
Memetic Comp. (2017) 9:69–88
DOI 10.1007/s12293-016-0221-2

REGULAR RESEARCH PAPER

A combined constraint handling framework: an empirical study

Chengyong Si1 · Junjie Hu2 · Tian Lan3 · Lei Wang4 · Qidi Wu4

Received: 19 December 2015 / Accepted: 30 December 2016 / Published online: 9 January 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract This paper presents a new combined constraint
handling framework (CCHF) for solving constrained opti-
mization problems (COPs). The framework combines
promising aspects of different constraint handling techniques
(CHTs) in different situations with consideration of problem
characteristics. In order to realize the framework, the fea-
tures of two popular used CHTs (i.e., Deb’s feasibility-based
rule and multi-objective optimization technique) are firstly
studied based on their relationship with penalty function
method. And then, a general relationship between problem
characteristics and CHTs in different situations (i.e., infeasi-
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ble situation, semi-feasible situation, and feasible situation)
is empirically obtained. Finally, CCHF is proposed based on
the corresponding relationship. Also, for the first time, this
paper demonstrates that multi-objective optimization tech-
nique essentially can be expressed in the form of penalty
function method. As CCHF combines promising aspects of
different CHTs, it shows good performance on the 22 well-
known benchmark test functions. In general, it is comparable
to the other four differential evolution-based approaches and
five dynamic or ensemble state-of-the-art approaches for
constrained optimization.

Keywords Constrained optimization · Constraint handling
techniques · Combined constraint handling framework
(CCHF) · Differential evolution · Ranking methods

1 Introduction

In the real-world applications, constrained optimization
problems (COPs) are very common and important. TheCOPs
can be generally expressed by the following formulations:

Minimize f (�x)
Subject to: g j (�x) ≤ 0, j = 1, . . . , l

h j (�x) = 0, j = l + 1, . . . ,m

where �x = (x1, . . . , xn) is the decision variable. The decision
variable is bounded by the decision space S which is defined
by the constraints:

Li ≤ xi ≤ Ui , 1 ≤ i ≤ n (1)
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l is the number of inequality constraints and m − l is the
number of equality constraints.

The evolutionary algorithms (EAs) are essentially uncon-
straint search techniques [1] and can be mainly used to
generate solutions. Equivalently, choosing the better solu-
tions among the parent and offspring populations, especially
for the COPs is another important research area in optimiza-
tion, which leads to the development of various constrained
optimization evolutionary algorithms (COEAs) [2–4] The
three most frequently used constraint handling techniques
(CHTs) in COEAs are based on the concept of penalty
functions, biasing feasible over infeasible solutions and mul-
tiobjective optimization [3,5–7].

Penalty function method is generic and applicable to any
type of constraints. It constructs a fitness evaluation by
adding an amount of constraint violation to an objective
function. The fine tuning of penalty parameters, which helps
to balance the objective and constraint violation, is the key
point.

Methods which compare separately the objective func-
tions and constraint violations were also developed. For
example, Deb [5] proposed a feasibility-based rule to pair-
wise compare individuals:

(1) Any feasible solution is preferred to any infeasible solu-
tion.

(2) Among two feasible solutions, the one having better
objective function value is preferred.

(3) Among two infeasible solutions, the one having smaller
constraint violation is preferred.

Meanwhile, multiobjective optimization technique which
considers the objective function and constraint violation at
the same time has been employed to handle constraints [3,7].

Besides these basic CHTs, some other concepts like coop-
erative coevolution [8,9] and ensemble [10,11] have also
been proposed. These methods employed different subpopu-
lations and evolve parallel. Normally, the population size of
these methods changes with the evolution process. Thus, it
can be seen as a dynamic adjustment process.

Taking ensemble of constraint handling techniques
(ECHT) [11] as an example, it utilizes multiple subpopu-
lations. Each subpopulation corresponds to one CHT with
its own offspring. And the parent population of one CHT
will compete with all the offspring populations so that every
function call can be utilized effectively.

The evolution process will inevitably experiences three
different situations in solving COPs [12], and consequently,
some dynamic approaches were developed.

Zhang et al. [13] proposed a dynamic stochastic selec-
tion (DSS) within the framework of multimember DE
(DSS_MDE). Another adaptive penalty formulation was
introduced by Tessema and Yen [14].It uses the number of

feasible individuals to determine the amount of penalty added
to infeasible individuals.

Wang et al. [12] proposed an adaptive tradeoff model
(ATM). To satisfy the different requirements in correspond-
ing situations, different tradeoff schemes during different
situations of a search process are designed. Based on it, an
improved ATM with each constraint violation first normal-
ized was proposed by Wang and Cai [15]. It was combined
with (μ+ λ)-DE to form the framework of (μ + λ)-CDE. In
this approach, a constraint-handling mechanism is designed
in each situation based on the characteristics of the current
population. To overcome the drawbacks of (μ + λ)-CDE,
an improved version of (μ + λ)-CDE, named ICDE, was
presented by Jia et al. [16]. ICDE consists of an improved
(μ + λ)-differential evolution (IDE) and a novel archiving-
based adaptive tradeoff model (ArATM). Especially, the
hierarchical non-dominated individual selection scheme is
utilized and an individual archiving technique is proposed to
maintain the diversity of the population in the infeasible situ-
ation. In the semi-feasible situation, the feasibility proportion
of the population is used to convert the objective function of
each individual.

Among all of these aforementioned methods, the prob-
lem characteristics are rarely considered. But asMichalewicz
summarized [17], it seems that Evolutionary Algorithms, in
the broad sense of this term, provide just a general framework
on how to approach complex problems. All their compo-
nents, from the initialization, through variation operators and
selection methods, to constraint-handling methods, might
be problem-specific. From this, we believe it is essential to
design a general framework from the aspect of problem char-
acteristics.

Besides, there are already some computational time
complexity analyses of EAs [18,19] that emphasize the
relationship between algorithmic features and problem char-
acteristics. As Yao presented [20], analyzing the relationship
between problem characteristics and algorithmic features
will shed light on the essential question of when to use
which algorithm in solving a difficult problem instance class.
And he introduced EA-hard and EA-easy problem instance
classes. These classes are based on the functional relationship
between the mean number of generations (i.e., the mean first
hitting time) and the problem size (in terms of dimension-
ality). But as he also pointed out, it is still unclear what the
relationship is between the optimization time and the prob-
lem size for different EAs on different problems. Though a
lot of theoretical analysis was obtained, Yao did not give the
specific relationship between algorithms and problems.

Additionally, some researchers have emphasized the
importance of the relationship between problem character-
istics and algorithms, and have tried to realize some simple
combination of algorithm variants, although the results are
not satisfactory. For example, Tsang and Kwan [21] pointed
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out the need to map constraint satisfaction problems to
algorithms and heuristics. But they did not give an exact rela-
tionship between them. Mezura-Montes et al. [22] proposed
a simple combination of twoDE variants (i.e., DE/rand/1/bin
and DE/best/1/bin) based on the empirical analysis of four
DE variants. Gibbs et al. [23] identified the relationship
between the optimal number of GAgenerations and the prob-
lem characteristics, through quantifying different problem
characteristics of unconstrained problems.

Recently, some researchers have made some beneficial
attempt on the use of information during the evolutionary
process, and got some good results. It is noted that, in the
course of the information use, the relationship between diver-
sity and convergence, exploration and exploitation should be
well handled.

Wang et al. [24] proposed the strategy of incorporating
objective function information into the Deb’s feasibility-
based rule, and achieved an effective balance between con-
straints and objective function in constrained optimization.
The paper also presented some new replacementmechanisms
and mutation strategy to better exploit the information of
individuals with good objective function values.

Qiu et al. [25] developed some adaptive cross-generation
differential evolution operators for multi-objective opti-
mization. This mechanism utilized the swarm information
between neighbor generations from the aspect of objective
spaces into two mutation operators, so as to achieve the good
balance between convergence and diversity. This paper also
presented a new parameter adaptation mechanism to self-
adapt the individuals’ associate parameters.

Elsayed and Sarker [26] presented a general differen-
tial evolution framework for big data optimization. Three
sub-swarmswere employed to correspond to a variant respec-
tively. During the evolutionary process, the performance
information of each variant was recorded, and an exponen-
tial curve was fitted to predict the future performance of each
variant.

Feng et al. [27] proposed an evolutionary memetic search,
which can learn and evolve knowledge meme across dif-
ferent but related problem domains. It was realized on
two combination optimization problems, capacitated vehicle
routing problem (CVRP) and capacitated arc routing prob-
lem (CARP).

Other methods concerning the problem characteristics
were also reported [28]. As presented in [28], a method to
construct the relationship between problems and algorithms
as well as constraint handling techniques from the qualita-
tive and quantitative point of viewwas proposed. In the paper,
the problem characteristics were also summarized systemat-
ically.

Unlike the aforementioned methods, in this work, we
try to study the features of different CHTs (i.e., penalty
function method, multiobjecitve optimization technique and

Deb’s feasibility-based rule) and get the corresponding
relationship between problem characteristics and CHTs in
different situations. A combined constraint handling frame-
work (CCHF) is proposed based on the corresponding
relationship.

The rest of this paper is organized as follows. Section 2
briefly introduces DE. Section 3 gives the detail analysis
of the relationship among three CHTs (i.e., multi-objective
optimization technique and penalty function method, Deb’s
feasibility-bases rule and penalty function method). The
comparison of different CHTs in different situations is
analyzed in Sect. 4. Based on this, Sect. 5 presents a
detailed description of the proposed CCHF. The experimen-
tal results and the comparison with some state-of-the-art
methods are given in Sect. 6. Finally, Sect. 7 concludes
this paper and provides some possible paths for future
research.

2 Differential evolution (DE)

DE, which was proposed by Storn and Price, is a simple and
efficient EA. The mutation, crossover and selection opera-
tions are introduced in DE. The first two operations are used
to generate a trial vector to compete with the target vector
while the third one is used to choose the better one for the
next generation. Several variants of DE have been proposed
[29]. DE/rand/1/bin was adopted in this paper as the search
algorithm.

The population of DE consists of NP n-dimensional real-
valued vectors

�xi = {
xi,1, xi,2, . . . , xi,n

}
, i = 1, 2, . . . ,NP (2)

The three operations are defined as follows.

2.1 Mutation operation

Taking into account each individual �xi (named a target vec-
tor), a mutant vector �vi = {vi,1, vi,2, . . . , vi,n} is defined as

�vi = �xr1 + F · (�xr2 − �xr3) (3)

where r1, r2 and r3 are randomly selected from [1, NP] and
satisfying: r1 �= r2 �= r3 �= i and F is the scaling factor.

In this paper, if vi, j violates the boundary constraint, it
will be reset as follows [9]:

vi, j =
{
min

{
Uj , 2L j − vi, j

}
, i f vi, j < L j

max
{
L j , 2Uj − vi, j

}
, i f vi, j > Uj

(4)
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2.2 Crossover operation

A trial vector �ui is generated through the crossover operation
on the target vector �xiand the mutant vector �vi

ui, j =
{

vi, j if rand j ≤ Cr or j = jrand
xi, j otherwise

(5)

where i = 1, 2, . . . ,NP, j = 1, 2, . . . , n, jrand is a ran-
domly chosen integer within the range [1, n], rand j is the
j th evaluation of a uniform random number generator within
[0,1], and Cr is the crossover control parameter. The intro-
duction of j = jrand can guarantee the trial vector �ui is
different from its target vector �xi .

2.3 Selection operation

Selection operation is realized by comparing the trial vector
�ui against the target vector �xi and the better one will be
preserved for the next generation.

�xi =
{ �ui if f (�ui ) ≤ f (�xi )

�xi otherwise
(6)

3 Systematic analysis of CHTs

3.1 Definitions

Unlike the single optimization solution in single-objective
optimization problem, there are often a set of the optimization
solutions in multiobjective optimization problem. Thereby it
is necessary to introduce some essential definitions regarding
the multiobjective optimization [30]. These definitions are
mostly from the aspect of variables.

Definition 1 (Pareto dominance) A multiobjective mini-
mization problemwithm decision variables (parameters) and
n objectives can be formulated as follows:

Minimize �y = �f (�x) = ( f1 (�x) , . . . , fn (�x))
where �x = (x1, . . . , xm) ∈ X

�y = (y1, . . . , yn) ∈ Y (7)

and where �x is decision vector, X is parameter space, �y is
objective vector, and Y is objective space. A decision vector
�a ∈ X is said to dominate a decision vector �b ∈ X , denoted
as �a ≺ �b, if and only if

∀i ∈ {1, . . . , n} , fi (�a) ≤ fi
(�b

)
and

∃ j ∈ {1, . . . , n} , f j (�a) < f j
(�b

)
(8)

Definition 2 (Pareto optimality) The decision vector �a is
said to be nondominated regarding a set X ′ ⊆ X if and only
if there is no vector in X ′ which dominates �a, as

¬∃�a′ ∈ X ′, �a′ ≺ �a (9)

Besides, the decision vector �a is Pareto-optimal if and only
if �a is nondominated regarding X .

Definition 3 (Pareto optimal set) The set X ′ is called a global
Pareto-optimal set if and only if ∀�a′ ∈ X ′,¬∃�a ∈ X, �a ≺ �a′.
We can define it as

ρ∗ = {�a′ ∈ X ′ ∣∣¬∃�a ∈ X, �a ≺ �a′ } (10)

The Pareto optimal set is a set of parameters and the
corresponding set of objective vectors is denoted as “Pareto-
optimal front”.

3.2 Systematic analysis of penalty function method and
multiobjective optimization technique

As the aforementioned definitions in multiobjective opti-
mization technique can be described in the form of penalty
function method, the relationship between them can be ana-
lyzed as follows.

For the given λ, δ > 0, let the evaluation function L in the
penalty function method as

L (�xi , λ, δ) = f (�xi ) + λG (�xi , δ) i = 1, 2, . . . ,NP (11)

where �xi is the NP n-dimensional real-valued vectors of the
population as defined in (2), λ is the penalty parameter, δ

is the tolerance value for the equality constraints, f is the
objective function and G is the real-valued penalty function.

As δ can be supposed as a constant, the effect ofλ ismainly
concerned. The formula (11) can be transformed as

L (�xi , λ) = f (�xi ) + λG (�xi ) i = 1, 2, . . . ,NP (12)

Given two population members, �xs and �xt , where s and t are
randomly selected from [1, NP] and satisfying: s �= t , the
difference between their evaluation function values is:

�(�xs, �xt , λ) = L (�xs, λ) − L (�xt , λ)

= [
f (�xs) + λG (�xs)

] − [
f (�xt ) + λG (�xt )

]

= [
f (�xs) − f (�xt )

] + λ
[
G (�xs) − G (�xt )

]

(13)

We define � fst = f (�xs) − f (�xt ),�Gst = G(�xs) − G(�xt ),
then formula (13) can be written as:
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�(�xs, �xt , λ) = � fst + λ · �Gst (14)

According to the definition, � fst �= ±∞ and �Gst �= ±∞.
The multiobjective optimization technique converts a

COP into a biobjective or multiobjective optimization prob-
lem, for the sake of clarity, let �f (�x) = ( �f1(�x), �f2(�x)) =
( f (�x),G(�x))

Byemploying the aforementioneddefinitions and the form
of penalty function, we obtain the following conclusions:

Theorem 1 �xs ≺ �xt ⇔ ∀λ > 0, L (�xs, λ) < L (�xt , λ).

Proof As mentioned above, ∀λ > 0, L(�xs, λ) < L(�xt , λ) is
equal to ∀λ > 0,� fst + λ · �Gst < 0.

The sufficient condition can be easily proved.
From the definition of dominance, if�xs ≺ �xt , then � fst ≤

0, �Gst ≤ 0, and � fst and �Gst can’t be equal to 0 simul-
taneously.

The conclusion ∀λ > 0,� fst +λ ·�Gst < 0 is obtained.
Next, we prove the necessary condition.
From ∀λ > 0,� fst + λ · �Gst < 0, we can conclude:

�Gst < −� fst
λ

(15)

Let us define A = −� fst
λ

, then �Gst < A.
For the different properties of � fst , there are three differ-

ent cases.

(1) � fst > 0: in this case, A < 0, �Gst < A < 0. When
λ → 0+, then A → −∞, and �Gst = −∞, which
contradicts the previous assumption.

(2) � fst = 0: in this case, A=0, �Gst < 0.
3) � fst < 0: in this case, A > 0, �Gst < A. When λ →

+∞, then A → 0+, and �Gst ≤ 0,

In general, � fst ≤ 0,�Gst ≤ 0, and � fst and �Gst are
not equal to 0 simultaneously. So the conclusion �xs ≺ �xt is
obtained.

Likewise, we can get two related theorems as follows.

Theorem 2 �xs nondominates �xt ⇔ ∃λ > 0, L(�xs, λ) ≥
L(�xt , λ).

Proof As mentioned above, ∃λ > 0, L(�xs, λ) ≥ L(�xt , λ) is
equal to ∃λ > 0,� fst + λ · �Gst ≥ 0

�xs nondominates �xt
⇔ ∃i, fi (�xs) > fi (�xt ) or ∀i, fi (�xs) = fi (�xt ) (where i =

1, 2)⇔ f (�xs) > f (�xt )orG(�xs) > G(�xt ), or f (�xs) = f (�xt )
and G(�xs) = G(�xt ).

Let us first prove the sufficient condition.
From the definition of nondominated, if �xs nondominates

�xt , then � fst > 0, or�Gst > 0, or � fst = �Gst = 0.
Then four cases are listed as follows.

(1) � fst > 0,�Gst > 0: in this case, � fst + λ · �Gst ≥ 0
holds for ∀λ > 0.

(2) � fst > 0,�Gst ≤ 0: if �Gst = 0, then the inequality
� fst + λ · �Gst ≥ 0 holds; else suppose � fst

−�Gst
= η ≥

λ > 0, then the inequality holds.
(3) � fst ≤ 0,�Gst > 0: suppose −� fst

�Gst
= η ≥ λ > 0,

then the inequality holds.
(4) � fst = �Gst = 0: the conclusion� fst+λ·�Gst ≥ 0is

obtained.

Next, we prove the necessary condition.
The main aim is to find out the relationship of � fst and

�Gst under the conditions.
For the different properties of �Gst , there are three dif-

ferent cases.

(1) �Gst > 0: in this case, λ ≥ − � fst
�Gst

= η holds for any
� fst , and in this situation, �xs nondominates �xt (as cases
1 and 3 in the previous part);

(2) �Gst = 0: in this case,� fst ≥ 0, then �xs nondominates
�xt (as cases 2 and 4 in the previous part);

(3) �Gst < 0: in this case, λ ≤ − � fst
�Gst

= η,� fst > 0,
then �xs nondominates �xt (as case 2 in the previous part).

In general, �Gst > 0, or �Gst = 0 and � fst ≥ 0, or
�Gst < 0 and� fst > 0. So the conclusion �xs nondominates
�xt is obtained.

To expand the individuals to a set, then Theorem 3 is
obtained.

Theorem 3

ρ∗ = {�xs ∈ X ′|¬∃�xt ∈ X, �xt ≺ �xs
}

⇔ {�xs ∈ X ′|∀�xt ∈ X, ∃λ > 0, L (�xt , λ) ≥ L (�xs, λ)
}

3.3 Systematic analysis of penalty function method and
Deb’s feasibility-based rule

As analyzed in [31], Deb’s feasibility-based rule corresponds
to one special case of penalty function method when penalty
parameter is large enough (i.e., larger than λmax) for the fol-
lowing reason:

(1) For the feasible situation, both methods have the same
effect on ranking due to the fact that only objective func-
tion values are used for ranking.

(2) For the infeasible and semi-feasible situations,whenλ >

λmax, the two methods have the same effect on ranking
the whole population. While, when λ < λmax, these two
methods present different effect on ranking. Here, λmax

is determined by the current solutions.

123



74 Memetic Comp. (2017) 9:69–88

maxλminλ max
infλmin

infλ max
semλmin

semλ

B_2

A_2

A_2,B_2 A_1,B_1

A_1

B_1

λ

Fig. 1 The corresponding rule for penalty parameter λ

The general results can be illustrated in Fig.1, where A_1,
A_2, B_1, B_2 are four rules for comparing feasible and
infeasible solutions. A_1, B_1 stands for Deb’s feasibility-
based rule.

4 Comparison of different CHTs in different
situations

To fully compare the effect of different CHTs on differ-
ent situations, two experiments, will be carried out. One is

under the infeasible situation while the other one is under the
semi-feasible situation. All our experiments are based on the
benchmark functions in [32]. The details of these benchmark
functions and the classifications (which takes some idea from
[22]) are presented in Tables 1 and 2 respectively.

To make fair comparison, all CHTs will be compared
under the same circumstance (i.e., with the same initial solu-
tions and the same setting of DE).

The averagemethod (which divides the range of each inde-
pendent variable equally) is adopted to generate the initial
solutions. 15 out of 22 benchmark functions are in the infea-
sible situation. As the rest seven benchmark functions are
not enough to analyze the characteristics of CHT in the semi-
feasible situation,we adopt the other 15 benchmark functions
with the semi-feasible situation. Deb’s feasibility-based rule
is applied to the 15 benchmark functions to get at least a
feasible solution (i.e., semi-feasible situation).

Therefore, 15 and 22 benchmark functions are used in
experiment 1 and experiment 2 respectively for comparison.
The experimental results are listed in Tables 3 and 4.

Table 1 Details of the
benchmark functions

Prob. n Type of objective
function

ρ (%) LI NI LE NE a f (�x∗)

g01 13 Quadratic 0.0111 9 0 0 0 6 −15.0000000000

g02 20 Nonlinear 99.9971 0 2 0 0 1 −0.8036191042

g03 10 Polynomial 0.0000 0 0 0 1 1 −1.0005001000

g04 5 Quadratic 52.1230 0 6 0 0 2 −30,665.5386717834

g05 4 Cubic 0.0000 2 0 0 3 3 5126.4967140071

g06 2 Cubic 0.0066 0 2 0 0 2 −6961.8138755802

g07 10 Quadratic 0.0003 3 5 0 0 6 24.3062090681

g08 2 Nonlinear 0.8560 0 2 0 0 0 −0.0958250415

g09 7 Polynomial 0.5121 0 4 0 0 2 680.6300573745

g10 8 Linear 0.0010 3 3 0 0 6 7049.2480205286

g11 2 Quadratic 0.0000 0 0 0 1 1 −0.7499000000

g12 3 Quadratic 4.7713 0 1 0 0 0 −1.0000000000

g13 5 Nonlinear 0.0000 0 0 0 3 3 0.0539415140

g14 10 Nonlinear 0.0000 0 0 3 0 3 −47.7648884595

g15 3 Quadratic 0.0000 0 0 1 1 2 961.7150222899

g16 5 Nonlinear 0.0204 4 34 0 0 4 −1.9051552586

g17 6 Nonlinear 0.0000 0 0 0 4 4 8853.5396748064

g18 9 Quadratic 0.0000 0 13 0 0 6 −0.8660254038

g19 15 Nonlinear 33.4761 0 5 0 0 0 32.6555929502

g21 7 Linear 0.0000 0 1 0 5 6 193.7245100700

g23 9 Linear 0.0000 0 2 3 1 6 −400.0551000000

g24 2 Linear 79.6556 0 2 0 0 2 −5.5080132716

n is the number of decision variables, ρ = |F |/|S| is the estimated ratio between the feasible region and
the search space, LI, NI, LE, NE stand for the number of linear inequality constraints, nonlinear inequality
constraints, linear equality constraints and nonlinear equality constraints respectively, a is the number of
active constraints at the optimal solution and f (�x∗) is the objective function value of the best known solution.
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Table 2 Classification of benchmark functions based on the number of decision variables and the type of objectives and constraints

Problem characteristics Problems

Number of variables

10–20 (high) g01, g02, g03, g07, g14, g19

5–9 (medium) g04, g09, g10, g13, g16, g17, g18, g21, g23

2–4 (low) g05, g06, g08, g11, g12, g15, g24

Type of objectives

Polynomial g01, g03, g04, g05, g06, g07, g09, g11, g12, g15, g18

Nonlinear g02, g08, g13, g14, g16, g17, g19

Linear g10, g21, g23, g24

Type of constraints

Only inequalities g01, g02, g04, g06, g07, g08, g09, g10, g12, g16, g18, g19, g24

Only equalities g03, g11, g13, g14, g15, g17

Both inequalities and equalities g05, g21, g23

The Deb’s feasibility-based rule [5] and multi-objective
optimization technique without any variants [12] are used
here.

4.1 Comparison under infeasible situation

In this situation, both Deb’s feasibility-based rule and multi-
objective optimization technique can always find the feasible
solutions. This is because that these two methods take the
constraint violation as a metric for evaluation (i.e., compar-
ing the constraint violation directly).

Multi-objective optimization technique shows abetter per-
formance in g03, g05, g15, g16, g17, g21 andg23whileDeb’s
feasibility-based rule performs better in g06, g07 and g18.
They show similar performance in other functions.

Considering the problem characteristics, it indicates that
if equality constraints are involved, multiobjective optimiza-
tion technique is preferred; otherwise, Deb’s feasibility-
based rule is preferred.

4.2 Comparison under semi-feasible situation

In this experiment, multiobjective optimization technique
performs better than Deb’s feasibility-based rule in most test
functions, especially in g03, g05, g06, g10 and g14. How-
ever, it performs worse than Deb’s feasibility-based rule in
g08.

All these two CHTs have the same or similar performance
in g04, g07, g08, g09, g12, g16, g18, g19 and g24 with
the known optimal value reached. It is worthy noting that
multiobjective optimization technique needs less fitness eval-
uations (FES) comparing with Deb’s feasibility-based rule.

It also should be pointed out that these two CHTs can not
find the optimal solutions in g13, g21 and g23.

Considering theproblemcharacteristics,Deb’s feasibility-
based rule performs better in solving problems with inequal-
ity constraints and the nonlinear objective function’s type;
multiobjective optimization technique performs better in the
other types of problems.

4.3 General conclusion

We can conclude that different CHTs can solve different
problems effectively in corresponding situations. These con-
clusions can be generalized as follows.

(1) For the infeasible situation, Deb’s feasibility-based rule
and multiobjective optimization technique can effec-
tively solve problems with only inequality constraints
and the others respectively.

(2) For the semi-feasible situation, Deb’s feasibility-based
rule and multiobjective optimization technique can
effectively solve problems with inequality constraints
with nonlinear objective function and the other types of
problems respectively.

(3) For the feasible situation, these CHTs have the same per-
formance as there is no constraint violation considered.

This conclusion forms a good basis for combining promis-
ing aspects of different CHTs on different problems into a
new approach, as demonstrated in next section.

5 Combined constraint handling framework
(CCHF)

Asmentioned in Sect. 4, differentCHTshave different effects
on solving different problems in different situations. Based
on this, a generalized CCHF is proposed.
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Table 3 Comparison of
different CHTs in infeasible
situation

Func. and optimal value FES_D FES_M FIT_D FIT_M

G01 −15.0000

Best 600 300 −1.1218 −1.7463

Median 1200 1100 0.4490 0.5844

Mean 1104 1060 0.5357 0.3665

Worst 1400 1400 2.3860 2.1513

SD 1.9891E+02 2.3274E+02 8.4033E−01 9.3501E−01

FR 1 1 1 1

G03 −1.0005

Best 500 700 −0.7240 −0.9728

Median 1800 1400 −0.1414 −0.8385

Mean 2604 1424 −0.1841 −0.7915

Worst 7400 2600 −5.9421E−06 −0.3758

SD 1.9747E+03 4.1960E+02 2.0049E−01 1.5278E−01

FR 1 1 1 1

G05 5126.4967

Best 12,100 10,000 5127.4556 5126.4978

Median 14,600 11,700 5253.0267 5126.5072

Mean 14,472 11,664 5258.2013 5126.5245

Worst 16,300 13,300 5418.3266 5126.6695

SD 1.0964E+03 8.8265E+02 9.7182E+01 4.1436E−02

FR 1 1 1 1

G06 −6961.8139

Best 100 100 −6117.3390 −6179.5483

Median 400 500 −6045.4509 −6067.7217

Mean 344 400 −5692.7229 −5729.7016

Worst 600 800 −3271.9841 −2321.7015

SD 1.6093E+02 1.8708E+02 8.7138E+02 8.8309E+02

FR 1 1 1 1

G07 24.3062

Best 400 700 119.5695 257.6533

Median 1100 1200 553.1970 453.9109

Mean 1120 1212 639.0553 572.2661

Worst 1700 1600 1571.2309 2457.7759

SD 3.1623E+02 2.0478E+02 3.7773E+02 4.3877E+02

FR 1 1 1 1

G08 −0.09582504

Best 100 100 −0.07046294 −0.08718057

Median 300 300 5.6641E−04 −5.3796E−04

Mean 304 316 −1.8560E−04 −0.00298423

Worst 600 700 0.05896248 0.08705198

SD 1.3064E+02 1.5727E+02 3.1780E−02 2.9881E−02

FR 1 1 1 1

G10 7049.2480

Best 1700 1600 10,795.6388 11,542.8820

Median 3000 2300 19,881.4967 16,904.5752

Mean 2852 2332 19,842.7470 16,899.4635

Worst 3900 3200 28,330.7877 28,304.7614

SD 5.4705E+02 3.8914E+02 4.4126E+03 3.6109E+03

FR 1 1 1 1
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Table 3 continued
Func. and optimal value FES_D FES_M FIT_D FIT_M

G13 0.05394151

Best 13,200 13,000 0.59453698 0.43886839

Median 19,200 15,900 0.99759030 0.44112443

Mean 20,264 16,920 0.95363631 0.55068088

Worst 35,400 27,800 0.99999747 0.99149309

SD 5.1288E+03 3.3608E+03 9.8749E−02 2.1020E−01

FR 1 1 1 1

G14 −47.764888

Best 9100 14,500 −45.900715 −47.480493

Median 11,400 21,700 −42.870229 −46.051264

Mean 112,80 21,148 −43.017299 −45.907825

Worst 12,800 28,500 −40.525691 −42.805479

SD 9.4207E+02 4.3285E+03 1.3108E+00 1.2910E+00

FR 1 1 1 1

G15 961.715022

Best 6300 5000 961.723166 961.715075

Median 8500 5700 962.273256 961.715279

Mean 8844 5732 962.950058 961.717110

Worst 12,100 6600 968.367416 961.747885

SD 1.4131E+03 3.8914E+02 1.7101E+00 6.6709E−03

FR 1 1 1 1

G16 −1.905155

Best 500 700 −1.659527 −1.463994

Median 2200 1900 −1.220891 −1.256614

Mean 3500 2540 −1.227879 −1.243692

Worst 11700 8100 −0.795549 −0.912618

SD 3.3637E+03 1.6055E+03 2.0455E−01 1.3708E−01

FR 1 1 1 1

G17 8853.533875

Best 24,500 22,800 8863.244581 8859.048260

Median 28,000 26,500 8949.788386 8866.532519

Mean 27,860 26,772 8956.506847 8892.594486

Worst 33,000 34,500 9165.634865 8963.392570

SD 2.3585E+03 2.4330E+03 6.9404E+01 3.7512E+01

FR 1 1 1 1

G18 −0.86602540

Best 1400 2500 −0.48211156 −0.48426308

Median 3300 3500 −0.24068045 −0.16692896

Mean 3212 3516 −0.25222633 −0.19867864

Worst 4300 4700 −0.05572148 −0.06870847

SD 7.1956E+02 4.7142E+02 1.1151E−01 9.4618E−02

FR 1 1 1 1

G21 193.724510

Best 13,500 14,700 300.889263 195.257693

Median 14,500 19,500 643.552798 218.397609

Mean 15,248 19,752 664.071306 241.883079

Worst 20,500 26,200 995.855832 443.999855

SD 2.0486E+03 2.9066E+03 2.0376E+02 5.8805E+01

FR 1 1 1 1
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Table 3 continued
Func. and optimal value FES_D FES_M FIT_D FIT_M

G23 −400.0551

Best 16,500 1,7700 −45.5844 −201.2285

Median 21,000 23,100 43.9778 −50.3251

Mean 21,264 23,512 59.4635 −54.1843

Worst 28,800 32,500 235.2444 129.4536

SD 3.2183E+03 3.9431E+03 7.3017E+01 9.4735E+01

FR 1 1 1 1

FES_D and FES_M stand for the FES needed for finding a feasible solution with corresponding CHTs while
FIT_D and FIT_M stand for the fitness values of the first feasible solution with corresponding CHTs. FR
means the feasible rate. “–” means no feasible solutions were found. Values in boldface mean that the obtained
result is much better with respect to the CHTs compared

Table 4 Comparison of
different CHTs in semi-feasible
situation

Func. and optimal value FES_D FES_M FIT_D FIT_M

G01 −15.0000

Best 42,900 44,200 −15.0000 −15.0000

Median 46,750 46,900 −15.0000 −15.0000

Mean 46,469 47,628 −14.1050 −14.3306

Worst 49,300 52,100 −12.4531 −12.4531

SD 1.7617E+03 2.0338E+03 1.2225E+00 1.1036E+00

SR 0.64 0.72 0.64 0.72

G02 −0.803619

Best 59,100 46,400 −0.803619 −0.803619

Median 64,700 60,750 −0.785626 −0.803619

Mean 65,975 60,663 −0.745453 −0.802776

Worst 79,000 70,100 −0.485595 −0.782551

SD 6.2842E+03 5.8958E+03 9.0213E−02 4.2136E−03

SR 0.32 0.96 0.32 0.96

G03 −1.0005

Best 233,700 40,300 −1.0005 −1.0005

Median 297,200 56,200 −0.6745 −1.0005

Mean 337,500 57,244 −0.7636 −1.0005

Worst 481,600 83,700 −0.6609 −1.0005

SD 1.2877E+05 1.0318E+04 1.2959E−01 4.2276E−16

SR 0.12 1 0.12 1

G04 −30665.5387

Best 26,700 20,100 −30665.5387 −30,665.5387

Median 30,800 23,600 −30665.5387 −30,665.5387

Mean 30,800 23,676 −30665.5387 −30,665.5387

Worst 36,100 26,400 −30665.5387 −30,665.5387

SD 2.1819E+03 1.6541E+03 3.7130E−12 3.7130E−12

SR 1 1 1 1

G05 5126.4967

Best – 10,600 5126.4969 5126.4967

Median – 17,900 5126.4972 5126.4967

Mean – 18,656 5126.4972 5126.4967

Worst – 31,800 5126.4976 5126.4967

SD – 5.2837E+03 1.6379E−04 2.7847E−12

SR 0 1 0 1
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Table 4 continued
Func. and optimal value FES_D FES_M FIT_D FIT_M

G06 −6961.8139

Best 11,700 5600 −6961.8139 −6961.8139

Median 12,400 6100 −6952.4813 −6961.8139

Mean 12,400 6120 −6932.2531 −6961.8139

Worst 13,100 6600 −6786.8708 −6961.8139

SD 9.8995E+02 2.4833E+02 4.6394E+01 0

SR 0.08 1 0.08 1

G07 24.3062

Best 72,800 46,100 24.3062 24.3062

Median 87,600 56,100 24.3062 24.3062

Mean 87,912 56,700 24.3062 24.3062

Worst 101,400 63,000 24.3062 24.3062

SD 6.3423E+03 3.4666E+03 1.5619E−08 6.7252E−15

SR 1 1 1 1

G08 −0.09582504

Best 700 700 −0.09582504 −0.09582504

Median 1200 2000 −0.09582504 −0.09582498

Mean 1184 2096 −0.09582504 −0.09582391

Worst 1500 2900 −0.09582504 −0.09581591

SD 2.0347E+02 5.4657E+02 1.6518E−17 2.2722E−06

SR 1 1 1 1

G09 680.630057

Best 22,100 15,600 680.630057 680.630057

Median 25,300 18,200 680.630057 680.630057

Mean 25,460 18,124 680.630057 680.630057

Worst 31,500 19,400 680.630057 680.630057

SD 1.9055E+03 8.7144E+02 1.1367E−08 2.3779E−13

SR 1 1 1 1

G10 7049.2480

Best 700 700 −0.09582504 −0.09582504

Median 1200 2000 −0.09582504 −0.09582498

Mean 1184 2096 −0.09582504 −0.09582391

Worst 1500 2900 −0.09582504 −0.09581591

SD 2.0347E+02 5.4657E+02 1.6518E−17 2.2722E−06

SR 1 1 1 1

G11 0.7499

Best 94,300 1700 0.7499 0.7499

Median 21,5300 2500 0.9342 0.7499

Mean 215,300 2483 0.9090 0.7522

Worst 33,6300 2900 0.9843 0.8017

SD 1.7112E+05 2.6740E+02 6.7854E−02 1.0370E−02

SR 0.08 0.92 0.08 0.92

G12 −1.0000

Best 100 100 −1.0000 −1.0000

Median 100 100 −1.0000 −1.0000

Mean 100 100 −1.0000 −1.0000

Worst 100 100 −1.0000 −1.0000

SD 0 0 0 0

SR 1 1 1 1
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Table 4 continued
Func. and optimal value FES_D FES_M FIT_D FIT_M

G13 0.05394151

Best – – 0.61293374 0.48430818

Median – – 0.61336015 0.58354355

Mean – – 0.61342680 0.56981500

Worst – – 0.61464663 0.60034601

SD – – 3.8304E−04 3.4001E−02

SR 0 0 0 0

G14 −47.764888

Best 259,700 43,100 −47.764888 −47.764888

Median 409,400 47,300 −47.681166 −47.764888

Mean 392,744 48,596 −47.570461 −47.764888

Worst 482,100 59,100 −46.956127 −47.764888

SD 7.8414E+04 4.7786E+03 2.4485E−01 2.9008E−14

SR 0.36 1 0.36 1

G15 961.715022

Best – 7500 962.168160 961.715022

Median – 7500 962.172237 961.826461

Mean – 7500 962.172506 961.833962

Worst – 7500 962.176638 961.969301

SD – 0 2.5469E−03 6.6747E−02

SR 0 0.04 0 0.04

G16 −1.905155

Best 18,200 15,000 −1.905155 −1.905155

Median 19,900 17,300 −1.905155 −1.905155

Mean 19,968 17,104 −1.905155 −1.905155

Worst 22,100 18,600 −1.905155 −1.905155

SD 1.0566E+03 8.9045E+02 9.0649E−16 7.4889E−16

SR 1 1 1 1

G17 8853.533875

Best – – 8888.511800 8882.428257

Median – – 8889.080392 8883.900462

Mean – – 8889.051374 8883.924324

Worst – – 8889.674809 8884.783828

SD – – 3.0127E−01 5.4886E−01

SR 0 0 0 0

G18 −0.86602540

Best 43,300 27,300 −0.86602540 −0.86602540

Median 56,000 31,600 −0.86602540 −0.86602540

Mean 55,664 31,412 −0.86602540 −0.86602540

Worst 67,100 35,600 −0.86602540 −0.86602540

SD 4.5889E+03 2.0614E+03 2.2662E−17 0

SR 1 1 1 1

G19 32.655593

Best 122,700 93,400 32.655593 32.655593

Median 132,100 101,000 32.655593 32.655593

Mean 132,236 101,512 32.655593 32.655593

Worst 141,800 112,500 32.655593 32.655593

SD 5.3654E+03 4.3234E+03 2.1018E−14 2.0254E−14

SR 1 1 1 1
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Table 4 continued
Func. and optimal value FES_D FES_M FIT_D FIT_M

G21 193.724510

Best – – 193.820262 193.751473

Median – – 194.380616 194.182448

Mean – – 194.870943 194.562136

Worst – – 197.500734 198.659273

SD – – 1.0309E+00 1.0875E+00

SR 0 0 0 0

G23 −400.0551

Best – – −1771.5292 −374.8644

Median – – −1351.9079 −298.4791

Mean – – −1313.5235 −295.9368

Worst – – −61.2065 −212.6887

SD – – 3.1775E+01 4.8617E+01

SR 0 0 0 0

G24 −5.5080

Best 5100 2200 −5.5080 −5.5080

Median 7100 2600 −5.5080 −5.5080

Mean 8784 2612 −5.5080 −5.5080

Worst 15,100 3000 −5.5080 −5.5080

SD 3.1676E+03 1.9858E+02 9.9119E−15 3.8073E−15

SR 1 1 1 1

FES_D and FES_M stand for the FES to achieve the success condition ( f (�x) − f (�x∗) ≤ 0.0001 and f (�x)
is feasible) with corresponding CHTs while FIT_D and FIT_M stands for the fitness values of the successful
solution with corresponding CHTs. SRmeans the success rate. “–” means no successful solutions were found.
Values in boldface mean that the obtained result is much better with respect to the CHTs compared

Infeasible 
situation

Semi-feasible 
situation

Feasible 
situation

feasibility-based 
method (D)

multiobjective 
method (M)

feasibility-based 
method (D)

multiobjective 
method (M)

feasibility-based 
method (D)

Problem 
characteristics

Fig. 2 Illustration of the basic idea

The basic idea of the combining strategy, the framework
of CCHF and the implementation of the corresponding CHT
choosing are illustrated in Figs. 2, 3 and 4 respectively.

As shown in Fig. 2, in the infeasible and semi-feasible
situation, both Deb’s feasibility-based method and multi-
objective method are ready in the CHT pools. During an
evolution, the problem characteristics will determine which
CHT will be adopted, as shown in Fig. 4. After choosing the
corresponding CHT, the population will be ranked and the

best NP individuals will be selected to form the next popu-
lation.

It is important to note that as to themultiobjectivemethod,
different pareto front levelswill be used to help select the best
individuals.

It should be pointed out that CCHF can also be seen as an
ensemble method, in which the problem characteristics and
different situations are considered when designing the cor-
responding relationship. This makes it different from other
ensemble methods, such as ECHT [11], DECV [22], and
other methods based on these three situations, such as ICDE
[16], CMODE [7].

6 Experimental study

6.1 Experimental settings

As mentioned in Sect. 4, 22 benchmark functions [32] were
used in our experiment. The details of these benchmark
functions are reported in Table 1, where n is the number
of decision variables, ρ = |F |/|S| is the estimated ratio
between the feasible region and the search space, LI, NI, LE,
NE is the number of linear inequality constraints, nonlinear
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Input: NP: the size of population at each generation
Max_FES: maximum number of function evaluations

Output: bestx : the best solution in the final population
Step 1 Initialization 

Step 1.1 t=0;
Step 1.2 Randomly generate an initial population 0 1,0 ,0{ , , }NPP x x= . 
Step 1.3 Evaluate the objective function values ,0( )if x , the degree of constraint violations ,0( )iG x .
Step 1.4 FES=NP.

Step 2 Combined swarm evolution model 
Step 2.1Update tP using DE model to create offspring. These NP offspring form the offspring 

population tQ .
Step 2.2 Evaluate ,( )i tf x , ,( )i tG x ( 1, ,i NP= ). 
Step 2.3 Compute the feasibility percent pf of the combined population tH (i.e., t t tH P Q= ). 
Step 2.4 Determinate the current situation of tH according to the value of pf . 
Step 2.5 Choose the corresponding CHT according to the problem’s characteristics and the current

situation (see Fig.3. for details).
Step 2.6 Rank the population and select the best NP individuals to constitute the next population 1tP+ .
Step 2.7 FES=FES+NP.

Step 3 Set t=t+1.
Step 4 Stopping Criterion: If FES Max_FES, stop and output the best solution bestx , otherwise go to Step2

Fig. 3 Framework of CCHF

Fig. 4 Implementation of the
corresponding CHT choosing

Begin
If current situation =infeasible situation then

If <Prob. Char.>=only inequality constraints then
Choose the Deb’s feasibility-based rule

Else 
Choose the multi-objective optimization technique

EndIf
Elseif current situation =semi-feasible situation then

If <Prob. Char.>= only inequality constraints with the nonlinear objective function then
Choose the Deb’s feasibility-based rule

Else 
Choose the multi-objective optimization technique

EndIf
Else

Choose Deb’s feasibility-based rule
EndIf

End

inequality constraints, linear equality constraints and nonlin-
ear equality constraints respectively, a is the number of active
constraints at the optimal solution and f (�x∗) is the objective
function value of the best known solution. These benchmark
functions are also classified into different groups as shown
in Table 2.

The parameters in DE are set as follows [7]: the popula-
tion size (NP) is set to 100; the scaling factor (F) is randomly
chosen between 0.5 and 0.6, and the crossover control param-
eter (Cr) is randomly chosen between 0.9 and 0.95. The same
settings of these CHTs were used as in Sect. 4 to keep con-
sistency.

6.2 Experimental results

Twenty-five independent runs were performed for each test
function using 5 × 105 FES at maximum, as suggested by
Liang et al. [32]. Additionally, the tolerance value δ for the
equality constraints was set to 0.0001.

Table 5 lists the results of CCHF, including best, median,
worst, mean, standard deviation values, the feasible rate (the
percentage of runs where at least one feasible solution is
found in MAX_FES, denoted as FR), the success rate (the
percentage of runs where the algorithm finds a solution that
satisfies the success condition, denoted as SR). Here, the

123



Memetic Comp. (2017) 9:69–88 83

Table 5 Results of CCHF, including best, median, worst, mean and standard deviation values

Prob. Best Median Worst Mean SD Feasible
rate (%)

Success
rate (%)

g01 −15.0000 −15.0000 −15.0000 −15.0000 0.0000E+00 100 100

g02 −0.803619 −0.803619 −0.785267 −0.801646 4.8400E−03 100 84

g03 −1.000500 −1.000500 −1.000500 −1.000500 2.2662E−16 100 100

g04 −30,665.5387 −30,665.5387 −30,665.5387 −30,665.5387 3.7130E−12 100 100

g05 5126.496714 5186.443925 5517.389512 5237.477027 1.0639E+02 100 4

g06 −6961.813876 −6961.813876 −6897.930384 −6956.805311 1.7339E+01 100 92

g07 24.306209 24.306209 24.306209 24.306209 4.7159E−09 100 100

g08 −0.09582504 −0.09582504 −0.09582504 −0.09582504 1.4164E−17 100 100

g09 680.630057 680.630057 680.630057 680.630057 3.3106E−09 100 100

g10 7049.248020 7049.248020 7049.248023 7049.248021 6.2341E−07 100 100

g11 0.749900 0.749900 0.838891 0.753460 1.7798E−02 100 96

g12 −1.0000 −1.0000 −1.0000 −1.0000 0 100 100

g13 0.88003034 0.99455287 0.99990801 0.97670142 3.4283E−02 100 0

g14 −47.764888 −47.764888 −47.764888 −47.764888 2.9001E−14 100 100

g15 961.715022 961.721578 964.283914 962.130169 7.5030E−01 100 44

g16 −1.905155 −1.905155 −1.905155 −1.905155 7.2661E−16 100 100

g17 8859.753007 8941.072424 8961.105710 8924.605594 3.3991E+01 100 0

g18 −0.866025 −0.866025 −0.866025 −0.866025 3.3362E−09 100 100

g19 32.655593 32.655593 32.655593 32.655593 2.1610E−14 100 100

g21 193.798125 194.664646 329.889655 244.498875 6.2859E+01 100 0

g23 −394.394784 −363.853711 −224.653630 −350.670946 4.3000E+01 100 0

g24 −5.508013 −5.508013 −5.508013 −5.508013 9.0649E−16 100 100

Fig. 5 Convergence graph for g01–g04

success condition is f (�x) − f (�x∗) ≤ 0.0001 and f (�x) is
feasible. The results show thatCCHFcan always find feasible
solutions in all functions, but it can not get the known optimal
values in g13, g17, g21 and g23. The mainly reason is that
this CCHF takes the simplest form of the CHTs. And the
main purpose of CCHF is to illustrate the practicability of
the idea.

Fig. 6 Convergence graph for g05–g08

The convergence graphs of log( f (�x)− f (�x∗)) over FES at
the best run are plotted in Figs. 5, 6, 7, 8, 9 and 10. Since test
functions g13, g17, g21 and g23 can not reach the optimal
value, their convergence graphs are plotted in Fig. 10.

As shown in Figs. 5, 6, 7, 8 and 9, all test functions (except
g02 and g08), can reach the error accuracy level with −20
with<2×105 FES. The test functions g02 and g08 can reach
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Fig. 7 Convergence graph for g09–g12

Fig. 8 Convergence graph for g14–g16

the error accuracy level with−15. It is also important to note
that g11 and g12 can reach the optimal value at the first
generation.

As to Fig. 10, these test functions can not get the optimal
values, with the error accuracy level with−1 to−3. Themain
reason is also the simple form of CHTs.

6.3 Comparison with some state-of-the-art approaches

In this part, five latest “dynamic” or “ensemble” approaches:
COMDE [33], DECV [22], DSS-MDE [13], ATMES [12],
and ECHT [11], are selected to compare with CCHF.

Table 6 presents the statistically results of t test (h values)
for the different approaches. Numerical values −1, 0, 1 rep-
resent that CCHF is inferior to, equal to and superior to other
approaches respectively.

CCHF performs better than the other five approaches in
g01, g02, g07 and g10, and it presents a worse performance

Fig. 9 Convergence graph for g18, g19, and g24

Fig. 10 Convergence graph for g13, g17, g21, and g23

in g06 and g13 than the other five approaches. All the six
approaches have the same or similar performance in g04,
g08 and g12.

As for g03 and g09, CCHF performs similar with DSS-
MDE and ECHT-EP, DSS-MDE, COMDE and DECV, but
superior than the other algorithms.As for g05 and g11,CCHF
performs similar with COMDE and ATMES, ATMES and
DECV respectively, but inferior to the other approaches.

Overall, CCHF is superior to, equal to and inferior to other
approaches in 25, 25 and 15 cases, respectively out of the 65
cases. The worse cases are mainly from g06 and g13.

Therefore, CCHF shows a comparable overall perfor-
mance with the other five approaches. This also verifies the
effectiveness of the proposed method in solving COPs.
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Table 6 Comparison of CCHF with state-of-the-art “dynamic” or “ensemble” approaches

Func. and optimal value DSS-MDE [13] COMDE [33] ECHT-EP [11] ATMES [12] DECV [22] CCHF

G01 −15.0000

Best −15.000 −15.000000 −15.0000 −15.000 −15.000 −15.0000

Median NA −15.000000 −15.0000 −15.000 NA −15.0000

Mean −15.000 −15.000000 −15.0000 −15.000 −14.855 −15.0000

Worst −15.000 −15.000000 −15.0000 −15.000 −13.0000 −15.0000

SD 1.39E−10 1.97E−13 0.00E+00 1.6E−14 4.59E−01 0.00E+00

h 1 1 1 1 1 –

G02 −0.803619

Best −0.803619 −0.803619 −0.8036191 −0.803388 −0.704009 −0.803619

Median NA −0.803616 −0.8033239 −0.792420 NA −0.803619

Mean −0.786970 −0.801238 −0.7998220 −0.756986 −0.569458 −0.801646

Worst −0.728531 −0.785265 −0.7851820 −0.790148 −0.238203 −0.785267

SD 1.5E−02 5.0E−03 6.29E−03 1.3E−02 9.51E−02 4.84E−03

h 1 1 1 1 1 –

G03 −1.0005

Best −1.0005 −1.000000049 −1.0005 −1.000 −0.461 −1.000500100

Median NA −1.000000039 −1.0005 −1.000 NA −1.000500100

Mean −1.0005 −1.000000027 −1.0005 −1.000 −0.134 −1.000500100

Worst −1.0005 −0.99999994 −1.0005 −1.000 −0.002 −1.000500100

SD 1.9E−08 3.026E−08 0.0E+00 5.9E−05 1.17E−01 2.2662E−16

h 0 1 0 1 1 –

G04 −30,665.5387

Best −30,665.539 −30,665.539 −30,665.5387 −30,665.539 −30,665.539 −30,665.5387

Median NA −30,665.539 −30,665.5387 −30,665.539 NA −30,665.5387

Mean −30,665.539 −30,665.539 −30,665.5387 −30,665.539 −30,665.539 −30,665.5387

Worst −30,665.539 −30,665.539 −30,665.5387 −30,665.539 −30,665.539 −30,665.5387

SD 2.7E−11 0.00E+00 0.0E+00 7.4E−12 1.56E−06 3.7130E−12

h 0 0 0 0 0 –

G05 5126.4967

Best 5126.497 5126.4981094 5126.4967 5126.498 5126.497 5126.4967140

Median NA 5126.4981094 5126.4967 5126.776 NA 5186.4439258

Mean 5126.497 5126.4981094 5126.4967 5135.256 5126.497 5237.4770279

Worst 5126.497 5126.4981094 5126.4972 5127.648 5126.497 5517.3895124

SD 0 0.00E+00 0.0E+00 1.8E+00 0 1.0639E+02

h −1 0 −1 0 −1 –

G06 −6961.8139

Best −6961.814 −6961.813875 −6961.8139 −6961.814 −6961.814 −6961.813876

Median NA −6961.813875 −6961.8139 −6961.814 NA −6961.813876

Mean −6961.814 −6961.813875 −6961.8139 −6961.814 −6961.814 −6956.805311

Worst −6961.814 −6961.813875 −6961.8139 −6961.814 −6961.814 −6897.930384

SD 0 0.00E+00 0.00E+00 4.6E−12 0 1.7339E+01

h −1 −1 −1 −1 −1 –

G07 24.3062

Best 24.306 24.306209 24.3063 24.306 24.306 24.306209

Median NA 24.306209 24.3078 24.313 NA 24.306209

Mean 24.306 24.306209 24.3090 24.359 24.794 24.306209

Worst 24.306 24.306211 24.3166 24.316 29.511 24.306209
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Table 6 continued

Func. and optimal value DSS-MDE [13] COMDE [33] ECHT-EP [11] ATMES [12] DECV [22] CCHF

SD 7.5E−07 4.7E−07 3.0E−03 1.1E−02 1.37E+00 4.7159E−09

h 1 1 1 1 1 –

G08 −0.09582504

Best −0.095825 −0.095825 −0.09582504 −0.095825 −0.095825 −0.09582504

Median NA −0.095825 −0.09582504 −0.095825 NA −0.09582504

Mean −0.095825 −0.095825 −0.09582504 −0.095825 −0.095825 −0.09582504

Worst −0.095825 −0.095825 −0.09582504 −0.095825 −0.095825 −0.09582504

SD 4.0E−17 9.00E−18 0.0E+00 2.8E−17 4.23E−17 1.4164E−17

h 0 0 0 0 0 –

G09 680.630057

Best 680.630 680.630057 680.630057 680.630 680.630 680.630057

Median NA 680.630057 680.630057 680.633 NA 680.630057

Mean 680.630 680.630057 680.630057 680.673 680.630 680.630057

Worst 680.630 680.630057 680.630060 680.639 680.630 680.630057

SD 2.9E−13 4.071E−13 2.0E−04 1.0E−02 3.45E−07 3.3106E−09

h 0 0 1 1 0 –

G10 7049.2480

Best 7049.248 7049.248020 7049.2487 7052.253 7049.248 7049.248020

Median NA 7049.248020 7049.3456 7215.357 NA 7049.248020

Mean 7049.249 7049.248077 7049.4342 7560.224 7103.548 7049.248021

Worst 7049.255 7049.248615 7050.3902 7250.437 7808.980 7049.248023

SD 1.4E−03 1.5E−04 2.00E−01 1.2E+02 1.48E+02 6.2341E−07

h 1 1 1 1 1 –

G11 0.7499

Best 0.7499 0.749999 0.7499 0.75 0.75 0.749900

Median NA 0.749999 0.7499 0.75 NA 0.749900

Mean 0.7499 0.749999 0.7499 0.75 0.75 0.753460

Worst 0.7499 0.749999 0.7499 0.75 0.75 0.838891

SD 0 0.00E+00 0.0E+00 3.4E−04 1.12E−16 1.7798E−02

h −1 −1 −1 0 0 –

G12 −1.0000

Best −1.000 −1.000000 −1.0000 −1.000 −1.000 −1.0000

Median NA −1.000000 −1.0000 −1.000 NA −1.0000

Mean −1.000 −1.000000 −1.0000 −0.994 −1.000 −1.0000

Worst −1.000 −1.000000 −1.0000 −1.000 −1.000 −1.0000

SD 0 0.00E+00 0.0E+00 1.0E−03 0 0

h 0 0 0 0 0 –

G13 0.05394151

Best 0.053942 0.0539415 0.053941514 0.053950 0.059798 0.88003034

Median NA 0.0539415 0.053941514 0.053952 NA 0.99455287

Mean 0.053942 0.0539415 0.053941514 0.053999 0.382401 0.97670142

Worst 0.053942 0.0539415 0.053941514 0.053959 0.999094 0.99990801

SD 8.3E−17 1.4E−17 6.50E−12 1.3E−05 2.68E−01 3.4283E−02

h −1 −1 −1 −1 0 –

Values in boldface mean that the obtained result is much better with respect to the approaches compared
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7 Conclusion

In this paper, a CCHF, which combines promising aspects
of different CHTs in different situations with considera-
tion of problem characteristics, was proposed, implemented,
and validated. The presented work is distinguished in three
scientific contributions. First, the relationship between prob-
lem characteristics and CHTs, and the relationship between
different CHTswere analyzed; second, the CCHFwas devel-
oped based on the analysis; third, the 22 benchmark functions
collected on constrained real-parameter optimization were
utilized to verify the effectiveness of the newly developed
CCHF.

The results show that CCHF is comparable to the other
five dynamic or ensemble state-of-the-art approaches for
constrained optimization, especially when considering that
CCHF is simple and easy to realize due to adoption of only
the basic CHTs without any variants in this framework.

The problem characteristics summarized in this paper are
based on the benchmark functions, but as Z. Michalewicz
concluded [17], there is no comparison in terms of com-
plexity between real-world problems and toy problems, and
real-world applications usually require hybrid approaches
where an ‘evolutionary algorithm’ is loaded with non-
standard features, so how to apply these conclusions to the
real-world problems is still challenging andwill be our future
work.
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