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Abstract
The aim of this article is to study the two-objective coverage problem of wireless sensor networks (WSNs) by means of
differential evolution algorithm. Firstly, in order to reduce the computing redundancy of multi-objective optimization, namely
to reduce the number of individuals which participate in non-dominated solution sorting, we introduced a fast two-objective
differential evolution algorithm (FTODE). The FTODE contains a fast non-dominated solution sorted and a uniform crowding
distance calculation method. The fast sorting method just handles the highest rank individuals but not all individuals in the
current population.Meanwhile, during the individuals sorted, it can choose some of individuals into next generation and reduce
the time complexity. The uniform crowding distance calculation can enhance the diversity of population due to it will retain
the outline of optimal solution set by choosing the individual uniformly. Secondly, we use the FTODE framework to research
the two-objective coverage problem of WSNs. The two objectives are formulated as: the minimum number of sensor used
and the maximum coverage rate. For this specific problem, decimal integer encoding are used and a recombination operation
is introduced into FTODE, which performs after initialization and guarantees at least one critical target’s sensor is divided
into different disjoint sets. Finally, the simulation experiment shows that the FTODE provides competitive results in terms
of time complexity and performance, and it also obtains better solutions than comparison algorithms on the two-objective
coverage problem of WSNs.

Keywords Differential evolution (DE) · Two-objective · Non-dominated solution sorted · Wireless sensor networks (WSNs) ·
Coverage problem

1 Introduction

1.1 Background

In recent years,wireless sensor networks (WSNs) have drawn
enormous attention because that it can be used in various
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environments, such as battlefield surveillance, traffic control,
animal tracking, home application, security management,
medical and health care [1]. In WSNs, due to the limitation
of energy and cost, there are many optimization problems
such as the maximum lifetime of network, the minimum data
routing, the minimum energy consumption, the maximum
connectivity and coverage [2,3].

During above issues, one objective may conflict with
others objectives such as between coverage and number
of sensor. That is belonging to multi-objective optimiza-
tion problem (MOP) [4]. In general, maintaining efficient
coverage and prolonging the lifetime of WSNs is the most
important issues.Manymethods have been proposed tomax-
imize the coverage, to minimize the consumption of energy,
and to maximize lifetime of network simultaneously [5]. In
paper [6], the authors built the balance between coverage
efficiency and the capacity of the network that to get Pareto
optimal solutions. In order to improve the coverage reliabil-
ity of Wireless Sensor Networks, Attea et al. [7] addressed
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the problem of improving coverage reliability of WSNs and
maximizing the number of disjoint set covers (DSC) simulta-
neously. They transformed the definition of single-objective
DSC problem into aMOP by adopting an additional conflict-
ing objective. In literature [8], the authors aimed to cover a
sensing area by deploying a minimum number of wireless
sensors while maintaining the connectivity. They developed
an integer linear programming model to solve the prob-
lem optimally. To study the maximum coverage deployment
problem inWSNs and analyze the properties of the problem,
Yoon et al. [9] has proposed an efficient genetic algorithm
based on a novel normalization method. Unfortunately, there
is only few reported research work concerning the coverage
and number of sensor in the field ofmulti-objective optimiza-
tion [2,3].

From above mentioned studies, it can be found that using
multi-objective evolutionary algorithms to research these
problems is verymeaningful and valuable.Meanwhile, many
multi-objective evolutionary algorithms (MOEAs) have suc-
cessfully been employed to tackle MOP over the past
decade. During the research results, the NSGA-II [10], the
SPEA-II [11] and MOEA/D [12,13] are the most famous
algorithms. Recently, the famous multi-objective and many-
objective algorithms, such as IM/MOEA [14], NSGAIII
[15], KnEA [16], IMOPEO-PLM [17] and MOEO [18] are
presented. These algorithms can handle multi-objective or
many-objective problems [19]. The literature [20] claimed
that the non-parametric statistical test is concerned for
comparing the performance of above different optimization
algorithms. Since the Differential Evolution (DE) algo-
rithm is proposed in [21]. Many scholars have devoted to
extend their research on multi-objective Differential Evolu-
tion. According the improved individual density calculation
and Pareto dominance, the multi-objective differential evo-
lution algorithm (MODE) was proposed and achieved good
result [22]. The most famous algorithm for solving multi-
objective problem based on DE is differential evolution
multi-objective optimization (DEMO) [23]. Its best feature
is to select next generation individual on the basis of com-
paring with parent (target) and trial vector. If the trial vector
dominates the corresponding parent vector, it replaces the
parent vector; otherwise, the parent vector is retained in
the current population. If the relationship of parent vector
and trial vector is non-dominated, DEMO will put the trial
vector into the extra archive. The test results show that the
DEMO has significantly improved than NSGAII on conver-
gence and diversity. In this year, a novel differential evolution
with event-triggered impulsive control [24] and an improved
NSGAIII with elimination operator [25] were presented.

Based on aforementioned analysis for multi-objective
algorithms and problems of WSNs, we think there are two
points need to be concerned. The first one, we consider using
minimum number of sensor nodes so that it will fulfill max-

imum coverage of WSNs. Obviously, this is belongs to a
bi-objective optimization problem. Secondly, its need intro-
duce a suitable two-objective evolution algorithm for solving
this problem. To the best of our knowledge, most of above
evolution algorithms are based on the Parteo non-dominated
sorted to select individuals into the next generation. These
algorithms firstly sort the double size of population (SP)
individuals based on the Parteo theory. After that, accord-
ing the result of ranking, they select one SP individuals
into next generation. However, this process has some redun-
dant operations: (1) since the goal of sorting is just select
one SP individuals into next generation, however, the above
algorithms need sort double SP individuals; (2) In above
algorithms, after the non-dominated sorted is finished, the
operation of selecting individuals into next generation can
be executed subsequently. We introduced a method to solve
above computation redundancy in this work. In our method,
the sorting operation only handles the highest rank individu-
als in current population. Meanwhile, the individuals can be
chosen into the next generation during the proposed sorting
operation.When the population of next generation is selected
enough, the algorithm is terminated. The proposed method
reduces the time complexity since the number of individu-
als for sorting operation is smaller. In addition, a calculation
method of uniform crowding distance is given, which can
retain the outline of optimal solution set since the individual
is chosen uniformly.

Moreover, a fast two-objective differential evolution algo-
rithm (FTODE) is proposed, which incorporates the intro-
duced sorting method and uniform crowding distance into
the classic DE. The simulation experiment used the standard
multi-objective optimization problems ZDTl~ZDT4, ZDT6,
F1–F5 for testing the performance of FTODE. Furthermore,
the experimental results on optimization problems by using
non-parametric statistical tests includingKruskal–Wallis test
and Friedman test [26] are provided. Simulation results show
that the FTODE has greatly improved in terms of time com-
plexity and performance.

1.2 Our contribution and organization of the paper

In this paper, we proposed a fast two-objective differen-
tial evolution algorithm (FTODE) to solve the two-objective
optimization problem of WSNs. The two objectives are the
minimum number of sensor used and themaximum coverage
rate. Our main contributions are summarized as follows:

(a) We present a fast two-objective differential evolution
algorithm (FTODE), which contains a fast non-
dominated solution sorted method and a uniform crowd-
ing distance calculation method.
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(b) We establish a two-objective coverage problemofWSNs,
namely use ofminimumnumber of sensor nodes formax-
imum coverage rate.

(c) We perform extensive simulation experiment on the
presented algorithm, compare and analyze results with
existing and related algorithms.

The rest of this paper is organized as follows. In Sect. 2,
related work is discussed emphasizing coverage problem in
WSNs, Differential Evolution and multi-objective optimiza-
tion. Section 3 presents the fast two-objective differential
evolution algorithm. Section 4 provides the simulation exper-
imental, the parameter settings for the investigation, and the
performance of the proposed algorithm. In Sect. 5, we use the
proposed FTODE to solve the two-objective coverage prob-
lem of WSNs. Finally, the conclusions and further work are
discussed in Sect. 6.

2 Related works

2.1 The two-objective coverage problem inWSNs

In WSNs, one of the most critical issues is maximizing the
lifetime of network while maintaining coverage and connec-
tivity [2,3,28]. Therefore, the coverage problem influences
the lifetime, the connectivity and the cost of network. In this
work, the two-objective coverage problem is that using the
minimum sensor nodes to coverage the maximum targets.

For the point-coverage problem of WSNs, suppose that
there are a set of targets T = {t1, t2, t3, . . . , tm} in an
L × W area, and then we randomly deploy a set of sensors
S = {s1, s2, s3, . . . , sn} in this area to monitor the targets.
All of the sensors have sleep and active mode. In the active
mode, sensors can sense information of target and assume
sensors have same sensing region, but in sleep mode it can’t
sense due to save energy. A target is said to be covered by
a sensor if it lies within the sensing region of the sensor.
In order to prolong the lifetime of WSNs, we need to find
the maximum number of disjoint sensor covers. This prob-
lem can be solved via transformation to the DSC problem,
which is defined as finding the maximum number C of dis-
joint complete cover sets [8,28]. The corresponding cover set
Ci is satisfied following conditions:

Every cover Ci is a subset of S, i ∈ [1,Cmax ], where the
Cmax is the upper bound of disjoint set covers numberC . The
maximum number of full cover subsets (Cmax ) can be used
as the upper limit of the number of disjoint set covers. Ci ∈
S and each Ci can complete coverage to all of the targets.
Beyond that, for every of ti belongs to at least one member of
Ci , and for any two different covers Ci and C j,Ci ∩C j = φ.
We use the Fig. 1 as example, there are five sensors S1, S2,

Fig. 1 A randomly deploy figure of WSNs by five sensors and four
targets

S3, S4, S5, and four targets t1, t2, t3, t4, every sensor have
same circular sensing region.

From the above mentioned, we can maximize the lifetime
of WSNs by maximizing the number of completely cover
subsets. Meanwhile, for saving the number of sensor nodes,
how using less sensor nodes to find more completely cover
subsets is ourmain aiming.Namely, in thiswork the two opti-
mization objectives are: maximum the number of completely
cover subsets andminimum the number of used sensor nodes.

2.2 Differential evolution

DE is firstly proposed byPrice andStore [21],with the advan-
tage of its fast speed, less parameter, easy to implement and
so on, which has become one of the most famous evolu-
tion algorithms. Because of DE is belonging to evolutionary
algorithm, it have also included crossover, selection, update,
and other basic structures. For saving the space of paper,
the details of the DE algorithm are not provided in here and
shown in the literature [21,27].

2.3 Themathematical description of multi-objective
optimization

The features of multi-objective and single-objective opti-
mization problem are different. In the single-objective opti-
mization, the optimal solution is usually unique. However, in
a multi-objective optimization, the optimal solution is a set
because of the various objective functions are conflict each
other. Considering the minimum of multi-objective problem,
there are n decisions variables, m target variables can be
expressed as Eq. (1) [10,11,14].

⎧
⎨

⎩

Min y = F(x) = ( f1(x), f2(x), . . . , fm(x))
s.t . gi ≤ 0, i = 1, 2, 3, . . . , q
hi = 0, j = 1, 2, 3, . . . , p

(1)
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where x = (x1, . . . , xn) ∈ X ⊂ Rn is the decision
vector, X is the decision space with n-dimensional. The
target vector is y = (y1, . . . , yn) ∈ Y ⊂ Rm,Y is the
target space, are m-dimensional. F(x) are m mapping func-
tions that make decision space to the target space. The
gi (x) ≤ 0(i = 1, 2, 3, . . . , q) is q inequality constraints,
hi (x) = 0( j = 1, 2, 3, . . . , p)are equality constraints. The
detail concept description about multi-objective is shown in
[14]. In the interest of saving space, we are not discuss them
in this article

However, it is should be noted that: (1) usually, in a
multi-objective problem, one global optimal solution like
in single-objective optimization does not exist. There are
only Pareto optimal solutions in multi-objective problem.
The Pareto optimal solutions are an acceptable “not bad”
solution, and usually there are multiple Pareto optimal solu-
tions. (2)All Pareto optimal solutions constitute a solution set
of multi-objective optimization problem. In practical prob-
lems, according to the preferences of decision makers, they
can select a suitable solution from the set as the final optimal
solution. Therefore, the primary problem of multi-objective
optimization is to find out Pareto optimal solutions as much
as possible.

3 The fast two-objective differential
evolution algorithm

The classical multi-objective evolution algorithm based on
the Pareto non-dominated exist some redundant operations.
To reduce redundant operations and enhance the compu-
tation speed, we present a fast sorting method based on
non-dominated solutions. In addition, we introduce a uni-
formcrowdingdistance calculationmethod. Furthermore,we
combine the proposed methods to improve the performance
of two-objective DE algorithm.

3.1 A fast non-dominated solution sortedmethod

One of themost famousmulti-objective evolution algorithms
is NSGAII [10]. In the canonical NSGAII, all individuals
(2N ,N is population size) are ranked and divided into dif-
ferent levels according to the non-dominated relation firstly.
After that, based on the level (level 1 is the highest rank) in
descending order, NSGAII selects some individuals into the
next generation. It should be noted that the aim of select-
ing is just to choose excellent N individuals into the next
generation. However, the NSGAII needs deal with all of 2N
individuals.

From the foregoing, if we can reduce the number of indi-
viduals during the sorting operation, the time complexity of
the algorithm will be decreased significantly. Hence, on the
basis of the potential feature of sorting operation, this section

proposes a fast method to sort and select the individual. This
method suits to all of the multi-objective optimizations, we
just describe it in the two-objective problem for concise. The
method is shown on Algorithm 1.

Algorithm 1 Fast non-dominated sorting method  
Input: The current population (the scale is 2N)
Output: The next population (the scale is N)
1: for level r, r = 1 is initialized 
2: for current population P (the scale is 2N), each  

individual i in P is not allocated the level. 
r

and storing them in a set Sr

 f1, f2 ,and  
       the shortest distance to the original point.  
5: Sometimes, the three special individuals will repetitive, so the

checkout operation is needed. 
 r, 

in current population 
8: Making the subtraction operation for P

individuals and getting P'
9:    for each individual j in P’
10:     if the relation of j and all individuals in Sr is non-dominated           
11 j to level r, and add it to set Sr

12:    end if
13:  end for
14 Sr stores the whole level r individuals 
15:    Let individuals of Sr into the next generation 
16: if the cumulative total of the next generation more than N, the

scale is overflowed
17: Just to choose some individuals into the next generation by

crowded distance calculation. 
18
19:    end if
20:    if the cumulative total of the next generation is exactly equal to

N
21

3:  Finding 3 special individuals whose belong to the level

4: The three special individuals have minimum

6: Three special individuals are assigned to the level
7: they belong to the highest level

and three special

: Assign the individual

: The set

: the calculation algorithms is offered by Algorithm 2

: Algorithm ends, the next population individuals (N)
           were produced 
22:    end if
23: end for
24: Making the subtraction operation between P and Sr, getting

the set W
25: Using W to replace P (P = W), that is for updating P
26:  r++, allocate for the next levels’ individuals 
27: end for

The main advantage of the proposed method is that it can
select individual into next population during the sorting oper-
ation. Hence, the time complexity is descending due to the
number of individuals for sorting operation is smaller.

In detail, before sorting and selecting the individual, the
method firstly choose three special individuals. These special
individuals belong to the highest level in current popula-
tion. More specifically, the three individuals are the shortest
distance to horizontal axis (minimum f1), to vertical axis
(minimum f2), and to the original point, respectively. Note
that these special individuals maybe repeat in some time.
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These special individuals are stored in a set Sr . Then we
compare the remaining individualsi of population with each
special individual in Sr . If the individual i non-dominate with
all the special individuals in Sr , then the i is belongs to the
highest level in current population and is added to the set Sr .
Repeating above process for the next individuali , the method
will find out those individuals that are belong to the current
highest level.

Now, all individuals of Sr are obtained which belongs to
the highest level in current population. After that the pro-
posed method chooses all individuals of Sr into the next
generation. If the number of cumulative individuals in next
generation is less than N , the method will compute the
next level by repeating above operation for the remainder
individuals; otherwise, the crowded distance calculation is
performed to select part of the current highest level indi-
viduals into next generation. When the number of the next
generation individuals is just equal N , the algorithm termi-
nates and don’t processes the remaining individual to allocate
level.

3.2 Theoretical basis for special individual in the fast
non-dominated solution sortedmethod

The most important of our proposed method is how to prove
three special individuals belong to the highest level of the
current population. The three special individuals are shown
in Fig. 2. Here, based on the Pareto dominance and sorting
order theory, the analysis of special individual is given on
below. For describing the problem conveniently, we use x
and y represent the functions f1 and f2, respectively.

Theorem 1 If the x value of individual a (x, y) is the min-
imum abscissa of all individuals, this individual belongs to
the highest level of current population.

Theorem 2 If the y value of individual c (x, y) is theminimum
ordinate of all individuals, the individual c belongs to the
highest level of current population.

Theorem 3 For all individuals in the current population, if
the distance from the individual b (x, y) to the original point
is the minimum, the individual b belongs to the highest level
of current population.

Analysis for Theorem 1
Three special individuals are shown in Fig. 2. In current

population, we assume that the minimum abscissa of all indi-
viduals is xmin . The coordinates of that individual is a(xmin ,
ay), so there is not exist an individual k(kx , ky) satisfaction
kx < xmin .

Fig. 2 Three special individuals in the proposed method

Fig. 3 A method of uniform crowding distance calculation

According to the Pareto theory, there is not exist an indi-
vidual dominate the a(xmin, ay) in the current population.
Therefore, the individual a(xmin,ay) belongs to the highest
level distinctly. Others proof of Theorems 2 and 3 are similar
above..

It should be emphasized that these special individualsmay
repeat each other in sometimes. Hence, the check operation
for these individuals whether repeat is needed.

3.3 A uniform crowding distance calculationmethod

This section presents a uniform crowding distance calcula-
tionmethod,which is shown in Fig. 3 andAlgorithm2.When
all the current highest level individuals are chosen into the
next generation, the cumulative number of next generation
is bigger than N , it need to select part of individuals. The
presented crowded distance calculation method can evenly
selects part of the current highest level individuals into next
generation.

The uniformity selection is based on the distribution of the
relative position in the current level individuals. This method
can ensure that the individuals with a representative range are
not discarded easily.
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For example, there are 10 solid dots (individuals) belong
to the highest level in Fig. 3. We need select 5 solid dots
(individuals) into the next generation based crowding dis-
tance. We use the uniform crowding calculation method to
select that. Firstly, we evenly draw 5 vertical lines between
all of these individuals.

Then, find the nearest distance of 5 individuals to five
lines, respectively. These 5 individuals are selected into the
next generation. The detail process of this method is given
in Algorithm 2.

Algorithm 2 A method of uniform crowding distance calculation
Input: k individuals 
Output: m individuals 

m individuals
from k individuals, m< k.

k individuals, k1 and km

3: iF m==2 just select k1 and km

4:   choose k1 and km. 
5: else if m==1, just select one of k1 and km. 
6: Randomly select one from k1 and km

7: end iF
k1 and km make vertical m li

evenly.
9: for considering each line 
10:   for each individual j
11:     if the distance between i and j

 j
i,  

14:      end if
15:    end for
16: end for
17: m

1: In the same level, select the into the next generation

2: Identify the two boundaries in the
into the next generation

into the next.

8: With the range of individual nes

i
j =1: k

is the nearest
12: Individual is selected into the next generation.
13: If there are two individuals nearest to line

randomly select an individual to the next generation.

individuals are chosen into the next generation

3.4 The overall framework and time complexity
analysis of fast two-objective differential
evolutionary algorithm

According to above fast non-dominated sorting method and
uniform crowding distance calculation, we combine them
with the DE to propose a fast two-objective differential evo-
lution (FTODE). The general framework of the FTODE is
shown in Algorithm 3.

4: Mutation, obtain the variation vector V
5: Crossover, get trial vector U
6: Merging V and U, obtain P who has 2N individuals
7: Choose N from (P) 2N into the next generation
8: Using the proposed fast non-dominated solutions sorting

algorithm, see the Algo 1
9: In the Algo 1, when finding the rth level individuals, directly

select them into the next generation
10: if the total number of chosen individuals is equal to N
11: Jump into the next generation evolution
12: end if
13: if the total number of chosen individuals greater than N
14: The even crowding distance calculation is operated to the

individuals in rth level. At the Algo 2
15: Select the part of individuals into the next generation.
16: if the number of next generation individuals is equal to N, jump

into the next evolution.
17: end if
18: End of the evolution

Algorithm 3 Fast two-objective differential evolutionary algorithm
based on non-dominated solutions sorting
Input: Parameters G, Cr, F, N, FES. etc
Output: The set of optimal solution 
1: Initial population, size N X(0):x1(0),…, xn(0);
2: Initialization parameters G = 0, Cr, F.etc.
3: Begin evolution FES=0.

The FTODE reduces the time complexity of algorithm by
decreasing the number of individuals for sorting operation.
The NSGAII is the most famous in all multi-objective evolu-
tionary algorithms. However, it needs firstly rank and assign
the level for all individuals (2N ), and then select parts of
individuals (N ) into the next generation. In the first version
of NSGA, the time complexity of non-dominated solutions
sorting is O(n3). So far as to the NSGAII, the time com-
plexity is O(n2). The reason of high time complexity is that
it needs to sort and assign level for all individuals (2N ) by
non-dominated relation.

In FTODE, the best time complexity is O(n). When the
number of individuals in the first level is greater than or
equal to the population size N , these individuals are selected
into the next generation directly. If this number is greater
than N , the crowding distance calculation is needed and the
remaining levels of individuals are not need to be ranked.
Considering the worst case, the FTODEs’ time complexity
is O(n2). In this condition, the algorithm needs to sort and
assign level for all level individuals by their non-dominated
relation.

In the Ref. [25], the authors claimed that the low selection
pressure ofPareto dominance cause theMOEAs fail to handle
many-objective optimization problems. Recently, Deb pre-
sented NSGAIII that also employs the uniformly distributed
reference points to promote population diversity [15]. Thus,
based on the above analysis, it’s found that the FTODE has
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Table 1 Ten bi-objective functions

Case Range Objective function

ZDT1 x ∈ [0, 1]30
f1(x) = x1
f2(x) = g(x)(1 − √

x1/g(x))
g(x) = 1 + 9

n−1

∑n
i=2 xi

ZDT2 x ∈ [0, 1]30
f1(x) = x1
f2(x) = g(x)(1 − (x1/g(x))2)
g(x) = 1 + 9

n−1

∑n
i=2 xi

ZDT3 x ∈ [0, 1]30
f1 = x1
f2(x) = g(x)(1 − √

x1/g(x) − x1
g(x) sin(10πx1))

g(x) = 1 + 9
n−1

∑n
i=2 xi

ZDT4
x1 ∈ [0, 1] ,
xi ∈ [−5, 5] ,
i = 2, . . . , 10

f1 = x1
f2 = g(x)(1 − √

x1/g(x))
g(x) = 1 + 10(n − 1) + ∑n

i=2 (x2i − 10 cos(4πxi ))

ZDT6 x ∈ [0, 1]30
f1(x) = 1 − exp(−4x1) sin6(6πx1)
f2(x) = g(x)(1 − ( f1(x)/g(x))2)
g(x) = 1 + 9((

∑n
i=2 xi )/(n − 1))0.25

F1 x ∈ [0, 1]10

f1(x) = x1 + 2
|J1|

∑
j∈J1 (x j − x

0.5(1+ 3( j−2)
n−2 )

1 )2

f2(x) = 1 − √
x1 + 2

|J2|
∑

j∈J2 (x j − x
0.5(1+ 3( j−2)

n−2 )

1 )2

J1 = { j | j is odd and 2 ≤ j ≤ n }
and J2 = { j | j is even and 2 ≤ j ≤ n }

F2 x ∈ [0, 1]30

f1(x) = x1 + 2
|J1|

∑
j∈J1 (x j − sin(6πx1 + jπ

n ))2

f2(x) = 1 − √
x1 + 2

|J2|
∑

j∈J2 (x j − sin(6πx1 + jπ
n ))2

J1 = { j | j is odd and 2 ≤ j ≤ n }
and J2 = { j | j is even and 2 ≤ j ≤ n }

F3 x ∈ [0, 1]30

f1(x) = x1 + 2
|J1|

∑
j∈J1 (x j − 0.8x1 cos(6πx1 + jπ

n ))2

f2(x) = 1 − √
x1 + 2

|J2|
∑

j∈J2 (x j − 0.8x1 sin(6πx1 + jπ
n ))2

J1 = { j | j is odd and 2 ≤ j ≤ n }
and J2 = { j | j is even and 2 ≤ j ≤ n }

F4 x ∈ [0, 1]30
f1(x) = x1 + 2

|J1|
∑

j∈J1 (x j − 0.8x1 cos(
6πx1+ jπ

n
3 ))2

f2(x) = 1 − √
x1 + 2

|J2|
∑

j∈J2 (x j − 0.8x1 sin(6πx1 + jπ
n ))2

where J1 and J2 are the same as F1

F5 x ∈ [0, 1]30
f1(x) = x1 + 2

|J1|
∑

j∈J1

{
x j −

[
0.3x21 cos(24πx1 + 4 jπ

n ) + 0.6x1
]
cos(6πx1 + jπ

n )
}2

f2(x) = 1 − √
x1 + 2

|J2|
∑

j∈J2

{
x j −

[
0.3x21 cos(24πx1 + 4 jπ

n ) + 0.6x1
]
cos(6πx1 + jπ

n )
}2

where J1 and J2 are the same as F1

high selection pressure of the Pareto-dominace relation and
uniformly distributed reference points.

Generally, the individuals are distributed randomly in
early stage of evolution. In order to choose N individuals into
the next generation, it needs to handle more levels individu-
als. However, in later stage of evolution,many individuals are
evaluated in the higher levels. Hence, just considering few
levels, it can obtain N individuals into the next generation.
In this case, the FTODE will show its high efficiency.

4 Simulation experiment for the FTODE

To verify the effectiveness of the proposed fast non-
dominated sorting and uniformcrowdeddistance calculation,

we compare the FTODE with others classical algorithms in
this section.

4.1 Experimental conditions and parameter settings

The simulation experiments use the standard minimum two-
objective optimization problems ZDTl~ZDT4, ZDT6 [10],
and F1–F5 [12] as testing functions. These functions are
shown in Table 1.

Without special explanation, The FTODEuses parameters
as follows: Population size N = 100, scaling factor F = 0.5,
crossover probabilityCr = 0.3, themaximumevolution gen-
eration is 250, themutation strategy is “DE/Rand/1/bin”. The
parameter settings of other classic comparison algorithms are
referred by original literatures. All the experiments have been
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Table 2 Running time and number of comparisons for the three sorting methods, second (number of comparisons)

Algorithm The size of population

100 500 1000 2000 5000 10,000

The sorting method of this paper (FTODE) 0.045 0.056 0.096 0.255 0.845 2.342

(1.1e+3) (1.2e+4) (3.8e+4) (1.0e+5) (4.1e+5) (1.2e+6)

An efficient approach to non-dominated sorting (ENS) [30] 0.063 0.078 0.102 0.137 0.156 1.492

(6.6e+2) (8.3e+3) (2.6e+4) (7.2e+4) (2.9e+5) (8.3e+5)

The sorting method in NSGAII [10] 0.054 0.61 2.37 10.02 67.7 310.2

(4.9e+3) (1.2e+5) (4.9e+5) (1.9e+6) (1.2e+7) (5.2e+7)

implemented by MATLAB software on a 3.3GHz PC with
processor core i5-4590 and 4G RAM.

It’s important to note that we default use two-objective
function for experiment test due to convenience. The pro-
posedmethod is suitable for more than two objectives, which
will be verified on many-objective optimization problem in
the future work.

4.2 Running speed comparison

To verify the high efficiency of our proposed fast sort-
ing method, this subsection compares the NSGAIIs’ non-
dominated sorting method [10], an efficient approach to
non-dominated sorting (ENS) [30] and the proposed method
on the arithmetic speed. We compare the efficiency of three
methods on two-objective problem with different population
scale. The computing time and number of comparison for
three methods are shown in Table 2 and Fig. 4. It should be
noted that in this test, the individuals are randomly gener-
ated and the three algorithms only calculated levels for all
individuals of population.

The Table 2 and Fig. 4 show that the proposed method
spends less computing time and number of comparison than
NSGAIIs’ method, but slightly more than ENSs’ method.
Specifically,when the number of individual (NP) is small, the
proposed method shows better than the NSGAIIs’ method,
similar with ENSs’ method. Moreover, during the large scale
populations (NP), the running speed of our algorithm signif-
icantly fast than NSGAIIs’ method. However, it is found that
our method cannot beat the ENS on speed and number of
comparison. The reason is that ENS is an excellent method,
which has the best computing speed so far and published in
the top journal of evolution computation [30].

4.3 Overall performance comparison

This subsection offers the overall performance comparison
between theFTODEandclassical algorithms,which contains
two parts experiments. Firstly, we use the convergence indi-
cator γ and diversity metric� to evaluate the performance of

Fig. 4 Running time comparison on the two sorting methods

algorithms on problem ZDT1-4 and ZDT6 [10]. The com-
paring results are shown in the Tables 3 and 4.

As can be seen from the Tables 3 and 4, the FTODE is sig-
nificantly better than NSGAII, SPEAII on convergence and
diversity index. In addition, the Tables 3 and 4 imply that
our FTODE preforms slightly better than the DEMO and
similar with the IMOPEO-PLM. Specifically, FTODE con-
verges better than all the other MOEAs on ZDT1 and ZDT2
problems. For ZDT3 and ZDT6 problem, FTODE preforms
only worse than DEMO and IMOPEO-PLM in terms of γ ,
respectively.

Furthermore, motivated by the research results on the use
of non-parametric tests for analyzing the algorithms’ behav-
ior [17,20,26], we apply non-parametric statistical test, e.g.,
Kruskal–Wallis and Friedman test, to compare the perfor-
mance of algorithms based on convergence and diversity.
Table 5 shows ranks, the statistics and related p value
obtained by theKruskal–Wallis and Friedman tests. From the
Table 5, it is clear that a significant difference exists across
the set of different algorithms in the terms of convergence and
diversity because all the related p values are less than 0.05.
FTODE achieves the best rank both in Kruskal–Wallis and
Friedman in terms of convergence, and only slightly worse
than IMOPEO-PLM in terms of diversity. That because of the
IMOPEO-PLM is an excellent method based on extremal
optimization (EO), which has effective mutation operation
and mechanism of generating new population [17].
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Table 3 Convergence metric γ comparison test on multi-objective minimization problem ZDT1-ZDT4 and ZDT6

SPEAII [11] NSGAII [10] DEMO [23] IMOPEO-PLM [17] FTODE [this paper]

Mean ± SD (rank) Mean ± SD (rank) Mean ± SD (rank) Mean ± SD (rank) Mean ± SD (rank)

ZDT1 2.43e–2±0.00e+0 3.34e–2±4.75e–3 1.08e–3±2.07e–5 1.04e–3± 8.96e–9 7.88e–4± 3.84e–5

(4) (5) (3) (2) (1)

ZDT2 1.68e–1±8.15e–4 7.22e–2±3.14e–2 9.54e–4±4.65e–5 9.93e–4± 1.7e–9 8.94e–4± 4.68e–5

(5) (4) (3) (2) (1)

ZDT3 1.82e–2±1.94e–5 1.12e–1±7.93e–3 3.17e–3±5.91e–5 3.91e–3± 7.01e–8 3.80e–3±5.09e–4

(4) (5) (1) (3) (2)

ZDT4 4.93e+0±2.74e+0 5.13e–1±1.18e–1 1.05e–2± 8.34e–4 1.78e–3± 9.32e–08 1.38e–2±3.81e–2

(5) (4) (2) (1) (3)

ZDT6 2.33e–1±4.91e–3 2.97e–1±1.31e–2 1.39e–2±1.34e–4 8.93e–3± 2.13e–8 1.37e–2±8.43e–4

(4) (5) (3) (1) (2)

Table 4 Diversity metric � comparison test on multi-objective minimization problem ZDT1-ZDT4 and ZDT6

SPEAII [11] NSGAII [10] DEMO [23] IMOPEO-PLM [17] FTODE (this paper)

Mean ± SD (rank) Mean ± SD (rank) Mean± Std (Rank) Mean ± SD (rank) Mean± SD (Rank)

ZDT1 3.52e–1±8.70e–4 3.94e–1±1.85e–3 3.25e–1±3.02e–2 8.91e–2±1.23e–4 2.75e–1± 1.57e–3

(4) (5) (3) (1) (2)

ZDT2 3.38e–1±1.75e–3 4.32e–1±4.72e–3 3.29e–1±3.25e–2 3.14e–1±9.11e–4 2.29e–1± 2.74e–3

(4) (5) (3) (2) (1)

ZDT3 4.62e–1±5.24e–3 7.38e–1±1.98e–2 3.07e–1±1.81e–2 6.14e–1±2.54e–4 5.92e–1±1.39e–1

(4) (5) (1) (3) (2)

ZDT4 8.23e–1±2.88e–3 7.03e–1±6.48e–2 3.59e–1±3.76e–2 7.94e–2±7.68e–4 3.51e–1± 9.43e–2

(5) (4) (3) (1) (2)

ZDT6 1.04e+0±1.58e–1 6.67e–1±9.91e–3 4.42e–1±3.92e–2 5.61e–2±2.76e–4 2.77e–1± 1.92e–2

(5) (4) (3) (1) (2)

Table 5 Ranks, the statistic, and
related p value achieved by the
Kruskal–Wallis, Friedman test
for Tables 3 and 4

Algorithm Convergence metric Diversity metric

Kruskal–Wallis test Friedman test Kruskal–Wallis test Friedman test

FMODE 7 4.4 7 1.8

IMOPEO-PLM [17] 7 4.6 6 1.6

DEMO [23] 10 2.4 11 2.6

NSGAII [10] 21 1.8 21 4.6

SPEAII [11] 20 1.8 20 4.4

Statistic 18.62 15.52 19.39 16.16

p value 9.3e–4 3.7e–3 7.0e–4 2.8e–3

Secondly, to analyze the proposed methods’ performance
with fast convergence, we used those novel algorithms, such
as IM/MOEA [14], NSGAIII [15] and KnEA [16] for com-
paring on different evolution generations. Fortunately, the
platform of PlatEMO [29] has integrated those algorithms,
so we can employ this platform to help us completing the
comparison experiment. It should be note that we use the
IGD [5,6] as metric to evaluate performance of algorithms
in this part test. The results are shown in the Tables 6, 7

and 8 with the evolution generation are 100, 250, and 500,
respectively.

From the Table 6, it can be seen that FTODE shows the
best overall performance. Especially, FTODE have the best
results on ZDT1, ZDT2, ZDT3, F2, F3 and F5. When the
evolution generation is 250, the results in Table 7 reveal
our FTODE also has best performance on ZDT1, ZDT3, F2
and F3. However, in Table 8, when the evolution generation
is 500, the MOEA/D/DE [12] performs the best result on
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Table 6 IGD-Metric on multi-objective minimization problem ZDT1-ZDT4, ZDT6 and F1–F5 with 100 evolution generation

MOEA/D/DE [12] MOEA/D [13] IM/MOEA [14] NSGAIII [15] KnEA [16] FTODE (this paper)

Mean error (SD) Mean error (SD) Mean error (SD) Mean error (SD) Mean error (SE) Mean error (SE)

ZDT1 4.67e+0 1.23e–1 3.45e–1 5.37e–1 2.10e–1 2.35e2

(3.17e+0) (4.08e–2) (1.11e–2) (3.62e–1) (1.16e–1) (8.66e–4)

ZDT2 6.25e+0 3.41e–1 5.75e–1 1.04e+0 5.25e–1 3.15e–2

(4.43e+0) (1.75e–1) (7.05e–2) (2.53e–1) (1.03e–1) (1.97e–3)

ZDT3 4.06e+0 1.37e–1 3.09e–1 2.26e–1 2.16e–1 2.26e–2

(2.52e+0) (6.45e–2) (4.53e–2) (6.59e–2) (1.29e–1) (1.80e–3)

ZDT4 3.62e+0 4.96e–1 1.07e–2 6.89e–1 4.27e–1 2.58e–1

(1.65e+0) (1.52e–1) (1.42e–3) (3.80e–1) (2.18e–1) (1.16e–1)

ZDT6 5.51e–2 8.76e–2 2.56e+0 5.00e–1 9.78e–2 5.57e–1

(9.76e–2) (4.36e–2) (1.16e–1) (1.30e–1) (4.36e–2) (4.13e–2)

F1 1.13e–2 1.07e–1 2.01e–2 4.74e–2 1.63e–1 2.42e–2

(2.06e–3) (1.58e–2) (3.85e–3) (6.92e–3) (2.96e–2) (6.48e–4)

F2 1.33e–1 3.60e–1 1.87e–1 1.27e–1 1.46e–1 9.02e–2

(3.57e–2) (9.59e–2) (3.77e–2) (3.93e–2) (4.01e–2) (4.61e–3)

F3 1.14e–1 2.59e–1 7.82e–2 9.40e–2 3.15e–1 4.90e–2

(6.42e–2) (9.12e–2) (1.28e–2) (2.50e–2) (6.99e–2) (3.64e–3)

F4 8.80e–2 2.75e–1 7.11e–2 1.01e–1 2.76e–1 8.78e–2

(1.23e–2) (8.05e–2) (1.65e–2) (1.73e–2) (6.08e–2) (7.92e–3)

F5 7.85e–2 1.73e–1 6.54e–2 6.70e–2 2.52e–1 6.33e–2

(3.88e–2) (6.78e–2) (7.97e–3) (1.40e–2) (3.47e–2) (3.04e–3)

ZDT3, F1, F2 and F3; the FTODEhas the best IGDonZDT1,
ZDT2, ZDT6 and F5. In other word, the FTODE shows sim-
ilar performance with MOEA/D/DE but better than others
four comparison algorithms when evolution generation is
500. Based on above analysis for Tables 6, 7 and 8, we can
conclude that our FTODE has best performance when the
evolution generation is small, and has competitive perfor-
mance when the evolution generation is large. Namely, our
algorithm can quickly converge to the optimal sets with less
evolution generations.

In conclusion, the first experiment of this subsection
shows that the proposed FTODE has competitive perfor-
mance, which clearly won NSGAII, SPEAII and DEMO,
similar with IMOPEO-PLM. The second part experiment
claims that the FTODE has better convergence speed than
those comparison algorithms.

4.4 Comparison with proposed uniform crowding
distance calculationmethod and classic method

In this subsection, to demonstrate the efficiency of proposed
uniform crowding distance calculation method, we provided
the experiment tests for this method. . In the FTODE frame-
work, we comparewithDebs’ crowding distancemethod and
proposed uniform crowding distance calculation method in
terms of convergencemetric. . The parameters of this test are:

the population size NP = 100, the scaling factor F = 0.5,
the crossover probability Cr = 0.3, the maximum evolu-
tion generation is FES = 250, the mutation strategy is
“DE/Rand/1/bin”.

The test result for convergence is shown in Table 9, in
which outside the parentheses are mean value, and in the
parentheses are variances.

Clearly, the proposed uniform crowding distance calcu-
lation performs better than Debs’ crowding distance cal-
culation method on all test problems. Especially on the
function ZDT1 and ZDT2, the performance of the proposed
method has significantly improved than comparison algo-
rithm. Therefore, it is proved that the proposed uniform
crowding distance calculation method is effective.

4.5 Parameter setting of the FTODE

To study the effect of parameters on the performance of
FTODE, this subsection uses the different crossover proba-
bilityCr , and mutation strategy for comparison and analysis.
Storn and Price in [21] have indicated that a reasonable value
for F is usually between 0.4 and 1, and a good initial choice
of F was 0.5. Hence, we adopt the F = 0.5 and convergence
metric for comparing the performance with different Cr and
“DE/BEST/1” mutation strategy. The experiment results are
provided in Tables 10 and 11.
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Table 7 IGD-Metric on multi-objective minimization problem ZDT1-ZDT4, ZDT6 and F1–F5 with 250 evolution generation

MOEA/D/DE [12] MOEA/D [13] IM/MOEA [14] NSGAIII [15] KnEA [16] FTODE (this paper)

Mean error (SD) Mean error (SD) Mean error (SD) Mean error (SD) Mean error (SE) Mean error (SE)

ZDT1 2.36e–2 5.14e–2 1.78e–1 1.64e–2 3.19e–1 3.73e–3

(3.93e–3) (5.53e–2) (5.06e–3) (1.64e–2) (6.65e–2) (1.14e–5)

ZDT2 1.28e–1 1.86e–2 2.95e–1 2.27e–2 1.04e–1 2.67e–2

(2.30e–1) (1.90e–2) (2.03e–2) (3.11e–2) (3.53e–2) (3.31e–1)

ZDT3 9.64e–2 2.81e–2 1.66e–1 9.09e–2 8.39e–2 1.08e–2

(4.87e–2) (1.37e–2) (1.08e–2) (4.76e–2) (5.28e–2) (2.03e–3)

ZDT4 2.47e–1 3.65e–2 6.48e–3 1.51e–2 3.05e–1 2.79e–2

(1.45e–1) (2.38e–2) (2.48e–4) (2.06e–2) (9.17e–2) (5.43e–2)

ZDT6 3.11e–3 8.46e–3 2.19e+0 3.40e–3 9.18e–3 1.98e–2

(1.81e–5) (2.16e–3) (1.03e–1) (4.12e–4) (1.59e–3) (7.79e–4)

F1 4.51e–3 1.66e–2 9.67e–3 3.77e–2 2.44e–1 1.41e–2

(2.04e–4) (5.05e–3) (6.43e–4) (9.42e–3) (3.86e–2) (4.55e–4)

F2 1.12e–1 9.01e–2 7.66e–2 8.78e–2 2.07e–1 7.64e–2

(4.33e–2) (3.83e–2) (9.00e–3) (2.00e–2) (3.47e–2) (6.62e–3)

F3 5.95e–2 5.27e–2 4.99e–2 7.41e–2 4.70e–1 4.04e–2

(4.45e–2) (1.07e–2) (1.62e–2) (2.32e–2) (4.15e–2) (5.37e–3)

F4 6.67e–2 3.83e–2 4.34e–2 7.28e–2 3.90e–1 5.66e–2

(4.18e–2) (4.62e–3) (7.05e–3) (1.57e–2) (1.16e–1) (1.66e–3)

F5 5.91e–2 3.90e–2 3.47e–2 5.18e–2 3.95e–1 4.08e–2

(4.03e–2) (9.64e–3) (3.07e–3) (8.49e–3) (4.52e–2) (2.23e–3)

Table 8 IGD-Metric on multi-objective minimization problem ZDT1-ZDT4, ZDT6 and F1–F5 with 500 evolution generation

MOEA/D/DE [12] MOEA/D [13] IM/MOEA [14] NSGAIII [15] KnEA [16] FTODE (this paper)

Mean error (SD) Mean error (SD) Mean error (SD) Mean error (SD) Mean error (SE) Mean error (SE)

ZDT1 4.93e–3 8.38e–3 1.16e–1 3.88e–3 3.63e–1 3.70e–3

(4.64e–4) (4.45e–3) (5.42e–3) (9.39e–7) (6.85e–2) (1.06e–5)

ZDT2 4.40e–3 5.31e–3 1.90e–1 3.80e–3 1.54e–1 3.72e–3

(5.57e–4) (1.02e–3) (1.28e–2) (4.39e–7) (1.48e–2) (2.41e–6)

ZDT3 1.07e–2 1.97e–2 1.18e–1 2.97e–2 1.51e–1 1.16e–2

(4.02e–5) (1.46e–2) (5.50e–3) (1.38e–2) (2.14e–1) (1.57e–3)

ZDT4 5.82e–3 7.67e–3 5.31e–3 4.01e–3 3.04e–1 2.79e–2

(1.26e–3) (1.03e–3) (1.68e–4) (7.48e–5) (5.82e–2) (5.43e–2)

ZDT6 3.10e–3 4.94e–3 1.89e+0 3.18e–3 1.01e–2 2.94e–3

(1.49e–7) (7.67e–4) (1.36e–1) (2.16e–4) (4.27e–3) (2.56e–5)

F1 4.01e–3 5.11e–2 7.47e–3 2.66e–2 3.13e–1 1.05e–2

(2.04e–5) (4.44e–3) (5.18e–4) (8.24e–3) (5.99e–2) (7.01e–1)

F2 8.18e–3 2.25e–1 7.05e–2 1.38e–1 4.12e–1 7.04e–2

(3.95e–2) (5.96e–2) (8.98e–3) (7.52e–2) (2.17e–1) (1.73e–2)

F3 9.27e–3 2.05e–1 5.71e–2 5.00e–2 4.38e–1 3.53e–2

(5.01e–2) (6.39e–2) (3.14e–2) (8.11e–3) (1.04e–1) (7.65e–3)

F4 4.17e–2 1.91e–1 3.56e–2 7.87e–2 4.55e–1 4.47e–2

(2.03e–2) (6.46e–2) (1.13e–2) (3.93e–2) (8.53e–3) (5.3e–3)

F5 5.48e–2 1.42e–1 3.75e–2 4.66e–2 4.14e–1 3.36e–2

(1.72e–2) (7.58e–2) (1.35e–2) (9.20e–3) (4.71e–2) (4.46e–3)
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Table 9 Convergence metric γ comparison test for two methods of crowding distance in FTODE

Test for two crowding distance method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

The proposed crowding distance in FTODE 7.88e–4 8.94e–4 3.80e–3 1.38e–2 1.37e–2

(3.84e–5) (4.68e–5) (5.09e–4) (3.81e–2) (8.43e–4)

The Deb’s crowding distance in FTODE 1.39e–3 1.05e–3 4.76e–3 5.14e–2 1.48e–2

(1.27e–4) (3.69e–4) (3.42e–4) (6.30e–2) (7.05e–4)

Table 10 Comparison for
different parameter with
“DE/rand/1” mutation in terms
of convergence metric γ

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

F = 0.5 Cr = 0.1 1.15e–3 1.18e–3 3.88e–3 3.00e–1 1.77e–2

(7.67e–5) (4.20e–4) (5.03e–4) (3.90e–1) (1.44e–3)

F = 0.5 Cr = 0.2 8.49e–4 8.79e–4 3.70e–3 7.45e–2 1.29e–2

(6.97e–5) (3.42e–5) (6.63e–4) (8.53e–2) (9.94e–4)

F = 0.5 Cr = 0.3 7.88e–4 7.52e–4 3.80e–3 1.38e–2 1.37e–2

(3.84e–5) (4.68e–5) (5.09e–4) (3.81e–2) (8.43e–4)

F = 0.5 Cr = 0.4 8.65e–4 9.86e–4 4.05e–3 7.09e–2 1.47e–2

(6.40e–5) (6.22e–5) (7.41e–4) (1.39e–1) (7.61e–4)

F = 0.5 Cr = 0.5 1.04e–3 1.08e–3 4.39e–3 4.00e+0 1.84e–2

(9.07e–5) (3.64e–4) (6.88e–4) (8.37e–1) (1.11e–3)

F = 0.5 Cr = 0.6 1.68e–3 1.54e–3 5.13e–3 1.11e+1 2.33e–2

(2.30e–4) (5.01e–4) (8.22e–4) (1.87e+0) (2.34e–3)

F = 0.5 Cr = 0.8 7.23e–3 6.85e–3 1.07e–2 2.62e+1 6.12e–2

(9.97e–4) (8.34e–4) (3.35e–3) (1.17e+0) (5.31e–3)

Table 11 Comparison for
different parameter with
“DE/best/1” mutation in terms
of convergence metric γ

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

F = 0.5 Cr = 0.1 2.92e–1 1.18e+0 1.95e–1 4.91e–1 1.63e+0

(1.90e–2) (4.43e–1) (1.12e–1) (2.95e–1) (1.63e+0)

F = 0.5 Cr = 0.2 3.67e–1 5.67e–0 2.04e–1 4.97e–1 3.62e–2

(5.52e–2) (6.04e–1) (7.85e–2) (1.21e–1) (3.13e–3)

F = 0.5 Cr = 0.3 3.86e–1 9.33e–1 3.46e–1 5.93e–1 2.28e–1

(8.01e–2) (3.55e–1) (1.84e–1) (2.59e–1) (2.63e–1)

F = 0.5 Cr = 0.4 4.52e–1 1.20e+0 5.23e–1 8.14e–1 5.86e–2

(1.25e–2) (6.43e–2) (2.05e–2) (4.19e–1) (2.81e–2)

F = 0.5 Cr = 0.5 7.04e–1 1.06e+0 5.56e–1 1.25e+0 1.01e+0

(2.01e–1) (1.38e–1) (7.77e–2) (6.52e–1) (1.01e+0)

F = 0.5 Cr = 0.6 1.20e–1 2.72e–1 6.88e–2 1.11e+1 2.82e–2

(8.78e–2) (9.68e–2) (4.41e–2) (2.28e+0) (3.77e–3)

F = 0.5 Cr = 0.7 3.11e–1 7.03e–1 2.22e–1 2.71e+1 2.04e–2

(1.34e–1) (1.12e–1) (1.20e–1) (5.38e+0) (1.06e–2)

F = 0.5 Cr = 0.8 1.35e+0 2.38e+0 1.42e+0 2.19e+1 3.44e+0

(1.36e–1) (1.55e–1) (2.32e–1) (2.03e+0) (7.46e–1)
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From Tables 10 and 11, we find that the best performance
of FTODE is when using the “DE/Rand/1” mutation strategy
with the F = 0.5 and the Cr = 0.3. Hence, the F = 0.5
and Cr = 0.3 as experience values are obtained. Similarly,
when using mutation strategy “DE/Current-to-best/1”, the
results of all the parameters combination are worse than
with “DE/Rand/1/bin” mutation strategy. It should be noted
that the FTODE using parameters F = 0.5, Cr = 0.2 and
“DE/Rand/1” mutation also presents good performance. The
reason is maybe that the small value of Cr between 0.2 and
0.3 is suitable for this method. We will deeply research the
relationship between performance and these parameters in
the future.

In short, through a series of parameters setting experimen-
tal for contrasting, we obtain that the suitable parameters of
FTODE algorithm are: mutation strategy is “DE/Rand/1”,
variation factor F = 0.5 and crossover probability Cr is 0.3.

5 Using the FTODE to solve the
two-objective coverage problem ofWSNs

In this section, we use the proposed FTODE to solve the two-
objective coverage problem of WSNs. In brief, the goal of
issue is to use the less number of sensor nodes to cover the
more target points in the WSNs.

5.1 The two-objective coverage problem ofWSNs

In aWSN, the coverage problem is an important issue. In the
area of L ∗W (L is length andW is width), there arem target
points T = {t1, t2, t3, . . . , tm} and n wireless sensor nodes
S = {S1, S2, S3, . . . , Sn}.

A sensor generally has two operation modes, active and
sleep mode. When in active mode, a sensor can carry out
its full operations, such as sensing and communication. To
maintain those operations, sensors need to consume a rela-
tively large amount of energy. In contrast, a sensor in a sleep
mode uses only a small amount of energy and can be awoken
in a scheduled working interval for full operations. Hence,
in the point-coverage WSNs, we can maximize the lifetime
of WSNs by maximizing the number of completely cover
subsets [28]. Meanwhile, for saving the cost, how using less
sensor nodes to find more completely cover subsets are our
two optimization objectives. Although we briefly introduced
a method to solve this problem in previous work [3], we will
provide more detail and systematic method for this issue in
this paper.

Firstly, we define the first optimization objective is
f1(x) = m/mmax , m∈[1,mmax ]. Them indicates the number
of sensor nodes are used, which is the smaller the better. The
mmax is the upper limit ofm in theory. The second optimiza-
tion objective is that we can obtain the number of completely

cover subsets. To convert into a minimization problem, we
use f2(x) = 1 − C/Cmax as the second objective function.
The C is the number of completely cover subset. The Cmax

indicates the upper limit of the number of completely cover
subset. The others parameters are described detailed in the
literature [28]. Hence, from above analysis, we deduce the
minimization problem mode of the two-objective coverage
problem of WSNs as follow Eq. (2).

Min

{
f1 = m

mmax

f2 = 1 − C
Cmax

s.t .1 < m ≤ mmax ; 1 < C ≤ Cmax

(2)

5.2 The representation of chromosomes

Intuitively, we use integer representation to encode a group-
ing combination of sensors. The value of a gene is produced
randomly, which range is [0,Cmax]. A genes’ value indicates
an index of the subset that the sensor joins, thus the sensors
with the same index number will form a disjoint cover set.
Note that if the value of a gene is 0, means this sensor is
unused or in sleep mode. Hence, a chromosome represents
an allocation scheme. The purpose of optimization is to find
an allocation scheme that with less sensor nodes but more
completely coverage subsets.

For example, suppose a chromosome is CH = (1, 2, 3, 2,
1, 0, 3, 1, 2). It means that there are nine sensors but just
eight of them are used, because the 0 indicates this sensor is
unused. Hence, the used number of sensors is 8, namely the
function f1 = 8/9. Considering the second objective, this
chromosome has three disjoint subsets. The set 1contains
sensor S1, S6 and S8; set 2 contains sensor S2, S4 and S9; the
set 3 contains S3 and S7. If each of the above three sets can
completely cover all targets, it means that we obtained the
number of disjoint set cover is 3. Assume the Cmax is 4 in
theory, then the objective function f2 = 1 − (3/4).

5.3 Themethod of initialization recombination
crossover andmutation

According to the representation of chromosomes, we ran-
domly generate an integer between 0 andCmax as each gene’s
value (subset number) in the initialization. The sensors with
same gene value mean that they shall form a subset.

The recombination operation is performed after the initial-
ization, which guarantees at least one critical target’s sensor
is divided into different disjoint sets (subsets).However, there
are may exist many critical targets in WSNs, and it is very
difficult to scatter all of corresponding sensors into different
subsets [3,28]. Thus, our recombination operation considers
every chromosome, then randomly chooses a critical target
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and recombines different gene values to their corresponding
sensors.

Take the chromosomeCH2 as example, after initialization
the chromosomeCH2 is (2, 1, 1, 1, 2), then the recombination
operation will be performed. According to above analysis,
there are three critical targets (t2, t3, t4), which t2 ∈ (S2,
S3), t3 ∈ (S1, S4), t4 ∈ (S3, S4). Thus, we randomly choose
one critical target from t2, t3, t4, suppose that the target t4 is
chosen and its’ corresponding sensors are be scatted into
different subset, such as one case is S3 = 2, S4 = 1. Namely
the chromosome CH2 is became CH2 = (2, 1, 2, 1, 2). It’s
obvious that after recombinationoperation theCH2 has better
fitness than before. The pseudo code of recombination is
given in Algorithm 4. It is need to explain that the code is
described by Matlab language and the bold words are inner
functions or keywords in Matlab.

Algorithm 4  the pseudo code of recombination operation

Input: The initialization population, Cmax

Output: The recombination population 
1: for i=1: popsize // for every chromosome 

//randomly generates Cmax different integers and each integer 
value belong [1, Cmax].

2:    sequ = randperm(Cmax);
//randomly choose one critical target

3:  rnum=randint(1,1,[1, numOfCritialTarget]); 
//find the corresponding sensors 

4:    rt= CritialTargetMatrix(rnum,:); 
5:    for j = 1: Cmax    // all corresponding sensors 
6:        pop(i,rt(j)) = sequ(j); // recombination
7: end for 
8: end for

Due to the mutation strategy is “DE/Rand/1” and the
crossover style is binomial crossover. So, aftermutation oper-
ation, the values of genemaybe becomefloat type. Therefore,
it needs to do round number operation for genes because
their value should be integer type. We use the ceiling way
for round number operation. If the value of gene without the
range [0,Cmax], themethodwill regenerate its value between
the [0,Cmax].

5.4 The overview flow of using FTODE to research
the two-objective coverage ofWSNs

This subsection provides the overview flow of using FTODE
to research the two-objective coverage of WSNs. The
overview is offered in Algorithm 5.

Algorithm 5 using the FTODE to solve the two-objective coverage 
problem of WSNs

Input: Parameters and data set 
Output: The set of optimal solution 
1: Load test data set.
2: Initialization parameters and population 
3: Recombination operations 
4: while FES < 250
5:     Mutation operation, obtains mutation vectors V. 
6: Amend operation for float types value and illegal values. 
7:     Binomial crossover operation gets trial vectors U. 
8:     Combining the V and U, obtains P (the size is 2N)
9: From P Select N individuals into next generation 
10:       Compute the fitness value for two-objective 
11: Using the proposed fast non-dominated solutions sorting 

algorithm, in the Algo 1  
12:   when finding the rth level individuals directly select them into 

the next generation 
13: if the total number of chosen individuals is equal to N
14:    Jump into the next generation evolution 
15:  end if
16: if the total number of chosen individuals greater than N
17: The even crowding distance calculation is operated to the 

individuals in rth level, which is shown in the Algo 2 
18:   Select the part of individuals into the next generation.  
19: if the number of next generation individuals is equal to N, then 

jump into the next evolution. 
20: end if
21: FES=FES+1
22: end while 

5.5 Simulation experiment and analysis

For verification the performance of the FTODE, we use the
NSGAII, FTODE and the classical DE to solve the same
problem as comparison. It’s worth noting that the test sets
of experiment are actual data and we have not the Parteo
optimal set in theory. So, we cannot use the convergence
indicator to compare their performance. However, when the
evolution is finished, we draw those individuals belong to the
first level of all algorithms for comparison. The algorithmhas
more individuals belong to thefirst level and these individuals
more closely to origin, its’ performance will better.

We use six test sets for comparison experiment, the detail
of test sets is shown in Table 12.

The result of comparison experiments are shown inFigs. 5,
6, 7, 8, 9 and 10. In these figures, we just draw the first levels’
individual of different algorithms for comparison.

According to the Pareto-dominate principle, the Figs. 5,
6, 7, 8, 9 and 10 illustrate that the FTODEs’ performance is
better than these comparison algorithms on the two-objective
coverage problem ofWSNs. In detail, the FTODE shows bet-
ter solutions than both canon DE and the NSGAII on the case
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Table 12 The six test sets for comparison experiment

Index Monitoring radius mmax Number of targets Cmax

1 22 90 10 30

2 22 100 10 23

3 22 110 10 21

4 22 110 10 35

5 22 130 10 41

6 22 140 10 44

Fig. 5 The first level individuals in case 1

Fig. 6 The first level individuals in case 2

3. On the case 2, 4, 5, 6, the FTODE displays better perfor-
mance than DE and NSGAII significantly. More specifically,
in these cases, most of individuals in the FTODE dominate
that in DE and NSGAII. Furthermore, the number of first
level individuals in FTODE is more than that in comparison

Fig. 7 The first level individuals in case 3

Fig. 8 The first level individuals in case 4

Fig. 9 The first level individuals in case 5

algorithms on case 4, 5, 6.On the case 1, the FTODEprovides
slight better performance than the DE and NSGAII.
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Fig. 10 The first level individuals in case 6

Fig. 11 The first level individuals in case 1 with various Cr

Based on above analysis, the FTODE performs the best
among the three algorithms on the six test cases. Therefore,
it can be drawn a conclusion that the proposed FTODE is
reasonable and efficient to solve the two-objective coverage
problem of WSNs.

5.6 Parameter setting of the FTODE algorithm

Price in [21] has indicated that a reasonable value for F is
usually between 0.4 and 1, and a good initial choice of was
0.5. Hence, we use the F = 0.5 as default value with the
“DE/Rand/1” mutation strategy.

The parameterCr controls howmanyparameters in expec-
tation are changed in a population member. To test the Cr

influences the performance of FTODE, we use Cr = 0.3,
0.5, 0.8 for comparing test, respectively.

Because there are have not the optimization set in the-
ory, we draw those individuals in the first level of algorithm
for comparison when the evolution finished. The results are
shown in Figs. 11, 12, 13, 14, 15 and 16.

Fig. 12 The first level individuals in case 2 with various Cr

Fig. 13 The first level individuals in case 3 with various Cr

Fig. 14 The first level individuals in case 4 with various Cr

Overall, The Figs. 11, 12, 13, 14, 15 and 16 show that
the FTODE provides the best performance when the Cr =
0.3.Specifically, on the test 1, three crossover styles have
similar performance, and the Cr = 0.3 strategy offers slight
better than others. On the test 2-6, the FTODEwithCr = 0.3
provides the best solutions. Especially on the test 4 and 6, it
obtains significant good solution on quantity of the first level.
It is note that on test 2 and 3, there are exist a solution with
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Fig. 15 The first level individuals in case 5 with various Cr

Fig. 16 The first level individuals in case 6 with various Cr

f2 = 0 when f1 �= 1. That means using part number of
sensors can find the maximum complete cover sets in theory.
In other word, the number of sensors has some redundancy in
this test. Without these redundant sensors, the algorithm also
obtains the maximum complete cover sets in theory. From
above analyses we can conclude that the suitable parameters
setting are F = 0.5 and Cr = 0.3.

In addition, to study the various mutation strategies, with
F = 0.5 and Cr = 0.3 we adopt “DE/Rand/1”, “DE/Best/1”
and “DE/current-to-best/1” for comparing, respectively.

Similar with others test in this subsection, we draw
individuals in the first level of algorithm for compari-
son when the evolution finished. The results are shown in
Figs. 17, 18, 19, 20, 21 and 22.

Figs 17 18, 19, 20, 21 and 22 show that the FTODE with
the “DE/rand/1” mutation can obtain the best effect. Specifi-
cally, using thismutation strategy, theFTODEprovides better
performance than others strategies significant on test 2–4 and
6. On the test 1 and 5, all of these mutation strategies offer
similar solutions. In a word, the performance of FTODEwith
the “DE/rand/1” mutation is the best, with the “DE/best/1”
and “DE/current-to-best” mutation ranked second and third,
respectively.

Fig. 17 Thefirst level individuals in case 1with variousmutation strate-
gies

Fig. 18 Thefirst level individuals in case 2with variousmutation strate-
gies

Fig. 19 Thefirst level individuals in case 3with variousmutation strate-
gies

6 Conclusions

In this paper, to study the two-objective coverage problem of
WSNs by means of DE, we proposed an improved DE algo-
rithm with fast non-dominated solutions sorting and uniform
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Fig. 20 Thefirst level individuals in case 4with variousmutation strate-
gies

Fig. 21 Thefirst level individuals in case 5with variousmutation strate-
gies

Fig. 22 Thefirst level individuals in case 6with variousmutation strate-
gies

crowding distance calculation. According to the principle
and potential feature of non-dominated sorting solution, a
fast non-dominated solutions sortingmethodwas introduced.
This method can reduce the number of individuals in sorting
operation and choose individuals into next generation simul-

taneously. This method reduces the number of individuals
for sorting process and the time complexity of algorithm.
In addition, the uniform crowding distance calculation will
retain the outline of optimal solution set, which can enhance
the populations’ diversity.
Then, we incorporated the introduced sorting method and
uniform crowding distance into the DE to solve the two-
objective coverage problem of WSNs. For this specific
problem, the two objectives are formulated as: the minimum
number of sensor used and the maximum coverage rate. The
decimal integer encoding is used and a recombination opera-
tion is introduced into FTODE. Simulation results show that
the proposed FTODE provides better performance than the
classic comparison algorithms.

Although the FTODE is suitable for multi-objective prob-
lem, this paper just applies it in two-objective optimization.
The limitation of this method is that it needs to choose too
many special individuals when handling the many-objective
problem. In the future research work, we will extend the
proposed algorithm to study the many-objective problems in
WSNs and research the relationship between performance
and these parameters.
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