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Abstract This paper proposes an improved weighted
extreme learning machine (IW-ELM) for imbalanced data
classification. By incorporating voting method into weighted
extreme learning machine (weighted ELM), three major
steps are involved in the proposed method: training weighted
ELM classifiers, eliminating unusable classifies to determine
proper classifiers for voting, and finally determining the clas-
sification result based on majority voting. Simulations on
many real world imbalanced datasets with various imbal-
ance ratios have demonstrated that the proposed algorithm
outperforms weighted ELM and other related classification
algorithms.
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1 Introduction

The problem of classification for imbalanced data is one of
the top ten studied areas in the data mining and machine
learning field today [1]. Imbalanced data classification typ-
ically refers to a problem with the classes not equally
represented. Applications of imbalanced data classification
include a wide variety of “real-world” problems such as
detecting fraudulent transactions of credit cards or charac-
terizing the recurrence of breast cancer in patients. Most of
classic imbalance studies focus on two-class (binary) classi-
fication since multi-class can be decomposed into multiple
two-class. Commonly in a two-class classification problem,
the majority of data are labeled as the “negative” class
while the minority are the “positive” class. Because most
of the standard classification learning algorithms [2–4] are
designed to tackle balanced datasets, the small “positive”
class is often underrepresented when these algorithms are
being applied directly on imbalanced datasets. An excel-
lent accuracy may be achieved due to correct classification
for almost all samples, but the accuracy only reflects the
underlying class distribution and therefore could be a mis-
leading performancemeasure.Moreover, the positive classes
usually have higher interest or importance than the neg-
ative class and oftentimes imply higher misclassification
cost.

Many techniques have been developed recently to com-
bat imbalanced data classification in machine learning.
These techniques can be categorized as either data resam-
pling methods or algorithmic approaches. Data resampling
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methods aim to balancing data before applying standard
classification learning algorithms. Two well-known strate-
gies can be utilized—oversampling or undersampling. Syn-
thetic minority over-sampling technique (SMOTE) [5] is
an example of oversampling, in which new data sam-
ples are generated between the minority data and their
selected neighbors. Tomek links method [6] and Wilson’s
editing [7] are undersampling methods, in which a frac-
tion of the majority data are removed. Balancing data by
resampling is helpful in reducing misclassification error,
however, the effectiveness is not consistent but problem
dependent [8]. On the other hand, new machine learn-
ing classification algorithms or modification of existing
ones are also developed, such as one-class classifiers [9]
and cost-sensitive learning [10]. As a popular algorithmic
approach, cost-sensitive classifier incorporates cost sensi-
tivity into machine learning process, i.e., a different mis-
classification cost is assigned for each particular example
[11]. However, cases may arise in the real world applica-
tions when the misclassification cost matrix is difficult to
generate.

Zong et al. [12] proposed a competitive cost-sensitive
learning approach to automatically generate the misclassi-
fication cost matrix in accordance with class distribution,
known as weighted extreme learning machine (weighted
ELM). Aweighting that is inversely proportional to the num-
ber of samples is assigned, which strengthens the impact of
the positive class in imbalanced datasets. While maintaining
the advantages from the original unweighted ELM, i.e., con-
venient implementation and easy application on multi-class
data classification, weighted ELM demonstrates better per-
formance on imbalanced datasets compared to unweighted
ELM (i.e., ELM). However, the weighting schemes pre-
sented in Zong et al. induce a certain amount of misclassified
samples from the negative class in compromise for a better
accuracy in the positive class. Therefore, other ELM based
approaches have been proposed. For instance, Zhang and Ji
[13] developed fuzzy ELM (FELM): a fuzzy matrix is cre-
ated to change the distributions of penalty factors. However,
a unified design strategy for generating the fuzzy matrix is
unpresented. In [14], Li et al. developed a Boosting weighted
ELM, in which weighted ELM is embedded into a modi-
fied AdaBoost framework in order to obtain proper weights.
But the computational complexity of algorithm is increased
significantly due to iterations. Lin et al. [15] combined resam-
pling technique with ELM; however, its performance is
largely dependent on the adopted resampling technique.

In this paper, an improvedweightedELM(IW-ELM)algo-
rithm is proposed, in which a voting based weighting scheme
is introduced when assigning appropriate weights adaptively
for imbalanced data classification. This paper is organized
as follows. Section 2 briefly reviews the fundamental prin-
ciples of weighted ELM and its issues. Section 3 elaborates

the proposed algorithm. Experiment results are presented in
Sect. 4. Section 5 compares the computational complexity of
IW-ELM with other related classification algorithms using
real world imbalanced datasets. Section 6 draws a conclu-
sion.

2 Related work

The proposed algorithm is developed based on ELM and
weighted ELM. The basic principles of ELM and weighted
ELM are reviewed in Sects. 2.1 and 2.2 respectively. Sec-
tion 2.2 also presents the problems related to weighted ELM
when classifying imbalanced datasets.

2.1 Unweighted ELM

Least square based learning algorithm named ELM [16] was
originally proposed for single layer feedforward networks
(SLFNs), where input weights of a SLFN are randomly gen-
erated, and output weights are trained with batch learning
technique of least squares. It has been proved that SLFNs
with randomly hidden neurons and tunable output weights
have universal approximation and excellent generalization
performance [17].More importantly, ELMoutperformsmost
existed learning algorithms in training speed [18–22] and
it has been widely used in applications of face recogni-
tion [23], image processing and classification[24], electricity
price classification [25], energy commodity futures index
forecast [26], location fingerprinting technique [27], protein
sequence classification [28], and location classification [29].

The basics of unweighted ELM are briefly outlined as
follows:

For any input data x ∈ Rn , the output of a standard SLFN
with L hidden nodes can be written as

H (x) =
∑L

i=1
β i G (wi , bi , x) , wi ∈ Rn, β i ∈ Rm,

where β i = [βi1, βi2, . . . , βim]T is the weight vector
connecting the i th hidden node to the output nodes, and
G (wi , bi , x) is the output of the i th hidden node.

Consider a set of training pairs with N inputs x1, x2, . . . ,
xN (here xi ∈ Rn), and N target output t1, t2, . . . , tN (here
ti ∈ Rm), respectively. The mathematical model of a SLFN
is

Hβ = T (1)

with

H =
⎛

⎜⎝
G(w1, b1, x1) · · · G(wL , bL , x1)

...
. . .

...

G(w1, b1, xN ) · · · G(wL , bL , xN )

⎞

⎟⎠ , (2)
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Similar to least squares support vector machine (LS-
SVM), the output can be formulated by finding the solution
for an optimization problem:

Minimize
1

2
‖β‖2 + C

2
‖εi‖2 , (3)

subject to εi = H (xi )β − ti , i = 1, 2, . . . , N , (4)

where εi is the training error vector of the m output nodes
with respect to the training sample and C is a positive real
regularization parameter.

By solving optimization problem (3), the least square solu-
tion can be determined as:

when N < L : β = H̃
+
T = HT

(
1

C
I + HHT

)−1

T,

when N ≥ L : β = H̃
+
T =

(
1

C
I + HTH

)−1

HTT. (5)

Similar to other conventional learning algorithms, the per-
formance of unweighted ELM is highly dependent on class
distribution. It performs well with balanced datasets, but
imbalanced classification may be problematic. Intuitively,
the negative class tends to push the separating boundary
towards the positive class side to obtain better classifica-
tion accuracy for itself (see [12] for more detailed analyses).
Weighted ELM algorithm [12] was developed to overcome
this problem.

2.2 Weighted ELM

As a cost-sensitive learning algorithm, weighted ELM
assigns different weights for each example to minimize mis-
classification of positive samples and associated cost errors.
That is, in weighted ELM, the goal is to maximize the
marginal distances:

Minimize
1

2
‖β‖2 + C

2
W ‖εi‖2 , (6)

subject to εi = H (xi )β − ti , i = 1, 2, . . . , N , (7)

whereW is amisclassification costmatrix in accordancewith
class distribution.

Similar to (5), solutions of β can be obtained:

when N < L: β = HT
(
1

C
I + WHHT

)−1

WT,

when N ≥ L: β =
(
1

C
I + HTWH

)−1

HTWT. (8)

In [12], two cost matrices W1 and W2, were proposed.

Weighting scheme W1 : Wi,i = 1

#(ti )
, i= 1, 2, . . . ,m, (9)

where #(ti ) is the number of samples in class ti .
The imbalanced datasets reach a cardinal balance when

scheme W1 is applied.
In comparison, another weighting scheme

W2 :

⎧
⎪⎨

⎪⎩

Wi,i = 1
#(ti )

, if ti > AVG,

Wi,i = 0.618
#(ti )

, if ti ≤ AVG,

where the golden ratio—0.618—is used and the AVG indi-
cates the averaged sample size per class. Actually W2 is a
trade-off between unweighted ELM and weighted ELMW1.

After applying weighting scheme W1 or W2 into
unweighted ELM, weighted ELM reduces the misclassifica-
tion error associated with the small positive class. In another
word, the weighting scheme pulls the boundary back towards
the negative class side so that additional positive class sam-
ples can be correctly classified.

However, assigning higher weights to the positive class
simply implies lowering the weights of the negative class. In
fact, if the weights of the positive class are too high, then the
classification accuracy in the negative class reduces. How-
ever, if the weights of the positive class are not high enough,
then the classification accuracy in the positive class may be
unsatisfactory. As noted in [12], a certain amount of sam-
ples from the negative class are misclassified in compromise
for a better accuracy in the positive class. Therefore, the key
point is to, prior to applying weighted ELM, determine an
optimal weight or the most accurate position in the negative
class side where the boundary should be pushed towards.
However, this is generally not possible because the optimal
weight is problem dependent. As shown in Table 1, different
weights are evaluated when applying weighted ELM algo-
rithm. Out of 46 tested datasets, only 11 happen to have the
optimal weights as W1 or W2.

3 Description of IW-ELM

Since it is not practical to determine an optimal weight
when designing a weighted ELM classifier in advance,
in IW-ELM, we propose to use a series of “appropriate”
weights in place of a single W1 or W2 for imbalanced
data classification. For convenience, only binary classifi-
cation problems are considered. Assume t1 is the positive
class and t2 is the negative class, a = 1

#(t1)
, bi =

123



30 Memetic Comp. (2019) 11:27–34

Table 1 Performance results of binary problems with imbalance ratio ∈ (0.0078, 0.8605)

G-mean value (%) Unweighted ELM Weighted ELMW1 or W2 Optimal weighted ELM VW-ELM IW- ELM

Testing result Testing result Optimal weight Testing result Testing result Testing result

abalone19 47.52 77.19 W̃8 85.85 81.21 85.68

yeast6 70.77 88.29 W̃7 93.4 90.94 93.93

yeast5 81.04 95.39 W̃3 96.1 96.56 97.95

yeast-1-2-8-9_vs_7 59.23 75.83 W̃5 82.15 77.93 79.65

yeast4 65.52 87.29 W̃11 90.68 86.56 89.84

shuttle-c2-vs-c4 93.54 100 W̃2 100 99.19 100

glass5 90.81 96.60 W̃3 98.77 97.86 97.77

yeast-2_vs_8 72.83 76.01 W̃8 93.33 85.93 92.66

yeast-1-4-5-8_vs_7 61.07 67.10 W̃8 71.68 69.61 72.23

glass-0-1-6_vs_5 92.41 98.70 W̃2 100 100 100

abalone9-18 75.29 88.72 W̃3 96.31 92.54 94.65

page-blocks1 97.78 98.98 W̃6 98.94 100 100

glass4 85.72 91.46 W̃7 98.77 94.79 98.35

ecoli4 91.96 97.83 W̃3 98.43 98.78 98.26

yeast-1_vs_7 65.58 77.26 W̃8 84.1 80.74 82.69

shuttle-c0-vs-c4 100 100 W̃4 100 100 100

glass2 79.49 83.34 W̃10 82.16 86.72 84.07

glass-0-1-6_vs_2 67.78 83.77 W̃8 81.06 85.65 80.07

vowel0 100 100 W̃2 100 100 100

yeast-0-5-6-7-9_vs_4 64.49 81.05 W̃10 85.39 83.56 87.57

yeast-2_vs_4 86.25 91.56 W̃4 96.72 89.32 94.56

page-blocks0 89.92 93.40 W̃11 97.09 93.98 96.74

ecoli3 77.38 90.17 W̃3 93.21 90.78 91.68

yeast3 80.75 93.25 W̃8 93.91 95.41 91.04

glass6 94.96 95.90 W̃5 98.64 97.08 98.36

segment0 99.24 99.75 W̃9 99.87 98.53 100

ecoli2 91.17 94.51 W̃9 97.33 96.06 96.75

newthyroid1 98.24 99.72 W̃9 100 100 100

newthyroid2 95.55 100 W̃7 100 100 100

ecoli1 87.88 90.69 W̃3 93.03 89.22 91.7

glass-0-1-2-3_vs_4-5-6 90.67 94.68 W̃7 96.92 95.91 97.43

vehicle0 98.57 99.32 W̃3 99.61 99.67 99.21

adult 73.86 81.67 W̃9 88.72 84.57 86.47

vehicle3 78.15 85.13 W̃6 84.92 85.67 86.63

vehicle1 79.29 85.30 W̃7 87.7 85.35 86.86

vehicle2 98.43 99.12 W̃4 100 100 100

haberman 49.16 65.11 W̃6 64.95 67.91 64.72

yeast1 63.26 72.57 W̃7 76.27 73.76 75.39

Leukemia(Gene Sel) 100 100 W̃6 100 100 100

glass0 79.61 82.62 W̃3 91.24 85.66 89.59

Iris0 100 100 W̃6 100 100 100

pima 70.10 74.74 W̃4 85.25 79.16 83.22

wisconsin 96.32 97.07 W̃5 98.57 97.49 98.98
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Table 1 continued

G-mean value (%) Unweighted ELM Weighted ELMW1 or W2 Optimal weighted ELM VW-ELM IW- ELM

Testing result Testing result Optimal weight Testing result Testing result Testing result

glass1 78.36 79.32 W̃2 81.83 80.33 85.75

Colon(Gene Sel) 85.28 85.28 W̃9 90.32 88.32 89.15

banana 88.98 89.13 W̃9 92.34 91.34 94.66

Data sets are listed from low to high ratio

1
#(t1)+{#(t2)−#(t1)}× 1

k−1×(i+ k−1
2 )

, (i = 0, 1, . . . , k − 1) .Thepro-

posed method is implemented in three major steps.

Step 1 k different weight matrices are first selected:

W̃ i = W+
i + W−

i , (10)

where W+
i = diag

⎛

⎜⎝0, 0, · · · , 0︸ ︷︷ ︸
#(t2)

, a, a, · · · , a︸ ︷︷ ︸
#(t1)

⎞

⎟⎠ , W−
i =

diag

⎛

⎜⎝bi , bi , · · · , bi︸ ︷︷ ︸
#(t2)

, 0, 0, · · · , 0︸ ︷︷ ︸
#(t1)

⎞

⎟⎠ , i = 0, 1, . . . , k − 1.

Note that when i is equal to k−1
2 , W̃ i becomes the weight

matrixW1 in Eq. (9).

Step 2 k weighted ELM classifiers are trained correspond-
ing to the selected k weight matrices in Step 1.

It is expected that some of the classifiers are not usable—
they may induce significant false-negative errors or false-
positive errors. In order to eliminate those unusable classi-
fiers, for each classifier, the number of positive classification
determined is recorded. Then

⌈ k
4

⌉
classifiers correspond-

ing to the biggest
⌈ k
4

⌉
numbers are rejected since they are

very likely biased towards the positive class (� � is rounding
up function ). Similarly, based on the number of negative
classification recorded,

⌈ k
4

⌉
classifiers corresponding to the

biggest
⌈ k
4

⌉
negative classification numbers are rejected as

well because of the high possibility of misclassifying too
many positive samples.

Step 3Upon removing
⌈ k
2

⌉
unusable classifiers, an ensem-

ble composed of remaining classifiers is generated and
majority voting is used to classify samples.

Note that the proposed algorithm and voting based
extreme learning machine (V-ELM) proposed by Cao et al.
in [30] are significantly different even though both are voting
based techniques. V-ELM is an algorithm targeted towards
balanced datasets, in which classifiers are first trained with
unweighted ELM algorithm then the results are averaged by
majority voting on classifying samples. V-LEM needs to be
modified for imbalanced data classification. One intuitive
technique is to combine weighted ELM into V-ELM. We

name this method VW-ELM, in which the results are aver-
aged from weighted ELM classifiers (schemeW1 orW2). It
is known that the classifiers in an effective ensemble need to
be “good and different”. That is to say, every single classifier
in the ensemble should have a certain level accuracy for clas-
sification while maintaining some dissimilarity from others.
Although the single weighted ELM classifier in VW-ELM
possibly performs better, the similarity of some classifiers
makes VW-ELM unsatisfactory.

4 Performance evaluation

In this section, the performance of the proposed IW-ELM
is compared with unweighted ELM, weighted ELM W1,
weighted ELM W2, and VW-ELM using fivefold cross-
validation. The results of unweighted ELM are quoted from
Table 3 and Table 4 in [12] directly. For weighted ELM W1

and weighted ELM W2, the one with better performance is
chosen from Table 3 and Table 4 in [12]. All experiments are
conducted in MATLAB (R2014, 64bit) on a Window 10 OS
with Intel Core i7-2620M 2.70GHz GHZ CPU and 12 GB
RAM.

4.1 Data specification

For comparison purposes, the proposed IW-ELM are evalu-
ated using the same 46 binary classification datasets as listed
in Table 1 in [12], with the attributes normalized into [−1, 1]
and various imbalance ratios ranging from 0.0078 to 0.8605.
Note that the imbalance ratio (IR) of binary classes is defined
as:

IR = #(t1)

#(t2)
. (11)

4.2 Parameter settings

For convenience, the proposed algorithm is tested on Sig-
moid additive node with a Sigmoid additive activation
function defined as G (a, b, x) = 1

1+exp(−a.x+b) . There
are two parameters to tune: the trade-off constant C and
the number of hidden nodes L . A grid search of C on
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Table 2 The values of trade-off constant C and the number of hidden nodes L corresponding to the results in Table 1

Data sets Unweighted ELM Weighted ELMW1 or W2 Optimal weighted ELM VW-ELM IW- ELM

abalone19 (242,990) (26,150) (210,10) (26,150) (230,60)

yeast6 (244,350) (214,90) (210,10) (234,20) (240,310)

yeast5 (236,90) (230,100) (220,10) (230,100) (210,710)

yeast-1-2-8-9_vs_7 (242,880) (242,20) (220,110) (242,20) (20,310)

yeast4 (242,960) (26,20) (220,60) (26,20) (210,110)

shuttle-c2-vs-c4 (240,20) (231,10) (20,10) (231,10) (210,10)

glass5 (220,90) (210,40) (220,60) (210,110) (220,50)

yeast-2_vs_8 (20,290) (28,60) (240,60) (21,960) (220,10)

yeast-1-4-5-8_vs_7 (244,970) (210,120) (230,10) (210,120) (210,60)

glass-0-1-6_vs_5 (218,660) (26,960) (250,60) (26,960) (220,110)

abalone9-18 (240,150) (232,20) (230,60) (216,70) (20,360)

page-blocks1 (210,440) (230,30) (230,30) (225,40) (235,30)

glass4 (234,30) (210,140) (20,10) (212,120) (230,160)

ecoli4 (222,60) (26,180) (210,60) (26,180) (232,70)

yeast-1_vs_7 (240,960) (216,550) (230,10) (216,550) (210,10)

shuttle-c0-vs-c4 (214,10) (238,10) (230,10) (238,10) (250,10)

glass2 (228,110) (224,130) (250,110) (222,140) (210,60)

glass-0-1-6_vs_2 (234,150) (214,380) (230,110) (214,380) (250,60)

vowel0 (228,110) (250,120) (240,110) (228,110) (210,410)

yeast-0-5-6-7-9_vs_4 (232,390) (2−2,150) (210,10) (2−2,150) (220,60)

yeast-2_vs_4 (236,280) (226,940) (210,10) (226,940) (250,60)

page-blocks0 (234,830) (224,820) (250,60) (222,750) (240,310)

ecoli3 (244,70) (246,10) (220,110) (246,10) (212,100)

yeast3 (240,100) (216,700) (240,110) (216,700) (220,40)

glass6 (246,450) (226,190) (220,10) (244,30) (234,30)

segment0 (28,720) (218,870) (220,60) (218,870) (210,460)

ecoli2 (236,60) (230,20) (210,70) (228,40) (250,60)

newthyroid1 (218,180) (220,20) (210,60) (218,30) (216,160)

newthyroid2 (218,40) (212,480) (20,10) (216,290) (210,160)

ecoli1 (216,140) (24,320) (20,160) (24,320) (210,10)

glass-0-1-2-3_vs_4-5-6 (28,140) (210,290) (20,10) (210,290) (220,160)

vehicle0 (210,460) (216,850) (220,310) (216,850) (222,470)

adult (210,580) (24,840) (28,500) (210,550) (216,800)

vehicle3 (28,450) (214,710) (214,710) (214,710) (250,210)

vehicle1 (28,570) (214,450) (230,110) (214,450) (210,410)

vehicle2 (212,600) (216,800) (230,160) (216,800) (230,210)

haberman (244,910) (234,10) (224,10) (234,130) (240,10)

yeast1 (244,300) (226,120) (210,60) (226,120) (220,60)

Leukemia (Gene Sel) (210,100) (210,100) (210,100) (220,80) (28,120)

glass0 (214,950) (222,710) (210,110) (222,800) (226,170)

Iris0 (2−2,10) (22,10) (22,10) (22,15) (22,30)

pima (232,30) (214,20) (224,50) (218,40) (216,10)

wisconsin (234,50) (234,60) (220,60) (234,60) (22,440)

glass1 (216,440) (222,240) (216,120) (222,900) (250,60)

Colon(Gene Sel) (2−12,940) (2−6,320) (2−8,800) (2−6,700) (2−14,900)

banana (224,50) (234,50) (220,60) (228,100) (234,80)
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{
2−18, 2−16, . . . , 248, 250

}
and L on {10, 20, . . . , 990, 1000}

is conducted in order to find the optimal result. The value of
k in Eq. (10) is defined as 11, thus the number of remain-
ing classifiers is 5. In order to make a fair comparison, the
number of classifiers used in VW-ELM is also 5. C and L
corresponding to the optimal result in our experiments are
shown in Table 2.

4.3 Evaluation metrics for imbalanced datasets

Due to the possible presence of significant class imbalance,
i.e., negative samples outnumber positive samples by a large
margin, accuracy alone is not a reliable performance mea-
sure for imbalanced data classification.Other frequently used
ones include F-measure, receiver operating characteristic
(ROC) curve and geometric mean of the true rates (G-mean),
etc. To compare the proposed method with weighted ELM
presented in [12], G-mean is used in this paper. For binary
classification problem, G-mean value is defined as the square
root of (positive class accuracy × negative class accuracy):

G-mean value =
√

TP

TP + FN
× TN

TN + FP
, (12)

where TP, TN, FP, FN stands for true positive, true negative,
false positive and false negative, respectively.

4.4 Experiment results

4.4.1 IW-ELM versus unweighted ELM

FromTable 1, it can be seen that the proposed IW-ELM algo-
rithm outperforms unweighted ELM. For problems with an
imbalance ratio close to 1, i.e., the datasets are relatively bal-
anced, weighted ELM does not have a significant advantage
over unweighted ELM while IW-ELM still performs better
than either one of them with higher G-mean values.

4.4.2 IW-ELM versus weighted (W1,W1)

As mentioned before, there are only 11 out of 46 datasets
happen to have the optimal weights as W1 or W2. Even for
these 11 datasets, the results of IW-ELM and weighted ELM
are still comparable because of the ensemble used in IW-
ELM.

4.4.3 IW-ELM versus VW-ELM

As seen in Table 1, VW-ELM generally performs better than
weighted ELM because of the voting strategy; and IW-ELM
has even higher successful classification rates overVW-ELM
for most of the imbalanced problems tested. This is due to
the fact that, in IW-ELM, unusable classifiers are eliminated

from the ensemble and remaining classifiers are more differ-
ent compared to the ones in VW-ELM.

5 Computational complexity

When using IW-ELM, there is a compromise between the
high accuracy achieved and the computational complexity.
Use ELM as a guideline, weighted-ELM has approximately
the same computational complexity, while the complexities
of VW-ELM and the proposed IW-ELM are higher due to
the classifier training process. Since k

2 unweighted classifiers
are trained in VW-ELM and k weighted classifies in IW-
ELM, the execution time of IW-ELM is increased by k times
compared to the original ELM.

6 Conclusions

In this paper, an improved algorithm designed for solving
binary imbalanced classification problems—IW-ELM—has
been proposed. There are three major steps in the process:
training k weighted ELM classifiers, removing

⌈ k
2

⌉
unus-

able classifiers, and determining the final result based on
majority voting of remaining classifiers. The performance
of IW-ELM (k set to be 11) is verified using 46 imbal-
anced datasets with various imbalance ratios ranging from
0.0078 to 0.8605. Simulation results demonstrated that IW-
ELMachieves higher accuracy compared to otherELMbased
algorithms.
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