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Abstract A practical variant of the vehicle routing prob-
lem (VRP), with simultaneous delivery and pickup and time
windows (VRPSDPTW) is a challenging combinatorial opti-
mization problem that has five optimization objectives in
transportation and distribution logistics. Chemical reaction
optimizationhas beenused to solvemonoandmulti-objective
problems. However, almost all attempts to solve multi-
objective problems have included continues problems less
than four objectives. This paper studies discrete multi-
objective VRPSDPTW using decomposition-based multi-
objective optimization chemical reaction optimization. In
the proposed algorithm, each decomposed sub-problem is
represented by a chemical molecule. All of the molecules
are divided into a few groups, with each molecule having
several neighboring molecules. To balance the diversity and
convergence, we designed operators of on-wall ineffective
collision and inter-molecular ineffective collision for a local
search, as well as operators of decomposition and synthe-
sis to enhance global convergence. The proposed approach
is compared with two different algorithms on hypervolume
performance measures. Experimental results show that the
proposed algorithm outperform the other algorithms in most
benchmarks.
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1 Introduction

Vehicle Routing Problem (VRP) is a classical combinato-
rial optimization problem, which occurs in many real-world
problems, i.e., transportation, logistics, and supply chain
management, et al. [1,2]. With customers having more
requirements for logistics, VRPwith different constraints are
constantly appearing, which include time window, simulta-
neous pickup and delivery and so on. Up to now, variants of
the VRP can be basically categorized into two classes. One is
single objective VRP, and the other is multi-objective VRPs.

The single objective VRP aims to determine a set of vehi-
cle routes originating and terminating at a central depot and
visiting all clients such that the total travel distance is min-
imized [3]. According to the different constraints, variants
of the single objective VRP has been developed different
categories, that one of the most typical is VRP with time
windows. Recently, governments and business organization
havevigorously promotedgreenmanufacturing and logistics.
Therefore, there is an urgent need solution to energy-saving
VRPs. In order to develop an energy-saving VRP, many
researchers have proposed reverse logistics [4], which entail
collecting end-of-life products from customers for either
reuse or proper disposal. Reverse logistics have two char-
acteristics in distribution systems: one is delivery, and the
other is pickup. The VRP with pickup and delivery (PDP)
can be divided into six categories [5]:

– Delivery first, pickup-second, or the vehicle routing prob-
lem with backhauls (VRPB);

– Simultaneous pickups and deliveries, or the vehicle rout-
ing problem with simultaneous pickup and delivery
(VRPSPD): clients demanding both delivery and pickup
operations have to be visited once, as first proposed by
Min;
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– Mixeddeliveries andpickups, or the vehicle routing prob-
lem with mixed pickup and delivery (VRPMPD);

– Inter-related pickups and deliveries, or the dial-a-ride
problem;

– The heterogeneous vehicle routing problem with simul-
taneous pickups and deliveries;

– The vehicle routing problem with simultaneous pickups
and deliveries and time windows (VRPSPDTW): The
customers sometimes request that their goods be deliv-
ered and picked up within pre-defined time windows.

Due to the constraints and problem structure of the vari-
ant of the VRP, the optimization of one objective may lead to
the deterioration of other objectives; thus, many researchers
have proposed multi-objective VRPs [6]. Because the deci-
sionmaker’s preference is not known a priori,multi-objective
formulation is necessary for providing a set of solutions
that represent the tradeoffs among the objectives with the
VRPSDPTW, rather than a single solution [7]. The feature
of multi-objective formulation is to consider all objectives
with the same importance and obtain a set of Pareto opti-
mal solutions. So far, algorithms to solve the multi-objective
vehicle routing problem have mainly concerned the multi-
objective vehicle routing problem with time windows and
rarely more than three objectives. Many classical heuristic
and meta-heuristic algorithms have recently been proposed
to solve the multi-objective vehicle routing problem with
time windows. These methods are mainly divided into two
categories. One is based on the Pareto ranking technique, and
the other is based on the decomposition method.

A Pareto ranking technique to solve this problem has
been developed by many researchers. For example, genetic
algorithm using Pareto ranking was developed that simul-
taneously minimizes the number of routes, the total travel
distance, and the delivery time [6,8]. Iqbal et al. [9] pro-
posed an artificial bee colony (ABC) algorithm combined
with a two-step constrained local search for neighborhood
selection in a multi-objective vehicle routing problem with
soft time windows.

The other method is based on decomposition [11], which
decomposes a multiobjective optimization problem into a
number of scalar optimization subproblems and optimizes
them simultaneously. Each subproblem is optimized by only
using information from its several neighboring subproblems,
which makes MOEA/D have lower computational com-
plexity at each generation. It is a popular multiobjective
optimization method, which is applied to solve discrete [12]
and continuous multi-objective optimization problems [11].
Qi et al. [13] proposed a decomposition based memetic algo-
rithm for the multi-objective vehicle routing problem with
time windows. They proposed a novel selection operator
and three local search methods in their algorithm. However,
no researcher before 2016 studied theMO-VRPSDPTWwith

five objectives problem. In 2016, the MO-VRPSDPTWwith
five objectives was proposed byWang et al. [7]. They consid-
ered the constraints and problem structure of VRPSDPTW,
which the optimization of one objective may lead to the
deterioration of other objectives, thus considering the VRPS-
DPTW as a multi-objective optimization problem (MOP) is
a necessary research direction [7]. All objectives of MO-
VRPSDPTW were considered with the same importance.
This could facilitate decision making without a priori knowl-
edge.

More recently, a new metaheuristic algorithm chemical
reaction optimization (CRO) was proposed by Lam and Li
[14], imitating the interactions of molecules in a container by
balancing local exploitation and global exploration to reach
internal stability. CRO has been successfully employed to
solve many mono-objective discrete optimization problems
[15]. Recently, many researchers have studied continuous
CRO to solve multiple objectives, such as an orthogonal
multi-objective chemical reaction optimization approach for
brushless DC motor design proposed by Duan and Gan
[16]. Bechikh et al. [17] are the first to use the indicator-
based chemical reaction method to tackle MOP. Li et al. [18]
developed a decomposition-based multi-objective chemical
reaction optimization to solve continuous multi-objective
optimization problems. Chemical reaction optimization has
not been used to solve the discrete combinational opti-
mization problem of more than three objectives. Therefore,
developing the character of chemical reaction optimization
to solve the discrete multi-objective optimization problem is
of great significance and motivates this paper.

In this paper, we developed a decomposition-based multi-
objective chemical reaction optimization for the multi-
objective vehicle routing problemwith simultaneous delivery
and pickup and time windows (MO-VRPSDPTW). In the
process of algorithm design, we decompose the multi-
objective optimization problems (MOPs) into a group of
single objective optimization problems and use ε-dominance
to update the archive. In this work, a chemical reaction
optimization (CRO) algorithm based on decomposition is
used to solve discrete MOPs (D-MOCRO). In our algo-
rithm, the framework of decomposition is used; the approach
transforms the original multi-objective problem into smaller
sub-problems and solves each problem separately. Each
sub-problem is optimized by combining the information
of several neighboring sub-problems. Each molecule repre-
sents a sub-problem that achieves a state of energy balance
by a chemical reaction (the optimal solution set). To bal-
ance diversity and convergence, we design the operators of
on-wall ineffective collision and inter-molecular ineffective
collision to carry on the local search, and the operators of
decomposition and synthesis enhance global convergence.
The proposed approach is compared with two different algo-
rithms on hypervolume performance measures.
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The rest of this paper is organized as follows. Section2
presents the problem formulation of the MO-VRPSDPTW.
Section3 presents the relate work. Section4 proposes the
D-MOCRO for the MO-VRPSDPTW. Section5 presents the
experimental results, the parameter settings for the investiga-
tion, and the performance of the proposed algorithm. Finally,
our conclusions and further work are discussed in Sect. 6.

2 Problem

2.1 MO-VRPSDPTW

The VRPSDPTW is a complex combination optimization
problem that belongs to the class of NP-hard problems [2].
The VRPSDPTW plays an important role in computing the-
ory and in many real-life applications. It entails finding a
minimum-cost set of routes to deliver demand for customers
with specific delivery time windows using a fleet of identical
vehicles with limited capacity.

The objectives and constraints of the VRPTW can be
mathematically defined using notations for the route, depot,
customer, and vehicles as a theoretical graphical problem [7].
There is a non-directed complete graph G = (V, E), where
the vertices V = {0, . . . , N } correspond to the depot and
the customers, and the edges e ∈ E{(i, j) : i, j ∈ V } to
the links between them. The vertex 0 is called the depot, and
the others are called customers. The customers are served
using a fleet of vehicles with capacity C . Every customer
has a demand of goods gi > 0 and a time window [bi , ei ].
The service constraint of the time window indicates that a
vehicle should arrive at the location of customer i before
the latest service time ei . A vehicle is allowed to arrive
before the earliest service time bi , in which case it must
wait until bi and then begins to serve the customer. Each
customeri has a service time si , which is the actual time that
the delivery takes once a vehicle arrives at the customer’s
location. In addition to the customer, the depot also has a
time window [0, e0]. The demand of the depot is g0 = 0.
The travel distance and travel time between two locations i
and j are denoted by di j and ti j . The goal of VRPSDPTW
is to design a set of M routes R = {r1, . . ., rM } with the
lowest cost. A feasible solution to the VRPSDPTW must
satisfy that each vehicle departs and returns to the same
depot and each customer is served by exactly one vehi-
cle. Among R, r1 = 〈c(1, j), . . . , c(N j , j)〉 represents the
sequence of N j customers served in the j th route, where
c(i, j) the i th customers to be visited in this route indi-
cates. c(0, j) = c(N j + 1, j) = 0 represent the depot. As
shown in Fig. 1, there are M = 3 routes R = {r1, . . . , rM }.
r1 = 〈0, c(2, 1), c(3, 1), c(7, 1), c(8, 1), 0〉 represents the
sequence of four customers (customers 2, 3, 7 and 8) served
in route1. This process includes three routes that have four,
three and two customers served, respectively.
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Fig. 1 Illustration of the molecular representation

With customers’ demand for service quality growing
higher and higher, a multi-objective vehicle routing problem
must be designed to meet the expected benefits of customer
demand. Before describing the multi-objective vehicle rout-
ing problem, several terms are described.

The total travel distance of the j th route is defined as

Dist j =
N j∑

i=0

dc(i, j)c(i+1, j) (1)

The arrival timeof vehicle j at i th vertex is defined as follows.
Among of them, the arrival time and the leaving time are
represented by symbol ac(i, j) and lc(i, j) respectively.

ac(i, j) = lc(i − 1, j) + tc(i−1, j)c(i, j) (2)

where lc(0, j), which represents that vehicle j departs from
the depot at time 0. If a vehicle arrived at the customer earlier
than the earliest service time of customer requirements, it
must wait until the earliest service time. As shown in Fig. 1
TW1, it must wait 20min to arrive. Thus, a waiting time is
caused by arriving early. The waiting time of vehicle j at i th
vertex can be described as

wc(i, j) =
{
0, if ac(i, j) ≥ bc(i, j)
bc(i, j) − ac(i, j), otherwise

(3)

And the leaving time of i th customer of vehicle j is

lc(i, j) = ac(i, j) + wc(i, j) + sc(i, j) (4)

Thus, the total travel time of route r j is

Tj =
N j∑

i=0

(tc(i, j)c(i+1, j) + wc(i+1, j) + sc(i+1, j)) (5)
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where sc(i+1, j) denotes the service time of (i+1)th customer
in j th route, and the total waiting time of this route is

Wj =
N j∑

i=1

wc(i, j) (6)

The delay time of vehicle j at i th vertex is

delayc(i, j) =
{
0, if ac(i, j) ≤ ec(i, j)
ac(i, j) − ec(i, j), otherwise

(7)

and the total delay time of this route is

Delay j =
N j∑

i=1

delayc(i, j) (8)

Based on the above description, MO-VRPTW can be
defined as follows.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x) = ( f1, f2, f3, f4, f5)
f1 = |R| = M

f2 =
M∑
j=1

Dist j

f3 = max
j

{Tj | j = 1 . . . M}

f4 =
M∑
j=1

Wj

f5 =
M∑
j=1

Delay j

(9)

f1 and f2 are transportation costs, where f1 indicates the
number of vehicle, the objective of f1 is reducing the fixed
cost of buying (or hiring) and repairing vehicles. f2 is the total
travel distance, which indicates the variable costs in routing.
f3 denotes the makespan, i.e., travel time of the longest route
(from/to depot). Theobjective of f4 improveswork efficiency
and avoids wasting time. The last one is f5, it can be consid-
ered as a service cost related to the satisfaction of customers.

The constraints ofMO-VRPTWcan be defined as follows.

N j∑

i=1

gc(i, j) ≤ C ∀ j = 1, . . . , M. (10)

delayc(i, j) ≤ md ∀i = 1, . . . , N j , ∀ j = 1, . . . , M.

(11)

ac(N j+1, j) ≤ ec(N j+1, j) ∀ j = 1, . . . , M. (12)

Vehicle capacity constraint is represented by formula 10,
which represents that the total demandof each route r j should
not exceed the vehicle capacity. The travel time constraint is
represented by formula 11, which represents that the delay

time should not exceed the maximum allowed delay time.
The last constraint is the return time constraint that repre-
sents vehicles should return to the depot before the closing
time.MO-VRPSDPTW test benchmarks that we can visit the
homepage of J. Wang.

3 Relate work

3.1 Multiobjective optimization

Multiobjective optimization is different from the single
objective optimization which is to find a set of Pareto
solutions rather than a single solution. In multiobjective opti-
mization, the goal is to find the best possible trade off in
different objectives, in which one objective can be improved
only at the expense ofworsening another. Todescribe the con-
cept of optimality for problem (13) the following definitions
are provided [11]. A general multiobjective optimization
problem (MOP) is defined as simultaneously optimizing
(minimizing or maximizing)

{
min F(x) = ( f1(x), f2(x) . . . , fm(x))

subject to : x ∈ �
(13)

where� ⊂ R
n is the decision space and x = (x1, x2, . . . , xn)

∈ � is a decision variable which represents a solution to the
target MOP. F(x) : � ∈ R

m denotes the m-dimensional
objective vector of the solution x . The attainable objective
set is defined as the set {F(x)|x ∈ �}.
Definition 1 (Dominance Relation) In the minimization
problem, a solution vector u = (u1, u2, . . . , uk) is said to
dominate another vector v = (v1, v2, . . . , vk) (denoted by
u ≺ v) if u is partially less than v, i.e., ∀i ∈ {1, . . . , k, ui ≤
vi } and ∃ i ∈ {1, . . . , k : ui < vi }.
Definition 2 (ε Dominated Solution) There are two solution
vectors u, v ∈ R

k and ε > 0, if u ε dominates v, it is said to
be ε dominating, i.e., ∀i ∈ 1, . . . , k, (1 − ε) · ui ≤ vi .

Definition 3 (Pareto Optimum) If there does not exist any

other vector
∧
x = (

∧
x1,

∧
x2, . . . ,

∧
xn) ∈ � such that F(

∧
x) ≺

F(x), a decision variable vector x = (x1, x2, . . . , xn) from
some universe � that is said to be Pareto Optimum.

Definition 4 (Pareto Set) The Pareto Optimal set Ṗ is
defined as Ṗ = {x ∈ �|x is Pareto Optimum}.
Definition 5 (Pareto Optimal Set) The Pareto Optimal front
PF is defined as PF = {

F(x) ∈ R
k |x ∈ Ṗ

}

With the above definitions, an MOP requires finding or
approximating the set of Pareto optimal solutions and their
corresponding objective vectors. The evolutionary algorithm
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for solving the MOP has three issues that need to be empha-
sized, i.e., fitness assignment, diversity preservation and
elitism strategy. A single-objective optimization problem
searches only for an optimal solution; however, the MOP
needs to assign the fitness of a solution to multiple criteria.
Diversity preservation is an important issue for MOEAs to
obtain solutions that are uniformly distributed on the Pareto
front for decision makers to change. An elitism strategy is
implemented inMOEAs to keep the non-dominated solutions
in the population during the search.

Recently, a chemical reaction optimization was pro-
posed to solve many mono-objective optimization problems
efficiently, which inspired by chemical reactions launched
during collisions, inherits several features from other meta-
heuristics such as simulated annealing and particle swarm
optimization. It has not solved the discrete multi-objective
optimization problems so far. Then, we further develop its
performance to optimize the discrete MO-VRPSDPTW. We
develop a D-MOCRO to optimize the MO-VRPSDPTW,
which divides the complex MO-VRPSDPTW into a number
of sub-problems and solves them in a chemical reaction opti-
mization collaborative manner. The energy conservation in
the process of chemical reaction balances the local (exploita-
tion) and the global (exploration). The chemical reaction
optimization algorithm is described as follows.

3.2 Chemical reaction optimization

The chemical reaction optimization algorithm is used to solve
many optimization problems involving single-objectives and
multiple objectives in continuous and discrete combinatorial
optimization problem.

The chemical reaction optimization algorithm includes a
set of molecules put in a container with certain energy. Every
molecular has a unique structure that includes kinetic energy,
potential energy and the number of collision. Another impor-
tant feature of this algorithm is the law of conservation. In
the chemical reaction process, the PE orientates towards the
minimum at the balanced state. In the reaction process, the
potential energy goes towards the minimal state, similar to
the objective function in optimization problems. PE is usu-
ally used as the fitness of the objective function.

The chemical reaction attributes of the manipulated
molecules (M) in CRO include the following:

• w is the structure of the molecule which is used to repre-
sent a potential solution.

• PE (potential energy) is defined as the objective function
value of the corresponding solution that is represented by
w.

• KE (kinetic energy) is a non-negative number quantifying
the tolerance of the system to accept aworse solution than
the existing one.

• NumHit is the number of hits which is a record of the
total number of collisions that a molecule has taken.

• MinPE is theminimumpotential energywhich represents
the minimum value of the function of the current state.

• MinHit is the minimum hit number which represents the
minimum number of hits when the molecule attains the
value of the function of the current state.

• Buffer is the total energy of the container.

The basic chemical reaction algorithm has four types
of reaction operators, including on-wall ineffective colli-
sion, decomposition, inter-molecular ineffective collision
and synthesis. These four operators are the same as the
paper [14].

(1) On-wall ineffective collision operator of CRO [14]

An on-wall ineffective collision reaction occurs when a
molecule hits thewall of the container and then bounces back.
After the on-wall collision, the structure of themoleculeswill
change. If the current molecular structure is w, it will turn
into another state w′. The reaction process is defined by Eq.
(2).

w(i) → w(i)′ (14)

where, w(i)′ = Neighbor(w(i)).
As a rule of thumb, when a molecule hits a wall, a portion

of its KE will be lost, the lost energy is stored in the central
energy buffer, when the reaction has completed. Its KE is
updated as follows:

K Ew′ = (PEw − PEw′ + K Ew′) × α (15)

where α is a random number that lies in between [KELoss-
Rate,1], where KELossRate is a parameter of CRO.

If theKE processed by the molecule is high, then there is a
possibility that thePE could increase, depicting aworse solu-
tion. This change is desirable to make the algorithm escape
from its local minimum. The KE drops as an effect of col-
lision. Its level of tolerance of obtaining a worse solution is
lowered.

(2) Decomposition operator of CRO [14]

A decomposition operator means that a molecule w hits
the wall of the container and then breaks into two or more
molecules. Compared with the ineffective collision, the
decomposition is more vigorous and the resultant molecule
structures have greater differences from that of the original
one. This operator can be considered as the situation when
we finish the local search from w to w′

1 and w′
2. Due to the

conservation of energy, w may sometimes not have enough
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energy to sustain its transformation into w′
1 and w′

2. A cer-
tain portion of energy in the buffer accumulated from on-wall
ineffective collisions can be utilized to support the change.
The specific implementation process of the decomposition
operator is described in Sect. 4.2.

(3) Inter-molecular ineffective collision operator ofCRO
[14]

An intermolecular ineffective collision occurs when two or
more molecules collide with each other and then separate.
The number of molecules involved in this collision remains
unchanged after the collision. If moremolecules are involved
in the reaction,more energy is needed, and the structure of the
molecule is alsomore flexible. In the original implementation
in the simulation, we assume only two molecules, e.g., with
molecular structures w1 and w2, involved. Similar to the on-
wall ineffective collision, this collision is also not vigorous
and the new molecular structures w′

1 and w′
2 are produced

from their own neighborhoods separately.

(4) Synthesis operator of CRO [14]

Synthesis does the opposite of decomposition. A synthesis
refers to when two or more molecules collide and then com-
bine to form one new single molecule. This process implies
that the search regions are expanded, i.e., the diversification
of solutions. The operator of synthesis uses crossover of a
genetic algorithm. The specific implementation process of
the synthesis operator is described in Sect. 4.2.

3.2.1 Energy handling [14]

Energy can be transformed from one type to another but all
energy manipulations must follow the first law of thermody-
namics, which states the energy can neither be created nor
destroyed. A generalized form of the elementary reaction can
be written as follows:

w1 + · · · + wk → w′
1 + · · · + w′

l

where k and l are the numbers of molecules involved before
and after the reaction, respectively. For k =1 and l = 2, the
reaction can be said to be a decomposition reaction.

The corresponding energy equation can be written as fol-
lows:

(PEw1 + · · · + PEwk ) + (K Ew1 + · · · + K Ewk )

+ bu f f er

= (PEw′
1
+ · · · + PEw′

l
) + (K Ew′

1
+ · · · + K Ew′

l
)

+ bu f f er ′

In the equation above, the change in the total energy of
the molecules before and after the reaction is represented by
the left and the right hand sides of the equality respectively.

The general acceptance rule for the new solution is given
as follows:

k∑

i=1

PEwi +
k∑

i=1

K Ewi −
l∑

i=1

PEwi ≥ 0

3.2.2 The sketch of CRO algorithm

As explained above, the step-wise procedure for the imple-
mentation of CRO can be summarized as follows.

Algorithm 1: CRO( )
Begain

Step 1: Define the optimization problem and initialize 
  the optimization parameters.

Step 2: Initialize the population of molecules.
Step 3: while (FES< FESLimit)

If (rand > MoleColl) || (the number of population 
is equal to one)

go to Step4;
elese

go to Step5;
endif

endwhile
Step 4: Uni-molecular operator. 
If wi .numHit - wi .minHit >DecThres

Decomposition operator of CRO ();
else

On-wall Ineffective Collision operator of CRO ();
endif
Update energy management rules ( );
Step 5: Inter-molecular operator.
If (wi .KE< SynThres) &&( wj .KE < SynThres)

Synthesis operator of CRO ();
else

Inter-molecular Ineffective Collision operator of CRO ();
endif
Step 6: Termination criterion. Stop if the maximum generation 

  number is achieved; otherwise repeat from Step 3. 
end

CRO has good searching ability and shows excellent
operation in two important features of optimization meta-
heuristics, i.e., controlling the convergence and diversity. It
can control the convergence by benefiting from the crossover
of the GA. The diversity of chemical reaction uses the oper-
ators of on-wall ineffective collision. The conservation of
energy of this algorithm can balance the diversity and con-
vergence of solutions.
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4 Proposed algorithms for MO-VRPSDPTW

4.1 Solution representation for MO-VRPSDPTW

In the proposed algorithm, the solution representation for
the MO-VRPSDPTW is based on variable-length solution
representation [7]. The solution of the proposed algorithm is
denoted by the chemical molecular, which is shown in Fig. 1
(The molecular). The solution includes several routes, and
each route has a sequence of customers to be served. It is
worth noting that each route was designed with a vertex 0 as
the beginning and ending of the route.

4.2 D-MOCRO for MO-VRPSDPTW

The decomposition method chosen to solve the
MO-VRPSDPTW is defined by (9). MOEA/D has achieved
good results in solving multi-objective optimization prob-
lems. In our algorithm, we use the MOEA/D framework.
In [19], Ishibuchi et al. successfully used the decomposi-
tion method to solve the combinatorial optimization prob-
lem. He analyzed the performance of various methods of
decomposition, such as weighted sum, weighted Tcheby-
cheff and penalty-based boundary intersection function. It
showed that the weighed sum has high diversification abil-
ity. Therefore, the weighted sum method is used to solve the
MO-VRPSDPTW, in this paper. The decomposition method
is does not directly solving the multiple objectives; rather, it
uses decomposition to create a series of quantitative sub-
problems, with a parallel chemical reaction optimization
algorithm to solve these sub-problems. In this method, each
sub-problem is a neighborhood. Each sub problem is opti-
mized by the information of its neighborhood sub problem.
In each generation of reaction, the group is made up of the
best solution found by each sub-problem. D-MOCRO uses
the framework of MOEA/D. It decomposes the target MO-
VRPSDPTW into a number of scalar sub-problems using the
weighted sum approach.

D-MOCRO uses a specially designed local search meth-
ods to improve the quality of the solution to each scalar
sub-problems periodically. It works as follows:

(1) Initialization Procedure

In the initialization of the MO-VRPSDPTW, a solution is
randomly generated as follows. First, a customer should be
selected and a route should be created. Another customer
is randomly selected to insert after the first customer in the
route. Other customers are inserted until another cannot to
be inserted, at which point a new route should be created.
This procedure is repeated until all customers are inserted,
and then one molecular with MO-VRPSDPTW characteris-
tics is built. The five objectives of the above molecular are

computed according to Formula (9). This is followed by the
initialization weight vector, the calculation of the Euclidean
distance and the setting of the neighborhood. In addition, the
ε-dominance archive is adopted in the proposed algorithm.

D-MOCRO decomposes the MO-VRPSDPTW into a
scalar number of single objective sub-problems. The proce-
dure of D-MOCRO, whose pseudo-code is given in Algo-
rithm 6, includes three main points: the initialization of
population (molecules) P , the generation of weight vectors
and the assignment of neighborhood. To be specific, the ini-
tial population Pis randomly sampled from feasible space
via a uniform distribution. A set of uniformly distributed
weight vectors W = {w1, . . . , wN } are generated using Das
and Dennis’ method [20] where weight vectors are sampled
from a unit simplex. Given H and M , a total number of

N =
(
H + M − 1
M − 1

)
uniformly distributed points, with a

uniform spacing δ = 1/H , where H > 0 is the number of
divisions considered along each objective coordinate, which
sampled on the simplex for any number of objectives, and
mapping the points on the search space. An example is shown
in Fig. 2 to illustrate Das and Dennis’ weight vector genera-
tion method.

TheMO-VRPSDPTW can be simulated based on a vector
that is represented by the molecular of CRO. The neighbor-
hood search operator is applied in this algorithm, which is
basedon the vector used in the evolutionary algorithm.Anold
solution can be found by neighbor search. Each sub-problem
(molecular) has its own population and sees computational
effort at each generation. D-MOCRO follows the framework
of MOEA/D. It decomposes the MO-VRPSDPTW defined
by formula (9) into Q single objective optimization sub-
problems. Each sub-problem has a niche, which maintains
could keep diversity management in the objective space.

In the classical multi-objective decomposition method,
the most popular approached are weighted sum, weighted
Tchebycheff and boundary intersection. In this paper, we use
the weighted sum approach [11]. The weighted sum method
is described for m-objective problems using a weight vector
�i = (λi1, λi2, . . . , λim)

min gws(xi |�i ) = λi1 · f1(x
i ) + λi2 f2(x

i ) + · · ·
+ λim fm(xi ) (16)

where m equals five in this paper �i = (λi1, λi2, . . . , λim)

corresponds to a sub-problem i(i = 1, 2, . . ., Q), λ1 + λ2 +
· · · + λm = 1, and xi is a solution to be optimized.

Many practical optimization problems have a Pareto front
with an irregular shape. To approximate the Pareto optimal
solutions of a multi-objective optimization problem, Zhang
and Li [11] recently developed a novel multi-objective evo-
lutionary algorithm based on decomposition (MOEA/D). It
can work well if the curve shape of the Pareto-optimal front
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Fig. 2 Structured weight vector w = (w1, w2, w3)T generation pro-

cess with δ = 0.25, i.e., H = 4 in 3-D space.

(
4 + 3 − 1
3 − 1

)
= 15

weight vectors are sampled from a unit simplex
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Fig. 3 On-wall ineffective collision operator of CRO

is friendly. However, it shows poor performance to the irreg-
ular shape of the Pareto-optimal front. For this problem,
Liu et al. [21] proposed an improved MOEA/D algorithm
(denoted as TMOEA/D) that utilizes a monotonic increas-
ing function to transform each individual objective function
into one so that the curve shape of the non-dominant solu-
tions of the transformed multi-objective problem is close to
the hyper-plane whose intercept of coordinate axes is equal
to one in the original objective function space. We consider
the MO-VRPSDPTW as a discrete optimization problem, so
T-MOEA/D [21] was applied in this work.

(2) Reproduction Procedure

The on-wall ineffective collision operator randomly selects
a customer from a selected route and then re-inserts it into
a good position. This operator is shown in Fig. 3, which the
pseudo code described in Algorithm 2. This process includes
two points, one is selecting a route, and the other is defining
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Fig. 4 Decomposition operator of CRO

the good position to insert the customer. Selecting a route
needs to rely on the longest travel time for f3 from formula
9.A good position includes different objectives: the position
that has the lowest total distance, the lowest travel timeamong
all routes, the lowest total waiting time and the lowest total
delay time from f2, f3, f4 and f5 separately. In short, the
best position is the position that achieves the lowest cost.

Algorithm 2: On-wall ineffective collision operator of CRO ( )
1 Begin
2 Input: a solution w
3 Duplicate w to produce w’

4     Select a route according to the above description
5 Randomly select a number customer from the selected route 

6 The removed customer reinsert into the good position
7 Repair(w’)
8 Output: w’

9 end

and remove from this route

The decomposition operator of CROhas a highKE, which
is active and similar to a global search. The specific opera-
tion is that it selects two routes and then randomly selects
a number of customers from the selected routes. This oper-
ator is shown in Fig. 4, with the pseudo code described in
Algorithm 3.

Algorithm 3: Decomposition operator of CRO ( )
1  Begin
2     Input: a solution w
3           Duplicate w to produce w1

’ and w2
’

4          Select two routes from w
5           Select a number of customers from the selected routes 
                        randomly
6           Reinsert those customer into good points and delete 

customers of selected routes
7           Repair(w1

’); Repair(w2
’);

8     Output: w1
’ and w2

’

9 end
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Fig. 5 Inter-molecular ineffective collision operator of CRO

The inter-molecular ineffective collision operator of CRO
will lead to changing the structure of the molecule. The
inter-molecular ineffective collision operator of D-MOCRO
exchanges a sequence of customers between routes while
preserving the orientation of the sequences or routes. This
operator is shown in Fig. 5, with the pseudo code described
in Algorithm 4.

Algorithm 4: Inter-molecular ineffective collision operator of CRO ( )
1 Begin
2 Input: solution w1 and w2

3 Select two different routes from w1, select sequence customers 

4 exchange selection customers between two routes
5 Select two different routes from w2, select sequence customers 

6 exchange selection customers between two routes
7 Repair(w1

’); Repair(w2
’);

8 Output: w1
’ and w2

’

9 end

from one route and 

from one route and 

The synthesis operator of D-MOCRO generates new solu-
tions described as follows. First, a random number of routes
are selected from the first molecule, and copied into the off-
spring. Then, all the routes from the second molecule, that
are not in conflict with customers already copied from the
first parent are copied into the offspring.

Algorithm 5: Synthesis operator of CRO ( )
1 Begin
2 Input: solution w1 and w2

3          Randomly select two different customers i and j from the set of {1, …, n}
4           Synthesis (w1

’(i) and w2
’(j)); 

5           Repair(w1
’); Repair(w2

’);
6 Output: w1

’ and w2
’

7  end

Thus, the crossover operator makes offspring inherit
routes from parents. Once inherited routes are chosen, they
can be regarded as seed routes. The existing routes should
include all customers. If one customer cannot be inserted
properly, the customer will establish a new route. This oper-
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Fig. 6 Synthesis operator of CRO

ator shown in Fig. 6, with the pseudo code described in
Algorithm 5.

For the optimization algorithm, a good balance between
exploration and exploitation is necessary. Exploration refers
to ability of the algorithm to “explore” or search differ-
ent regions of feasible search space, whereas “exploitation”
refers to the ability or all the individuals to converge to the
near optimal solutions as quickly as possible. Toomuch stress
on exploration will result in a purely random search, whereas
too much stress on exploitation will result in a purely local
search. In this paper, the chemical reaction optimization oper-
ator of inter-molecular ineffective collision and synthesis
serve as vehicles of exploration, where the chemical reaction
optimization operators of decomposition and on-wall inef-
fective collision serve as vehicles of exploitation (Fig. 7).

In this section, D-MOCRO uses the framework of
MOEA/D to optimize theMO-VRPSDPTW. Tomaintain the
diversity of solutions, D-MOCRO uses an external popula-
tion to store non-dominated solutions, with multiple single
objective sub-problems optimized in parallel. For each sub-
problem, a chemical reaction optimization search is applied
to improve the current solution. To maintain diversity in
searching different parts of the POF, D-MOCRO applies
an adaptive weight [10]. The main features of D-MOCRO
include (1) using chemical reaction optimization to optimize
the MO-VRPSDPTW, (2) using the adaptive weight vectors,
(3) using ε-dominance to update the feasible solution and (4)
using elite population to contain nondominant Pareto feasi-
ble solution sets by using an efficient non-dominated sort on
sequential search strategy [22]. The procedure ofD-MOCRO
is given in Algorithm 6.

5 Experimental results and discussions

In this section, 45 real-world benchmark instances are used
to test the performance of the proposed D-MOCRO. The
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Fig. 7 Flow chart showing the working of D-MOCRO algorithm

MOMA [7] and MOLS [7] algorithms are compared with
our proposed algorithm.

5.1 Benchmark functions

See Table 1.

5.2 Performance metrics

The performance of a MOEA is evaluated from two aspects.
First, the obtained non-dominated set should be as close to
the true Pareto front as possible to achieve good conver-
gence. Second, the solutions in the obtained non-dominated
set should be distributed as diversely and uniformly as pos-
sible. In this paper, the Hypervolume metric is used.

Hypervolume (IH ) is used to indicate the area in the objec-
tive space that is dominated by at least one solution of the
nondominated set. This metric was suggested by Zitzler et

al. [23] to indicate the area in the objective space that is dom-
inated by at least one solution of the nondominated set. In
practice, IH is calculated as follows:

IH (A) =
∫

. . .

∫
1 · dz

z∈∪x∈AHV ( f (x), f ∗)

(17)

where HV ( f (x), f ∗) = [ f1(x), f ∗
1 ] × . . . × [ fm(x), f ∗

m] is
the Cartesian product of the closed intervals [ fi (x), f ∗

i ], i =
1, . . . ,m, the f ∗ = ( f ∗

1 , . . . , f ∗
m) is reference point and

the set A is nondominated set. An example with two objec-
tives is shown in Fig. 8, where the solution a, b, c and d
are objective vectors. The area of shadow represents the
hypervolume of nondominated set. From Fig. 8 shows that
the large IH represents the nondominated close towards the
Pareto front. Therefore, the IH metric can also measure the
convergence and diversity of an algorithm.
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Table 1 Details of 45
real-world instances and
stopping time (in seconds) for
each instance

Instance Size of customer Vehicle capacity Time window profile Running time

50-0-0 50 690 Profile 1 117

50-0-1 50 690 Profile 2 245

50-0-2 50 690 Profile 3 282

50-0-3 50 690 Profile 4 253

50-0-4 50 690 Profile 5 142

50-1-0 50 250 Profile 1 114

50-1-1 50 250 Profile 2 222

50-1-2 50 250 Profile 3 270

50-1-3 50 250 Profile 4 221

50-1-4 50 250 Profile 5 139

50-2-0 50 85 Profile 1 130

50-2-1 50 85 Profile 2 199

50-2-2 50 85 Profile 3 200

50-2-3 50 85 Profile 4 184

50-2-4 50 85 Profile 5 146

150-0-0 150 1854 Profile 1 183

150-0-1 150 1854 Profile 2 267

150-0-2 150 1854 Profile 3 301

150-0-3 150 1854 Profile 4 309

150-0-4 150 1854 Profile 5 239

150-1-0 150 638 Profile 1 163

150-1-1 150 638 Profile 2 245

150-1-2 150 638 Profile 3 300

150-1-3 150 638 Profile 4 308

150-1-4 150 638 Profile 5 239

150-2-0 150 182 Profile 1 163

150-2-1 150 182 Profile 2 258

150-2-2 150 182 Profile 3 295

150-2-3 150 182 Profile 4 341

150-2-4 150 182 Profile 5 220

250-0-0 250 3087 Profile 1 258

250-0-1 250 3087 Profile 2 345

250-0-2 250 3087 Profile 3 354

250-0-3 250 3087 Profile 4 407

250-0-4 250 3087 Profile 5 292

250-1-0 250 1046 Profile 1 225

250-1-1 250 1046 Profile 2 303

250-1-2 250 1046 Profile 3 338

250-1-3 250 1046 Profile 4 400

250-1-4 250 1046 Profile 5 261

250-2-0 250 284 Profile 1 237

250-2-1 250 284 Profile 2 292

250-2-2 250 284 Profile 3 329

250-2-3 250 284 Profile 4 395

250-2-4 250 284 Profile 5 282
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Fig. 8 Hypervolume of nondominated solutions

5.3 Parameter settings

In our experimental study, the MAX_FES = 50,000, the
number of the subproblems N = 495, the neighborhood
list size T = 5. Parameters of D-MOCRO are set as fol-
lows. The initKE equals to 10,000, the initBuffer equals to
100, the decThres equals to 800, the synThres equals to 15,
the lossRate equals to 0.1, the collRate equals to 0.2. The
initKE controls the molecular kinetic energy. The initBuffer
controls the container total energy which plays a keeping
energy conservation role. The decThres is a threshold value
of carrying on decomposition operator. The synThres is a
threshold value of carrying on synthetic operator. The coll-
Rate is a threshold value of carryingonwhether themolecules
collide with the container wall or collide with each other.
In this paper, CRO with collRate is also used in balancing
exploration and exploitation processes of the proposed CRO
algorithm. Population size is set to N = 500 for all the bench-
marks. All the compared algorithms stop when the number
of function evaluation reaches the maximum number. The
maximum function evaluation number is set to 30,000 for the
benchmarks. The MOLS [7] and MOMA follow the imple-
mentation of J. Wang [7].

For all experiments, 20 independent runs are carried out on
the samemachinewith aCeloron 3.40GHzCPU, 4GBmem-
ory, andwindows 7 operating system, and conductedwith the
maximumnumber of function evaluations (MAX_FES) as the
termination criterion. The proposed D-MOCRO and com-
parison algorithms were implemented in Microsoft Visual
Studio 2013 (C++).

5.4 Experimental results and discussions

5.4.1 Comparison of the experimental results on real world
instances

Recently, a many-objective VRPSDPTW was proposed.
Most previous algorithms consider only the VRPSDPTW/

Table 2 The HV metric of comparative algorithms

Instance IH

D-MOCRO MOLS MOMA

50-0-0 0.8570 0.8690§ 0.5540†

50-0-1 0.7190 0.7500§ 0.4870†

50-0-2 0.6110 0.6820§ 0.5660†

50-0-3 0.5570 0.5340† 0.5240†

50-0-4 0.7020 0.6460† 0.6630†

50-1-0 0.8450 0.8540§ 0.6270†

50-1-1 0.7290 0.7150† 0.5460†

50-1-2 0.6950 0.6720† 0.5810†

50-1-3 0.5780 0.5560† 0.5290†

50-1-4 0.6900 0.6880† 0.6460†

50-2-0 0.7120 0.7020† 0.6600†

50-2-1 0.6070 0.5890† 0.5420†

50-2-2 0.5740 0.6080§ 0.5440†

50-2-3 0.5600 0.5800≈ 0.5990§

50-2-4 0.5850 0.6080§ 0.5330†

150-0-0 0.8960 0.8770† 0.6150†

150-0-1 0.7470 0.7570§ 0.5820†

150-0-2 0.7170 0.7450§ 0.5410†

150-0-3 0.6903 0.6150§ 0.5010†

150-0-4 0.7060 0.7410§ 0.5540†

150-1-0 0.8570 0.8830§ 0.6270†

150-1-1 0.7670 0.7530† 0.5660†

150-1-2 0.7170 0.7370§ 0.5380†

150-1-3 0.6220 0.5930† 0.4940†

150-1-4 0.7140 0.7140§ 0.5580†

150-2-0 0.8450 0.8290† 0.5990†

150-2-1 0.7390 0.7380† 0.5540†

150-2-2 0.6640 0.7050§ 0.4870†

150-2-3 0.6060 0.5890† 0.5060†

150-2-4 0.7300 0.7160† 0.5400†

250-0-0 0.8470 0.8410† 0.5790†

250-0-1 0.7650 0.7620† 0.5500†

250-0-2 0.7140 0.7260§ 0.5210†

250-0-3 0.5850 0.5970§ 0.4840†

250-0-4 0.6990 0.7050§ 0.5640†

250-1-0 0.8450 0.8420† 0.6020†

250-1-1 0.7280 0.7690§ 0.5660†

250-1-2 0.6990 0.7170 0.5320†

250-1-3 0.5960 0.6300§ 0.5010†

250-1-4 0.6900 0.6900≈ 0.5070†

250-2-0 0.7610 0.8210§ 0.6120†

250-2-1 0.7662 0.7690§ 0.5040†

250-2-2 0.8012 0.7180† 0.4820†

250-2-3 0.6318 0.5970† 0.4840†

250-2-4 0.7001 0.6970† 0.5230†

†/§/≈ 23/20/2 44/1/0

The bold data represents the HV metric of corresponding algorithm is better
than other’s
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Table 3 Box plots of the three
algorithms on HV Metric of
D-MOCRO, MOLS and MOMA
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Table 3 continued
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VRPTW with two objectives. In this paper, we develop a
multi-objective chemical reaction optimization to solve this
problem. To balance diversity and convergence, we design
local search operators and operators of global convergence.
The results of the experiment are shown below.

The average values of the metrics over 30 independent
runs of both algorithms on the test sets were calculated and
are shown in Tables 2 and 3. Due to space limitations, the
standard deviations of the metrics are not presented in the
tables.

To test the performance of the D-MOCRO algorithm with
other algorithms on differentMO-VRPSDPTWbenchmarks,
we use the Wilcoxon signed-rank test [24] at a significance
level of 0.05. The results of the benchmarks are summarized
as †/§/≈, which indicate whether the performance of D-
MOCRO is better than, worse than or similar to others. From
Tables2, 3 and Fig. 9, several observations can be made.

(1) For 45 real-world instances, D-MOCRO significantly
outperforms MOLS and MOMA in most instances.
Specifically, D-MOCRO outperforms MOLS in 23
instances and MOLS is outperformed by MOLS in 22
instances in terms of HV. According to the attribute of
HV, the results in Table 2 show that D-MOCRO can
obtain better convergence and diversity than MOLS and
MOMA.

(2) To demonstrate the convergence and diversity of the
comparative algorithms, we plot the non-dominated

solutions obtained by D-MOCRO (denoted as. in blue),
MOLS and MOMA on the instance 50-0-1, on f1 − f2,
f1 − f3 and f2 − f3 planes in Fig. 9. In Fig. 9, we can
see that most objective vectors generated by D-MOCRO
are better than those generated by MOMA and MOLS.

(3) To further show the convergence and diversity properties
of the three algorithms, the box-plots of three algorithms
are shown inTable3. TheHVmetric is used in this paper.
From Table 3, we found instances of 50-0-3, 50-0-4,
50-1-1, 50-1-2, 50-1-3, 50-1-4, 50-2-0, 50-2-1, 150-0-0,
150-1-1, 150-1-3, 150-2-0, 150-2-1, 150-2-3, 150-2-4,
250-0-0, 250-0-1, 250-1-0, 250-1-4, 250-2-2, 250-2-3
and 250-2-4, where D-MOCRO was better than other
two algorithms. D-MOCRO can search for more solu-
tions using an efficient local search, especially in the
instance 50-2-0.

5.4.2 Discussions

In this paper, a chemical reaction optimization algorithm
that solves the MO-VRPSDPTW with five objectives has
been proposed. The main idea is to use a decomposition-
based chemical reaction optimization to solve the MO-
VRPSDPTW. When the number of objectives is five, we
use an archive to save solutions. We use an efficient non-
dominated sort on sequential searches [22] to update the
archive of D-MOCRO.
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Table 3 continued
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Fig. 9 Plots of nondominated solutions obtained by D-MOCRO (denoted as dot), MOLS (denoted as plus) and MOMA (denoted as asterisk) on
the instance 50-0-1, respectively

123



Memetic Comp. (2018) 10:103–120 119

In D-MOCRO, a chemical reaction optimization algo-
rithm is successful developed to solve discrete many-
objective combinational optimization problem, for the first
time. D-MOCROhas good convergence, benefitting from the
operator of synthesis. The other operators are used to search
locally for neighbors of molecules and can obtain a good
diversity.

Finally, it can be concluded that D-MOCRO is an effective
mechanism to solve real-worldMO-VRPSDPTW. Extensive
experiments have shown the effectiveness of the proposed
algorithm. In order to further to study the performance of
D-MOCRO, the proposed algorithm can also be extended
to solve other multiobjective VRPs in reverse logistics.
Although D-MOCRO was shown to be very promising for
real-world MO-VRPSDPTW, however, it has its limitation.
The source of the major limitation is the sensitivity to the
parameter. In order to enhance its performance, adaptive con-
trol of parameter will be developed to make its performance
more efficient.

6 Conclusion and future work

In this paper, a discrete multiobjective CRO has been devel-
oped to solve multiobjective vehicle routing problem with
five objectives, for the first time. In our work, a D-MOCRO
is proposed which is based on the method of decomposition.
It converts the complex MO-VRPSDPTW into a number of
single-objective subproblems and optimizes them in CRO
simultaneously. CRO has four operators to search, which
includes one molecular operation and two molecular oper-
ations. The one molecular operation includes an on-wall
ineffective collision operator and decomposition operator,
and the two molecular operations include a synthesis oper-
ator and inter-molecular ineffective collision operator. The
on-wall ineffective collision operator and inter-molecular
ineffective collision operator execute a local search. The
decomposition operator and synthesis operator executes
global search. The energy conservation in the process of
chemical reaction balances the local (exploitation) and the
global (exploration). In addition, D-MOCRO uses an archive
to save non-dominate solutions. The archive updating sues
the efficient non-dominated sort on sequential searches [22].

From the analysis and experiments, we observe that the
decomposition-basedmulti-objective chemical reaction opti-
mization enables D-MOCRO to utilize energy conservation
balancing the local (exploitation) and global (exploration) to
generate better quality solutions. Compared with the other
algorithms on the 45 benchmark problems, we can con-
clude that D-MOCRO significantly outperforms MOLS and
MOMA in most instances. Specifically, D-MOCRO outper-
forms MOLS in 23 instances and MOLS is outperformed
by MOLS in 22 instances in terms of HV. According to the

attribute of HV, the results of Table 1 show that D-MOCRO
can obtain better convergence and diversity than MOLS and
MOMA.

Further work includes research on the adaptive control
of parameter to make the algorithm more efficient. More-
over, the algorithm can be applied to constrained, dynamic
and noisy many-objectives and multi-objective optimization
domain. It is expected that D-MOCROwill be used for many
real-world optimization problems.
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