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Abstract This study presents a robust optimization algo-
rithm based on hybridization of krill herd (KH) and artificial
bee colony (ABC) methods and the information exchange
concept. The global optimal solutions found by the proposed
hybrid KH and ABC (KHABC) algorithm are considered as
a neighbor food source for onlooker bees in ABC. There-
after, a local search is performed by the onlooker bees in
order to find a better solution around the given neighbor
food source. Both the methods—the KH and ABC—share
the globally best solutions through the information exchange
process between the krill and bees. Based on the results,
the exchange process significantly improves exploration and
exploitation of the hybrid method. Besides, a focused elitism
scheme is introduced to enhance the performance of the
developed algorithm. The validity of the KHABC method is
verified using thirteen unconstrained benchmark functions,
twenty-one CEC 2017 constrained real-parameter optimiza-
tion problems, and ten CEC 2011 real world problems. The
proposed method clearly demonstrates its ability to be a
competitive optimization tool towards solving benchmark
functions and real world problems.
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1 Introduction

Optimization is considered as the choice of a vector for
an objective function in a given domain to make an opti-
mal solution. In the last two decades, several metaheuristic
techniques have been developed to solve difficult optimiza-
tion problems. Some of these problems are navigation [1],
and big data optimization [2]. The potential of metaheuris-
tic optimization approaches for addressing various max-
imization/minimization problems, especially the NP-hard
problems, is well documented. This is evident from the
sizeable number of recently proposed modern stochastic
optimization methods. Some of the major metaheuristic opti-
mization methods that have been applied to solve challenging
optimization problems are: differential evolution (DE) [3],
evolutionary strategy (ES) [4], genetic algorithms (GAs) [5],
artificial bee colony (ABC) [6], elephant herding optimiza-
tion (EHO) [7], moth search (MS) algorithm [8], harmony
search (HS) [9], monarch butterfly optimization (MBO) [10],
and particle swarm optimization (PSO) [11]. In fact, individ-
uals in swarm intelligence algorithms like a meme in memetic
computing [12,13].

Krill herd (KH) is a robust swarm intelligence algorithm
originally proposed by Gandomi and Alavi [14]. KH has been
proved to be superior to many other metaheuristic approaches
(e.g.,GAs, ES, BBO, DE, PSO) for solving many benchmark
problems [14]. This clearly indicates that KH is a generic
stochastic optimization method with immense scope of fur-
ther development. On the other side, the ABC algorithm,
motivated by the swarm behaviors of bee colonies, has a
quite simple yet effective structure for solving optimization
problems [6]. Hence, it has attracted the attention of many
researchers.

It is known that the metaheuristic methods require various
exploration and exploitation schemes for solving problems
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with increasing dimensions in the search space. Although the
KH generally explores the search space well and appears to be
fully capable of locating the global optimal value, its explo-
ration ability has exhibited relatively poor performance at
later run phase [14]. On the other hand, the ABC method has
strong exploration ability with its poor exploitation. There-
fore, KH or ABC method, when acts independently, does not
exhibit the potential needed for the exploration and exploita-
tion of the search space [15]. In order to address this, the
present study intends to investigate a hybridization of the
ABC and KH methods towards solving continuous numeri-
cal global optimization as well as discrete problems.

The rest of the paper is organized as follows: the related
work about KH and ABC is provided in Sect. 2. An overview
of the basic KH and ABC is presented in Sect. 3. This is
followed by the detailed hybridization process in Sect. 4.
The performance evaluation is carried out in Sect. 5. The
manuscript ends with the conclusions and guidance, as pro-
vided in Sect. 6.

2 Review of related literature

Though this paper is based on krill herd (KH) algorithm and
artificial bee colony (ABC) algorithm, therefore, some of
the most representative algorithms of KH and ABC will be
reviewed.

2.1 KH algorithm

Wang et al. [16] introduced the chaos theory into the KH
optimization process. The range of a chaotic map is always
between 0 and 1 through normalization. Twelve chaotic maps
are used to tune the inertia weights (w,, wy) in KH on
fourteen benchmarks. The best chaotic map (Singer map) is
selected to generate the chaotic KH (CKH) algorithm [16],
and it is further compared with other state-of-the-art meta-
heuristic algorithms.

Wang et al. [17] proposed a hybrid metaheuristic algo-
rithm namely CSKH by a combination of the advantages
of cuckoo search (CS) and KH. In CSKH, two operators
inspired by the CS algorithm, krill updating (KU) and krill
abandoning (KA) were introduced into the basic KH. The
KU operator inspires the intensive exploitation and makes
the krill individuals search the space carefully in the later
run phase of the search, while the KA operator is used to
further enhance the exploration of the CSKH in place of a
fraction of the worse krill at the end of each generation.

Mukherjee et al. [18] used various chaotic maps to gen-
erate chaotic KH (CKH) with the aim of improving the
performance of the basic KH method. It is observed that
Logistic map-based CKHA offers better results as compared
other chaotic maps.
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Wang et al. [19] added an updated version of reproduction
schemes called stud selection and crossover (SSC) opera-
tor to the basic KH algorithm. Accordingly, a new version
of the KH algorithm termed as Stud Krill Herd (SKH) was
proposed. The added SSC operator is inspired by the Stud
genetic algorithm. It selects the best krill (Stud) to perform
the crossover operator. This approach appears to be well
capable of solving various functions.

Limited by the length of the paper, we just review some of
the most presentative KH papers. More related work of KH
algorithm can be found in Bolaji et al. [20].

2.2 ABC algorithm

Since the basic ABC has been proposed, it has developed
very fast. The related literature of ABC algorithm will be
reviewed below.

Bolaji et al. [21] proposed a novel hybrid ABC algo-
rithm based on the integrated technique for tackling the
university course timetabling problem. First of all, initial
feasible solutions are generated using the combination of
saturation degree and backtracking algorithm. Secondly, a
hill climbing optimizer is embedded within the employed
bee operator to enhance the local exploitation ability of the
ABC while tackling the problem. Empirical results on these
problem instances validate the effectiveness and efficiency of
the proposed algorithm for addressing the university course
timetabling problem.

Kiran and Giindiiz [22] proposed a hybridization of PSO
and ABC approaches, namely HPA. The global best solutions
obtained by PSO and ABC are used for recombination, and
the solution obtained from this recombination is given to
the populations of the PSO and ABC as the global best and
neighbor food source for onlooker bees, respectively. They
utilized twelve basic benchmark functions in addition to CEC
2005 composite functions and an energy demand estimation
problem to verify their proposed HPA algorithm.

Awadallah et al. [23] proposed a metaheuristic technique
called a hybrid artificial bee colony (HABC) for the nurse ros-
tering problem (NRP). In HABC, the process of the employed
bee operator is replaced with the hill climbing optimizer
(HCO) to empower its exploitation capability and the usage
of HCO is controlled by hill climbing rate (HCR) parameter.
The performance of the proposed HABC is evaluated using
the standard dataset published in the first international nurse
rostering competition 2010 (INRC 2010).

Bullinaria and AlYahya [24] examined the performance of
ABC for optimizing the connection weights of feed-forward
neural networks for classification tasks, and presented a more
rigorous comparison with the traditional Back-Propagation
(BP) training algorithm. The empirical results for bench-
mark problems demonstrate that using the standard “stopping
early” approach with optimized learning parameters leads
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to improved BP performance over the previous comparative
study, and that a simple variation of the ABC approach pro-
vides improved ABC performance, too.

Lietal. [25] proposed an improved discrete ABC (DABC)
algorithm to solve the hybrid flexible flowshop schedul-
ing problem with dynamic operation skipping features in
molten iron systems. First, each solution is represented by
a two-vector-based solution representation, and a dynamic
encoding mechanism is developed. Second, a flexible decod-
ing strategy is designed. Next, a right-shift strategy consid-
ering the problem characteristics is developed, which can
clearly improve the solution quality. Finally, an enhanced
local search is embedded in the proposed algorithm to fur-
ther improve the exploitation ability.

Another kind of bee algorithms, called bee colony opti-
mization (BCO) algorithm, is also proposed. Kriiger et
al. [26] provided theoretical verification of the BCO algo-
rithm by proving some convergence properties. As a result,
the gap between successful practice and missing theory is
reduced.

Limited by the length of the paper, we just review some
of the most presentative ABC papers. More related work of
ABC algorithm can be found in Hussein et al. [27].

3 Background

In this section, the background of our work, including ABC
and KH, will be provided.

3.1 The ABC method

ABC is one of the seminal metaheuristic methods among
various intelligent optimization techniques. After the appear-
ance of swarm intelligence of bee colony, the forage selection
is modeled. Based on this model, the definition of three main
can be defined as follows [28]:

e Food resource

In the simplest form, the value of a food source is described
with only one quantity. In Fig. 1, A and B, C and D represent
two food resources and two non-food resources, respectively.
Furthermore, S, O, R, UF, and EF denote scouts, onlookers,
recruits, unemployed foragers, and denote employed for-
agers, respectively.

e Unemployed foragers

The unemployed forages have two sorts. One is Scouts (S).
A scout bee is the type of bee that begins implementing search
autonomously without any a-priori knowledge. The other one
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Fig. 1 The behavior of honey bee foraging for nectar

is Onlookers (O). They only stay in the nest in order to search
for a food source with the help of the employed foragers.

e Employed foragers

All of them are related to a food source that is being
exploited. This information is shared with some probabil-
ity. Three feasible choices associated with the quantity of
nectar are provided for the foraging bee. One is Unemployed
Forager (UF). When the nectar is less than a fixed threshold,
the foraging bee gives it up and turns to an unemployed bee.
The other one is Employed Forager 1 (EF1). If not, it may
dance and recruit mates. The last one is Employed Forager 2
(EF2). It may forage around the food source all the time.

The artificial bee colony includes three types of bees: (1)
employed bees, (2) onlookers and (3) scouts. In the artificial
bee colony, a food source corresponds to an employed bee.
That is to say, the employed bees and the food sources have
the same number. The main steps of the search conducted by
the artificial bees can be described as follows:

Step 1 Initialize the population x;;;

Step 2 Repeat

Step 3 Generate new solutions v;; around x;; for the
employed bees as

vij = Xij + @i (xij — xxj) (D

Here k is a solution around i, @ is a random number [—1,

1].
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Initialize the KHABC (KH and ABC)

v
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Is termination
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Output the best

Fig. 2 Flowchart of the KHABC algorithm

Step 4 The greedy selection is used between x; and v;;
Step 5 Calculate the probability P; for x; according to their
fitness:

Pi= v Sj_zl ,- ?)

SN is the number of food sources, and f is its fitness;
Step 6 Normalize P; into [0, 1];
Step 7 Generate the new solutions v; for the onlookers from
x;, selected depending on P;;
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Step 8 The greedy selection is used for the onlookers
between x; and v;;

Step 9 Check if a solution is abandoned. If it is, replace it
with a novel one x; for the scout

Xjj = min; +¢;j * (max; — min) 3)
Here ¢;; is a random number in [0, 1].

Step 8 Save the best solution obtained up to now;
Step 9 Go to Step 2 until termination criteria is satisfied.
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3.2 The KH method

KH [14] is a classic metaheuristic method for function opti-
mization. KH is based on the simulation of the herding
behavior of the krill individuals. The KH algorithm repeats
the implementation of the three movements and takes search
directions that converge to the best solution. The position is
mostly influenced by three movements:

(i) Movement induced by other krill;
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(i1) Foraging action; and
(iii) Random diffusion.

In KH, the Lagrangian model is used as shown below:

dX;
— =N;+ F; + D;

7 “

where N; is the motion induced by other krill; F; is the for-
aging motion, and D; is the physical diffusion.

For the first motion, its direction («;) is estimated by the
following three factors: target effect, local effect, and a repul-
sive effect. For a krill, its definition can be provided as:

Ninew — Nmaxai + (X)an'U[d (5)
where

target
o = afacal +O{i g (6)

and N™ is the maximum induced speed, w, is the inertia
weight in [0,1], Nl."ld is the former motion, af”cal is the local
effect and afarget is the target direction effect.

The formulation of the second motion is mostly deter-
mined by two main components: the food location and the
previous experience. It can be expressed for the i-th krill as

follows:
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Fig. 4 The positions of the individuals and best position after a 1st iteration, b 2th iteration, ¢ 3rd iteration, and d 4th iteration
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Table 1 Unconstrained

benchmark functions No. Function b ub opt Separability Modality
FO1 Griewank —600 600 0 Nonseparable Multimodal
FO02 Holzman 2 —10 10 0 Separable Multimodal
FO03 Levy —10 10 0 Nonseparable Multimodal
F04 Penalty #1 -50 50 0 Nonseparable Multimodal
FO5 Penalty #2 -50 50 0 Nonseparable Multimodal
FO6 Perm 1 -D D 0 Separable Multimodal
FO7 Perm 2 -D D 0 Separable Multimodal
FO8 Powell —4 5 0 Separable Unimodal
F09 Rosenbrock —2.048 2.048 0 Nonseparable Unimodal
F10 Schwefel 1.2 —100 100 0 Nonseparable Unimodal
F11 Schwefel 2.21 —100 100 0 Nonseparable Unimodal
F12 Sphere —-5.12 5.12 0 Nonseparable Unimodal
F13 Sum —10 10 0 Separable Unimodal
Table 2 Best function values of thirteen unconstrained benchmark functions
CCS DE ES GA HS HSBBO KHE KHABC MBA PSO VNBA
FO1 20.00 52.77 227.30 41.99 319.70 1.00 11.03 1.18 59.23 142.10 1.09
F02 5.74E3 1.33E4 2.32E5 2.25E4 1.23E5 2.20E-16 2.01E3 0.29 85.26 1.48E4 1.94E—4
F03 19.59 29.05 127.00 55.60 96.94 2.20E-16 10.20 0.96 2.71 49.63 3.49E-3
F04 20.31 3.36E6 6.00E7 2.90E6 1.33E8 2.20E—-16 6.10E4 2.01 1.21E4 4.13E6 0.87
F05 3.33E4 8.16E6 1.58E8 1.43E7 2.27E8 2.20E—16 8.46E5 14.15 1.50E5 1.66E7 1.07
F06 431E79  887E77  7.12E80  2.78E87 6.06E78  1.86E80 7.18E72  6.27ES7 1.55E77  2.89E81  9.28E81
FO7 1.72ZE-9 3.16E-8 1.98E-5 121.00 8. 78E—4 1.37E-3 4.05E-5 2.20E—-16 4.78E—8 3.25E—4 7.94E-3
F08 799.80 1.68E3 7.20E3 557.00 4.10E3 2.20E-16  783.40 5.33 9.37 1.45E3 0.02
F09 1.17E3 818.70 7.84E3 820.00 3.37E3 2.20E-16  273.50 30.45 60.80 1.03E3 7.34
F10 2.66E3 4.11E4 3.92E4 2.55E4 3.77E4 2.20E-16 2.07E4 258.90 7.92E3 2.41E4 1.44E4
F11 17.68 60.25 66.72 53.00 66.37 2.20E-16 8.61 2.20E-16 24.11 48.18 17.44
F12 25.58 20.36 126.40 72.00 100.00 2.20E-16 3.66 0.06 0.53 25.30 3.16E—4
F13 868.70 1.05E3 6.19E3 3.64E3 4.56E3 2.20E-16 307.30 5.25 171.80 1.57E3 0.13
Total 0O 0 0 0 0 11 0 3 0 0 0

Fi = VB + o FM )
where

vod
pi =B + gt @®)

and Vy is the foraging speed, wy is the inertia weight in [0,
1], F?' is the last motion, ,BI.f 20d i< the food attractive and
pLes! is the effect of the i-th krill.

In essence, the third motion is looked upon as a random
process. It can be expressed as:

Di = D3 ©)

where D™ is the maximum diffusion speed, and § is the
random directional vector.
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According to the formulations of these actions for the i-th
krill, the change in position of a krill from ¢ to  + At can be
represented by Eq. (10):

dX;
X (t—i—At):X,'(t)—i—AtT (10)

4 The KHABC method

In this section, firstly, we will provide the main idea of
KHABC algorithm, and then an example will be used to
show how KHABC can works.

4.1 The mainframe of KHABC method

Based on the above-analyses of the ABC, it can be seen
that the standard ABC algorithm does not directly utilize
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Table 3 Mean function values of thirteen unconstrained benchmark functions

CCS DE ES GA HS HSBBO KHE KHABC MBA PSO VNBA
FO1 38.11 95.49 320.70 122.80 409.50 11.39 18.14 1.98 134.80 183.70 17.38
F02 1.77E4 3.02E4 3.92E5 1.14E5 2.57E5 389.20 5.75E3 6.43 4.48E3 6.09E4 3.63E3
FO03 48.23 57.57 208.80 96.91 145.50 7.49 2243 1.96 13.30 80.95 6.53
F04 2.06E4 1.78E7 2.94E8 2.88E7 2.42E8 1.87E5 4.37E5 4.47 7.62E6 2.95E7 4.46E5
FO05 9.26E5 5.59E7 6.38E8 1.14E8 5.32E8 8.16E5 2.61E6 33.59 3.53E7 8.65E7 3.41E6
F06 1.48E83  7.01E82 7.33E85  2.78E87  1.25E84  4.45E83  2.79E87  3.23E83 5.29E81 1.21E85  5.53E87
FO7 0.01 2.71E-3  11.26 121.00 2.71 0.51 4.07E20  12.10 382E-3 3.68 1.09E21
FO8 1.91E3 3.60E3 1.28E4 1.78E3 7.37E3 581.30 1.54E3 15.53 81.01 3.19E3 1.09E3
F09 2.81E3 1.38E3 1.25E4 2.55E3 7.89E3 1.25E3 591.90 42.02 126.90 2.59E3 190.70
F10 5.52E3 5.91E4 7.01E4 4.78E4 6.07E4 1.85E4 3.38E4 1.15E3 3.32E4 4.56E4 5.55E4
F11 25.86 74.55 77.63 73.58 75.03 36.32 14.33 8.10 43.95 79.51 52.19
F12 53.12 30.07 183.90 115.50 137.90 4.30 8.09 0.44 4.10 54.76 3.07
F13 1.62E3 1.36E3 8.82E3 5.78E3 6.65E3 136.20 498.00 21.07 649.00 2.65E3 378.10
Total 0 1 0 0 0 0 0 11 1 0 0
Table 4 Worst function values of thirteen unconstrained benchmark functions

CCS DE ES GA HS HSBBO KHE KHABC MBA PSO VNBA
FO1 59.13 121.50 400.30 231.30 490.10 66.65 28.82 3.24 303.20 520.00 95.07
F02 4.13E4 4.71E4 5.72E5 2.94E5 3.76E5 5.28E3 1.06E4 53.54 3.15E4 6.72E5 3.19E4
FO03 72.47 81.73 263.70 155.20 191.70 29.23 39.15 5.03 26.72 127.40 44.07
Fo4 2.58E5 4.54E7 4.94E8 7.30E7 4.21E8 8.20E6 1.29E6 10.43 6.95E7 7.35E7 1.06E7
FO05 4.98E6 1.04E8 9.36E8 3.30E8 8.53E8 1.38E7 5.88E6 52.25 2.04E8 2.16E8 7.67E7
F06 2.83E84  9.07E83  4.19E86  2.78E87 1.92E85  4.37E84  4.77E88 1.51E85 3.43E82  8.14E85  8.42E88
FO7 0.08 0.06 99.92 121.00 52.12 3.56 1.09E22 121.00 0.03 47.67 5.34E22
FO8 3.32E3 5.23E3 1.89E4 3.16E3 1.17E4 2.89E3 3.23E3 69.15 432.60 5.03E3 9.52E3
F09 6.19E3 2.14E3 1.57E4 5.84E3 1.06E4 1.07E4 876.90 69.11 224.60 4.33E3 674.10
F10 1.00E4 7.65E4 9.33E4 6.96E4 7.80E4 4.46E4 5.45E4 4.51E3 7.24E4 7.08E4 1.02E5
F11 34.01 84.88 83.41 87.00 81.00 89.00 22.97 15.25 71.17 93.00 85.09
F12 79.11 40.39 211.20 165.00 159.00 21.88 12.87 1.36 14.63 72.38 13.69
F13 2.50E3 1.75E3 1.04E4 8.11E3 8.15E3 816.00 769.20 85.97 2.55E3 1.00E4 1.82E3
Total O 0 0 0 0 0 0 11 2 0 0
the global optimal individual. In addition, in KH, if any krill Pposi = fitpest (11)

gets trapped in the local values, it cannot escape from local
minimum by itself. To overcome these limitations, a hybrid
meta-heuristic method based on information exchange is pre-
sented. The hybridization process is similar to that proposed
by Kiran and Giindiiz [22].

Information exchange or crossover operation is one of the
most-famous evolution operators. Here, it is used for yielding
a new solution, called TheBest. TheBest is considered to be
K5t for the KH and food source of onlooker bees for the
ABC. To get TheBest, the K”¢' of the KH and the optimal
individual of the ABC are computed by Eq. (2). Probabilities
used to select the two solutions are given by Eqgs. (11) and
(12):

fithest + fitbest

where Ppes; is the probability to choose the optimal individual
of the ABC, fitpes; and fitgpes: are the K2¢5" of the KH
and the optimal individual of the ABC achieved according to
Eq. (2).

fithest
fithest + fitbest

Pk pest = (12)

where Pk pes; is the K291 of the KH.

When generating the best solution, random numbers in
the range of [0, 1] are utilized for the dimensions of the
standard test function. If it is not above Pp,;, the value for this
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Table 5 The Std of thirteen unconstrained benchmark functions

cCs DE ES GA HS HSBBO  KHE KHABC MBA PSO VNBA
FOl  10.05 14.11 34.58 46.25 35.04 17.24 434 0.50 44.71 51.89 19.12
F02  829E3  855E3  851E4  S.11E4 5.18E4  1.08E3  1.68E3  9.00 637E3  1.07ES  6.22E3
FO3  13.54 10.69 24.82 2481 21.28 7.45 6.96 0.90 5.73 14.99 8.10
FO4  464E4  883E6  822E7  198E7 6.48E7  1.18E6  320E5 177 133E7  1.64E7  1.59E6
FO5  924ES  225E7  157E8  7.67E7 138E8  263E6  127E6  7.56 448E7  465E7  1.17E7
FO6  4.50E83 1.63E83  1.16E86 8.94E71  3.19E84 O30E83 7.99E87 2.10E84  8.0SE81  2.03E85  1.65ESS
FO7  0.02 8.80E—3  18.49 1.22E-13  8.60 0.87 1.98E21  36.67 6.73E-3 977 7.69E21
FO8 63450 81130  279E3  660.00 167E3 69110 61490  10.97 72.86 939.60  1.82E3
F09  983.80  293.80  1.84E3  122E3 1.43E3  325E3 11930 826 44.67 77310 151.70
FI0  1.78E3  895E3  128E4  1.16E4 1.04E4  1.32E4  761E3  1.03E3  1.66E4  1.16E4  2.01E4
FIl 386 4.56 3.91 7.47 3.86 25.02 2.94 3.03 9.51 11.07 16.14
FI2 1204 4.94 17.67 22.02 13.00 6.65 2.00 0.26 2.95 8.03 3.72
FI3 35790 18280  1.03E3  1.05E3 89420 19730 10440  13.09 47800  1I1SE3  411.50
Total 0 0 0 2 0 0 1 10 0 0 0
Eﬁ/l\elsﬁc gff(ﬁﬁ:ﬁztﬁgze;n CCS DE ES GA HS HSBBO KHE MBA PSO  VNBA
?Or:th(i‘r‘t):egzf‘l:(v)vg’s‘ttrfilsgdf‘t“ts Fol 2539 4683 65.16 18.46 8223 386 2618 21.00 2477  5.69
benchmark functions F02 1508 2498 33.04 15.24 3471 250 2420 497 394 412
FO3 2411 36.64 5889 27.04 47.63 520 2062 1383 3719  3.96
FO4 310 1399 2501 1031 2641 1.14 934 410 1267 207
FO5 710 1759 2846 10.61 2711 220 1527 567 1318 211
FO6  —058 —0.85 441 924365 167 035 244 —106 412 235
FO7  —233 -233 —0.14 2100  —176 —223 143 —233 —157  1.00
FO8 2112 3127 3265 18.89 313 579 1755 628 2389 418
F0O9 1986 3216 46.83 14.49 3874 264 3251 1322 2327 692
FI0O 1506 4611 4041 28.72 3860 871 3016 1405 2779 1930
FIl 2558 8576 9932 57.43 96.44 792 1042 2541 4401 18.98
FI2 3094 4236 7343 3694 7479 410 2688 875 4781 5.0
FI3 3163 5170 6045 38.66 5243 412 3206 929 1621  6.13
Better 11 11 12 13 11 10 12 11 12 12
Equal 1 1 1 0 2 2 1 1 1
Worst 1 | 0 0 0 | 0 1 0 0

dimension is selected from the optimal individual of ABC.
Otherwise, this value is selected from K?¢! of KH. This
selection process can be formulated as Eq. (13):

Best;
Kbest;

ifl’ < Ppest

otherwise (13)

TheBest; = {

where T he Best; is the i -th dimension of TheBest, Best; is the
i-th dimension of the best solution found by ABC, Kbest; is
the i-th dimension of K¢ of the KH. r is a random number
in the range of [0, 1].

Based on the information exchange described above, the
connection between the krill and bees in the KHABC method
can be stated as follows.
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The global part of the KHABC method is “the best”.
Through the best, not only the ability of the KH from escap-
ing from the local minima showed substantial improvement,
but also the exploitation of ABC got significantly enhanced
by the direct utilization of the global best solution. K?¢! of
the KH is updated in terms of the best accordingly and the
same is passed on to onlooker bees of ABC as neighbor.

Besides, a concentrated elitism strategy is introduced into
KHABC to preserve the optimal solutions and not being
ruined by the method. This is carried out in order to guaran-
tee that the whole population is capable of proceeding with
a better status than before. By introducing this concentrated
elitism strategy into the algorithm, the KHABC has been
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Table 7 CEC 2017 constrained
benchmark functions

Problem Search range Type of objective Number of constraints
E 1
C01 [—100, 100]1D Non separable 0 1
Separable
C02 [—100, 100]1D Non separable, rotated 0 1
Non separable, rotated
C03 [—100, 100]1D Non separable 1 1
Separable Separable
C04 [—10, 101D Separable 0 2
Separable
CO05 [—10, 101D Non separable 0 2
Non separable, rotated
C06 [—100, 100]1D Separable 2 0
Non separable
Cco7 [—10, 101D Separable 2 0
Non separable
C08 [—100, 100]D Separable 2 0
Non separable
C09 [—100, 100]1D Separable 1 1
Non separable Non separable
C10 [—100, 100]D Separable 0 2
Separable
Cl1 [—100, 100]1D Non separable 0 3
Separable
Cl12 [—100, 1001 D Separable 1 1
1 1
Cl13 [—100, 100]D Non separable Non separable Separable
2
Cl4 [—100, 100]D Separable 1 Non separable
2
Cl15 [—100, 100]1D Rotated 0 Rotated
3
Cl16 [—100, 100]1D Rotated 0 Rotated
1 1
C17 [—100, 100]1D Rotated Rotated Rotated
1 1
Cl18 [—100, 100]? Rotated Rotated Rotated
1 1
C19 [—100, 100]D Rotated Rotated Rotated
1 1
C20 [—100, 100]1D Rotated Rotated Rotated
1 2
C21 [—100, 100]1D Rotated Rotated Rotated

D is the number of decision variables, / is the number of inequality constraints, E is the number of equality

constraints
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Table 8 Best function values of twenty-one CEC 2017 constrained benchmark functions

CCsS DE ES GA HS HSBBO KHE KHABC MBA PSO VNBA
Co01 5.94E3 3.48E4 5.01E4 2.82E4 3.98E4 9.72E3 1.92E4 1.74E3 1.78E4 2.99E4 2.75E4
C02 4.48E3 4.17E4 4.69E4 3.33E4 3.98E4 6.41E3 1.48E4 3.40E3 1.56E4 3.15E4 1.97E4
C03 9.07E3 4.65E4 4.72E4 2.22E4 3.82E4 1.13E4 2.26E4 7.52E3 3.11E4 3.15E4 3.43E4
Co4 353.10 280.50 700.60 457.60 664.80 161.80 247.30 125.20 186.20 442.10 358.00
C05 8.63E4 7.83E4 2.09E6 1.17ES 1.02E6 1.12E4 4.23E4 8.45E3 2.24E4 2.70E5 1.65E5
C06 983.00 980.50 1.03E3 924.60 1.04E3 911.70 999.20 998.70 1.02E3 1.03E3 929.80
Cco7 0.87 0.10 6.38 0.42 3.68 0.61 3.25 235 3.12 4.94 0.61
Co8 963.50 975.00 1.03E3 953.40 1.02E3 946.40 994.00 975.50 1.02E3 1.02E3 957.50
C09 7.61E3 7.09E3 8.03E3 7.19E3 8.60E3 7.03E3 7.86E3 6.02E3 8.79E3 8.50E3 7.03E3
C10 3.30E3 6.47E3 3.74E4 1.04E4 3.49E4 2.08E3 4.35E3 2.17E3 9.20E3 1.48E4 7.35E3
Cl1 8.55E7 6.41E8 7.11E9 7.27E8 8.55E9 4.69E7 3.34E8 9.73E6 1.24E9 2.36E9 1.08E9
C12 28.30 56.63 69.16 56.12 67.69 32.72 26.04 17.90 44.55 51.97 40.57
C13 1.73 2.49 9.14 4.96 10.03 1.48 1.83 1.31 3.61 5.33 2.89
Cl4 4.36E3 7.24E3 3.50E4 1.61E4 3.68E4 2.32E3 3.48E3 1.76E3 6.23E3 1.61E4 7.98E3
C15 1.29E4 4.90E4 1.18E5 5.05E4 1.09E5 4.52E3 2.10E4 5.94E3 3.93E4 4.73E4 2.16E4
Cl6 1.77E9 2.12E10 8.81E10 7.52E9 8.02E10 5.98E8 8.94E9 1.75E8 1.59E10 2.24E10 8.68E9
C17 20.72 21.02 20.94 20.98 20.97 20.91 20.98 20.63 20.71 21.01 21.11
C18 44.20 101.70 136.60 86.80 123.90 46.36 59.53 33.24 76.40 84.09 86.95
C19 446.10 1.01E3 1.52E3 982.10 1.42E3 382.80 588.60 324.10 873.90 1.02E3 768.20
C20 3.81 9.92 31.25 13.09 32.17 3.02 5.75 2.06 9.06 13.15 10.27
C21 1.39E4 5.00E4 1.07E5 5.56E4 1.25E5 7.28E3 2.06E4 4.92E3 3.24E4 4.31E4 4.50E4
Total 0 1 0 0 0 4 0 16 0 0 0

further developed. The main steps of the proposed KHABC
algorithm can be described as follows:

Step 1 Initialize the KHABC (KH and ABC);

Step 2 Determine K best of the KH and best of the ABC;
Step 3 Repeat

Step 4 Apply the recombination procedure to the K¢S
and best solutions;

Step 5 Save the KEEP best individuals as BEST;

Step 6 KH process

1) Motion Induced by other individuals;
2) Foraging motion;

3) Physical diffusion;

4) Determine the k”¢** of the population;

Step 7 ABC process

1) Employed bee phase of abc;

2) Onlooker bee phase of abc;

3) Scout bee phase of abc;

4) Determine the best of the population;

Step 8 Replace the KEEP worst individuals with the
KEEP best individuals saved in BEST;

Step 9 Is termination condition met? If yes, output the
best solution; or go to Step 3.
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From the analysis above, we can see, the Step 6 KH
progress and Step 7 ABC progress are simultaneously imple-
mented. In this way, KHABC can find the best solution in a
much faster way. In addition, the corresponding flowchart of
the process is illustrated in Fig. 2.

Furthermore, for the complexity of the proposed KHABC
algorithm, because KHABC did not introduce new opera-
tors except the original operators used in KH and ABC, the
complexity of KHABC is no more than KH and ABC. Our
proposed KHABC algorithm only used the best individual in
KH and ABC, not introduced any new operators, therefore,
KHABC is as simple as the basic KH and ABC.

4.2 Convergent process of KHABC algorithm
As an example, the proposed KHABC algorithm is bench-

marked using the 2D Griewank function (see Fig. 3). The
formulation of the 2D Griewank function can be given as:

(14)

For the purpose of clarifying the movement process of
the individuals in KHABC algorithm, less individuals (10)
and less generations (4) are used to find the minima in this
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Table 9 Mean function values of twenty-one CEC 2017 constrained benchmark functions

CCS DE ES GA HS HSBBO KHE KHABC MBA PSO VNBA
Co1 1.17E4 6.77E4 7.65E4 5.91E4 6.57E4 2.30E4 3.81E4 8.74E3 4.87E4 5.51E4 5.58E4
Cco2 1.09E4 6.58E4 7.76E4 5.79E4 6.92E4 2.32E4 3.67E4 8.58E3 4.75E4 5.60E4 6.09E4
C03 1.64E4  6.45E4 8.86E4 5.93E4 7.67E4 2.55E4 4.09E4 1.81E4 8.85E4 6.04E4 7.49E4
Cco4 438.40 360.90 957.50 584.40 802.80 274.10 318.00 234.40 280.70 575.80 476.90
C05 2.11E5 1.69E5 3.55E6 3.44E5 2.19E6 4.63E4 1.59E5 3.12E4 1.31E5 8.15E5 5.44E5
C06 1.01E3 1.00E3 1.05E3 953.90 1.05E3 985.10 1.01E3 1.01E3 1.03E3 1.04E3 989.20
Cco7 2.31 1.57 8.41 1.24 7.40 4.53 5.73 4.70 5.85 6.71 4.82
Co8 1.00E3 992.10 1.05E3 977.00 1.04E3 996.20 1.02E3 1.00E3 1.04E3 1.03E3 997.80
C09 8.21E3 7.15E3 8.30E3 7.31E3 8.88E3 7.24E3 8.23E3 7.51E3 9.09E3 8.81E3 7.03E3
C10 8.35E3 1.04E4 4.89E4 2.37E4 4.63E4 4.29E3 7.39E3 3.68E3 2.00E4 2.50E4 1.65E4
Cl1 3.97E8 1.60E9 1.83E10  3.04E9 1.56E10  3.09E8 9.03E8 7.53E7 4.45E9 5.12E9 3.38E9
C12 36.12 66.49 80.80 73.12 77.55 52.71 38.00 27.80 57.72 63.07 62.21
C13 2.78 3.47 12.60 7.05 13.12 1.98 293 1.79 6.67 6.88 4.99
Cl4 8.20E3 1.02E4 4.73E4 2.42E4 4.73E4 4.49E3 6.86E3 4.78E3 1.53E4 2.57E4 1.47E4
Cl15 2.47E4 6.84E4 1.67E5 9.00E4 1.68E5 1.67E4 3.78E4 1.36E4 8.28E4 8.96E4 8.04E4
Cl16 4.90E9 5.36E10  2.17E11 3.68E10 1.98E11 3.31E9 2.69E10 1.89E9 7.58E10  7.38E10  5.75E10
C17 21.09 21.17 21.14 21.15 21.16 21.11 21.16 20.95 20.90 21.16 21.20
C18 62.68 122.10 155.90 122.20 148.90 71.47 82.18 55.31 112.20 122.60 120.90
CI19 659.90 1.25E3 1.76E3 1.40E3 1.71E3 634.30 769.20 474.20 1.21E3 1.33E3 1.26E3
C20 7.27 18.00 42.05 23.65 40.33 5.83 10.13 4.00 20.93 22.39 22.04
C21 2.64E4 7.07E4 1.61E5 8.66E4 1.64E5 1.91E4 3.68E4 1.40E4 6.65E4 8.37E4 7.56E4
Total 1 0 0 3 0 1 0 14 1 0 1

problem. The optimization process of KHABC algorithm
can be shown in Fig. 4, where the position of individu-
als and the best solution are shown by blue o marks and
red e mark, respectively. The positions in the spread of
the individuals after 1st, 2nd, 3rd and 4th generations are
respectively shown in Fig. 4a—d. Asis evident, firstly the posi-
tions of the individuals are scattered over the search space
and far away from the best solution (see Fig. 4a). Subse-
quently, all the individuals move towards the best solution
with increasing the generations (see Fig. 4b—c). Ultimately,
all the individuals are located around the best solution (see
Fig. 4d).

5 Simulations

In this section, the proposed KHABC algorithm will be
benchmarked by thirteen basic unstrained benchmark func-
tions, twenty-one CEC 2017 constrained optimization func-
tions, and ten CEC 2011 real world problems (RWPs). And
to ensure a fair comparison, all the simulations were imple-
mented in the same environments as shown in [29].

Here, the performance of KHABC was compared with
ten nature-inspired methods viz. chaotic cuckoo search

(CCS)[30], DE[3],ES[4], GA[5],HS [9], HSBBO[31],KH
with elitism (KHE) [32], multi-swarm bat algorithm (MBA)
[33], PSO [11], and bat algorithm with variable neighbor-
hood search (VNBA) [34].

For KH and KHABC, the same parameters are set: Vy =
0.02, D™ = 0.005, N™™* = (.01, and KEEP=2. For the
other methods, the parameters are set suggested in [31]. For
CCS, HSBBO, KHE, MBA, and VNBA, their parameters are
set as the original paper.

It is well-known that most of the metaheuristic meth-
ods are based on certain type of stochastic distribution. To
obtain typical performances, fifty trials are implemented for
each method on each function. The optimal function value
is highlighted in bold. If no special clarification is provided,
the dimension of the benchmark is set to thirty. In addition,
both the population size and maximum generation are set to
50.

5.1 Unconstrained optimization

Here, the proposed KHABC algorithm is verified by thirteen
basic standard benchmark functions.
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Table 10 Worst function values of twenty-one CEC 2017 constrained benchmark functions

CCS DE ES GA HS HSBBO  KHE KHABC  MBA PSO VNBA
Co01 1.82E4 9.11E4 1.06E5 1.19E5 8.22E4 4.85E4 6.25E4 1.47E4 9.82E4 8.16E4 1.04E5
C02 1.88E4 8.33E4 1.10E5 9.21E4 8.91E4 4.31E4 5.51E4 2.30E4 1.05E5 8.62E4 1.14E5
Co3 2.79E4 8.10E4 1.35E5 1.26E5 1.17E5 4.18E4 7.24E4 4.26E4 1.79E5 8.71E4 1.66E5
Co4 512.10 411.40 1.12E3 730.60 903.00 367.60 384.60 378.50 386.40 692.00 655.90
C05 4.54E5 2.93E5 4.98E6 1.04E6 3.49E6 2.27ES 3.43E5 8.64E4 7.48E5 1.67E6 2.03E6
C06 1.03E3 1.03E3 1.07E3 996.90 1.06E3 1.07E3 1.03E3 1.02E3 1.05E3 1.05E3 1.06E3
Co7 4.68 2.86 10.30 5.10 9.31 11.08 7.86 6.62 9.33 9.26 9.35
CO08 1.02E3 1.01E3 1.05E3 1.03E3 1.06E3 1.06E3 1.03E3 1.02E3 1.06E3 1.05E3 1.06E3
C09 8.63E3 7.22E3 8.57E3 7.54E3 9.12E3 7.69E3 8.47E3 8.62E3 9.38E3 9.03E3 7.03E3
C10 1.42E4 1.51E4 5.93E4 3.40E4 5.92E4 7.16E3 1.45E4 5.53E3 3.39E4 3.68E4 3.36E4
Cl1 1.07E9 3.06E9 3.21E10  8.48E9 2.34E10 1.45E9 2.00E9 2.70E8 1.14E10 1.01E10 1.87E10
C12 46.98 71.43 89.80 89.32 85.99 88.48 48.56 42.27 75.86 75.92 87.26
C13 4.48 4.35 16.15 11.29 16.38 2.65 4.89 2.37 11.63 9.30 7.90
Cl4 1.45E4 1.52E4 5.96E4 3.73E4 5.83E4 7.56E3 1.09E4 8.82E3 2.90E4 3.73E4 3.48E4
C15 3.60E4 8.67E4 2.15E5 1.35E5 2.18E5 3.09E4 6.24E4 2.65E4 1.32E5 1.31E5 1.47E5
Cl6 1.11IE10  9.06E10  3.41EIl1 9.98E10  3.10El11 9.51E9 4.84E10  8.29E9 1.99E11 1.59E11 2.08E11
C17 21.19 21.24 21.28 21.25 21.28 21.21 21.25 21.24 21.00 21.25 21.30
C18 80.73 144.50 182.10 152.30 163.70 99.80 116.10 84.22 156.60 152.30 160.70
CI19 945.20 1.52E3 2.08E3 1.83E3 1.88E3 878.50 1.00E3 634.30 1.60E3 1.62E3 1.90E3
C20 12.49 26.60 52.26 32.51 53.93 11.38 15.79 6.88 44.17 33.21 50.98
C21 4.23E4 9.39E4 2.18E5 1.49E5 1.93E5 4.77E4 6.33E4 2.65E4 1.23E5 1.12E5 1.59E5
Total 3 2 0 1 0 2 0 11 1 0 1

5.1.1 Benchmark evaluation

In order to validate KHABC, it has been applied to optimize
a series of benchmark functions from previous studies (see
Table 1) [35].

The characteristics of the thirteen functions are provided
in Table 1, including optimal value, dimension, separability,
modality, lower bound and upper bound. Their best, average,
worst, and Std values are recorded, as shown in Tables 2, 3, 4
and 5.

From Table 2, it can be seen that HSBBO has the best
performance on eleven of the thirteen test problems. Fur-
thermore, the performance of KHABC is only worse than
HSBBO. For average solutions shown in Table 3, KHABC
provides the best results for eleven of the thirteen test prob-
lems, while DE and MBA are only inferior to KHABC,
and have the best performance on only one function. Fur-
thermore, for the worst performance, as shown in Table 4,
KHABC performs the best on eleven functions out of thir-
teen functions, and MBA performs much better than other
comparative algorithms, which can find the best solutions on
two functions. For the Std of eleven algorithms on thirteen
functions (see Table 5), KHABC has the minimum on ten
out of thirteen functions. This indicates that KHABC can be
implemented in a more stable way.
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5.1.2 Comparisons with other optimization methods by
using t-test

According to the final function values of fifty independent
runs on 30-D thirteen functions, as shown in Sect. 5.1.1, the
t values on thirteen test problems of the two-tailed test with
the 5% level of significance between KHABC method and
other ten metaheuristic methods are provided in this section.
The results are recorded in Table 6. In the table, the value
of t+ with 98 degrees of freedom is significant at « = 0.05
by a two-tailed test. The result is highlighted in bold font
for showing the better performance of KHABC w.r.t. com-
parative method. The “Better”, “Equal”, and “Worse” in the
last three rows indicate better than, equal to and worse per-
formance respectively of the KHABC as compared to the
comparative one. Here, the comparison between KHABC
and MBA is taken an example. KHABC has better and worse
performance than MBA on eleven and one test problems,
respectively. The performance between KHABC and KH
has no significant differences on one test problem. To sum-
marize, it can be said that KHABC outperforms MBA on
most test problems. In addition, for KHABC and HSBBO,
HSBBO yields better and worse performance than KHABC
on one and ten test problems respectively and they have sim-
ilar performance on two test problems. The two examples
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Table 11 The Std of twenty-one CEC 2017 constrained benchmark functions

CCS DE ES GA HS HSBBO  KHE KHABC  MBA PSO VNBA
Co01 2.96E3 1.03E4 1.32E4 1.81E4 1.09E4 9.28E3 1.01E4  3.24E3 1.79E4 1.18E4 1.86E4
C02 2.71E3  7.90E3 1.57E4 1.58E4 1.08E4 8.79E3 9.23E3  4.01E3 2.01E4 1.21E4 2.19E4
C03 4.44E3  9.12E3 1.73E4 1.90E4 1.70E4 7.69E3 9.51E3 8.29E3 3.31E4 1.31E4 2.63E4
Co4 41.26 25.16 89.65 63.80 64.84 44.00 31.39 46.15 49.25 55.79 78.00
C05 8.77TE4  4.38E4 7.94E5 1.86E5 4.78E5 3.57E4 6.09E4  2.02E4 1.21E5 3.05E5 3.45E5
C06 8.47 10.32 7.90 19.18 7.02 44.53 5.11 3.36 8.49 6.13 30.06
Co7 0.90 0.62 1.11 1.10 1.00 3.25 1.13 0.93 1.07 0.98 243
CO08 8.46 8.01 5.82 18.47 8.30 34.84 8.47 8.21 9.63 7.05 22.19
C09 199.60 28.22 142.30 78.51 124.20 215.20 136.70 613.20 140.20 99.48 9.17E—-13
C10 2.41E3 1.63E3 5.53E3 4.94E3 5.49E3 1.25E3 1.89E3  991.60 5.51E3 5.06E3 6.03E3
Cl1 2.37E8 4.99E8 4.49E9 1.83E9 3.27E9 2.66E8 3.20E8  4.87E7 2.44E9 1.85E9 3.29E9
Cl2 4.42 3.24 4.79 8.31 3.99 13.83 5.32 4.45 7.88 5.81 11.51
C13 0.55 0.39 1.64 1.42 1.28 0.29 0.54 0.28 1.56 1.02 1.12
Cl4 2.04E3 1.71E3 5.61E3 4.68E3 5.37E3 1.31E3 1.64E3 1.46E3 4.61E3 431E3 4.40E3
C15 6.47E3 8.79E3 2.04E4 1.64E4 2.12E4 6.04E3 7.99E3  4.51E3 2.28E4 1.83E4 2.63E4
Cl6 2.20E9 1.41E10  532E10  2.15E10  4.69E10  2.00E9 9.63E9  1.38E9 4.84E10  3.07E10  3.80E10
C17 0.08 0.05 0.07 0.06 0.06 0.07 0.06 0.17 0.06 0.05 0.05
C18 8.52 11.16 10.61 14.51 10.33 12.95 11.27 12.42 19.46 14.44 17.69
CI19 106.70 107.80 130.20 194.50 102.40 109.40 86.79 78.46 180.60 145.30 234.70
C20 1.73 3.31 4.93 4.85 4.40 1.85 2.06 1.19 6.85 4.54 10.01
C21 6.99E3 9.86E3 2.18E4 1.82E4 1.77E4 8.13E3 8.05E3 5.45E3 1.99E4 1.80E4 2.53E4
Total 4 4 1 0 0 1 0 10 0 0 1

above indicate that KHABC significantly outperforms MBA
and HSBBO on most benchmarks. Looking carefully at the
results as shown in Table 6, it is safe to say, KHABC is a com-
petitive and promising method on most cases when compared
to the other ten methods.

5.2 Constrained optimization

Here, the proposed KHABC algorithm is verified by twenty-
one CEC 2017 constrained benchmark functions (CO1-C21).

5.2.1 Benchmark evaluation

The characteristics of the twenty-one CEC 2017 constrained
benchmark functions (CO1-C21) can be found in Table 7,
including the number of decision variables and constraints
(inequality constraints and equality constraints). Their best,
average, worst, and Std values through fifty independent runs
are recorded, as shown in Tables 8, 9, 10 and 11.

From Table 8, it can be seen that HSBBO has the best
performance on four of the twenty-one test problems, while
KHABC performs the best on sixteen functions which is
much better than KHBBO. For average solutions shown in
Table 9, KHABC can find the best results for fourteen of
the twenty-one test problems, while GA is only inferior to

KHABC, and has the best performance on only three func-
tions (C06—CO08). Furthermore, for the worst performance,
as shown in Table 10, KHABC performs the best on eleven
functions out of twenty-one functions, and CCS can find the
best solutions on three functions (C02, C03, and C18). For
other algorithms, DE and HSBBO have the similar perfor-
mance, and perform the best on two functions (C07, CO8 and
C04, C14). For the Std of eleven algorithms on twenty-one
constrained functions, although CCS and de have the mini-
mum Std on four functions, they are far worse than KHABC,
which can find the solutions within the least range on ten
functions. This indicates that KHABC is more suitable algo-
rithm to solve the real world problems.

5.2.2 Comparisons with other optimization methods by
using t-test

According to the final function values of fifty independent
runs on 30-D twenty-one CEC 2017 constrained functions
as shown in Sect. 5.2.1, the ¢ values on thirteen test prob-
lems of the two-tailed test with the 5% level of significance
between KHABC method and other ten metaheuristic meth-
ods are provided in this section. The results are recorded
in Table 12. In Table 12, the value of ¢ with 98 degrees of
freedom is significant at « = 0.05 by a two-tailed test. The
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Table 12 Comparisons between

ARG arg mbarisons beiwe CcCS  DE ES  GA HS  HSBBO KHE MBA PSO  VNBA
?or__tvgé:?)?y?grfetg]géaggii; fests gy 440 3676 3481 1910 3680 1077 1837 15.66 2680 17.73
constrained benchmark co2 351 4524 30.85 2082 3913 1100 1953 13.00 2628 16.87
functions C03  —200 2602 2548 1403 21.03 403 1204 1413 1932 14.10
Co4 2331 1702 5071 3143 5051 440 1059 485 3334 18.92
05 1432 1977  31.65 1208 3161 273 1356 6.16  17.96 1035
C06 291  —053 4015 —1850 4273 —3.12 1036 2173 3387 —3.63
C07  —13.04 —1982 1811 —17.01 1393 —037 494 570 1050 031
o8 089 —583 3081 —860 23.62 —1.06 8.08 1905 20.18 —1.13
C09 769 —414 889 225 1548 —290 814 1778 1488 —548
Cl0 1269 2623 5680 2723 5474 271 1233 2136 2939 1491
clt 9.56 2245 2885 1140 3403 588  17.68 12.68 1952  7.12
c12 938  49.68 5727 3400 5883 1213 1040 2337 3408 1972
C13 1138 2489 4600 2575 6115 316 1328 2175 3402 19.57
Cl4 9.65 17.14 5254 2821 5387 —1.05 672 1556 3153 15.53
Cl15 9.97  39.13 5260 3147 5076 217 1797 21.10 28.61 17.89
Cl6 825 2505 2795 1114 2918 428 1774 1078 1654 10.27
C17 5.25 871 734 789 827 643 840 —196 832 10.18
C18 346 2831 4353 2478 4095 637 1133 1742 2498 2146
C19 991  41.16 5965 31.17 67.82 841  17.83 2648 3674 22.30
C20 1103 2815 53.01 27.84 5634 590 1822 1723 2774  12.66
C21 9.69 3551 4841 2725 5753 420 1635 1827 2565 1691
Better 18 17 21 17 21 16 21 20 21 17
Equal 2 1 0 0 0 3 0 1 0
Worse 1 3 0 4 0 2 0 0 0

Table 13 CEC 2011 real world application problems

No. Function

RO1 Parameter estimation for

frequency-modulated (FM) sound waves

RO2 Lennard-Jones potential problem

RO3 Optimal control of a non-linear stirred
tank reactor

RO4 Tersoff potential for model Si (B)

ROS5 Spread spectrum radar polly phase

RO6* DED instance 1

RO7% ELD instance 1

RO8? ELD instance 2

R09? ELD instance 3

R10? ELD instance 4

4 f06—f10 are five instances of the ELD problems in CEC 2011. DED
and ELD denote dynamic economic dispatch and economic load dis-
patch, respectively

resultis highlighted in bold font for showing the better perfor-
mance of KHABC w.r.t. comparative method. The “Better”,
“Equal”, and “Worse” in the last three rows indicate bet-
ter than, equal to and worse performance respectively of the

@ Springer

KHABC as compared to the comparative one. Here, the com-
parison between KHABC and HSBBO is taken an example.
KHABC has better and worse performance than HSBBO on
sixteen and two test problems, respectively. The performance
between KHABC and HSBBO has no significant differences
on two test problems. To summarize, it can be said that
KHABC outperforms HSBBO on most test problems. In
addition, for KHABC and CCS, CCS yields better and worse
performance than KHABC on one and eighteen test problems
respectively and they have similar performance on two test
problems. The two examples above indicate that KHABC
significantly outperforms HSBBO and CCS on almost all
the benchmarks. Looking carefully at the results as shown
in Table 12, it is safe to say, KHABC is a competitive and
promising method on most cases when compared to the other
ten methods.

5.3 Real world problems

The target of designing a new metaheuristic algorithm is to
solve the practical engineering problems. Therefore, except
the benchmark evaluation conducted in Sects. 5.1 and 5.2, ten
real world problems selected from CEC 2011 (RO1-R10) is
used to further verify the proposed KHABC algorithm.
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Table 14 Best function values of ten CEC 2011 real world application problems

CCS DE ES GA HS HSBBO KHE KHABC MBA PSO VNBA
RO1 15.61 23.12 23.53 14.85 20.80 12.24 17.20 12.31 10.75 22.14 19.51
RO2 —7.95 —8.37 —5.42 —12.34 —9.12 —8.30 —10.02 —17.61 —13.03 —4.02 —8.70
RO3 14.37 14.38 13.95 17.56 14.34 14.76 14.33 13.77 13.94 13.94 18.78
RO4 203.20 173.40 368.70 355.50 214.30 209.60 203.20 —17.65 98.79 539.30 222.90
RO5 1.50 1.87 2.12 1.01 1.84 1.56 1.54 0.50 1.14 1.83 1.80
RO6 2.19E6 1.78E8 2.23E8 4.70E6 2.03E8 1.06E6 3.49E7 1.86E6 4.63E6 6.00E7 8.29E7
RO7 1.55E4 1.57E4 1.52E4 1.57E4 1.54E4 1.55E4 1.55E4 1.55E4 1.55E4 1.50E4 1.53E4
RO8 1.95E4 1.98E4 1.85E4 1.97E4 1.97E4 1.92E4 1.96E4 1.85E4 1.94E4 1.95E4 1.80E4
R0O9 3.21E4 3.32E4 4.05E4 3.29E4 6.90E4 3.36E4 3.36E4 3.35E4 8.83E4 4.65E4 3.38E4
R10 1.37E5 1.41E5 1.55E5 1.36E5 3.11E5 1.43E5 1.32E5 1.53E5 1.37E7 4.53ES 1.51E5
Total 2 0 1 0 0 1 0 5 1 0 0
Table 15 Mean function values of ten CEC 2011 real world application problems

CCS DE ES GA HS HSBBO KHE KHABC MBA PSO VNBA
RO1 24.40 25.45 28.54 24.13 26.50 24.21 23.96 22.31 22.98 26.71 27.39
RO2 —5.51 —5.18 —2.08 24.56 —5.58 —-5.32 —5.49 —13.09 —7.07 —0.38 -5.27
RO3 18.21 19.69 20.51 21.20 20.01 20.47 18.99 18.96 19.68 18.16 21.86
RO4 487.60 646.30 434.70 400.30 652.00 513.10 618.10 83.11 462.10 804.90 675.40
RO5 2.01 2.17 2.67 1.72 2.25 1.93 2.06 1.38 1.57 2.32 2.28
RO6 2.93E6 2.20E8 2.84E8 9.93E6 2.51E8 3.92E6 5.62E7 2.13E6 4.35E7 1.00E8 2.79E8
RO7 1.50E4 1.56E4 1.94E4 1.59E4 2.10E4 1.52E4 1.53E4 1.50E4 5.77E4 1.70E4 2.37E4
ROS8 1.92E4 2.61E4 1.89E4 2.29E4 3.11E4 2.56E4 2.46E4 1.91E4 1.95E4 291E4 4.54E4
R0O9 4.38E4 3.35E4 1.97E5 3.79E5 3.28E5 1.98E5 1.07E5 2.12E5 2.45E6 2.74E5 3.48E5
R10 1.41E5 1.61E5 9.19E5 1.58E5 2.30E7 1.63E5 2.09E5 1.22E6 5.35E7 1.71E7 5.82E5
Total 1 1 1 0 0 0 0 6 0 1 0
Table 16 Worst function values of ten CEC 2011 real world application problems

CCS DE ES GA HS HSBBO KHE KHABC MBA PSO VNBA
RO1 27.717 27.18 30.46 31.01 29.71 31.01 28.11 27.79 27.75 29.01 30.54
RO2 —3.09 —2.61 —0.55 1.05E3 —2.81 —1.53 —2.63 —9.78 —4.73 5.03 —1.82
RO3 21.01 21.08 21.89 22.44 2291 21.74 21.54 21.08 21.08 21.08 24.47
RO4 613.80 1.18E3 542.70 473.60 1.14E3 1.16E3 1.56E3 347.10 746.50 1.21E3 1.12E3
ROS 2.45 2.38 3.08 2.37 2.52 2.39 2.46 1.84 222 2.76 2.68
RO6 8.45E6 2.62E8 3.36E8 4.08E7 2.87E8 7.59E6 7.87E7 2.46E6 1.86E8 1.53E8 3.73E8
RO7 1.57E4 1.50E4 3.52E4 1.53E4 6.34E4 1.53E4 1.57E4 1.55E4 2.36E5 3.18E4 2.75E5
ROS8 2.03E4 4.44E4 1.95E4 3.20E4 7.04E4 3.76E4 4.82E4 1.99E4 1.99E4 5.77E4 1.19E5
R0O9 1.74E5 3.36E4 3.68E5 2.82E6 1.21E6 4.94E6 3.22E5 5.81E5 1.21E7 5.02E5 5.02E6
R10 1.67E5 2.76E5 2.84E6 1.83E5 4.99E7 2.02E5 4.61E5 1.91E7 9.25E7 3.32E7 2.63E6
Total 3 2 1 0 0 0 0 4 0 0 0

5.3.1 Performance

Ten selected CEC 2011 real world problems can be shown in
Table 13. More information about these real world problems

can be found in [36]. Their best, average, worst, and Std
values through fifty independent runs are recorded, as shown
in Tables 14, 15, 16 and 17.
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Table 17 The Std of ten CEC 2011 real world application problems

ccs DE ES GA HS HSBBO  KHE KHABC  MBA PSO VNBA
ROI 238 0.89 1.52 3.36 1.86 3.58 2.44 3.53 3.94 1.30 2.46
RO2  1.19 1.12 1.08 15470 138 1.28 1.28 1.85 1.78 1.79 1.36
RO3 250 2.45 1.92 0.71 2.40 1.66 2.82 2.95 242 2.59 0.92
RO4 10150 21620 3937 31.25 25220 163.60 28400 8334 12030 137.10 22430
RO5S 021 0.14 0.24 0.33 0.17 0.20 0.22 0.28 0.23 0.17 0.19
RO6  129E6  20SE7  2.19E7  7.54E6  1.92E7  1.90E6 1.03E7  1.08E5 331E7  230E7  7.47E7
RO7T  29.99 66.31 462E3  97.60 7.46E3  46.81 47.42 37.00 532E4  271E3  3.84E4
ROS 30950  6.40E3 14690  3.46E3  1.08E4  4.68E3 601E3  174.10 16690  1.04E4  2.98E4
RO9  271E4 13110  820E4  607ES  178E5  7.29ES 7.11E4  132ES 29586  9.92E4  9.02ES
RI0  7.01E3  203E4  7.13E5  1.01E4  130E7  1.13E4  749E4  2.99E6 196E7  9.65E6  4.62E5
Total 2 3 2 2 0 0 0 1 0 0 0
Table 18 Comparisons between
KHABC and oiarsars Jee CCS  DE ES GA HS HSBBO KHE MBA PSO  VNBA
?or:te?{()cs}s?gotﬁor_ézillisotri:iem ROl 346 610 1145 264 742 267 272 089 827 835
application problems RO2 2440 2584 3632 172 2299 2442 2388 16.60 3495 24.11
RO3  —136 136 312 523 196  3.16 006 134 —143 6.64
RO4 2177 1718 2698 2520 1515 1656 1278 1831 3181 17.51
RO5S 1262 1774 2450 547 1861 1115 1345 358 1994 18.53
RO6 456 7847 9472 731 9429  6.50 3646  8.60  29.56  25.82
RO7 048 627 542 658 541  3.07 374 564 498 150
ROS 415 752  -985 711 814 885 593 122 7.05 627
ROY  -878 -950 —0.88 1.83  3.68 —0.18  —483 547 264  1.06
RI0O  —270 -266 —086 —268 1111 —2.65 —254 1843 1140 —1.64
Better 6 7 7 7 9 8 7 7 9 7
Equal 2 1 2 2 1 | | 3 1 3
Worse 2 2 1 1 0 1 2 0 0 0

From Table 13, it can be seen that CCS has the best perfor-
mance on two of the ten real world problems, while KHABC
performs the best on five functions which is much better than
CCS. For average solutions shown in Table 14, KHABC can
find the best results on six of the ten real world problems,
while CCS, DE, ES, and PSO have the similar performance,
and all of them have the best performance on only one real
world problem (R10, R09, RO8, and R03). Furthermore, for
the worst performance, as shown in Table 15, KHABC per-
forms the best on four out of ten real world problems, and
CCS, DE, and ES rank two, three, and four, respectively,
which can find the best solutions on three, two, and on real
world problems (C02, C03, and C18). For the Std of eleven
algorithms on ten real world problems, DE has the best per-
formance and has the minimum Std values on three real world
problems. CCS, DE, and GA have the similar performance,
and they can find the solutions with the minimum Std values
on two real world problems. KHABC can find the solutions
within the least range on one real world problem.

@ Springer

5.3.2 Comparisons with other optimization methods by
using t-test

According to the final function values of fifty independent
runs on ten CEC 2011 real world problems, as shown in
Sect. 5.3.1, the ¢ values on ten real world problems of the two-
tailed test with the 5% level of significance between KHABC
method and other ten metaheuristic methods are provided in
this section. The results are recorded in Table 18. In Table 18,
the value of ¢ with 98 degrees of freedom is significant at
a = 0.05 by atwo-tailed test. The result is highlighted in bold
font for showing the better performance of KHABC w.r.t.
comparative method. The “Better”, “Equal”, and “Worse” in
the last three rows indicate better than, equal to and worse
performance respectively of the KHABC as compared to the
comparative one. Here, the comparison between KHABC
and CCS is taken an example. KHABC has better and worse
performance than CCS on six and two real world problems,
respectively. The performance between KHABC and CCS
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has no significant differences on two real world problems.
To summarize, it can be said that KHABC outperforms CCS
on most real world problems. In addition, for KHABC and
VNBA, VNBA yields worse performance than KHABC on
seven real world problems and they have similar perfor-
mance on three RWPs. The two examples above indicate
that KHABC significantly outperforms CCS and VNBA on

almost all the benchmarks. Looking carefully at the results as
shown in Table 18, it is safe to say, KHABC is a competitive
and promising method on most cases when compared to the
other ten methods.

Furthermore, in order to prove the advantages of KHABC
method over other algorithms, convergence maps of the five
selected representative methods (CCS, HSBBO, KHABC,

@ Springer
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Fig. 5 continued
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MBA, and VNBA) on thirty-four benchmark problems (FO1—
F13, and CO1-C21) are given in Fig. 5. It can be observed
from Fig. 5, that KHABC is capable of finding minimum
on most benchmark functions. For other four algorithms,
HSBBO is little inferior to KHABC, though HSBBO has
the similar performance with KHABC on some benchmark
functions.
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All the experiments conducted in this section have proven
the effectiveness and efficiency of the proposed KHABC
algorithm. This also indicates KHABC is a promising, robust
optimization strategy for unconstrained, constrained, and real
world problems.
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is tested using twenty-five high-dimensional test problems,
as well as a discrete problem. The results clearly demon-
In the present study, a hybridization of the KH and ABC strate the superiority of KHABC over KH, ABC, and other
methods, namely KHABC, is proposed for the continuous  meta-heuristic algorithms. However, there are quite a few
and discrete optimization. The KHABC integrates the capa-  issues that merit further investigation such as analyzing
bilities of the KH and the ABC in order to stop all krill from  the parameters used in the KHABC method. The future
being attracted to local values. Moreover, a focused elitism  study can focus on solving a more ubiquitous set of dif-
scheme is applied to the method to further enhance its per-  ferent continuous optimization and discrete problems. The
formance. The effectiveness of the proposed methodology =~ combination of other search strategies based on various

6 Conclusions

@ Springer
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robust meta-heuristic techniques, such as the ACO and
PSO, is a direction that is worth investigation. Finally, the
study of CPU time used by the meta-heuristic approaches
needs attention in order to make the proposed method
more feasible for solving the practical engineering prob-
lems.
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