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Abstract
Feature selection is an important but often expensive process, especially with a large number of instances. This problem can
be addressed by using a small training set, i.e. a surrogate set. In this work, we propose to use a hierarchical clustering method
to build various surrogate sets, which allows to analyze the effect of surrogate sets with different qualities and quantities on the
feature subsets. Further, a dynamic surrogate model is proposed to automatically adjust surrogate sets for different datasets.
Based on this idea, a feature selection system is developed using particle swarm optimization as the search mechanism. The
experiments show that the hierarchical clustering method can build better surrogate sets to reduce the computational time,
improve the feature selection performance, and alleviate overfitting. The dynamic method can automatically choose suitable
surrogate sets to further improve the classification accuracy.

Keywords Surrogate model · Feature selection · Particle swarm optimization · Clustering · Classification

1 Introduction

Real-world machine learning problems are described by a
large number of features but many of them negatively affect
the learning performance. Feature selection aims to improve
the quality of feature sets by selecting a small number of
relevant features. Therefore, feature selection can reduce the
dimensionality to avoid the “curse of dimensionality” [5],
leading to a better learning performance, faster training pro-
cess and simpler learnedmodel. This work focuses on feature
selection for classification [25].

Feature selection [6] is a challenging task because of
its large search space. An exhaustive search guarantees an
optimal feature subset but is impractical in most situations.
Evolutionary computation (EC) has been widely applied to
feature selection because of its potential global search abil-
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ity, especially genetic algorithms (GAs) and particle swarm
optimization (PSO). In comparisonwithGAs, PSOhas fewer
parameters and is usuallymore efficient and effective in some
areas [4]. In GAs, the crossover and mutation operators con-
tribute to its convergence to the optimal solution, but the two
operators without a careful design might potentially break
good groups of complementary features when solving fea-
ture selection problems. Therefore, PSO is used as a search
method in this work.

Complex feature interactions also make feature selection
a challenging task. A good fitness function, which measures
feature subsets’ qualities, should be able to capture feature
interactions. According to evaluation criteria, feature selec-
tion can be divided into two categories: wrapper and filter
approaches. In filters, feature subsets are evaluated based
on the characteristics of the data, which is independent of
any classification algorithm. However, most filter measures
only cope with either continuous or discrete datasets. In
addition, it is usually difficult for a filter measure to detect
multi-way feature interactions. Nguyen et al. [20] attempt to
compute multi-variate mutual information between a set of
features, which results in promising results but with a high
computation cost. Wrappers use a classification algorithm
to evaluate feature subsets, which ensures to consider fea-
ture interactions. Therefore, wrappers usually achieve better
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classification performance than filters. In this work, we will
use a wrapper approach to achieve feature selection.

In terms of computation cost, wrappers are usually more
expensive than filters due to involving classification pro-
cesses. This problem is alleviated in our previous work [21],
where a surrogate model for a PSO-based wrapper feature
selection is proposed. In particular, an instance selection
algorithmcalledDROP3 [23] is applied to select a small num-
ber of training instances,which forms a surrogate training set.
The surrogate set is used to quickly locate promising regions
A local search based on the surrogate training set is developed
to use information from previous iterations to improve the
current gbest . The results show that although the proposed
algorithm is less computationally intensive than using the
original training set, it still can achieve similar or better classi-
fication performance.Although the initial design of surrogate
training sets works well, there are several key factors that
need to be further investigated. For example, DROP3 usu-
ally requires a nicely distributed training set and may result
in missing informative instances or selecting noisy instances.
Furthermore, the relationship between the surrogate training
set and thewhole training set is not fully investigated.Wewill
continue our previous work on surrogate models for feature
selection to address the above issues.
Goal In this study, based on the previouswork [21], we aim to
improve and further investigate the surrogate model for fea-
ture selection, which is expected to increase the classification
accuracy while still having a low computation cost. Partic-
ularly, a clustering algorithm is utilized instead of DROP3
to produce a better surrogate training set. Furthermore, the
relationship between surrogate and full training sets is also
investigated, from which a dynamic surrogate model is pro-
posed so that it can adapt with different datasets to select
small number of features with high discriminating abilities.
Specifically, we will investigate the following questions:

– whether applying the clustering algorithm can improve
the qualities of selected features over using DROP3,

– whether a bigger surrogate training set can lead to the
better evolved feature subsets. Note that when the surro-
gate training set’s size is increased, it will bemore similar
to the original training set, and,

– whether the proposed dynamic surrogate model can rely
on characteristics of datasets to select suitable surrogate
training sets, which helps to evolve better feature subsets
in a short training time.

2 Background

2.1 Particle swarm optimization

In 1995, particle swarm optimization (PSO) [8] is pro-
posed, which is inspired by social behaviors of bird flocking.

The underlying principal of PSO is the knowledge sharing
between particles to guide the swarm towards optimal points.
Each particle has its own position and velocity in the search
space. The velocity of a particle is calculated based on its pre-
vious velocity (momentum), pbest , which is its own best
position (cognitive) and gbest , which is the best position
discovered by its neighbors including itself (social).

PSO is originally developed to optimize continuous prob-
lems. Although it is extended to cope with binary problems
[9], its performance is still limited in comparison with the
continuous one [28]. Nguyen et al. [18] propose a binary PSO
called sticky binary PSO (SBPSO). In SBPSO, the velocity
is a probability vector determining the flipping probability of
position entries. Themomentum is redefined as the tendency
to stick with the current position, also known as stickiness
property (stk). The stk is linearly decreased until it is 0 or
the corresponding entry is flipped. The stickiness property of
the dth entry is updated by the following equation:

stkt+1
d =

⎧
⎨

⎩

1, if the bit is just flipped

max

(

stktd − 1

ustkS
, 0

)

, otherwise

(1)

where t is the i th iteration and ustkS is a number of iterations
to reduce stk from 1 to 0.

Based on stk, flipping probabilities and position entries
of a particles are defined as in Eqs. (2) and (3).

pd = is ∗(1−stkd)+i p∗|pbestd −xd |+ig∗|gbestd −xd |
(2)

where is , i p and ig are the importance of stickiness,
cognitive and social factor.

xt+1
d =

{
1 − xtd , if rand() < pd
xtd , otherwise

(3)

The experimental results show that SBPSO is more effi-
ciently and evolves better solutions than standard BPSO and
probability-basedBPSO [29] on feature selection. Therefore,
SBPSO is used as the search mechanism in this work.

2.2 Related work on feature selection

Feature selection is a difficult task because of its large
search space and complex feature interactions. Although
exhaustive search guarantees the best feature subset, it is
infeasible in most cases due to its extremely high computa-
tion cost. Several techniques have been developed to reduce
the computation cost such as greedy searches [11], sequential
searches [14,22,27], which consider only one feature each
iteration. Therefore, they usually suffer from stagnation in
local optima.
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EC has been widely applied to feature selection because
of its potential global search ability. GAs is the earliest EC
algorithm used to achieve feature selection [7,24] because
of its natural representation. Besides GAs, genetic program-
ming (GP) can simultaneously perform feature selection and
build a classifier [15]. In addition, GP is suitable for some
machine learning tasks, such as regression [2,10]. Recently,
PSO gains more attention from feature selection community
[1,30] because of its efficiency and effectiveness. However,
since EC is a population-based optimization family, EC
algorithms usually require a large number of evaluations.
Therefore, EC-based feature selection algorithms are usually
computationally intensive. In order to improve the efficiency,
many filter measures are used in EC-based feature selection
[3,17,20].

There is not much attempt to reduce the computation costs
of wrapper EC-based feature selection. Nguyen et al [19]
improves the efficiency of PSO-based feature selection by
shortening the length of particles. Although the computa-
tion time is reduced, the evaluation time mainly remains the
same as standard PSO-based feature selection. The improve-
ment is from the updating position process and the upper
bound of the number of selected features. Wang and Liang
[26] directly modify the fitness measure by splitting a train-
ing set into many subsets. From each subset, a number of
features are selected and then all selected features are com-
bined to form the final feature subset. However, it is possible
that features selected from different subsets might be redun-
dant. In our previous work [21], we use an instance selection
algorithm to form a surrogate training set, which has fewer
instances than the original training set. Therefore, the compu-
tation cost is significantly reduced since the evaluation time
is much shorter. In this work, we will investigate more on the
surrogate model by improving its quality using a clustering
algorithm. In addition, different static surrogate models with
various numbers of instances and a proposed dynamic sur-
rogate model are examined to analyze the effect of surrogate
training sets.

3 Methodology

In this section, we firstly describe DROP3 and its limitations.
We then propose how to use a clustering algorithm to address
the limitations. We also propose a dynamic surrogate model
for feature selection, which is expected to capture character-
istics of datasets to evolve better feature subsets.

3.1 DROP3 and its limitations

In our previous work [21], DROP3 is used to form sur-
rogate training sets. In the first step, DROP3 removes all
instances that are wrongly classified by its K nearest neigh-

Fig. 1 DROP3 may remove informative instances

Fig. 2 DROP3 cannot remove noisy instances

bors, which is expected to remove noisy instances. After
that, all instances are sorted according to their closest dis-
tances to instances from other classes. The instance with a
larger distance is considered to be removed earlier since they
may be far from its class boundary. An instance is removed
if discarding it does not wrongly classify other instances
that take the instance as their neighbors. The main idea of
DROP3 is to preserve all instances on class boundaries and
remove all inner instances, which requires the training set
being nicely distributed. Therefore, it is possible that DROP3
removes informative instances or remains noisy instances.
Let consider two examples given in Figs. 1 and 2, where
there are two class labels (marked by red and green) and a
KNN classification algorithm is used with K = 3. In Fig. 1,
the two green ones inside the dotted circle have the largest
distances to instances from other classes, which means that
they are considered to be removed first. It is obvious that
removing the two instances does not affect any other green
instances since they are too far from the two instances. There-
fore, DROP3 will remove them despite they are on the class
boundary. The consequence can be seen in classifying an
unseen instance (marked by a question mark). If the two
green instances are not removed, it will be classified as a
green instance, but removing them changes the class label
of the unseen instance. Thus DROP3 removes informative
instances. Figure 2 gives an example where DROP3 is not
able to remove noisy instances. It can be seen that in Fig. 2,
there are three noisy red instances located inside the region
of the green class. The distances from the three red instances
to the green class are definitely smaller than any other red
instances, so according to DROP3 they are likely to be on
the class boundary. In addition, removing one of the three
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red instances will wrongly classified the other two, so none
of them is discarded by DROP3. It can be seen that even
DROP3 is designed specifically for KNN, it may result in a
poor surrogate training set. In the next section, we will show
how a clustering algorithm can address DROP3’s problems.

3.2 Clustering-based surrogate model

The problem of DROP3 is that it considers instances from
the same class as an instance group despite they may be far
from each other as shown in Figs. 1 and 2. On the other hand,
a clustering algorithm divides instances from the same class
intomany clusters. Therefore, in Fig. 1, the twomarked green
instances are likely to be grouped to a cluster, which ensures
that information from the two instances is preserved.

A representative is formed for each cluster, which will
contribute as one instance into the surrogate training set.
Therefore, the size of surrogate training set is equal to the
number of clusters. In this work, the centroid of a cluster,
which is the instance closest to the cluster’s mean, is selected
as the representative. The first reason for selecting the cen-
troid is to ensure a fair comparison with DROP3, which also
selects original instances to form the surrogate training set.
The second is that using original instances can preserve the
relationships/interactions between features while building a
new instance from a cluster is more likely to construct new
feature interactions, which do not exist in test sets. Note that
a cluster may not be pure, which means that it may contain
instances from different classes. Therefore, only instances
from themajority class, which contributes the largest number
of instances in the cluster, are used to select the represen-
tative for the cluster. Hence in Fig. 2, the three noisy red
instances along with their surrounding green instances are
grouped in the same cluster and the noisy instances will be
removed since the red class is the minority one in this clus-
ter.

The question iswhich clustering algorithm should be used.
K-means is proposed about 50 years ago and widely used in
clustering [13], which may be a good option. However, the
main task of this work is to analyze how surrogate training
sets with different sizes affect performances of the selected
feature subset. Therefore, K-means has to be run many times
with different numbers of clusters, which is time consuming.
agglomerative clustering (AGG) [16] is a bottom-up hier-
archical clustering algorithm in which each instance starts
with its own cluster. When moving up the hierarchy, the
two closest clusters are merged into one cluster. An exam-
ple of the agglomerative clustering algorithm is given in
Fig. 3.

Note that although both DROP3 and AGG are determinis-
tic algorithms, theyhaveverydifferent outputs andbehaviors.
DROP3 directly produces a unique surrogate training set for
each dataset. On the other hand, AGG results in a set of pos-

Fig. 3 Example of the agglomerative clustering algorithm

sible clustering partitions, whose numbers of clusters (#c)
can be from 1 to the total number of instances in the origi-
nal training set (as shown in Fig. 3). If #c is decided, AGG
produces only one unique clustering partition containing a
unique set of clusters. Since only the centroid instance is
selected from each cluster, the size of surrogate set formed
by AGG is equal to the number of clusters #c.

3.3 Dynamic clustering-based surrogate model

In SBPSO-based feature selection, the position of each par-
ticle is a binary vector, in which each entry corresponds to an
original feature. If the entry’s value is 1, the corresponding
feature is selected.Otherwise, the feature is discarded. There-
fore, each particle defines a feature subset which is evaluated
according to the following fitness function:

f i tness = α∗Error+(1−α)∗ #selectedFeatures

#originalFeatures
(4)

where Error is the classification error rate, which can be
measured by either the surrogate training set or the original
training set, α is used to control the contributions of the two
objectives. From now, if Error is measured by the original
training set, the fitness value is called real fitness. If it is
measured by the surrogate training set, the fitness value is
called surrogate fitness.

Since the surrogate training set is used to estimate possible
good regions, it is important to ensure that the surrogate fit-
ness value should be consistent with the real fitness value.
For example, if a feature subset A is better than a fea-
ture subset B in terms of the surrogate fitness value, A
should also be better than B when they are evaluated by
the original training set. However, since feature subsets are
changed during the evolutionary process, the consistency
between the surrogate training set and the original train-
ing set may not be preserved. To address this problem,
a dynamic clustering-based surrogate model is proposed.
The task can be described as: “Given a pool of surro-
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Algorithm 1 Dynamic surrogate model
1: Input: A pool of surrogate training sets, P = {S1, S2, ..., Sm}, built

by AGG.
2: randomly initialize the PSO population;
3: find the best position xbest in the initialized population;
4: select the most suitable SurrogateSet in P based on xbest ;
5: while maximum number of iterations is not reached do
6: if current iteration is smaller than Is then
7: evaluate particles using SurrogateSet ;
8: update pbest and gbest for each particle;
9: evaluate gbest using the original training set;
10: if gbest’s real fitness is not improved for N I Step iterations

then
11: select the most suitable SurrogateSet in P based on

gbest ;
12: end if
13: else
14: evaluate particles using the original training set;
15: update pbest and gbest for each particle;
16: end if
17: apply sampling local search on gbest
18: update velocities and positions of particles;
19: end while
20: return gbest as the final feature subset;

gate training sets, P = {S1, S2, ..., Sm}, which surrogate
training set Si should be used to evaluate feature sub-
sets.”

In the initialization process, each particle is randomly
initialized. After evaluating the particles using the original
training set S0, the position xbest with the best real fitness
value f0 is recorded to find out the most suitable surrogate
training set. Particularly, xbest is evaluated on m surrogate
training sets, which results in m surrogate fitness values
{ f1, f2, ..., fm}. The surrogate training set, which has the
smallest difference in comparison with the original training
set, i.e. the smallest | fi − f0|, is used to evaluate feature
subsets in the following iterations. Hence, even in the ini-
tialization step, the surrogate training set is dynamically
determined based on its consistencywith the original training
set.

In thefirst Is iterations, feature subsets are evaluated by the
surrogate training set, which is also dynamically updated to
preserve the consistency with the original training set. How-
ever, updating the surrogate set too frequently makes PSO
more difficult to adapt with changes in the fitness landscape.
Therefore, the surrogate one is only updated when the real
fitness value of gbest is not improved for a certain num-
ber of iterations (N I Step). The process of finding the most
suitable surrogate training set is similar to the method used
in the initialization process, except for xbest is replaced by
gbest . After the surrogate process, i.e. the first Is iterations,
is finished, the original training set is used to evaluate the can-
didate solutions. The pseudo-code of the dynamic surrogate
model is given in Algorithm 1.

4 Experiment design

4.1 Datasets

The proposed methods are tested on 12 datasets chosen from
the UCI machine learning repository [12]. The datasets are
selected so that they have different numbers of features (#Fs),
classes and instances, which can be seen in Table 1. Each
dataset is divided into training and test sets, so that they
contain 70 and 30% instances respectively and the class dis-
tribution is roughly preserved.

In the experiments, the performances of different surro-
gate training sets are examined. Firstly, theDROP3 algorithm
and the agglomerative clustering algorithm are compared. To
ensure a fair comparison, the number of clusters in the cluster-
ing algorithm is equal to the number of instances selected by
DROP3.Therefore, the twoalgorithms result in two surrogate
training sets with the same size, which are called “DROP3”
and “AGG”, respectively. Since it was shown in our previ-
ous work [21] that the surrogate model built by DROP3 was
already better than an improved version of sequential fea-
ture selection search, AGG is not compared with sequential
searches due mainly to the page limit.

However, DROP3 usually selects a very small number
of instances. For example, on Arrhythmia, the surrogate set
built by DROP3 contains only 26 instances, which is even 10
times smaller than the total number of features. Therefore,
we decide to examine surrogate training sets produced by
the clustering algorithm with various numbers of instances.
In particular, five surrogate training sets, whose sizes range
from 10 to 50% of the original training set, are generated.
The lower bound 10% is to ensure that the surrogate train-
ing sets contain enough training instances. The upper bound
is set to 50% so that the surrogate model still can signifi-
cantly reduce the computation cost over using the original

Table 1 Datasets

Dataset #Fs #classes #instances

Australian 14 2 6650

Image segmentation 19 7 210

German 24 2 1000

WBCD 30 2 569

Ionosphere 34 2 351

Sonar 60 2 208

Hillvalley 101 2 1213

Arrhythmia 279 16 452

LSVT 310 2 126

Madelon 500 2 4400

Isolet5 617 5 7797

Multiple features 649 10 2000

123



296 Memetic Computing (2018) 10:291–300

training set. The five surrogate training sets form a training
set pool, from which the dynamic surrogate model picks the
most suitable training set during the surrogate process. The
percentages i.e “10”, “20”, “30”, “40” and “50%” are used
to name methods with corresponding surrogate training sets,
while the dynamic surrogate model is called “Dynamic”.

4.2 Parameter settings

The feature subsets are evaluated using a KNN classification
algorithm, where K is set to 5 so that it is able to avoid issues
caused by noisy instances while still has good efficiency. α

in Eq. (4) is set to 0.9 to ensure that the classification per-
formance has higher priority than the number of selected
features. For SBPSO, im, i p, ig , and ustkS are set to 0.1154,
0.4423,0.4423, and 40, respectively, as suggested by results
in Nguyen et al [18]. 5 different values of Is ranging from
0 to 100 are examined and the results show that 75 is the
most suitable setting. Table 2 shows results of statistical sig-
nificance tests, which compare between the value 75 and the
other four different values of Is on four datasets with dif-
ferent numbers of features. “+”/ “=” / “−” means that 75 is
significantly better/ similar or worse than the other values.
It can be seen that the value of 75 achieves similar or better
performance than the three smaller values (0, 25, 50) while
being less computationally intensive. In addition, the value
75 is significantly better than 100 i.e. using only the surro-
gate training sets. The population size is set to the number of
features and limited by 100. The maximum number of itera-
tions is set to 100. N I Step is set to 5 as an indication that the
algorithmsmight be trapped in local optima. An evolutionary
process of PSO on the Madelon dataset is shown in Fig. 4. It
can be seen that if the gbest’s fitness value (vertical axis) is

Table 2 Compare different Is values against Is = 75

Dataset Is = 0 Is = 25 Is = 50 Is = 100

German + = = +

Sonar = = = =

Arrhythmia − = = +

Isolet5 = = = +

not changed for more than 5 iterations, it is very likely that
the fitness value is not changed in the following iterations.

5 Results and discussions

5.1 Effect of applying the clustering algorithm

Table 3 shows the comparison between applying DROP3
and the agglomerative (AGG) clustering algorithm. In the
table, “#Features” means the number of selected features,
“Training” and “Testing” represent the training and testing
accuracies, respectively. Note that both DROP3 and AGG
use the same number of instances to build surrogate train-
ing sets. The two models are compared using Wilcoxon test,
a significance signed rank test with significance level set to
0.05. “↑” or “↓” means that AGG is significantly better or
worse than DROP3, while “◦” indicates that there is no sig-
nificant difference between the two algorithms. In terms of
training accuracy,AGG is significantly better thanDROP3on
4 datasets while being worse only onGerman. On the test set,
the feature subsets selected by AGG are never worse than the
ones using DROP3. On 3 out of the 12 datasets, AGG’s accu-
racies are significantly higher than DROP3’s. In addition, the
feature subsets selected by AGG are smaller than the ones
of DROP3 on 6 datasets. On the other 4 datasets, the two
algorithms select the similar number of features. The exper-
imental results show that given the same number of selected
instances, AGG can maintain more informative instances to
formmore consistent surrogate training sets, which results in
better classification accuracies. Although AGG and DROP3
use surrogate training sets with the same size, AGG usually
selects a smaller number of features. The possible reason is
that AGG can remove the outliers, so it selects only neces-
sary features to distinguish instances from different classes.
DROP3 may select some noisy instances, which possibly
requires additional features to correctly classify them.

5.2 Results of clustering-based surrogate models

The results of clustering-based surrogate models with differ-
ent sizes of the surrogate set are shown in Table 4. The best
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Fig. 4 Evolutionary process of PSO on the Madelon dataset
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Table 3 Comparison between
DROP3 and agglomerative
clustering algorithms

Dataset #features Training Testing Time

DROP3 AGG DROP3 AGG DROP3 AGG DROP3 AGG

Australian 2.500(↓) 2.800 77.34(◦) 81.52 76.14(◦) 80.49 0.26 0.29

ImageSegmentation 4.000(↑) 3.400 96.64(◦) 96.46 94.89(◦) 95.33 0.05 0.05

German 5.300(↑) 3.600 78.36(↓) 75.60 69.16(◦) 69.37 0.95 1.00

WBCD 2.000(◦) 2.000 94.64(↑) 95.18 93.18(↑) 94.54 0.34 0.38

Ionosphere 3.300(◦) 3.500 93.97(◦) 93.76 86.31(↑) 87.68 0.16 0.18

Sonar 10.20(◦) 11.10 89.77(↑) 91.24 78.84(◦) 77.78 0.14 0.15

Hillvalley 22.30(↑) 15.50 74.37(◦) 74.65 58.55(◦) 59.07 7.06 7.35

Arrhythmia 26.20(↓) 33.40 95.88(◦) 95.92 94.94(◦) 94.90 0.84 1.04

LSVT 31.20(↑) 27.50 87.31(◦) 86.55 66.58(◦) 67.63 0.09 0.09

Madelon 195.3(↑) 152.6 88.99(↑) 89.91 79.64(↑) 81.85 62.19 55.65

Isolet5 98.70(↑) 90.40 99.37(◦) 99.38 98.74(◦) 98.72 21.36 21.31

Multiple features 94.00(◦) 101.4 99.52(↑) 99.55 99.00(◦) 99.01 27.28 32.11

classification accuracies on both training and test sets are
marked in bold. In comparison with other clustering-based
models, AGG can achieve the best performance on only 1
out of the 24 cases (including both training and testing accu-
racies). In terms of the number of selected features, AGG
usually selects a smaller number of features than the other
methods. The reason for this pattern is that AGG uses the
smallest number of instances, so it does not need to select as
many features as the other methods. This is an example of
underfitting, where AGG does not have enough instances to
select a sufficient number of informative features which are
necessary for classifying unseen instances.

As can be seen in Table 4, depending on characteristics
of the datasets, the best accuracies are achieved by differ-
ent sizes of surrogate training sets. Mostly the surrogate
training sets ranging from 30 to 50% produce the best accu-
racies since these training sets aremore similar to the original
ones. However, on 3 datasets, Australian, ImageSegmenta-
tion and WBCD, 10 and 20% achieve the best performance,
which may be an indication that the 3 datasets have noisy
instances and small size surrogate training sets help to elim-
inate these instances. An important pattern shown in Table 4
is the consistency between training and testing performance.
Specifically, on 6 out of the 12 datasets, both best training
and testing accuracies are achieved by the same method. On
the other datasets, although the exact consistency does not
happen, the method with the best testing accuracy usually
has the second best training performance. This pattern shows
that to some extent, using surrogate models can help to avoid
overfitting.

In order to analyze the condition for a surrogate model to
locate good search regions, for each surrogate model (10%-
50%), the evolutionary process of the best run is shown in
Fig. 5. The horizontal axis is iterations and the vertical axis
shows the real fitness function of gbest on each iteration.
Due to the space limitation, only 6 out of the 12 datasets are

shown. The evolutionary processes on the other 6 datasets
have similar patterns. Note that in the first 75 iterations, par-
ticles are evaluated by the surrogate set, which means that
in terms of the surrogate fitness, the later gbest is always
not worse than the earlier gbest . However, on the figure,
the gbest is re-evaluated by using the original training set,
which does not guarantee that the later gbest has better real
fitness value. Therefore, the less fluctuating evolutionary pro-
cess shows that the corresponding surrogate model is more
consistent with the original training set. By collating between
Table 4 and Fig. 5, it can be seen that usually the method with
the least fluctuating evolutionary process yields the best clas-
sification accuracy. For example, on the Arrhythmia dataset,
the best training and testing accuracies are achieved by the
50% surrogate model, which has the least fluctuating evolu-
tionary process.

5.3 Results of the dynamic surrogate model

As illustrated in Sect. 5.2, in order to achieve good classifica-
tion performance, it is important to maintain the consistency
between the surrogate and the original training sets.However,
which surrogatemodel should be selected heavily depends on
datasets. Therefore, the dynamic surrogatemodel is designed
with an expectation of selecting the most suitable surrogate
training set during the evolutionary process. The results of
the dynamic one are shown by the “Dyn” column in Table 4.
AWilcoxon signed rank test is used to compare between the
dynamic and other fixed-size surrogate models. “↑”/ “↓” or
“◦” shows that the dynamic surrogate model is significantly
better, worse or no significant difference in comparison with
the others.

On training sets, except for German, the dynamic model
(Dyn) achieves similar or better performance than the other
methods. Specifically, Dyn is significantly better than AGG
on 5 datasets. From 10 to 40%, the number of datasets on
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Fig. 5 Real evolutionary processes on different sizes of surrogate training sets

which Dyn is superior ranges from 5 to 1. Similarly, on the
test sets, except for the 50% surrogate, Dyn is never worse
than the other models on most datasets. On each dataset,
the 7 models are sorted according to their accuracies and
their average ranks on all datasets are shown in Table 5. The
smaller the rank, the better the method. It can be seen that
on the training sets, Dyn is the second best and it is only
worse than 50%, which is understandable since the 50% sur-
rogate training set is the most similar to the original training
set. However, on the test sets, Dyn is only ranked at the 4th
position, which is an indication of overfitting. The possible
reason is at the step finding the best suitable surrogate train-
ing set (line 10 in Algorithm 1), which can be considered as
a local search. In terms of computation time, 50% is the only
model which is worse than Dyn. However, in comparison
with AGG, Dyn is at most 2 times slower, particularly less
than 1.5 times on 9 out of the 12 datasets. It was shown in our
previous work [21] that the surrogate model built by DROP3
was already 3–4 times less computationally expensive than
using the original training set. Given that AGG and DROP3
have the same computation cost, one can say that both static
(AGG) and dynamic (DYN) can reduce the computation cost
over using the original training set.

The experimental results show that the dynamic model
can adapt with different datasets to select the suitable

Table 5 Average ranks of clustering-based surrogate models

Term AGG 10% 20% 30% 40% 50% Dyn

Training 4.58 5.50 4.75 3.59 3.66 2.33 3.57

Testing 4.25 5.17 4.58 3.42 3.50 3.17 3.92

surrogate training set, which results in similar or better per-
formance than other algorithms on most datasets. However,
the dynamic model may suffer from the overfitting problem,
which results in less general feature subsets than the other
algorithms.

6 Conclusions and future work

This work investigates the effect of surrogate models on fea-
ture selection. Firstly, the quality of the surrogate training set
is improved by a clustering algorithm,which divides the orig-
inal training set intomany clusters. The surrogate training set
is formed by selecting a centroid instance as a representative
of each cluster. The experimental results show that when
selecting the same number of instances, the clustering-based
surrogate model can maintain or improve the classification
performance while selecting fewer features than the DROP3-
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based surrogate model on most datasets. In addition, various
clustering-based surrogate models with different numbers of
instances are examined. The results highlight the importance
of selecting enough informative instances to avoid underfit-
ting. It is also shown that to some extent using the surrogate
models can improve the generalization of evolved feature
subsets. In addition, it is also necessary to maintain the
consistency between the surrogate and the original training
sets. To ensure the consistency, a dynamic surrogate model
is proposed which automatically selects the most suitable
surrogate training set during the evolutionary process. The
dynamic model can adapt with different datasets to consis-
tently achieve similar or better training accuracies than other
static surrogate models.

Although the dynamic model achieves good results, there
are issues which we will investigate in the future. For exam-
ple, the dynamic model may suffer the overfitting problem,
which makes its testing accuracies are not as good as its
training accuracies. In addition, the clustering-based mod-
els have the same size on all datasets. It would be better if
the pool of surrogate training sets is designed with respect
to the characteristics of datasets. However, it is not an easy
task since it requires a deep understanding of each dataset. In
the future we will further investigate and develop surrogate
models on larger datasets in terms of both number of features
and instances.
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