
Memetic Comp. (2018) 10:29–42
https://doi.org/10.1007/s12293-017-0232-7

REGULAR RESEARCH PAPER

Guided genetic algorithm for the multidimensional knapsack
problem

Abdellah Rezoug1 · Mohamed Bader-El-Den2 · Dalila Boughaci3

Received: 24 March 2016 / Accepted: 28 April 2017 / Published online: 10 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Genetic Algorithm (GA) has emerged as a pow-
erful method for solving a wide range of combinatorial
optimisation problems in many fields. This paper presents a
hybrid heuristic approach named Guided Genetic Algorithm
(GGA) for solving the Multidimensional Knapsack Problem
(MKP). GGA is a two-step memetic algorithm composed
of a data pre-analysis and a modified GA. The pre-analysis
of the problem data is performed using an efficiency-based
method to extract useful information. This prior knowledge
is integrated as a guide in a GA at two stages: to generate the
initial population and to evaluate the produced offspring by
the fitness function. Extensive experimentation was carried
out to examine GGA on the MKP. The main GGA parame-
ters were tuned and a comparative study with other methods
was conducted on well-knownMKP data. The real impact of
GGA was checked by a statistical analysis using ANOVA,
t-test andWelch’s t-test. The obtained results showed that the
proposed approach largely improved standard GA and was
highly competitive with other optimisation methods.
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1 Introduction

Genetic Algorithm (GA) was first introduced more than four
decades ago and it is still widely used in several research
applications. GA is mainly used as a stochastic method for
solving combinatorial optimisation problems, especiallyNP-
hard problems. In many real-world problems, exact methods
fail to find good solutions in a reasonable time. GA has been
applied successfully inmany real applications aswell as vari-
ous traditional combinatorial problems [3,20,30].Originally,
GAwas inspired by the biological evolution of living species.
Starting with a randomly generated initial population of a set
of individuals, GA aims to improve the quality of the suc-
cessive generations by applying several genetic operators,
e.g. crossover and mutation. It is known that GA is relatively
simple to implement compared to several other methods, but,
is it really able to provide the best solutions? In reality, GA
is a stochastic process, so there is no guarantee of optimal-
ity, only a large number of generations and individuals can
increase the confidence in the obtained solution [28].

Several variants of GA have been proposed during the
past few decades, the main aim of many of these variations
is to improve the performance of GA and accelerate its con-
vergence in finding an optimal solution. The vast majority
of these ideas are either articulated on changing the GA
operators such as: crossover and mutation (e.g. one-point,
two-point, cut and splice, three parents, uniform, flip bit,
Boundary, non-uniform, uniform, etc.), or based on modi-
fying the GA’s evolutionary behaviour, such as: Hybrid GA
[14,26], Parallel GA [29], Genetic Programming [4,5,22],
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etc. An extensive survey of the different variations of GA is
available in [8]. The focus here is only on the methods that
are related to the guided GA concept.

This paper presents a memetic algorithm—namedGuided
GA (GGA)— for the Multidimensional Knapsack Problem
(MKP). GGA is a memetic algorithm that exploits prior
knowledge about the problem data as an intensification strat-
egy to drive the GA evolutionary process of optimisation
toward promising areas of the solutions space.

GGAis inspiredby twomain concepts: thefirst is theProx-
imate Optimality concept which assumes that in most cases,
the best solutions have a similar structure, in other words,
part of the solution may appear in all the best individuals; the
second is the Core Concept for the Multidimensional Knap-
sack Problem CCMKP [23,27] that provides a mathematical
model for ordering the items inMKP based on a compromise
between their weights (costs) and their values. GGA uses the
output of the CCMKP model as an additional guide for the
GA’s evolutionary process. The CCMKP output is used at
two stages of the evolutionary process the initialisation and
evaluation (fitness function) stages.

The paper is structured as follows: Sect. 2 provides a def-
inition of MKP and the Core concept for MKP (CCMKP).
Section 3 gives an overview of the literature review related
to the GGA. The proposed algorithm GGA is introduced in
Sect. 4. The experimental setup and the parameters tuning
are given in Sect. 5. Section 6 presents the conducted experi-
ments and the obtained results.Conclusions andfinal remarks
are drawn in Sect. 7.

2 The multidimensional knapsack problem

This section presents the MKP mathematical model adopted
in this work and provides a quick overview on the Core con-
cept for MKP [23].

2.1 Problem definition

The MKP is composed of n items and a knapsack with
m different capacities ci (i ∈ {1, . . . ,m}). Each item j
( j ∈ {1, . . . , n}) has a weight wi j on each capacity i of
the knapsack and a value p j . The goal is to pack the items
in the knapsack so as to maximise the overall value without
exceeding the capacities of the knapsack. The MKP model
can be represented by the following integer program:

Maximise :
n∑

j=1

p j x j (1)

Subject to :
n∑

j=1

wi j x j ≤ ci i ∈ {1 . . .m} (2)

x j ∈ {0, 1} j ∈ {1 . . . n} (3)

A feasible solution X for MKP represents the selected
items to be packed. A decision variable x j represent the item
j and is binary where x j = 1 means that item j is packed,
and x j = 0 means that item j is not packed in the knapsack.
wi j represents the weight of item j on dimension i .

2.2 The core concept for MKP

The Core concept for solving combinatorial and linear
programmingproblemswas specifically applied for the knap-
sack problems by Balas and Zemel [6] and later it was
extended to the MKP by Puchinger et al. [23]. The CCMKP
calculates an efficiency (score) for each variable (item) in
the MKP, the efficiency reflects the expected added value of
a variable to the final solution; a high efficiency indicates
that the variable is likely to appear in the optimal solu-
tion, low efficiency indicates that the variable is unlikely
to appear in the optimal or near-optimal solutions, while
average efficiency indicate that there is uncertainty about
the variable’s added value. Therefore, after being sorted
decreasingly according to CCMKP efficiency, the variables
are divided into three sets. The variables with high efficiency
are fixed to 1 whereas those with low efficiency are fixed to
0 and those with close efficiency represent the Core. Con-
sequently, the Core concept allows reducing the original
problem into only the Core problem.

The Core concept is based on an efficiency measure func-
tion. The aim is to assign an efficiency value to each variable,
according to its significance in producing the optimal solu-
tion, in such a way to promote those having the high values
and lowweights. Several efficiencymeasures have been used
as approximations of the efficiency function, for example,
simple efficiency (esimple

j ) [12], scaled efficiency (escaledj ),

Senju & Toyoda (estj ) [27] and general efficiency (egeneralj )

[18] as shown in Eqs. 4, 5, 6 and 7–8 respectively.

esimple
j = p j∑m

i=1 wi j
(4)

escaledj = p j∑m
i=1

wi j
ci

(5)

estj = p j∑m
j=1 wi j (

∑n
l=1 wil − ci )

(6)

egeneralj = p j∑m
i=1 riwi j

(7)

ri =
∑n

j=1 wi j − ci∑n
j=1 wi j

(8)

Where e j : efficiency of item j ; p j : value of item j ; wi j

: weight of item j on dimension i ; ci : capacity of knapsack
on dimension i and ri : coefficient.
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3 Related works

There are several methods related to the guided GA con-
cept in literature, that have been applied to a wide range of
applications. For solving the Course Timetabling Problem,
Yang and Jat [33] used a memory denoted MEM to record
useful information to guide the GA process and improve its
performance. MEM is a list of limited size, in which a list
of room and time slot pairs is recorded. This information is
integrated into the crossover operator of the proposed guided
GA. Other researchers used an external structure to guide
GA such as [1]. Another approach for guiding the GA is
through the use of approximate probabilistic models. In [9]
GA is augmented with an approximate probabilistic model to
guide the crossover andmutation operators. The probabilistic
model is used to estimate the quality of candidate solutions
generated by the traditional crossover and mutation opera-
tors. It also evaluates the quality of candidate solutions. This
estimation enables the crossover and mutation operators to
generate more promising solutions.

Specific characteristics of the addressed problem are used
to guide the GA search process. The Process Discovery
through a Genetic algorithm ProDiGen [31] is a GA that
adopts three characteristics of the Process Discovery. The
method calculates the precision, simplicity and completeness
values of the treated model (i.e. log files of the informa-
tion system process). These values are integrated into the
expression of the GA fitness function to guide the optimisa-
tion process. A slowdown-guided GA for the Job Scheduling
Problem is proposed in [15]. The proposed model is based
on the estimation of the execution slowdown of the tasks
which is used to guide the GA search process, the slowdown
estimation is used to express the fitness function.

In other versions, a subset of genetic operators is guided.
The proximate optimality principle assumes that good solu-
tions have a similar structure. Based on this principle, the
guided mutation proposed in [34] uses a probability model
inspired by Estimation of Distribution Algorithms (EDA)
mutation operator. The generated offspring by this opera-
tor is constructed using three components, the best solution
found so far, a dynamic probabilistic model and a probability
β. This allows conducting the searching process in promising
areas. A guided crossover operator has been proposed in [24].
The crossover operator works by using guidance from all
members of theGApopulation to select a direction for explo-
ration. Thefirst parent is selected by the selection operator. To
select the second parent, ametric namedMutual_ f i tness is
calculated for all the other chromosomes. The chromosome
which has the maximum value is selected. One offspring is
generated by crossing the parents in a point chosen randomly
such that the offspring resulting is the best.

The guidance methods in these GA variants are specific
to the addressed problems, they do not propose a formal way

to extract the guidance information or are integrated to the
optimisation process. Some approaches incorporate a partial
guidance using genetic operators.

4 The guided genetic algorithm GGA

The algorithm in this paper is motivated by the observation
that in many optimisation real-world problems, some prior
information about the components/patterns that are likely to
appear in the good solutions could be known. For example,
in MKP, it is possible using linear relaxation or the optimal
fractional solution [11], to predict some of the items that are
likely or unlikely to appear in the good solutions. This study
proposes a method for using such prior information as an
additional guide for theGAevolutionary process for theMKP
problem. By guide, we mean any structure external to GA,
which maintains its original composition and is used to drive
its search process. This can be through a subset of operators,
in order to accelerate the search process and improve the
speed of convergence. This section aims to describe the GGA
components.

4.1 Chromosome design

The population is composed of a finite number of chromo-
somes. A chromosome represents a feasible solution to the
problem (MKP). As mentioned before, the target in theMKP
is to define the subset of items that maximises the total profit.
TheGGAchromosome consists in the set of items to be added
to the knapsack. GGA uses the integer representation, where
each gene presents an item ID. The items are coded as inte-
ger numbers. A chromosome is formed only by the number
of items that it contains. This representation allows reducing
the size of the processed data (Fig. 1).

4.2 Guiding information

The guiding information is based on the work by [23].
The items are sorted decreasingly according to their sta-
tistical efficiencies e j based on the value and the weight

(esimple
j , escaledj , estj or egeneralj ). In simple words, the items

are sorted based on how likely each item is to appear in
high performing individuals, the items at the top of this list
are likely to be selected while the items at the bottom are
unlikely to appear in good solutions. However, it is impor-
tant to note here that this list is just an estimate and not a
predefined part of the solution. It should also be noted that
the greedy heuristic [27], as it is only based on the efficiency
sorting, is not an effective solution for the strongly correlated
problem instances of MKP [17].
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Fig. 1 An example of the chromosome design. The objects (items) packed in the knapsack are represented by their identifiers. The objective
function value is calculated by summing the benefit of all the objects while the fitness is calculated according to the fitness function

Fig. 2 An example of the guide construction. The objects (items) are
sorted according to the efficiency e j

The sorting operation allows favouring items that have a
good compromise (i.e. efficiency) between the average value
and the overall weight. The efficiency of an item is high if its
value is high while its required global capacity is low. The
sorted items are split into three sets (Fig. 2) where the value
of each variable is assigned as follows:

– X1 : x j = 1 The variables have the best efficiency e j .
These variables are most likely to build the best solutions
even the optimal solution.

– Core : x j =? The efficiency values e j of these items
are medium, therefore, it is difficult to predict with con-
fidence whether or not some may appear in the optimal
solutions.

– X0 : x j = 0 The variables have a very low efficiency e j ,
in other words, the value is low or the weight is large or
both.

The guide is represented by the variables of X1 ∪Core∪
X0. The sizes of X1,Core and X0 are determined as follows:
Construct a feasible solution by adding the items in order. The
item that makes the solution infeasible represents the centre
of Core. The size of each part of the guide depends on the
size of Core. Setting the size of Core defines the size of the
other parts.

4.3 Initial population

The GGA algorithm uses a special initialisation process
which allows the GA to make use of the prior information
available about the items, and in the same time generates a
diverse initial population to ensure exploration of the search
space.A chromosome is generated from the items of X1 com-
pleted by items generated randomly. In each chromosome,
X1 is integrated with a probability α. If α is set to zero this
means that all the items in each individual are selected ran-
domly, while α = 1 means that each individual in the initial
population contains all the items of X1. This method allows

having an initial population of good quality by integrating X1

and ensures the diversification by adding the rest randomly.

4.4 Fitness evaluation

In GGA, the objective function is different than the fitness
function f ( j). The first is the value of a solution relative to
MKP problem. It is evaluated according to Eq. 1, while the
fitness function is defined in away to guide the search process
of GGA. Different formulations of the fitness function are
examined by introducing the efficiency e j , X1 and X0.

A) The fitness function is calculated in the same way as the
objective function (Eq. 9):

f ( j) =
n∑

j=0

p j x j (9)

B) The efficiency e j is introduced in its evaluation according
to Eq. 10. Every generation, the fitness value of each
chromosome is calculated. The fitness formula allows
giving more chance to the chromosome that has a high
efficiency to be selected more than the others.

f ( j) =
n∑

j=0

e j p j x j (10)

C) X1 and X0 are introduced in the fitness measuring; the
first as a reward and the second as a penalty (Eq. 11).
The aim is to reward (respectively penalise) each chro-
mosome according to its similarity with X1 (respectively
X0). Thus allows, at the same time, increasing the chance
for the good chromosome to be selected and decreasing
it for the bad one.

f ( j) =
n∑

j=0

p j x j + reward − penalty (11)

Where reward = s1 ∗ pz , penalty = s0 ∗ pz , s1 and s0
represent the similarity rate with X1 and X0 respectively,
and pz is a significant percentage of the average objective
function of the generation (in the experiments pz = 0.1
is used).
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Fig. 3 Flowchart of the GGA optimisation process

D) The fitness uses the similarity of the chromosome with
X1 as follows:

f ( j) = (1 + s1)
n∑

j=0

p j x j (12)

4.5 Genetic operators

GGA uses standard genetic crossover and mutation opera-
tors. Tournament selection of size 5 is used as the selection
method, the random single point method is applied with a
probability pc. For mutation, the mutation by random mul-
tiple point bit flip is applied with the probability pm . And
finally, a reproduction operator copies a subset of individu-
als with the probability pr such as pc + pm + pr = 1. The
pseudo-code of the GGA is illustrated in Fig. 3.

5 Experimental setup and parameters tuning

This section explains the experimental setup and presents
the parameter tuning analysis for the GGA algorithm. It is
important to note that the concept of guide can be applied to
any problem if an effective method for sorting the problem

Table 1 Parameters of the GGA used to perform the experiments

Parameter Description Value

ps Population size 500

ng Number of generations 500

pc Crossover probability 0.2

pm Mutation probability 0.7

pr Reproduction probability 0.1

α X1 integration rate on the initial population 0.9

st Selection tour 10

nmp Number of mutation points 3

nbk Number of best chromosomes kept 5

nrun Number of runs for each instance 30

variables exists. For an experimental purpose, and because
the chosen sorting method concerns MKP, it is natural to use
data from this problem. The test platform is a Toshiba laptop
with 4GB RAM capacity and an Intel Core (TM) i5-4200 M
2.5 Ghz CPU. The Java language is used to implement the
approach. As for the test data, the well-known Chu&Beasley
benchmarks from the OR-Library1 are used.

Due to the lack of standard methods, trial-and-error is the
most common used method for parameter tuning in most
heuristic-based optimisation algorithms. We conducted sev-
eral experiments in order to analyse the performance of
the GGA algorithm under different parameter values. For
this task the subset of instances OR5×100-0.25 is used. All
parameter values are set as shown in Table 1; only the param-
eter to be measured is changed.

The optimumvalues are known for almost all the instances
composing the Chu&Beasley dataset. In this work, the Dis-
tance From the Optimum D.F.O and the Average Distance
From the Optimum A.D.F.O are measured according to the
best-known solutions.

Figure 4a, displays how α may affect the GGA D.F.O
by changing its value. Based on the value of α, the D.F.O
ranged from 0.0 to 0.9.

Better resultswere achievedwhen the value ofαwas equal
to 0.9. This indicates that usingmore items of X1 in the initial
population individuals improves significantly the quality of
the obtained solutions. However, the integration of the whole
group (i.e. α = 1) reduces the diversity of individuals.

The Average Distance From the Optimum A.D.F.O of
the GGA application on the OR5×100-0.25 instances with
different values of ng is given in Fig. 4b. The results indicated
thatwhenngwashigh A.D.F.O decreased and in somecases
GGA found the optimal solution. In the next experiments it
is considered that ng = 500.

The impact of the population size parameter ps on the
GGA performance is given in Fig. 4c. The results show that

1 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/.
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Fig. 4 GGA tuning of four parameters by calculating the average dis-
tance from the optimum A.D.F.O of 30 runs on the OR5×100-0.25
instances. α, number of generation ng, population size ps and the cou-

ple crossover/mutation probability (pc, pm) are illustrated in a, b, c
and d respectively. (pc, pm) value is in {(0.1, 0.8), (0.2, 0.7), (0.3, 0.6),
(0.4, 0.5), (0.5, 0.4), (0.6,0.3), (0.7, 0.2), (0.8, 0.1)}

large number of individuals (ps between 100 and 1000) dis-
covered better solutionswith A.D.F.O close to the optimum.
ps > 1000 gave a low value because a large population
requires more time to reach high-quality solutions.

The performance of GGA was tested using eight couple
values of crossover and mutation probabilities (pc, pm). The
OR5×100_0.25 instances were executed 30 times and the
A.D.F.O results are shown in Fig. 4d. The A.D.F.O sig-

nificantly improved with increase of the crossover rate and
decrease of the mutation rate (Fig. 4d). The first couple gave
the best A.D.F.O .

Different functions to measure the efficiency of items are
presented in Sect. 2.2. They have been compared as meth-
ods for performing the pre-analysis in GGA. For that, the
OR5×100-0.25; OR5×250-0.25 and OR5×500-0.25 have
been used. The results are illustrated by Fig. 5. From the
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Fig. 5 The average objective function values range obtained by GGA with different values of efficiency measurement functions and using the
dataset: OR5×100-0.25, OR5×250-0.25 and OR5×500-0.25

Table 2 Comparison of the D.F.O obtained by GGA with different
expression of the f i tness f unction, using the OR5×100-0.25 dataset

Instance Eq. 9 Eq. 10 Eq. 11 Eq. 12

1 1,180 0,682 1,318 1,017

2 1,237 0,757 1,111 0,908

3 0,843 0,382 0,781 0,487

4 1,254 0,663 1,488 0,967

5 0,951 0,583 0,955 0,768

6 1,061 0,523 1,084 0,666

7 1,710 0,856 2,111 1,485

8 1,414 0,570 1,249 0,949

9 1,086 0,620 0,909 0,813

10 1,230 0,563 1,112 0,745

The Bold represents the best obtained D.F.O

charts, no significant difference between the functions was
observed.

Four formulations of the fitness function are presented
in Sect. 4.4. To decide which one gives better results, a
comparison has been carried out by applying GGA on the
OR5×100-0.25 instances, Table 2 summaries the results. It
is shown that GGA with Eq. 10 as fitness function gives the
best D.F.O for all the instances.

6 Experimental results

In order to provide a comprehensive analysis of the proposed
GGA algorithm, this section provides two sets of experi-
ments. The first set evaluates the gain in terms of performance
from adding the guiding component to the standard GA.

Fig. 6 Comparing the convergence of GGA with GA using the
OR5×100-0.25_1 instance

The results are supported with a statistical analysis. This is
achieved by comparing the GGA with GA using the same
evolutionary parameters (Sect. 6.1). The second set aims
to compare the proposed GGA with the state-of-art results
reported in the literature (Sect. 6.2).

6.1 Analysis of the GGA performance

A comparison between GA and GGA was conducted to
measure the contribution of the data pre-analysis informa-
tion on the convergence of GA. GGA and GA both were
executed 30 times, each run given 200 generations on the
OR5×100-0.25_1. The obtained objective function value of
each generation was recorded. The average objective func-
tion of both approaches is compared in Fig. 6. The curves
indicated two search steps: diversification (0-35) and inten-
sification (36-200) in both experiments, GGA outperformed
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Table 3 The GGA compared to
GA in term of A.D.F.O , Best
D.F.O , Worst D.F.O and
Average execution T ime. The
first and the last instance of each
group is used

Instance GGA GA

Average Best Worst Time Average Best Worst Time
D.F.O D.F.O D.F.O (s) D.F.O D.F.O D.F.O (s)

5 × 100

0.25_01 0.56 0 1.13 3 2.46 1.45 4.71 3

0.25_10 0.58 0 1.18 3 1.55 0.55 2.71 2

0.50_01 1.03 0.73 1.6 5 0.74 0.12 1.73 5

0.50_10 0.44 0.22 0.77 5 0.91 0.43 1.79 4

0.75_01 0.44 0 0.78 7 0.35 0.12 0.58 6

0.75_10 0.57 0.21 0.74 7 0.34 0.09 0.77 6

5 × 250

0.25_01 0.83 0.42 1.25 7 3.45 2.68 5.32 5

0.25_10 0.8 0.25 1.51 7 4.33 2.74 5.63 4

0.50_01 0.53 0.31 0.73 13 1.21 0.71 1.86 11

0.50_10 0.59 0.38 0.93 12 0.97 0.48 1.47 10

0.75_01 0.4 0.18 0.62 82 0.53 0.29 0.78 17

0.75_10 0.39 0.24 0.59 19 0.44 0.24 0.85 17

5x × 500

0.25_01 0.87 0.52 1.32 15 4.21 3.46 5.26 10

0.25_10 0.91 0.58 1.57 16 3.82 3.14 4.74 11

0.50_01 0.42 0.23 0.81 29 1.58 1.23 1.94 23

0.50_10 0.5 0.29 0.73 29 1.31 0.9 1.74 24

0.75_01 0.25 0.14 0.41 47 0.64 0.44 0.86 41

0.75_10 0.3 0.14 0.55 51 0.59 0.42 0.9 40

10 × 100

0.25_01 0.81 0.2 1.88 3 1.77 1.31 2.63 3

0.25_10 1.02 0 1.82 3 2.82 1.29 4.63 3

0.50_01 0.67 0.24 1.21 5 1.2 0.51 2.09 5

0.50_10 0.47 0.27 0.65 6 1.87 0.7 2.88 5

0.75_01 0.31 0.23 0.44 8 0.51 0.25 1.4 7

0.75_10 0.09 0 0.32 8 0.61 0.3 0.94 7

10 × 250

0.25_01 0.92 0.39 1.56 9 3.76 2.16 4.93 6

0.25_10 0.88 0.61 1.59 9 3.65 2.78 4.41 7

0.50_01 0.56 0.26 0.84 15 1.29 0.93 1.9 12

0.50_10 0.49 0.23 0.95 16 1.7 0.85 2.78 13

0.75_01 0.28 0.14 0.52 23 0.54 0.29 0.95 19

0.75_10 0.29 0.08 0.6 23 0.69 0.36 1.08 19

10 × 500

0.25_01 1.01 0.58 1.62 19 2.78 2.17 4.05 14

0.25_10 0.88 0.57 1.24 19 3.46 2.38 4.62 13

0.50_01 0.46 0.28 0.84 35 1.45 1.04 2.15 28

0.50_10 0.54 0.32 0.8 35 1.49 1.07 2.14 27

0.75_01 0.26 0.12 0.41 53 0.8 0.63 1.11 44

0.75_10 0.26 0.13 0.59 53 0.68 0.52 0.82 45

30 × 100

0.25_01 1.58 0.79 2.73 3 2.15 1.08 3.73 4

0.25_10 1.28 0.18 2.63 4 2.15 1.6 4.7 3

0.50_01 1.18 0.54 1.79 7 1.76 0.99 2.13 6
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Table 3 continued
Instance GGA GA

Average Best Worst Time Average Best Worst Time
D.F.O D.F.O D.F.O (s) D.F.O D.F.O D.F.O (s)

0.50_10 0.66 0.42 1.17 7 2.5 1.61 3.19 5

0.75_01 0.48 0.15 1.23 10 0.9 0.46 0.97 8

0.75_10 0.35 0.11 0.6 10 0.54 0.34 0.93 9

30 × 250

0.25_01 2.09 1.83 3.13 9 2.88 1.86 3.93 9

0.25_10 2.68 1.51 3.29 8 3.61 2.6 4.79 8

0.50_01 1.17 0.74 1.58 18 1.23 0.61 2.41 18

0.50_10 1.2 1.04 1.41 18 1.63 1.35 2.12 17

0.75_01 0.38 0.23 0.64 30 0.9 0.68 0.99 25

0.75_10 0.58 0.41 0.77 30 0.77 0.5 1.29 25

30 × 500

0.25_01 3.39 2.18 4.69 100 4.83 3.48 5.49 164

0.25_10 3.9 2.9 6.29 99 3.58 3.37 3.89 16

0.50_01 2.2 2.05 2.42 35 1.45 1.36 1.72 33

0.50_10 1.51 1.25 1.77 41 1.63 1.48 2.39 35

0.75_01 0.41 0.35 0.5 67 0.68 0.41 1.01 61

0.75_10 0.35 0.26 0.49 77 0.6 0.47 1 59

The Bold represents the best obtained results (Average D.F.O, Best D.F.O, Worst D.F.O)

Fig. 7 The objective function rang obtained by GGA and GA within 30 times of run
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Table 4 Comparison of GGA to GA, SAHS-SLS, SGHS, HS and greedy algorithms in terms of A.D.F.O and average time

Dataset GGA GA SAHS-SLS SGHS HS greedy

A.D.F.O Time A.D.F.O Time A.D.F.O time A.D.F.O Time A.D.F.O Time A.D.F.O

5×100

0.25 0.62 3 2.17 2.2 0.60 18.9 0.78 16.3 5.36 9.5 29.25

0.50 0.67 5.1 0.86 4.0 0.57 24.8 0.78 22.3 5.15 12.4 13.01

0.75 0.34 6.9 0.42 6.0 0.32 29.1 0.47 27.6 3.09 16.6 6.40

Average 0.54 5 1.15 4.1 0.49 24.2 0.68 22.1 4.53 12.8 16.22

5×250

0.25 0.80 7.6 4.03 4.8 2.14 31.5 2.62 26.6 8.41 22.4 23.81

0.50 0.56 12.6 1.15 10.4 1.48 68.1 2.27 57.2 6.21 36.3 9.10

0.75 0.33 18.9 0.58 16.8 1.22 99.3 1.77 80.5 3.78 62.3 4.07

Average 0.56 13.0 1.92 10.7 1.61 66.3 2.22 54.7 6.13 40.3 12.33

5×500

0.25 0.84 15.6 4.27 10.5 1.85 146.3 3.75 109.1 9.57 66.7 20.70

0.50 0.53 30.8 1.45 24.0 1.31 248.4 3.60 177.3 7.25 116.4 9.62

0.75 0.26 47.7 0.65 42.3 1.33 340.0 2.69 269.6 4.67 187.6 3.39

Average 0.54 31.4 2.12 25.6 1.50 244.9 3.34 185.3 7.16 123.6 11.24

10×100

0.25 1.23 3.0 2.40 3.0 0.90 29.0 1.26 27.8 5.31 16.5 21.69

0.50 0.61 5.2 1.53 5.0 0.64 46.6 0.97 33.6 4.90 20.6 10.20

0.75 0.35 7.9 0.53 6.8 0.36 48.8 0.64 43.5 3.22 27.3 4.91

Average 0.73 5.4 1.49 4.9 0.63 41.5 0.96 35.0 4.48 21.5 12.26

10×250

0.25 0.98 8.9 3.56 6.2 1.49 93.3 2.33 74.1 7.17 44.7 15.94

0.50 0.58 15.0 1.35 12.6 0.91 160.2 2.06 116.3 6.01 76.6 7.91

0.75 0.33 23.0 0.66 19.2 0.67 261.5 1.59 172.8 3.85 116.6 3.57

Average 0.63 15.6 1.86 12.7 1.03 171.7 1.99 121.1 5.68 79.3 9.14

10×500

0.25 0.91 18.5 3.61 13.2 2.11 157.1 4.16 118.5 9.95 78.0 15.39

0.50 0.50 32.6 1.44 27.4 1.61 267.0 4.23 207.4 7.95 143.5 6.10

0.75 0.31 50.3 0.71 45.4 1.45 384.4 4.11 297.3 5.04 229.3 2.61

Average 0.57 33.8 1.92 28.7 1.72 269.5 4.16 207.7 7.65 150.3 8.03

30×100

0.25 1.66 3.6 2.27 3.0 1.23 77.0 0.93 68.5 2.79 49.7 18.04

0.50 1.10 6.0 1.72 5.8 0.68 64.9 0.96 52.5 3.90 36.5 8.83

0.75 0.49 9.6 0.78 8.9 0.33 87.1 0.52 67.9 3.22 46.8 5.97

Average 1.08 6.4 1.59 5.9 0.75 76.3 0.80 63.0 3.30 44.3 10.94

30×250

0.25 2.03 9.2 3.20 8.6 1.93 155.9 2.47 91.9 7.59 61.8 11.53

0.50 1.17 17.1 1.46 17.3 0.84 155.8 2.49 103.0 7.00 71.6 5.55

0.75 0.48 27.7 0.73 28.3 0.66 231.7 1.77 150.7 4.28 108.3 3.33

Average 1.23 18.0 1.80 18.1 1.14 181.1 2.25 115.2 6.29 80.6 6.80

30×500

0.25 4.07 99.1 3.50 18.8 2.24 173.3 5.63 127.1 9.71 89.0 44.18

0.50 1.90 40.4 1.45 36.1 1.19 264.2 4.82 206.3 8.39 137.1 6.21

0.75 0.43 63.4 0.69 58.5 0.87 344.0 6.31 285.1 6.44 243.3 2.30

Average 2.14 67.6 1.88 37.8 1.43 260.5 5.58 206.2 8.18 156.4 17.56

The Bold indicates the best A.D.F.O
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Table 5 Statistics of ANOVA
test used to check the GGA
performance on GA using
OR5×100-0.25_1

Algorithm Count Sum Average Variance SD Best Worst

GGA 32 20.53 0.64 0.12 0.34 0.30 0.98

GA 32 82.88 2.59 0.68 0.82 1.77 3.41

Table 6 The ANOVA test
results of the GGA performance
on GA using OR5×100-0.25_1

Source of variation SS df MS F P value F crit

Between groups 60.75 1 60.75 152.75 2.23 × 10−18 3.996

Within groups 24.66 62 0.40

Total 85.40 63

Table 7 Statistics of the
ANOVA test used to check the
GGA performance on GA using
Chu&Beasley instances

Algorithm Count Sum Average Variance SD Best Worst

GGA 27 24.08 0.89 0.63 0.80 1.69 0.10

GA 27 47.19 1.75 1.43 1.20 2.94 0.55

standard GA throughout the evolutionary process. GGA
kept a large gap on GA and maintained it throughout the
process.

An extended investigation is done using the first and
the last instances of each class of the Chu&Beasley bench-
marks (i.e. m × n − α_01, m × n − α_10, for example:
5×100-0.25_01, 5×100-0.25_10). Table 3 shows a compar-
ison between the performance of GGA against GA. The table
shows the Average D.F.O , Best D.F.O , Worst D.F.O and
the average processing T ime for each algorithm. The results
show that GGA outperformed GA on many instances. Also,
GGA with high α value performed better than GGA with
small α value, the lower and upper whiskers show the worst
and best results achieved from30 independent run times. Fig-
ure 7 compares GGA to GA in terms A.D.F.O range. Both
methods were applied 30 times on the first instance of each
class. Many values were recorded. Figure 7 shows lower,
upper and median values obtained by GGA and GA.

6.1.1 Performance on large benchmarks

GGA is evaluated on the Chu&Beasley dataset and com-
pared to: Harmony Search (HS), Self-adaptive Global best
Harmony Search (SGHS), Self-Adaptive Hybrid Harmony
Search-Stochastic Local Search (SAHS-SLS) [25], GA and
greedy sorting (i.e. the feasible solution of adding the items
in the sorting order as long as the constraints are verified).
Table 4 shows the A.D.F.O and the execution time for all
the above algorithms on 270 instances.

Closer inspection of the results shows that for 60% of
the data, GGA was able to give better solutions than almost
all the other approaches. In addition, the gap improvement
from the greedy method after the application of GGA varied
from 2% up to 40%. Furthermore, on many instances, GGA
results were very close to the optimum. In terms of time, the
approachwas faster than the other approaches except theGA.

Table 8 The ANOVA test results of the GGA performance on GA using
Chu&Beasley instances

Source of variation SS df MS F P value F crit

Between groups 9.89 1 9.89 9.58 0.003 4.03

Within groups 53.67 52 1.03

Total 63.56 53

6.1.2 Statistical analysis

Simple statistical analysis was used to investigate whether or
not the guidance has a real effect on the GA, hence, ANalysis
Of the Variance (ANOVA) pairwise comparison was con-
ducted. It has been supposed that the null hypothesis H0

is: “GGA has not a significant improvement on GA”. The
first comparison includes only one instance (Tables 5 and 6)
while the second includes all the instances (Tables 7 and 8).
The first comparison indicated a F = 152.72 largely greater
than F crit = 3.99, and a P-value = 2.23 × 10−18 largely
lower than α = 0.05. The second comparison including all
the instances showed a F = 9.58 greater than F crit = 4.03,
and a P-value = 0.003 lower than α = 0.05. Both results
confirm thatGA is significantly improved by adding the guid-
ance to its search process. Consequently, the null hypothesis
can be rejected.

The statistical pairwise comparison of GGA with greedy,
GA, SAHS-SLS, SGHS and HS approaches is reported in
Table 9. The comparison is performed with t-test, ANOVA
and Welch′s t-test (also known as t-test with two-sample
assuming unequal variances) and using the same data. The
obtained t-test values were less than P-value = 0.05 except
with SAHS-SLS. Also,ANOVA comparison results indicated
a P-value less than α = 0.05 and F largely greater than F
crit except when compared with SAHS-SLS.Welch′s t-test
obtained a negative t-Stat and a P-value less than α = 0.05
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Table 9 Summary of t-test,
ANOV A and Welch’s t-test of
GGA performance compared to
greedy, GA, SAHS-SLS, SGHS
and HS on the Chu&Beasley
instances

GGA vs. GGA vs. GGA vs. GGA vs. GGA vs.

greedy GA SAHS-SLS SGHS HS

t-test P value 2.3 × 10−6 0.002 0.093 3.7 × 10−5 2.7 × 10−13

ANOVA P value 5.1 × 10−7 0.003 0.19 4.6 × 10−5 9.1 × 10−16

F 32.85 9.58 1.80 19.75 130.08

F crit 4.03 4.03 4.03 4.03 4.03

Welch’s t Stat −5.54 −2.89 −1.36 −4.50 −11.02

t-test P(T<=t) one-tail 4.6 × 10−6 0.003 0.091 3.2 × 10−5 1 × 10−12

t Critical one-tail 1.71 1.68 1.68 1.69 1.69

P(T<=t) two-tail 9.3 × 10−6 0.006 0.182 6.4 × 10−5 2 × 10−12

t Critical two-tail 2.06 2.02 2.01 2.03 2.04

Table 10 Comparison of the
results obtained by GGA to
some constructive and
improvement heuristics

Constructive Improvement

n m α GGA GA PECH MAG VZ PIR SCE CB NR(P) MCF

5 100 0.25 0.62* 2.17 7.3 13.6 10.3 1.6 3.5 0.99 0.94 1.09

0.50 0.66 0.86 3.4 6.7 6.9 0.77 2.6 0.45 0.44* 0.57

0.75 0.34 0.42 2.02 5.1 5.6 0.48 1.1 0.32 0.22* 0.38

250 0.25 0.79 4.03 7.1 6.6 5.8 0.53 4.3 0.23* 0.46 0.41

0.50 0.56 1.15 3.2 5.2 4.4 0.24 3.3 0.12* 0.17 0.22

0.75 0.33 0.58 1.8 3.5 3.5 0.16 1.5 0.08* 0.1 0.14

500 0.25 0.83 4.27 6.4 4.9 4.1 0.22 4.6 1.56 0.15* 0.21

0.50 0.53 1.45 3.4 2.9 2.5 0.08 3.6 0.79 0.06* 0.1

0.75 0.26 0.65 1.7 2.3 2.41 0.06 1.8 0.48 0.03* 0.06

10 100 0.25 1.23 2.40 8.2 15.8 15.5 3.4 6.8 0.09* 2.05 1.87

0.50 0.61 1.53 3.7 10.4 10.7 1.8 5.1 0.04* 0.81 0.95

0.75 0.35 0.53 1.8 6.1 5.67 1.1 2.4 0.03* 0.44 0.53

250 0.25 0.98 3.56 5.8 11.7 10.5 1.1 6.9 0.51* 0.88 0.79

0.50 0.58 1.35 2.5 6.8 5.9 0.57 5.4 0.25* 0.39 0.41

0.75 0.32 0.66 1.5 4.4 3.7 0.33 2.8 0.15* 0.19 0.24

500 0.25 0.9 3.61 5.1 8.8 7.9 0.52 6.8 0.24* 0.34 0.44

0.50 0.5 1.44 2.4 5.7 4.1 0.22 5.8 0.11* 0.14 0.2

0.75 0.31 0.71 1.2 3.6 2.9 0.14 3.4 0.07* 0.1 0.13

30 100 0.25 1.65* 2.27 6.8 17.3 17.2 9.1 8.6 2.91 2.24 3.61

0.50 1.09* 1.72 3.2 11.8 10.1 3.51 6.6 1.34 1.32 1.6

0.75 0.49* 0.78 1.9 6.58 5.9 2.03 3.6 0.83 0.8 0.97

250 0.25 2.03 3.20 4.8 13.5 12.4 3.7 8.3 1.19* 1.27 1.75

0.50 1.16 1.46 2.1 8.6 7.1 1.5 6.9 0.53* 0.75 0.79

0.75 0.48 0.73 1.2 4.4 3.9 0.84 3.8 0.31* 0.38 0.43

500 0.25 4.07 3.50 3.7 9.8 9.6 1.89 8.6 0.61* 0.89 1.05

0.50 1.9 1.45 1.7 7.1 5.7 0.73 7.4 0.26* 0.36 0.44

0.75 0.43 0.69 0.9 3.7 3.5 0.48 4 0.17* 0.23 0.27

The Bold represents the best A.D.F.O per category and the star indicates the overall best A.D.F.O

except for SAHS-SLS. From all this statistical analysis it
may be concluded that the null hypothesis H0 is rejected.
Therefore, GGA performs significantly better than the other
approaches and is comparative to the SAHS-SLS.

6.2 Comparison with the literature

Heuristics could be classified into two groups: constructive
heuristics that aim to construct a solution for the treated prob-
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Fig. 8 Comparing the average distance from the optimum A.D.F.O
obtained by GGA using the Chu&Beasley instances with nine other
algorithms from the literature

lem and improvement heuristicswhich improve a given initial
solution. GGA is compared with a set of constructive and
improvement heuristics. A brief description of each heuristic
is given bellow.

– Constructive heuristics:

– PECH (Primal Effective Capacity Heuristic) [2] is a sim-
ple greedy heuristic which incorporates a strategy based
on the effective capacity for selecting and adding the
items to the knapsack.

– MAG [19] and VZ [32] are algorithms based on the
Lagrange multipliers approach.

– PIR [21] is a heuristic based on a dual surrogate relaxation
of the MKP supported with a branch and bound method.

– SCE (ShuffledComplex Evolution) [7] is an evolutionary
heuristic that iteratively redistributes the population indi-
viduals into smaller structures (or complexes) according
to their fitness.

– Improvement heuristics:

– CB [10] is a GA augmented with a feasibility and con-
straint operator which utilises problem-specific knowl-
edge and repair operators which locally
improves the offspring.

– NR (P) (New Reduction (Pirkul)) [16], operates a
lagrangian dual relaxation on MKP, and proposes a
dynamic estimation of the Core size relative to the prob-
lem difficulty. The Core is then solved with a greedy
heuristic combined with a local improvement phase.

– MCF (Modified Choice Function - Late Acceptance
Strategy) [13] is a hyper-heuristic based on heuristics
selection function named Modified Choice Function.

The comparison illustrated in Table 10 and Fig. 8 revealed
that GGA was competitive with both constructive and
improvement methods and has managed to outperform both
group of methods on a few instances.

7 Conclusion

The purpose of the current study was to introduce a memetic
algorithmnamedGuidedGeneticAlgorithm (GGA) for solv-
ing the Multidimensional Knapsack Problem (MKP). GGA
analyses the problem data based on a greedy algorithm. Use-
ful information about the items of the MKP are extracted
and integrated in the initialisation and evaluation operators
of a GA. To validate the approach, several experiments were
conducted on well-known MKP test data. The research has
shown that adding the guidance has significantly improved
the performance of the GA and accelerated its speed of con-
vergence. These experiments confirmed that GGA has a real
impact onGA performance. One of themore significant find-
ings of this study is that prior-knowledge about the data of
a combinatorial optimisation problem could be significantly
helpful to accelerate its solving. The future work intends to
extend and evaluate GGA on other combinatorial optimisa-
tion problems.
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