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Abstract The power system is a complex interconnected
network which can be subdivided into three components:
generation, distribution, and transmission. Capacitors of spe-
cific sizes are placed in the distribution network so that losses
in transmission and distribution isminimum.But the decision
of size and position of capacitors in this network is a complex
optimization problem. In this paper, Limaçon curve inspired
local search strategy (LLS) is proposed and incorporated into
spidermonkeyoptimization (SMO)algorithm todeal optimal
placement and the sizing problem of capacitors. The pro-
posed strategy is named as Limaçon inspired SMO (LSMO)
algorithm. In the proposed local search strategy, the Limaçon
curve equation is modified by incorporating the persistence
and social learning components of SMO algorithm. The per-
formance of LSMO is tested over 25 benchmark functions.
Further, it is applied to solve optimal capacitor placement
and sizing problem in IEEE-14, 30 and 33 test bus systems
with the proper allocation of 3 and 5-capacitors. The reported
results are compared with a network without a capacitor (un-
capacitor) and other existing methods.
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1 Introduction

The modern power distribution system is continuously fac-
ing ever-growing load demand, resulting in increased burden
and reduced voltages. The voltages at buses or nodes reduces
while moving away from a substation, due to an insufficient
amount of reactive power. To improve this voltage profile,
reactive compensation is required. The efficiency of power
delivery is enhanced, and losses at distribution level are
reduced by incorporating network reconfigurations, shunt
capacitor placement, etc. The optimal capacitor placement
supplies the part of reactive power demand which helps in
reducing the energy losses, peak demand losses and improves
the voltage profile, power factor (p f ) and system stability
[14]. Therefore, specific size capacitors are required to be
placed at specific places in the distribution network to achieve
the optimum reactive power.

To achieve this objective while maintaining the opti-
mal economy, optimal placement of capacitor with proper
sizing should be decided by some conventional [6] or non-
conventional strategy [9,14].

The shunt capacitor is a very common conventional strat-
egy for distribution system. Further, the concept of loss
minimization by a singly located capacitor was extended for
multiple capacitors. Subsequently, combinational optimiza-
tion strategywas developed to dealwith the discrete capacitor
placement problem. The described methods have their limi-
tations of depending on the initial guess, lack of robustness,
time-consuming, and many local optimal solutions for non-
linear optimization problems [6].
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Swarm intelligence based meta-heuristics have impressed
the researchers to apply them for solving the capacitor
placement and sizing problems [24]. In past, the capacitor
placement problem was solved by applying fuzzy approxi-
mate reasoning [18], genetic algorithm (GA) [29], artificial
bee colony (ABC) algorithm [24], and particle swarm opti-
mization (PSO) algorithm [23] etc. Recently, Bansal et al.
[2] introduced a swarm intelligence based algorithm namely,
spider monkey optimization (SMO) algorithm by taking
inspiration from the social and food foraging behavior of
spider monkeys. It has been shown that the SMO is competi-
tive to the ABC, PSO, DE, and covariance matrix adaptation
evolution strategies (CMA-ES) algorithms [2].

Though SMO performs well still, due to the presence of
randomcomponents (φ andψ) in the position update process,
there is a chance of skip of the true solution. So, integration of
a local search strategy with SMO may improve the exploita-
tion capability of the algorithmand, hence reduces the chance
of skipping true solution. Therefore, in this paper, a new
local search algorithm is proposed by modifying the limaçon
curve equation and named as limaçon inspired local search
(LLS). Further, the proposed local search is incorporated
with SMO in expectation of improving exploitation capabil-
ity. The proposed hybridized algorithm is named as Limaçon
inspired spidermonkeyoptimization algorithm (LSMO).The
performance of LSMO is tested through various numerical
experiments with respect to accuracy, reliability, and con-
sistency. Then the LSMO is applied to solve the optimal
placement and sizing problem of capacitors in the distrib-
ution network. The results are compared with un-capacitor
and other existing methods for IEEE 14, 30 and 33 test bus
caseswith 3 and 5-capacitor placement and sizing conditions.

The detailed description may be categorized as follows:
Basic SMO is explained in Sect. 2. Section 3 describes a
brief review on local search strategies. Limaçon inspired
local search strategy was proposed and incorporated to SMO
in Sect. 4. In Sect. 5, the performance of proposed strategy
is evaluated. Section 6 describes capacitor sizing and opti-
mal allocation problem. Solution to the optimal placement
and sizing problem of the capacitor is presented in Sect. 7.
Finally, the conclusion of the work is given in Sect. 8.

2 Spider monkey optimization (SMO) Algorithm

SMO algorithm is based on the foraging behavior and social
structure of spider monkeys [2]. Spider monkeys have been
categorized as a fission-fusion social structure (FFSS) based
animals, in which individuals form small, impermanent par-
ties whose member belongs to a larger community. Monkeys
split themselves from larger to smaller groups and vice versa
based on scarcity and availability of food.

2.1 Main steps of SMO algorithm

The SMO algorithm consists of six phases: Local leader
phase, Global leader phase, Local leader learning phase,
Global leader learning phase, Local leader decision phase,
and Global leader decision phase. Each of the phases is
explained as follows:

2.1.1 Initialization of the Population

Initially, SMO generates an equally distributed initial pop-
ulation of N spider monkeys where each monkey SMi (i
= 1, 2, . . . ,N) is aD-dimensional vector and SMi represents
the i th spider monkey (SM) in the population. SM represents
the potential solution of the problem under consideration.
Each SMi is initialized as follows:

SMi j = SMmin j +U (0, 1) × (SMmax j − SMmin j ) (1)

where SMmin j and SMmax j are respectively lower and upper
bounds of SMi in j th direction and U (0, 1) is a uniformly
distributed random number in the range [0, 1].

2.1.2 Local leader phase (LLP)

In this phase, each SM updates it’s current position based on
gathered information from local leader as well as local group
members. The fitness value of so obtained new position is
computed. If the fitness value of the new position is superior
to the old position, then the SMmodifies its position with the
new one. The position update equation for i th SM (which is
a member of kth local group) in this phase is

SMnewi j = SMi j +U (0, 1) × (LLkj − SMi j )

+U (−1, 1) × (SMr j − SMi j ) (2)

where SMi j is the j th dimension of the i th SM, LLkj repre-
sents the j th dimension of the kth local group leader position.
SMr j is the j th dimension of the r th SMwhich is chosen arbi-
trarilywithin kth group such that r �= i . U(0, 1) is a uniformly
distributed random number between 0 and 1. Algorithm 1
shows position update process in the local leader phase. In
Algorithm 1, MG is the maximum number of groups in the
swarm and pr is the perturbation rate which controls the
amount of perturbation in the current position.

2.1.3 Global leader phase (GLP)

In this phase, all SMs update their positions using knowledge
of global leader and local group members experience. The
position update equation for this phase is as follows:
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Algorithm 1 Position update process in Local Leader Phase:
for each k ∈ {1, . . . , MG} do

for each member SMi ∈ kth group do
for each j ∈ {1, . . . , D} do

if U (0, 1) ≥ pr then
SMnewi j = SMi j +U (0, 1)×(LLkj −SMi j )+U (−1, 1)×
(SMr j − SMi j )

else
SMnewi j = SMi j

end if
end for

end for
end for

SMnewi j = SMi j +U (0, 1) × (GL j − SMi j )

+U (−1, 1) × (SMr j − SMi j ) (3)

whereGL j is the j th dimension of the global leader position
and j is the randomly chosen index. The positions of spider
monkeys (SMi ) are updated based on a probability probi
which is a function of fitness. In this way, a better candi-
date will have more chance to make it better. The probability
probi is calculated as shown in Eq. 4 [27].

probi = 0.9 × fitnessi
max_fitness

+ 0.1, (4)

Here fitnessi is the fitness value of i th SMandmax_fitness
is the highest fitness in the group. The fitness of the newly
generated SMs is calculated and compared with the old
one, and the better position is adopted. The position update
process of this phase is explained in Algorithm 2.

Algorithm 2 Position update process in global leader phase
(GLP):

for k = 1 to MG do
count = 1;
GS = kth group size;
while count < GS do

for i = 1 to GS do
if U (0, 1) < probi then
count = count + 1.
Randomly select j ∈ {1 . . . D}.
Randomly select SMr from kth group s.t. r �= i .
SMnewi j = SMi j +U (0, 1)× (GL j − SMi j )+U (−1, 1)×
(SMr j − SMi j ).

end if
end for
if i is equal to GS then
i = 1;

end if
end while

end for

2.1.4 Global leader learning phase (GLLP)

In this phase, the position of the SM having best fitness in the
population is selected as the updated position of the global
leader using greedy selection. Further, the position of global
leader is checked whether it is updating or not and if not then
the global limit count is incremented by 1.

2.1.5 Local leader learning phase (LLLP)

In this phase, the position of the SM having best fitness in
that group is selected as the updated position of the local
leader using greedy selection. Next, if the modified position
of the local leader is comparedwith the old one and if the local
leader is not updated then the local limit count is incremented
by 1.

2.1.6 Local leader decision phase (LLDP)

If any local leader is not updated up to a preset threshold
called local leader limit, then all the members of that minor
group update their positions either by random initialization
or by using combined information from global leader and
local leader through Eq. 5.

SMnewi j = SMi j +U (0, 1) × (GL j − SMi j )

+U (0, 1) × (SMi j − LLkj ); (5)

It is clear from Eq. (5) that the updated dimension of this
SM is attracted towards global leader and repels from the
local leader.

2.1.7 Global leader decision (GLD) phase

In this phase, the global leader is monitored, and if it is not
updated up to a preset number of iterations called global
leader limit, then the global leader divides the population
into minor groups. Firstly, the population is divided into two
groups and then three groups and so on till the maximum
number of groups (MG) are formed. After every division,
LLL process is initiated to choose the local leader in the
newly formed groups. The case in which amaximum number
of groups are formed and even then the position of global
leader is not updated then the global leader combines all the
minor groups to form a single group.

The SMO algorithm is better represented by pseudo-code
in Algorithm 3.

3 Significant recent local search modifications

A local search is thought of as an algorithmic structure con-
verging to the closest local optimum while the global search
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Algorithm 3 SMO
Initialize parameters;
while Termination criteria do
Step 1: Local Leader Phase.
Step 2: Global Leader Phase.
Step 3: Local Leader Learning Phase.
Step 4: Global Leader Learning Phase.
Step 5: Local Leader Decision Phase.
Step 6: Global Leader Decision Phase.

end while
Print best solution.

should have the potential of detecting the global optimum.
Therefore, to maintain the proper balance between explo-
ration and exploitation behavior of an algorithm, it is always
suggested to incorporate a local search approach in the basic
population-based algorithm to exploit the identified region in
a given search space. Therefore, the local search algorithms
are applied to the global search algorithms to improve the
exploitation capability of the global search algorithm. Here
the main algorithm explores while the local search exploits
the search space.

Researchers are constantlyworking in the field ofmemetic
search approach. Natalio and Gustafson [11] discussed
proofs of memetic concepts. Ong et al. [22], proposed a
technique to maintain a balance between genetic search and
local search. Ong et al. [21], listed classification of memes
adaptation by the mechanism used and the level of histor-
ical knowledge on the memes employed. Lim presented a
valuable discussion on memetic computing [15]. In the same
year, Neri et al. [17], incorporated scale factor local search
to improve exploitation capability of DE. Further Nguyen et
al. [19], presented a novel probabilistic memetic framework
to model MAs as a process involving in finalizing separate
actions of evolution or individual learning and analyzing
the probability of each process in locating the global opti-
mum. Ong et al. [20] presented, an article to show several
deployments of memetic computing methodologies to solve
complex real world problems. In same year Mininno et al.
[16] incorporated Memetic approach with DE in noisy opti-
mization. Chen et al. [3], presented realization of memetic
computing through memetic algorithm. Sharma et al. [26],
included opposition based lévy flight local search with ABC.
Sharma et al. [27], integrated lévy flight local search strat-
egy with artificial bee colony algorithm. Recently, in 2016
Sharma et al. presented power law based local search in
SMO (PLSMO) algorithm [25]. In the above presented local
search strategies, the direction and distance (step size) of
the individuals, which are going to update, are based on the
inter-individual distance among the solutions. Thismay force
the individuals to move towards a specific direction. There-
fore, development of local search strategy, which properly
exploit the identified search space is highly required. An
angular rotation based search process may reduce the chance

of trapping in a local optima. Therefore, in this paper limaçon
curve inspired local search strategy (LLS) is developed and
incorporated with SMO algorithm. In the proposed LLS, the
direction and distance of the solutions are based on the fitness
of the solution (sign), the distance between the individual,
and an angle of rotation.

4 Limaçon inspired local search strategy and it’s
incorporation to SMO

The word limaçon is a Latin word meaning snail. During it’s
evolution, two important features were adapted by Limaçon
or snail naturally. In the first process called torsion, most
of the internal organs were twisted 180◦ anticlockwise. The
another important feature is that the shell became more con-
ical and then spirally coils. The shell is a line of defence for
the limaçon. The foot of limaçon allows it to move forward
and backward with muscle contracting and expanding move-
ment with the help of mucus and slime. The limaçon’s basic
specifications are the height of shell, width of shell, height
of aperture, width of the aperture, the number of whorls, and
apical angle. In this context, the height of the shell is it’s
maximum measurement along the central axis. The width is
the maximum measurement of the shell at right angles to the
central axis. The central axis is an imaginary axis along the
length of a shell, around which, in a coiled shell the whorls
spiral. The central axis passes through the columella, the
central pillar of the shell. Normally the whorls are circular
or elliptical, but from compression and other causes a vari-
ety of forms can result. The spire can be high or low, broad
or slender according to the way the coils of the shells are
arranged and the apical angle of the shell varies accordingly.
The whorls overlap the earlier whorls, such that they may be
largely or wholly covered by the later ones. When an angu-
lation occurs, the space between it and the suture above it
constitute the area known as the shoulder of the shell. The
shoulder angle may be simple or keeled, and may sometimes
have nodes or spines. The limaçon and its single line diagram
are shown in Fig. 1.

The proposed local search strategy is based on the limaçon
curve. The limaçon curve was introduced by Etienne Pascal
(1588–1651) [5]. The Limaçon curve is a botanical curve
which resembles the snail. Here, both rolling circles are hav-
ing the same radius and the curve thus obtained “epicycloid”
is the traces of a point P fixed to a circle that rolls around
another circle as shown in Fig. 2.

In literature, this curve already has been used in different
ways [12]. But, in this paper, the first time the limaçon curve
is used to develop a local search strategy and hybridized
with the basic SMO to improve the exploitation capability of
SMO.

123



Memetic Comp. (2017) 9:311–331 315

Fig. 1 a Limaçon (Snail) curve (this figure is accessed on Feb 2015 from http://entnemdept.ufl.edu/creatures/misc/whitegardensnail.htm), b single
line curve (this figure is accessed on Feb. 2015 from http://www.clipartpanda.com/categories/snail-clipart-black-andwhite)

Fig. 2 Epicycloid curve (this figure is accessed on Feb 2015 from
http://cf.ydcdn.net/1.0.1.42/images/main/epicycloid.jpg)

The basic equations of limaçon curve are shown in equa-
tions 6 and 7 for vertical axis and horizontal axis curves
respectively [30].

r = a ± bsinθ (6)

r = a ± bcosθ (7)

Here, r is the distance of the limaçon from the origin, a and
b are constants and θ is an angle of rotation. The curve has
transient phases based on the value of b. From a circle, for
b = 0 to cardioid for b = 1 and a noose on curve appears for
b > a.

In this paper, this limaçon curve is used to form a local
search strategy into SMO. In the proposed local search strat-
egy, the distance r is used as a new position of a solution
which is going to update its position during the search process

in the given search region. The detailed description of the pro-
posed limaçon curve based local search strategy, named as
limaçon local search (LLS) strategy is as follows:

In the proposed LLS, Eq. 6 of limaçon curve is adapted
with some modifications as a position update equation of the
proposed local search strategy. The modified equation is as
follows:

xnew = xi ± (xi − xk) × sinθ where,

k ∈ randomly selected solution, but k �= i. (8)

Here, a = xi is the solution which is going to update its
position, xnew is the updated position of the xi , b = (xi − xk)
is the social influence of the solution xi in the population and
θ is an angle of rotation.

In this paper, in each iteration, only the best solution will
be allowed to update its position using the LLS strategy. The
position update equation for the best solution is given by Eq.
9.

xnew = xbest ± (xbest − xk) × sinθ (9)

where θ is calculated as

θ = π

2
×

(
1 − t

T

)
(10)

Where, t = current iteration counter and T = total iterations
of local search. The pseudo-code of the proposed LLS is
shown in Algorithm 4.

As the step size is also based on sine of an angle, resem-
bling apical angle of limaçon, the step size reduces based on
decreasing angular values from θ = 90◦ to θ = 0◦ either
in negative or positive direction. The higher height of spire
shows a lesser apical angle for limaçon and vice versa. Sim-
ilarly, the lesser angular step represents a small step size,
while the higher angular step represents larger step size in
the LLS strategy. This implies that in early iterations larger
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step sizes are allowed while smaller step sizes are allowed in
later iterations.

Algorithm 4 Limaçon local search (LLS) strategy:
Input optimization function Min f (x) and xbest ;
Initialized iteration counter t = 0 and total iterations of LLS, T;
while t < T do
Calculate the value of θ using equation (10);
Generate new solutions xnew1 using Sign=“−′′ and xnew2 using
Sign=“+′′ by Algorithm 5.
Calculate objective value f (xnew1) and f (xnew2).
if f (xnew1) < f (xbest ) then
xbest = xnew1;

else if f (xnew2) < f (xbest ) then
xbest = xnew2;

end if
end while
Return xbest .

In Algorithms 4 and 5, cr is a perturbation rate (a number
between 0 and 1) which controls the amount of perturbation
in the best solution, U (0, 1) is a uniform distributed random
number between 0 and 1, D is the dimension of the problem
and xk is a randomly selected solution within population. See
Sect. 5.1 for details of these parameter settings.

The proposed LLS strategy is incorporated with the SMO
after the global leader decision phase. The pseudo-code of
themodified SMOnamed as limaçon inspired SMO (LSMO)
algorithm is shown in Algorithm 6.

Algorithm 5 New solution generation:
Input Sign and best solution xbest ;
Randomly select a solution xk from the population such that best �= k;
for j = 1 to D do

if U (0, 1) < cr then
xnew j = xbest j ;

else
xnew j = xbest j Sign (xbest j − xk j ) × sinθ ;

end if
end for
Return xnew

Algorithm 6 Limaçon inspired SMO:
Initialize the parameters;
while Termination criteria do
Step 1: Local Leader phase.
Step 2: Global Leader phase.
Step 3: Local Leader Learning phase.
Step 4: Global Leader Learning phase.
Step 5: Local Leader Decision phase.
Step 6: Global Leader Decision phase.
Step 7: Apply Limaçon inspired Local Search (LLS) Strategy using
Algorithm 4.

end while
Print best solution.

5 Performance evaluation of LSMO algorithm

The performance of proposed LSMO algorithm is evaluated
on 25 different benchmark continuous optimization func-
tions ( f1 to f25) having different degrees of complexity and
multimodality as shown in Table 1. The acceptable errors of
above functions are set to see the clear difference among the
considered algorithms in terms of success rate and number
of function evolutions. Here, the functions and acceptable
errors are adopted from the literature [1,2,27]. To check the
competitiveness of LSMO , it is compared with SMO [2],
ABC [10], DE [28], PSO − 2011 [4], CMA − ES [7]
and one significant variant of ABC namely, Gbest-guided
ABC (GABC) [31] as well as two local search variants
namely, memetic ABC (MeABC) [1], and Lévy flight ABC
(LFABC) [27] and one recent local search variant of SMO
namely, PLSMO [25]. The experimental setting is given in
Sect. 5.1.

5.1 Experimental setting

The experimental settings are as follows:

– Population Size N = 50;
– MG = N/10.
– GlobalLeaderLimit = 50,
– LocalLeaderLimit = 1500,
– pr (perturbation rate ofmainSMOalgorithm)∈[0.1, 0.4],

linearly increasing over iterations,

prG+1 = prG + (0.4 − 0.1)/MI R (11)

where, G is the iteration counter, MI R is the maximum
number of iterations.,

– The stopping criteria is either maximum number of func-
tion evaluations (which is set to be 200,000) is reached or
the acceptable error of test problem has been achieved,

– The number of simulations/run =100,
– Parameter settings for the algorithm SMO , ABC ,GABC ,

MeABC , LFABC , PLSMO , CMA − ES, PSO −
2011, and DE are similar to their legitimate research
papers respectively.

– Themaximum number of iterations of LLS is set through
sensitivity analysis in terms of sum of success rate (SR).
The performance of LSMO is measured for considered
test problems on different values of T and results in terms
of success are analyzed in Fig. 3. It is clear from Fig. 3
that T = 20 gives better results (highest value of sum of
success). Therefore in this paper maximum local search
iterations is set as T = 20.

– In order to investigate the effect of parameter cr (pertur-
bation rate of local search), described by Algorithm 5 on
the performance of LSMO , its sensitivity with respect
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to different values of cr in the range [0.1, 0.9], is exam-
ined in the Fig. 4. It can be observed from Fig. 4 that
the algorithm is very sensitive towards cr and value 0.6
gives comparatively better results. Therefore cr = 0.6 is
selected for the experiments in this paper.

5.2 Results comparison

The numerical results obtained are presented in Table 2 for
success rate (SR), average number of function evaluations
(AFE), mean error (ME), and standard deviation (SD).

LSMO, SMO, ABC, DE, PSO–2011, CMA-ES and one
significant variant of ABC namely, GABC, and two local
search variants namely, LFABC, andMeABC, and one recent
local search variant of SMO namely, PLSMO are compared
in terms of SR, AFE, ME, and SD as shown in Table 2. The
results show that LSMO is competitive than SMO and other
considered algorithms for most of the benchmark test prob-
lems irrespective of their nature either in termsof separability,
modality and other parameters.

The considered algorithms are also compared through
Mann–Whitney U rank sum test [27], acceleration rate and
boxplot analysis. Mann–Whitney U rank sum test is applied
on average number of function evaluations. For all consid-
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ered algorithms the test is performed at 5% significance level
(α = 0.05) and the output results for 100 simulations are pre-
sented in Table 3. In this table ‘+’ sign indicates that LSMO
is significantly better than the other considered algorithm
while ‘−’ sign represents that the other considered algorithm
is better. The LSMO outperforms as compared to all other
considered algorithms for 10 test problems including f1, f3–
f7, f9, f12, f18, and f24. LSMO performs better than basic
SMO for 18 test problems, f1– f9, f11, f12, f14– f16, f18,
and f23– f25. The LSMO shows better results for 24 test
problemswhen comparedwith basic ABC algorithm, f1– f15
and f17– f25. The LSMO performs better for 21 test prob-
lems, f1– f7, f9– f12, f14– f18, and f20– f24 in comparison
with DE . The LSMO performs better for 23 test problems in
comparison with PSO , f1– f18 and f20– f24. In comparison
with CMA − ES, LSMO performs better on 15 functions,
f1– f7, f9– f12, f17, f18, f20, f22, and f24. While comparing
with the variants of ABC , the LSMO performs better for 19
test problems than GABC , f1– f9, f12– f15, f18, f19, f22–
f25. The LSMO performs better than LFABC for 24 test
problems f1– f9 and f11– f25. In comparison with MeABC ,
LSMO shows better results for 18 test problems f1, f3–
f9, f11– f14, f17, f18, f22– f25. The LSMO shows better
results for 18 test problems, f1– f12, f16– f18, f23– f25 when
compared with PLSMO algorithm. The above discussion
represents that LSMO may be a competitive candidate in
the field of swarm intelligence.

Further, the convergence speed of considered algorithms
are compared by analysis of AFEs. There is an inverse rela-
tion betweenAFEs and convergence speed, for smaller AFEs
the convergence speed will be higher and vice-versa. For
minimizing the effects of stochastic nature of algorithm, the
reported AFEs are averaged for 100 runs for each consid-
ered test problems. The convergence speed is compared using
acceleration rate (AR) for the considered algorithms. TheAR
which is calculated as follows:

AR = AFEALGO

AFELSMO
, (12)

Here, ALGO ∈ {SMO,ABC,PSO,DE,CMA − ES,
GbestABC,MeABC,LFABC,PLSMO} and AR > 1 repre-
sents that LSMO is faster than the compared algorithm. The
AR results are shown in Table 4. The results in Table 4 shows
that for most of the considered benchmark test functions,
LSMO converge faster than the considered algorithms.

The boxplots analyses have also been carried out for all
the considered algorithms for comparison regarding consol-
idated performance. In boxplot analysis tool [27] graphical
distribution of empirical data is efficiently represented. The
boxplots for LSMO and other considered algorithms are
represented in Fig. 5. It is clear from this figure that LSMO

performs better than the considered algorithms as interquar-
tile range, and the median is quite low.

6 Capacitor sizing and optimal placement problem

The placement of capacitors in the distribution network
is mainly needed, for improving power transfer capabil-
ity, for properly serving to reactive loads, for the smooth
working of power transformers, and for secure and sta-
ble transmission system in different network configurations.
Further, these capacitors improve voltage profile and main-
tain contractual obligations for electrical equipments. The
capacitors also help in reducing the energy consumption of
voltage-dependent sources aswell as technical losses [6]. The
capacitors have been widely installed by utilities, to provide
reactive power compensation, to enhance the efficiency of the
power distribution, and to achieve deferral of construction.
Economically, we can say that the capacitors installation in
distribution network help in increasing, generation capacity,
transmission capacity, and distribution substation capacity.
Subsequently, it helps in increasing revenue generation. But
the placement of capacitors exactly at required optimal posi-
tion in a distribution system is a challenging task or can say a
difficult problem for the distribution engineers. The objective
of this problem is to minimize the energy losses while con-
sidering the capacitor installation costs. In other words, the
goal is to achieve the optimal placement and sizing of capac-
itors with the system constraints in the distribution network.
The problem is defined as follows:

The total loss in a distribution system having n number of
branches is given by

PLt =
n∑

i=1

[I 2i ]Ri (13)

Here Ii and Ri are current magnitude and resistances respec-
tively for the i th branch. The branch current obtained from
load flow solution has two components; active (Ia) and reac-
tive (Ir ). In active and reactive branch currents, the associated
losses are given by Eqs. 14 and 15 respectively.

PLa =
n∑

i=1

[
I 2ai

]
Ri (14)

PLr =
n∑

i=1

[
I 2ri

]
Ri (15)

In loss minimization technique of the capacitor placement, a
single capacitor is repetitively placed by varying its size for
determining a sequence of nodes in viewof lossminimization
of the distribution system. The concept of loss minimization
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Fig. 5 Boxplots graphs for average number of function evaluation

by a singly located capacitor can be extended for multiple
capacitors [6].

Let us consider the following [13]:

– m = number of capacitor buses.
– Ic = m dimensional vector consisting of capacitor cur-
rents.

– α j = set of branches from the source bus to the j th capac-
itor bus ( j = 1, 2, . . .m).

– D = a matrix of dimension n × m.

The elements of D are considered as

– Di j = 1; if branch i ∈ α

– Di j = 0; otherwise

When the capacitors are placed in the system, the new
reactive component of branch currents is given by

[I newr ] = [Ir ] + [D][Ic] (16)

The loss associated with the new reactive currents in the
compensated system is

Pcom
Lr =

n∑
i=0

(
Iri + Di j Icj

)2
Ri (17)

The loss saving (S) is obtained by placing the optimal
size capacitors in the distribution network. The loss saving
is calculated by taking the difference of the Eqs. 15 and 17
and is shown as follows:

S = −
n∑

i=1

⎡
⎢⎣

⎛
⎝2Iri

m∑
j=1

Di j Icj +
m∑
j=1

Di j Icj

⎞
⎠

2
⎤
⎥⎦ Ri (18)

For achieving themaximum loss saving, optimal capacitor
currents can be obtained from the following equations:

δS

δ Ic1
= 0

δS

δ Ic2
= 0

− − −−
− − −−
δS

δ Ick
= 0

(19)

After some mathematical manipulations, equation 19 can be
expressed by a set of linear algebraic equations as follows:

[A][Ic] = [B] (20)

Where A is a m ×m square matrix and B is a k-dimensional
vector. The elements of A and B are given by

A j j =
∑
iεα j

[Ri ] (21)

A j j =
∑

iε(α j
⋂

αm)

[Ri ] (22)

Bj =
∑
iεα j

[Iri Ri ] (23)

Only the branch resistances and reactive currents in the
original system are required to find the elements of A and
B. The capacitor currents for the highest loss saving can be
obtained from Eq. 20.

[Ic] = [A]−1[B] (24)

Once the capacitor currents are known, the optimal capac-
itor sizes can be written as Qc in mega volt ampere reactive
(MVAR) as equation 25
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Qc = Vm × Ic (25)

Here Vm is the voltage magnitude vector of capacitor
buses. The saving in the compensated system can be esti-
mated from Eq. 18 using the value of Ic given by Eq. 24.

The objective function may be formulated using Eq. 18 in
following manner :

minf (xlocation, xsize) = S (26)

7 LSMO for optimal placement and sizing of
capacitors

In this section, the LSMO and SMO algorithms are applied
to solve the optimal placement and sizing problem of capaci-
tors in the distribution network. First in LSMO, the solutions
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Fig. 6 LSMO for Optimal placement of capacitor of IEEE−14, IEEE−30 and IEEE−33 bus system respectively for a 3 capacitor, b 5 capacitor
problems

are generated randomly in a given range i.e. capacitors of
given value are placed at random nodes in the distribution
system. Here, each solution represents the size and location
of capacitors in the distribution network, for example for
3-capacitor problem; a solution will be of six dimensions
of which first three will represent the size of the capaci-
tors while remaining three will show the locations of the
capacitors. Here, it should be noted that the locations of the
capacitors are represented by discrete values while size by
continues values. Therefore, the first three real values are
converted into discrete values by rounding off in the nearby
integer value. In this way, a mixed representation of the
solution is prepared. As the capacitor placement and the
sizing problem is non-separable and multimodal in nature,
SMO and its proposed variant are applied to solve it. In
this paper, the loss minimization is carried out by provid-
ing the optimal size and location of the capacitors in the
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network. For testing, the performance of LSMO, it is applied
on IEEE−14, 30 and 33 test bus radial distribution system.
The LSMO is used to update the bus data of the consid-
ered bus systems iteratively for reducing the system losses.
The reported results are compared with GA and SMO (The
parameter settings of GA and SMO are same as their legiti-
mate research papers [2,8]) as shown in Tables 5, 6, 7, 8, 9,
and 10. The better results are represented by bold values.
The loss minimization curves are shown in Fig. 6. From
these tables, it is clear that the size of the capacitor is
determined inMVAR (i.e. 106 VAR)while power loss ismea-
sured in Mega Watts (i.e. 106 W). So, a little difference in
power loss and capacitor size affects the performance signif-
icantly. The results show that the loss occurred using LSMO
strategy isminimumamong all the considered cases and algo-
rithms. Therefore, the LSMO may be used for solving the
capacitor placement and sizing problem of the distribution
system.

8 Conclusion

In this paper, a limaçon inspired local search (LLS) strat-
egy is developed and hybridized with SMO. The pro-
posed hybridized strategy is named as limaçon inspired
SMO (LSMO). The performance of LSMO has evaluated
over 25 well-known benchmark functions. Results indicate
that the proposed LSMO is a significant candidate among
most promising swarm intelligence based global optimiza-
tion algorithms. Further, a complex real-world optimization
problem, optimal placement and sizing of capacitors in
distributed network is solved with IEEE 14, 30, and 33
bus test system using LSMO. Results have been compared
with those of GA and SMO. It is observed that LSMO
obtains minimum distribution and transmission losses while
maintaining the minimum cost. This work may further be
extended to an unbalanced radial system as a future research
perspective.
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