a in test-problem p. The performance ratio can be
defined as rp,a = tp,a/min{tp,a : a ∈ A}. Denoting cardi-
nality of a set by |.|, performance profiles (PPs), are defined
as ρa(τ ) = 1

n p

∣
∣{p ∈ P : rp,a ≤ τ }∣∣. We used the normal-

ized area under the performance profiles curves [18] as the
performance indicator.

For each technique (DELEqC and DELEqC-II), we
selected the best parameter settings for each DE vari-
ant presented in Sect. 2. The best performing techniques
are: DELEqC-CR1.0-F0.6-rand-NP100 (CR = 1.0, F =
0.6, NP = 100 using DE/rand/1/bin), DELEqC-CR1.0-
F0.9-best-NP40 (CR = 1.0, F = 0.9, NP = 40
using DE/best/1/bin), DELEqC-CR1.0-F0.6-trand-NP100
(CR = 1.0, F = 0.6, NP = 100 using DE/target-
to-rand/1/bin), DELEqC-CR1.0-F0.1-tbest-NP100 (CR =
1.0, F = 0.1, NP = 100 using DE/target-to-best/1/bin),
DELEqC-II-CR0.7-F0.9-rand-NP100
(CR = 0.7, F = 0.9, NP = 100 using DE/rand/1/bin),
DELEqC-II-CR0.1-F0.3-best-NP100 (CR = 0.1, F =
0.3, NP = 100 using DE/best/1/bin), DELEqC-II-CR0.7-
F0.9-trand-NP100 (CR = 0.7, F = 0.9, NP = 100
using DE/target-to-rand/1/bin), and DELEqC-II-CR0.2-
F0.1-tbest-NP100 (CR = 0.2, F = 0.1, NP = 100 using
DE/target-to-best/1/bin).

In the next sections, additional independent runs were
performed using these eight selected techniques. To make
the further comparisons more robust, each test-problem was
solved 100 times.

4.1.1 DELEqC variants

Here, the results obtained by DELEqC using different
DE variants are analyzed. PPs are presented in Fig. 3
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Fig. 4 Normalized area under the performance profiles curves for the
best performing DELEqC techniques

whereDELEqC-CR1.0-F0.6-trand-NP100 outperformed the
other combinations of DE variants and parameters. Thus,
DELEqC-CR1.0-F0.6-trand-NP100 is used in Sect. 4.2 to
compare DELEqC versus DELEqC-II.

The normalized area under the performance profiles
curves (AUCs) are shown in Fig. 4, where it is possible to
verify that (i) the variant target-to-rand obtained the
largest AUC, and (ii) the variants with “target” obtained
larger AUCs than those that do not include “target”.

Despite that, PPs indicate that DELEqC-CR1.0-F0.1-
tbest-NP100 and DELEqC-CR1.0-F0.9-best-NP40 are more
reliable than DELEqC-CR1.0-F0.6-rand-NP100, as they
require a smaller τ to reach ρ(τ) = 1.

4.1.2 DELEqC-II variants

Here, the results obtained by DELEqC-II using different
DE variants are analyzed. The performance profiles are pre-
sented in Fig. 5 and, similarly to DELEqC, DELEqC-II
withtarget-to-rand variant (DELEqC-II-CR0.7-F0.9-
trand-NP100) outperformed the other combinations of DE

123



324 Memetic Computing (2019) 11:317–329

0.0

0.2

0.4

0.6

0.8

1.0

 1  1.5  2  2.5  3  3.5  4  4.5  5

ρ(
τ )

τ

DELEqC-II-CR0.7-F0.9-trand-NP100
DELEqC-II-CR0.7-F0.9-rand-NP100
DELEqC-II-CR0.2-F0.1-tbest-NP100
DELEqC-II-CR0.1-F0.3-best-NP100

 5  10  15  20  25
τ

Fig. 5 Performance profiles for the best performing DELEqC-II tech-
niques

0.9
0.92
0.94
0.96
0.98

1

DELEqC-II-CR0.1-F0.3-best-NP100

DELEqC-II-CR0.2-F0.1-tbest-NP100

DELEqC-II-CR0.7-F0.9-rand-NP100

DELEqC-II-CR0.7-F0.9-trand-NP100

N
or

m
al

iz
ed

 A
re

a

Algorithm

Fig. 6 Normalized area under the performance profiles curves for the
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variants and parameters. In this manner, DELEqC-II-CR0.7-
F0.9-trand-NP100 is used in Sect. 4.2 to compare DELEqC
versus DELEqC-II.

In Fig. 6 one can observe that the variants rand and
target-to-rand obtained larger AUCs than best and
target-to-best. Thevariantsrand andtarget-to-
rand (i) reached the best results in a larger number of
problems (ρ(1)), (ii) are more reliable (smaller τ such that
ρ(τ) = 1), and (iii) have a best overall performance (larger
AUCs). Thus, it is suggested to use these variants when using
DELEqC-II.

4.2 Analysis of the results

The DELEqC and DELEqC-II variants were evaluated in
the previous sections, and those with best general perfor-
mance are, respectively, DELEqC-CR1.0-F0.6-trand-NP100
and DELEqC-II-CR0.7-F0.9-trand-NP100. In this section
DELEqC-CR1.0-F0.6-trand-NP100 is referred to asDELEqC
and DELEqC-II-CR0.7-F0.9-trand-NP100 as DELEqC-II
for short. Two features are common in both cases: the DE

 0
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Fig. 7 Performance profiles curves for results found by DELEqC
(DELEqC-CR1.0-F0.6-trand-NP100) and DELEqC-II (DELEqC-II-
CR0.7-F0.9-trand-NP100). The normalized area under the performance
profiles curves are, respectively, 0.9977 and 1.0

variant (target-to-rand) and the population size (NP=
100). As only mutation is present when CR= 1, then one can
observe that a smaller step size (F) is preferable in DELEqC.
On the other hand, DELEqC-II achieves better results with
a larger value of F than that used by DELEqC. Although
good results are obtained with DELEqC-II when F= 0.9,
one can notice that an additional weighting (CR= 0.7) is
applied to the vectorial differences (see Equations 5 and
11). As a consequence, when choosing the parameter values
which generate the best overall performance in DELEqC-II,
the vectorial difference contributes with 0.7× 0.9 = 0.63 to
generate the new candidate solution. Thus, the main differ-
ence between DELEqC and DELEqC-II seems to originate
in the participation of the target vector (xi, j,G ) in forming
the new individual.

The contribution of the linear combination (crossover) is
important asDELEqC-II achieved the best solution in general
when compared to DELEqC.

This comparison can be shown in Fig. 7, where the perfor-
mance profiles and the normalized area under these curves are
presented. According to the performance profiles, DELEqC-
II obtained the best results in most of the test-problems, and
reached the best performance in general (normalized area
under the performance profiles curves). On the other hand,
DELEqC shows to be more reliable, as its performance pro-
files require a smaller τ in order to reach ρ(τ) = 1 (solve
all problems). One can see in Fig. 10, with boxplots of the
results found by both DELEqC and DELEqC-II techniques,
that DELEqC-II achievesworse valueswhen solving the test-
problem 3 when n = 40 and m = 20.
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Fig. 8 Boxplots of the results found by DELEqC and DELEqC-II when solving the test-problem 1. The maximum and minimum values are the
same for all plots in the top while these limits vary in the remaining plots

Fig. 9 Boxplots of the results found by DELEqC and DELEqC-II when solving the test-problem 2

Fig. 10 Boxplots of the results found by DELEqC and DELEqC-II when solving the test-problem 3
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Fig. 11 Boxplots of the results found by DELEqC and DELEqC-II when solving the test-problem 4

Fig. 12 Boxplots of the results found by DELEqC and DELEqC-II when solving the test-problem 5

A closer look at the results can be found in the boxplots
in Figs. 8, 9, 10, 11 and 12. One can see that DELEqC-II
obtained results better than or similar to those achieved by
DELEqC in almost all tested cases. The exceptions are the
test-problem 3, and the test-problem 1 when n = 10, 20 and
m = 5. Also, it is important to highlight that DELEqC-II
produces more stable results than DELEqC when the dimen-
sion n increases. This makes DELEqC-II more suitable than
DELEqC for solving problems with a higher dimensionality.
The behavior of both methods is similar when the ratio n/m
increases.

In addition to the boxplots and the previous presented dis-
cussion, statistical results of DELEqC and DELEqC-II are
presented in the Supplementary Material, where the Mann-
Whitney non-parametric statistical test is also performed in
order to evaluate when the results obtained by both tech-
niques are similar. The results obtained by DELEqC-II are
the best ones or statistically similar to the best ones with
respect to the Mann-Whitney non-parametric statistical test
(p-value > 0.5) in 25 of the 35 test-problems. The best solu-

tion set with respect to each test-problem is assumed here
as those with the best median value. Thus, we conclude that
DELEqC-II performed in general better than DELEqC.

4.3 The effect of projecting all solutions

An additional experiment was conducted in order to verify
the effect of projecting all solutions into the feasible space
of the linear equality constraints. All test-problems were run
with both approaches: DELEqC-II and a variant where all
candidate solutions are projected. The results are presented
in the Supplementary Material which shows that the conver-
gence behavior is quite similar. The processing times were
collected and it was observed that, as expected, DELEqC-II
is faster. The ratio of the processing times of both variants
ranged from 0.1 to 0.98. In fact, it was noted that, in about
half of the cases, DELEqC-II uses less than half of the pro-
cessing time. Thus, it is concluded that there is no reason to
project all the individuals into the feasible space as the com-
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puting time is always higher and the median of the obtained
solutions are quite similar.

4.4 Analysis of the parameters

DELEqC-II is analyzed here with respect to the performance
obtained when varying the values of its parameters: NP, CR,
and F. When a given parameter is varied, the other ones are
fixed as those of DELEqC-II-CR0.7-F0.9-trand-NP100. The
boxplots of the results for different values for NP, F, and CR
are included in the Supplementary Material.

The performance of DELEqC-II decreases when smaller
values are considered for the population size (NP). The best
results are obtained in general using larger values for NP.
The exception is the test-problem 3, where the best results
are found using 50 or 60 individuals. Thus, it is suggested to
apply DELEqC-II with no less than 50 individuals.

One can see in the boxplots that the performance of
DELEqC-II decayswhenCR assumes lower or higher values.
In fact, the performance of the technique can be substantially
decreased when a wrong CR value is chosen. Middle-range
values (CR∈ [0.5, 0.7]) are preferable.

When the parameter F is analyzed, one can see that larger
values result in a better performance of DELEqC-II. Values
smaller than 0.8 can decrease the performance of the pro-
posed technique in some test-problems.

One can notice that similarly to other metaheuristics,
DELEqC-II is sensible to its parameter values. However,
in general, the best parameter setting indicated here as
DELEqC-II-CR0.7-F0.9-trand-NP100 tends to reach a good
performance. It is also interesting to verify that the perfor-
mance of DELEqC-II is different when looking only to the
test-problem 3. In this case, smaller values of the parameters
seem to perform better, as the Rastrigin function is highly
multi-modal.

5 Conclusions

Dealing with constraints in Evolutionary Algorithms (EAs)
is considered a hard task, specially the equality constraints.
Although there are some alternatives to deal with con-
straints in EAs, in this paper we address the issue of exactly
satisfying linear equality constraints. We propose here an
improved differential evolution method capable of automat-
ically satisfying liner equality constraints. The new method,
DELEqC-II, is an extension of a previously developed algo-
rithm, DELEqC.

The results show thatDELEqC-II performedbetter inmost
of the test-problems and reached the best performance in gen-
eral when compared to DELEqC. Particularly, DELEqC-II is
more suitable than DELEqC for solving problems in higher
dimensions. Also, a closer inspection in the parameter setting

indicates that DELEqC-II is sensitive to its parameter values,
a feature commonly observed in metaheuristics. On the other
hand, we believe that a careful analysis will help those inter-
ested in using the approach proposed here to properly choose
the parameter setting.

Finally, DELEqC-II can be easily combined with meth-
ods to handle the constraints other than the linear equality
ones. As a result, those combinations, as well as DELEqC-
II’s application to hard real-world optimization problems, are
interesting research avenues.
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Appendix A: Test-problems

Test-problems 1–5were taken from [10]. Also note that those
problems are subject to the same set of linear constraints,
described in Fig. 13. Following, the description and the opti-
mal solution value of each problem.

Problem 1 (Sphere):

min
x∈E

n∑

i=1

x2i .

The feasible set E is given by the linear equality con-
straints in Fig. 13 and f (x∗) = 32.137.

Problem 2 (Quadratic):

min
x∈E

n∑

i=1

n∑

j=1

e−(xi−x j )2xi x j +
n∑

i=1

xi

f (x∗) = 35.377

Problem 3 (Rastrigin):

min
x∈E

n∑

i=1

x2i + 10 − 10 cos(2πxi )

f (x∗) = 36.975.

Problem 4 (Rosenbrock):

min
x∈E

n−1∑

i=1

100(xi+1 − x2i )
2 + (xi − 1)2

f (x∗) = 21485.3.
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Fig. 13 Linear equality
constraints of the feasible set E ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−3x2 − x3 + 2x6 − 6x7 − 4x9 − 2x10 = 3
−x1 − 3x2 − x3 − 5x7 − x8 − 7x9 − 2x10 = 0
x3 + x6 + 3x7 − 2x9 + 2x10 = 9
2x1 + 6x2 + 2x3 + 2x4 + 4x7 + 6x8 + 16x9 + 4x10 = −16
−x1 − 6x2 − x3 − 2x4 − 2x5 + 3x6 − 6x7 − 5x8 − 13x9 − 4x10 = 30

Problem 5 (Griewank):

min
x∈E

1

4000

n∑

i=1

x2i −
n∏

i=10

cos(
xi√
i
) + 1

f (x∗) = 0.151.

Appendix B: Scaling the test-problems

Problems 1–5 can be scaled by varying the number of vari-
ables (n) and the number of constraints (m). Let G ∈ R

5×10

and p ∈ R
5 be the coefficient matrix and vector, respectively,

associated to the set of linear equality constraints in Fig. 13.
Hence

G =

⎡

⎢
⎢
⎢
⎢
⎣

0 −3 −1 0 0 2 −6 0 −4 −2
−1 −3 −1 0 0 0 −5 −1 −7 −2
0 0 1 0 0 1 3 0 −2 2
2 6 2 2 0 0 4 6 16 4

−1 −6 −1 −2 −2 3 −6 −5 −13 −4

⎤

⎥
⎥
⎥
⎥
⎦

and pT = [
3 0 9 −16 30

]
.

Now, let 0 ∈ R
5×10 be a matrix with all values equal

to zero. By varying n and m we can construct new sets of
linear equality constraints for problems 1–5. Those sets are
described as follow.

Constraint-set 1 In (7), setting m = 5 and n = 20 we
obtain x ∈ R

20 and E = [
G 0

]
and c = p. The matrix

E ∈ R
5×20 and the vector c ∈ R

5 now describes the set of
linear equality constraints, where E is of the special form
[G 0], that is, its columns can be partitioned into two sets;
the first 10 columns make up the original G matrix and the
last 10 columns make up the 0 matrix. The next constraint-
sets, follow the same construction rule.

Constraint-set 2 Setting m = 10 and n = 20 we obtain

E =
[
G 0
0 G

]

and c =
[
p
p

]

.

Constraint-set 3 Setting m = 5 and n = 30, we obtain
E = [

G 0 0
]

and c = p.
Constraint-set 4 Setting m = 15 and n = 30, we obtain

E =
⎡

⎣
G 0 0
0 G 0
0 0 G

⎤

⎦ and c =
⎡

⎣
p
p
p

⎤

⎦.

Constraint-set 5 Setting m = 5 and n = 40, we obtain
E = [

G 0 0 0
]

and c = p.
Constraint-set 6 Setting m = 20 and n = 40, we obtain

E =

⎡

⎢
⎢
⎣

G 0 0 0
0 G 0 0
0 0 G 0
0 0 0 G

⎤

⎥
⎥
⎦ and c =

⎡

⎢
⎢
⎣

p
p
p
p

⎤

⎥
⎥
⎦.
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