Memetic Comp. (2016) 8:223-233
DOI 10.1007/s12293-016-0195-0

@ CrossMark

REGULAR RESEARCH PAPER

Rational and self-adaptive evolutionary extreme learning machine

for electricity price forecast

Chixin Xiaol-24
Xin Zhang?

- Zhaoyang Dong® - Yan Xu® - Ke Meng? - Xun Zhou* -

Received: 12 September 2015 / Accepted: 3 June 2016 / Published online: 15 June 2016

© Springer-Verlag Berlin Heidelberg 2016

Abstract Electricity price forecast is of great importance to
electricity market participants. Moreover, various prediction
approaches based on extreme learning machine (ELM) have
been identified as effective on normal decision space. Espe-
cially, evolutionary extreme learning machine (E-ELM) may
obtain better solution quality. However, in high dimensional
space, E-ELM is time-consuming because it is difficult to
converge into optimal region when just relied on stochas-
tic searching approaches. In addition, due to the complex
functional relationship is often complicated, the objective
function of E-ELM seems hard to be mined directly for
obtaining useful mathematical information to guide the opti-
mum exploring. This paper proposes a new differential
evolution (DE)-like algorithm to enhance E-ELM for more
accurate and reliable prediction of electricity price. The
approximation model for producing DE-like trail vector is
the key mechanism, which may use simpler mathematical
mapping to replace the original yet complicated functional
relationship within a small region. Thus, the evolutionary

B Zhaoyang Dong
zydong @ieee.org
Chixin Xiao
chixinxiao @gmail.com

Xun Zhou
zhouxun_1978 @hotmail.com

The College of Information Engineering, Xiangtan
University, Xiangtan 411105, China

The School of Electrical, Computer and Telecommunications
Engineering, University of Wollongong, Wollongong, NSW
2522, Australia

The School of Electrical and Information Engineering,
University of Sydney, Sydney, NSW 2006, Australia

The Centre for Intelligent Electricity Networks, University of
Newcastle, Newcastle, NSW 2308, Australia

procedure frequently guided by rational searching directions
may make the E-ELM more robust and faster than supported
only by those stochastic methods. Several benchmarks are
applied to test the performances of the proposed algorithm
and the experimental results have shown that the new method
can improve the performance of E-ELM.

Keywords Approximation model - Differential evolution -
Extreme learning machine - Electricity price prediction

1 Introduction

In electricity industries, accurate price prediction [1] is very
important for market participants to decrease risks along with
their decision making. Historically, great research efforts
have been devoted to developing accurate and reliable meth-
ods for electricity price prediction [2-5]. The state-of-the-art
techniques include time-series methods such as Autore-
gressive Integrated Moving Average (ARIMA) [6,7] and
Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) [8], and machine learning methods [9]. Among
these techniques, machine learning models have shared the
largest research attention mainly because of their strong
nonlinear modeling capacity [10,11]. In respect of utilizing
machine learning approaches for electricity price prediction
as well as other applications in power system area, three main
categories of the learning algorithms related to this paper are
listed as follows,

e The first is the conventional machine learning tools, for
instance, artificial neural networks (ANNs) [2,3], sup-
port vector machine (SVM) [10], etc. The best merit of
such kind of approaches is that they can extract the non-
linear relationships out of the input and output dataset.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-016-0195-0&domain=pdf
http://orcid.org/0000-0002-3911-7113

224

Memetic Comp. (2016) 8:223-233

They therefore have been developed and adopted widely
in power engineering domain during past decades. How-
ever, the approaches fallen in this category are mainly to
use some dull gradient-descent information to guide the
training for their forecasting models, and they are often
deemed as lacking efficient strategies to escape prema-
ture convergence or many local minima.

e The other is a novel approach, ELM [12-15], which is
proposed in recent years. ELM and its variants have one
common distinguished capacity, fast training speed. At
the beginning, they initialize hidden nodes randomly and
then obtain the output weights via Moore-Penrose pseudo
inverse [12], i.e. the output weights vector is treated as
one solution of a group of linear-like equations. For many
ordinary regression or classification problems being in
low dimensionality, this kind of method is obviously
enough to obtain better results than those traditional ones
in both the training speed and training accuracy.

e Using evolutionary algorithms, E-ELM aims to evolve
out an optimum result based on a population, usually in
a constant size, consisting of ELM candidates for train-
ing. Significantly, ELM training is mainly depended on
an unique step to find out the matrix solution instead
of training step by step, say, the output weight vector
is obtained on the basis of hidden layer output matrix
and parameters assigned randomly. This is also the key
factor why ELM is usually superior to those conven-
tional approaches on training speed while still keeping
good learning performance. However, calculating solu-
tion based on partly random assignments may lead to the
final output unstable, sometimes with a better training
effect, sometimes with an even worse one, e.g., as for
high dimensional problems as in the works [1]. Besides
that, ELM is sometimes difficult to find out a satisfied
regression or classification results by once calculation,
even though it can calculate output weights fast [16].
Overall, the difference of the solution quality provides
the developing space for E-ELM.

Although the E-ELM can promote the final learning quality,
it increases the time complexity as well. There are mainly
due to the reasons in two aspects: First, until the final opti-
mum to be found, the evolutionary algorithm has to calculate
the ELM population rather than a single ELM individual iter-
atively by maximum generations. In addition, evolutionary
algorithm itself also increases its time cost as the dimension-
ality of decision space expanding. According to [17], one
random matrix of hidden weights is corresponding to a vec-
tor of output weights, besides that, better hidden weights and
output weights can lead to alower root mean square error, that
is, a better regression or classification result for ELM. The
hidden weights can be combined into a single row solution for
the objective function of ELM, the optimum can be obtained

@ Springer

after evaluating the individual solution and comparing with
other solutions among whole population. For example, let the
data be 100 dimensions and the number of the hidden layers
is 10, the dimensionality of the solution individual will then
reach to 1000. Usually, the dimensionality of the power mar-
ket data or the data for electricity load forecasting is over 100.
Self-adaptive evolutionary extreme learning machine (SaE-
ELM) [18] is a representative method of E-ELM, which can
obtain output weights for a single hidden layer feed-forward
network (SLFNs) with some promising features. However, in
respect of training high dimensional data, SaE-ELM is also
time-consuming in evolutionary iterations.

In order to promote the speed of E-ELM and robustness in
optimum exploring in high dimensional space, this research
is motivated to consider whether some rational analysis could
be used to guide the optimum searching, especially in such
environment as in high dimensional decision space, with a
complicated objective function. As mentioned above, in con-
ventional neural network, the gradient information provides
some rapid exploring guides though often leading to local
optima. So the gradient information perhaps can be prop-
erly used in E-ELM to provide some rational directions and
then to accelerate the whole optimization procedure. Unfor-
tunately, the complicated objective function of E-ELM is too
difficult to mine the gradient information directly between
decision variable vector and its fitness function. Moreover,
the basic framework of ELM seems also to have pushed the
gradient ideas out of date. Even so, the rest of this paper
proposes a new approximation model, which not only can
provide an approximate mapping dynamically to replace the
old functional relationship of E-ELM within a comparative
small region, but is compatible with differential evolution
(DE) frame. Therefore, based on the new model, a hybrid
DE-like algorithm is developed to ensure the new E-ELM
not only can enter global optimal region faster than pure
stochastic searching, but also can obtain high qualitative
solutions, more reliably than those dull gradient methods.
Overall, faster convergence and better quality of solution of
E-ELM are two mandatory objectives should be considered
in this paper.

The rest of paper is organized as follows. Section 2 out-
lines some relative backgrounds. The new approximation
model is shown in Sect. 3. In Sect. 4, a new evolutionary
algorithm for E-ELM learning high-dimensional data is pro-
posed. The experimental results and discussions are placed in
Sect. 5. Finally, a conclusion and future works are provided
in Sect. 6.

2 Brief reviews
This section gives brief reviews of aboriginal extreme learn-

ing machine (ELM) as well as some necessary methods used
in the rest of this paper for completeness.

Memetic Comp. (2016) 8:223-233

225

2.1 Extreme learning machine (ELM)

ELM has been shown many good performances on the gen-
eralized single-hidden layer feed-forward networks (SLFN5s)
since it was proposed. It has some differences from the tra-
ditional neural networks on the hidden layer, e.g., random
generation of its hidden nodes is the main feature of ELM.
The basic working mechanism of ELM is briefly generalized
as follows,

Given N training samples {(x;, tl-)}fv= | Which can be also
described in matrix style {(P, T;4,)}, where P isa D x N real
matrix of input data and T;,, represents N x 1 target vector.
H is a L x D real matrix consisting of the hidden layer
parameters generated randomly. 8 is a L x 1 real vector
of output weights. Their mathematical relationship can be
expressed as Eq. (1)

f(H - P+ Bias)" - = Tar 4))

where Bias is a L x N real matrix and function f(-) is a
kind of activation functions [11], for instance, a log-sigmoid
function,

1
)= ——— 2
o) = T @
where c is a slop parameter.
Usually, Eq. (1) can be presented in brief as Eq. (3)

H- ﬂ = Ttar (3)

where H = f(H - P + Bias)T isa N x L matrix. ELM uses
Moore-Penrose pseudoinverse At and target vector Ty, to
obtain a least-square solution of such linear system as Eq.
(3). That is, a least-square solution of output weight vector
B can be analytically determined as Eq. (4)

l§ - I:IT : Ttar (4)

{HT-(évLH-HT)_l, N<L)

(L+H".H)H, L<N’

and c is a trade-off constant, which can be referred to [12—15]
for more details.

Instead of following traditional gradient descend
approach, ELM minimizes training accuracy or the cost func-
tion Eq. (6) via the result gotten by the Eq. (4).

RSME = \/mse (H - TW) 6)

where mse (-) is the function to measure network perfor-
mance as the mean of absolute errors.

2.2 Basic differential evolution framework

Differential evolution (DE) [19] has been applied to many
practical engineering problems since it was proposed in 1995.
Furthermore, the variants of DEs with enhanced search per-
formance have been introduced in [21-23]. Especially for
multimodal optimization, researchers tend to combine DE
with other evolutionary methods, sometimes called hybrid
DEs, so as to promote whole performance of the algorithm.
In classical DE framework, the remarkably simple trial
vector generation scheme is a main character distinguished
from other EAs. It processes a scaled difference of vectors
originating from a fixed-size population of decision vec-
tors. Usually, such three evolutionary operators as mutation,
crossover and selection are included respectively. During
the g-th generation and in the basic DE mutation, a trial
vector u; ¢ is produced by a crossover operation between
old individual vector x;, and a mutated vector v;, =
X106 + Fi - (Xr1,4 — Xr2,4), Where F;(F; > 0) is a scal-
ing factor, x,0,¢, Xr1,,%r2,¢ are three independent decision
vectors selected randomly from the whole population P =
{ng, X2,gsens pr,g}. in decision space. For each vector
Xjg € P in turn, there is a corresponding trial vector u; ¢
being generated. Each old vector x; in P will not be replaced
unless its trial vector u; ¢ yields a better objective function
value than itself. Consequently x; o is also called a target
vector in literature. One can refer to [24] for more different
crossover operators and more variants of DE in detail.

2.3 SaE-ELM

Self-adaptive evolutionary extreme learning machine (SaE-
ELM) [18] is upgraded from DE-LM [25] and E-ELM [17].
It chooses trial vector generation strategies and some rela-
tive control parameters adaptively. Their common place is to
explore the network input weights and hidden node biases of
ELM aiming to get optimum of the network output weights.
When training data set X pxx, L hidden layers and an acti-
vation function f(-) are given, the individuals to be evolved
during the g-th generation can be coded into as following
vector [18],

Og = (s By B oo B B S
bf, e, bgL), where 1 <k < NP, NP is the population size,
bf , 1 <i < L, represents the bias value for the i-th hidden
layer in g generations.

Based on the coding format, the parameters like H, Bias
are obtained as follows,

8 8 8
hll""’héD b,]g
h3p..... b5 b5

H = . ,P=XpxnN, Bias = X JI1xN
8 . 8 g
hLl""’hLD bL

(N

@ Springer

226

Memetic Comp. (2016) 8:223-233

where Jyxy is a one row and N columns matrix of ones.
Then the corresponding fitness function is formulated as Eq.

(®),

RSME :\/mse (f(H Ptest+BiaS)T'B_Tlest) (8)

where P;.5; and T;.s; are testing data set and testing target
vector respectively.

The main aim of such kind of algorithms is to explore an
optimum of H from population consisted of 0 o(1 < k <
NP) during g,,,4, generations. The individuals which can sur-
vive from g generations to the next must satisfy Eq. (9).

Uk,gs RMSEgkqg — RMSE@kngrl > e - RMSEgkqg
Uk,g, |RMSE9]%, — RMSE9k>g+1|<E . RMSEgkyg

and |[Bug g4 I < 11Bug
Otherwise

9k,g+1 =

9k,g’

©))

3 Approximation model

Sometimes traditional optimization approaches are demon-
strated very useful for evolutionary exploring as long as
they can be manipulated properly. However, in many situ-
ations, traditional optimization methods are difficult to be
used directly due to the complex functional relationship.
These stimulate a motivation to employee simpler approx-
imation models to replace the original fitness function. For
example, as shown in Fig. 1, suppose the functional relation-
ship between variable x and its objective function f(x) is
complicated, yet in another space variable vector (¢,) can
map into the same image f(x) by an easier mapping rule
g (11, 1), hence, if a mapping relationship is found between
the space in where x is located and the other space where vari-
able vector (1, t2) is included, then the original problem can
be simplified, because the complex functional relationship
has been replaced by a simpler mapping model. In the fol-
lowing section, a simple first-order approximation model is
proposed in order to imitate the compound mapping between
variable data and their objective function. Perhaps, such kind
of functional relationship based on the approximation model
is not very accurate to replace the original one over whole
hyper-plane, but within a limited region it can satisfy those
practical demands [26,27].

3.1 First-order approximation model
Without loss of generality, a decision space can be formulated
as a hyper-plane by one point attached with two vectors. Let

x € R" is an arbitrary point in decision space R” or the point
can be denoted as a decision vector (x1, X2, ..., x,)T, L is

@ Springer

N <

titz

(t+,t2)

Fig. 1 Principle of the approximation model

the hyper-plane, suppose x* # x! # x? are three distinct
points selected randomly among R”, then any arbitrary point,
x € L, can be formulated as such style as Eq. (10)

x=x0+t1-(xl—x0)~|—t2-(x2—x0) (10)

where 11, tp are two independent real variables.

According to Eq. (10), any x € L is linear corresponding
to the variable vector (¢, t) because the rest parameters are
constants, i.e., x < (1, t), if and only if three arbitrary yet
independent points, x9 * x! * x2, have been fixed. In other
words, if x° # x! # x? are located, any x € L can be evalu-
ated based on variable vector (t1, #) and Eq. (10). Therefore,
when decision vector x approaching its optimum, x*, there
must exist a corresponding variable vector (f},15) < x*,
ie.,

x*=x0+t;"-(xl—x0)+t§k-(x2—xo) (11)

Likewise, for any pair of fitness function f (x) and its variable
x, there exists another pair of image g (-) and its variable vec-
tor (#1, to) which has acommon place, i.e., g (¢,) = f(x).
However, the difference is the functional relationship of g (-)
is simpler than the one of f(-). The conversion relationship
between g () and f(-) is defined as Eq. (12)

gt = £ = g"+n- (8" = 8°) +1- (¢ — ") (12

where go, gl, gz, can be treated as constants, when x° *
x! # x? have been fixed as mentioned above. In order
to obtain the constants, gO, gl,gz,in a simple way, some
special points are considered here. Assume (¢1, #2) is sub-
stituted by vectors, (0,0), (1,0), (0,1) respectively, then g0 =
f(x0),g' = f(x1),g%> = f(x2) can be easily extracted
out via Egs. (12) and (10). Equation (12) hereby provides
an approximation equation as well to replace the original fit-
ness function, since g (¢1, ©2) = f(x). So, no one would like
to care about how the complicated functional relationship
between the decision variable x € R" and its original image
f(x) s, as long as the new mapping between g () and (71, #2)
is simpler and enough reliable.

Memetic Comp. (2016) 8:223-233

3.2 Direction to optimum

As pointed out before, Eq. (12) also provides a linear func-
tional relationship between variable vector (#1, t2) and its
image g (¢, t>). Through conventional optimization theories,
g (11, 1) at point (1, 1) has a vector of first partial deriva-
tives, or gradient vector Vg (t1,) = ((g' — g%). (¢* — g%)).
Hence, the local minimum optimum of (¢}, #5) is most prob-
ably being placed in the opposite direction of Vg (¢, t2).

(tf,55) = (0,0) —a - Vg (t1,0) = —a - Vg (11,1n) (13)

where « is a step parameter. Overall, any three distinct deci-
sion variables, say, x* # x! £ x2, can deduce out the local
optimum x* via Egs. (11-13), which can be expressed as Eq.
(14),

=t -) ()
(=) ()]

4 Proposed algorithm

In general, no method is flawless, neither is the new rational
approximation model. Aiming to obtain a tradeoff between
global exploration and local exploitation, another DE muta-
tion strategies, ‘DE/current-to-best/1’ [24], is enrolled as
well to construct a hybrid Rational and Self-adaptive muta-
tion (RSM) strategy, whose pseudo-code is shown in Fig. 2.

4.1 Historical pool

From experimental results, fitness values evaluated by the
new approximation model are very sensitive to the shape
formed by three input individuals x,0 ¢, X1, and x,2 . The
basic idea is to avoid excessive similarity between the can-
didates. Learn from JADE [21], RSM mutation applies a
historical pool to temporarily reserve a part of individuals
sifted out from the population. Each time, one of three distinct
individual is picked out from the union of current population
and the historical pool, hereby denoted by X, ,, while the
others x,0, ¢, Xr1,¢ are still selected from the current popula-
tion. The size of the historical pool is set to a quarter of the
population and the initial state is empty. After being full, the
pool permits the individual perished from current population
to replace the worst one if the perished one is better.

4.2 Self-adaptive parameters
Motivated by [20-22], in the new algorithm many control

parameters are extended into solution individuals for control-
ling self-adaptively (see Table 1). The parameters are evolved

227
function RSM-Trial()
INPUt:Xyg,g # Xr1,g # Rrz,gXig Xpestg (ON€ Of the P best
individuals in current population, P=5 in this paper)
output: two trial vectors uf,, ufy
8° = f(Xr0g); 8" = f(Xr1,g); 8% = f(Rr2g) 5
t=—(g" - 8% t, = —(g* —g";
s = Step;o/y/t5 + 15 ;
Vig = Xrog 5 [t (Xr1g — Xrog) +t2 - (Rrag — Xrog)];
Viz,g = Xpog + Fi* (Xgest,g - Xi,g) +Fi- (XrO,g - Xr1,g)i
forj=1toD
fork=1to2
if(j = Kyanq) or rand(0,1) <CR¥
Ui g=Viig
else
U g =X
end if
end for
end for
end func
Fig. 2 Pseudo-code of producing hybrid trial vectors
Table 1 Encoding format of self-adapting individuals
X1 Stepy ¢ CR{, Fig CRf’g
X2,¢ Stepa ¢ CRig P CR%_g
XNP.g Stepnp,g CRI'\,P,g Fnp.g CRJZVP’g

simultaneously whilst the classical population of solutions is
being processed in evolution procedure.

In general, the better control parameter value is corre-
sponding to the optimal trial vector. Therefore the proposed
algorithm utilizes the statistical results of recent successful
parameters to guide the production of parameters for next
generation.

Main parameters for self-adaptive control, such as Step; o
€ [0,2],CR}!,CR}? € [0,0.9] and F;, € [0.1,1.0], are
initialized within their definition domain. The successful
parameters survive to the next generation, while the unsuc-
cessful ones are replaced by a normal distribution of the mean
Py, ¢ and standard deviation sigma as shown in Eq. (15).

Pi g = Py ¢ +sigma -randn; g (15)

where P; , represents the variable of parameters for the i-
th individual in g generation. The sigma of each parameter
equalstomin (| Py.g — Pub.g, |. | Pm.g — Prb.g|). The mean
values are initialized as follows, Step,,.1 = 1.1, Fjp1 =

@ Springer

228

Memetic Comp. (2016) 8:223-233

0.6, CR{c = 0.6, (k = 1, 2). Parameter Step; , controls the
incremental degree of the mutation shown in Fig. 2.
vil’g = er,g+S‘[tl : (xrl,g - er,g) +t- (erZ,g - er,g)]7

where s = Stepi,g/,/tl2 + t22. At the beginning of whole
evolving procedure, Step; > 1 helps population converge to
optimum fast, while Step; < 11is good at effective exploita-
tion, especially for solutions approaching to the optimum.

4.3 Hybrid strategy for trial vector

In the procedure of selection, as shown in Fig. 3, if two new
trail vectors satisfies

— Case 1: f(xig) < f(uz!,g) < f(uig)

Both two trail vectors are successful trail ones, i.e., success
(i,1) = 1, success (i,2) = 1, all their parameters can be kept
to the next generation.

— Case 2: f(uil’g) < f(xig) < f(uiz,g)

ull p is named as a successful trail vector and success (i,1) is

setto 1.
— Case 3: f(uil’g) < f(uig) < f(xig)

This case means all the parameters need to be adjusted.
At end of each generation, the mean of each parameter is
adjusted by Eq. (16)

Pig+1 = 0.85- Py g +0.15 - mean (Pyyccess.g) (16)
where mean (.) is a function of arithmetic mean.

4.4 RSM-DE algorithm

The main body of RSM-DE algorithm:

Input: NP: the size of the population;
Maxgen: the number of the maximum iteration;
Fitness function;
D: The dimension of decision space.
Output: Optima of the fitness function.

Step 1 Initialization

Create a random initial population {x;oli = 1,..., NP}
Initialize parameters within their definition regions.

For g=1,..., Maxgen ,do

Step 2 Evolution Items

Fori=1...,NPdo

@ Springer

function Selection()

input: two trial vectors u}

1,8’
output: two trial vectors x; .1 and successg;

ufy;
success(i,1)g=success(i,2)g=0;
if(f(ufy) < f(ufy)
if(f(xig) < f(uig)
Xig+1 — Xig
else if((f(uy) < f(x;))&&(f (xi) < f(ufy)))
Xige1 = Uig success(i,1)g=1;
else
Xig+1 = Uig success(ik)g=1; //k=1,2
end if
end if
else if(f(xig) < f(ufy))
Xig+1 = Xigs
else if((f(uiz_g) < (X)) &&(f (Xig) < f(u%g)))
Xig+1 = Ufg success(i,2)g=1;
else
Xige1 = Ufg success(ik)g=1; //k=1,2
end if
end if
end if

end func

Fig. 3 Pseudo-code of selection operator

Step 2.1 New Parameters Generating: Unsuccessful para-
meters are refreshed based on Eq. (15).

Step 2.2 Mating: One of the P best individuals and other
three independent individuals, xlfm’ ¢r Xr0.g # X1,y F
X2, ¢~ are picked out. X0, ¢ 18 from the union of current pop-
ulation plus historical pool and xlfest, ¢ is one out of from
current population, P = 5 in this paper.

Step 2.3 Call Function RSM-Trial(): To produce two trail
vectors by two strategies respectively.

Step 2.4 Call Function Selection(): To select successful
trail vectors and parameters into the next generation.

Step 2.5 Renew Historical Pool: If the historical pool is
not full then the eliminated individuals are pushed into the
pool, otherwise the worst one in the pool is replaced when
the eliminated on is better.

Step 2.6 Summarize the Statistical Result of Successful
Trail Vectors: To evaluate the arithmetical mean value of
each parameter by Eq. (16).

Step 3 Stopping criteria When stopping criterion is sat-
isfied, the algorithm stops here and outputs corresponding
results. Otherwise, goes to Step 2.

Memetic Comp. (2016) 8:223-233

229

4.5 RSM-DE-ELM

Given a set of training data, a set of testing data, a can-
didate range for L hidden layers and an objective function
g(-), RSM-DE-ELM algorithm is summarized as following
Fig. 4. RSM_DE_ELM (-) represents a procedure to opti-
mize ELM based on the RSM-DE algorithm. It returns the
optimum of the net. [L1, L»]is the candidate range and Train,
Test denote training set, testing set respectively.

S Experimental results

In this section, being compared with other representative
differential evolution approaches, the DE-like part of the

function Optimal_Layer()

input: [Ly, L,],Train, Test

output: Optimum of Ly, Fitnessin

m,; = RSM_DE_ELM(Train, Test, L,) ;

m, = RSM_DE_ELM(Train, Test, L,) ;

while(L1!=round((L1+L2)/2+0.1) or L1!=round((L1+L2)/2-0.1))
m; = RSM_DE_ELM(Train, Test, round((L, + L;)/2));

if(m1>m2)

swap(my, my), swap(Ly, Ly);

endif

m, = ms; L, = round((L; + L,)/2);

if(m1>m?2)

swap(my, m,); swap(Ly, Ly);

endif

endwhile

Lpest = Ly; Fitness;, = my;

End func

Fig. 4 Pseudo-code of RSM-DE-ELM

proposed algorithm is first tested by several single objec-
tive benchmark, which are picked out from different test
categories, in order to examine the capacity for explor-
ing optimum. Furthermore, regarding performance of the
new E-ELM method in machine learning area, the integrate
algorithm is also utilized to the application for electricity
price prediction. The experimental results are also compared
against other state-of-the-art algorithms.

5.1 Performance on single objective benchmark

At the beginning of this section, six representative single
objective benchmark listed in Table 2 are applied to testify
the performance of RSM-DE algorithm. The indices of the
benchmark are kept as same as [21] for convenient com-
paring. Function f>, f4 are continuous unimodal functions,
f7 is noisy quartic function, f3, fo, fi2 are multimodal and
the number of their local minima increase exponentially with
the dimensionality of the problem. The main control parame-
ters are set as: the population size is 100 when the decision
space is 30 dimensions. JADE is one self-adaptive algorithm
of state-of-the-art. In [21], JADE has shown better perfor-
mances on many benchmark than SaDE [20], jDE [22] as
well as PSO [28]. So this paper chooses JADE as one main
reference to measure the new algorithm. Experimental results
including RSM-DE, JADE [21], DE/rand/1 [19] are sum-
marized in Table 3, simultaneously, Fig. 5 shows a group
of convergence semi-log graphs for 30-dimensional prob-
lems with median values after 50 independent runs. Form
these converging curves, it is easy to find the RSM-DE algo-
rithm owning a very good performance in 30-dimensional
space. Especially, the new algorithm is very successful on
benchmark f4, which shows clearly the approximation model
works well both with the better rate of convergence and the
more robust reliability. Even facing many local minima

Table 2 Six single objective

benchmark Objectives

Variable bounds

D
H@) =32 il + Hl |

fa(x) = mlax{lxil}

fr(x) = Zil i -x? +rand [0, 1)

D
fa(x) = > —x; -sin/[x;[+ D - 418.98288727243369

i=1

fo(x) =32, x2 =10 cos(2mx;) + 10

[—10, 10]?
[—100, 100]P
[—1.28,1.28]°
[—500, 5001°

[—5.12,5.12]P

Z10-sin?(ry) + 320 i = D2 - [1 410 - sin? (yi41)]
fiz() =+ (p — D+ 22 u(xi 10,100, 4),

yi=1l+i@+1),
k- (xj —a)™,
u(xi,a,k, m) =10,

[—50, 501P

Xi >a
—a=<x;i=<a

k-(—xi —a)" xi <—a

@ Springer

230

Memetic Comp. (2016) 8:223-233

Table 3 Summary of QLD RRP from June 2006 to May 2007

(AUD/MWH)

Winter Spring Summer Autumn
Mean 26.5 22.01 43.99 61.18
Std. 75.91 13.93 229.76 56.69
Minimum 9.50 7.67 5.28 13.07
Median 19.00 18.77 22.68 53.34

Winter (Jun.—Aug.), Spring (Sep.—Nov.), Summer (Dec.—Feb.), Autumn

(Mar.—May)

1070

10°

1070

value

10%°

10

1040

10"

10° |

107

value

102

1078

10

10°

o ran/DE/1
+JADE
* RSM-DE

value

0 200 400 600 800 1000 1200 1400 1600 1800 2000
generations

£,(D = 30,NP = 100)

existed in the benchmark f3, fo, f12, the RSM-DE still can
accelerate the optimization procedure with promising results
although its mutation operator is equipped with a greedy
strategy. The results display if the diversity of population
is being kept properly during the whole population evolv-
ing, the rational method will play a positive role rather than
become a crucial problem.

1 050

o ran/DE/1
+JADE
107 Peqsepoccccocssccscosasccscsssccccssed + RSM-DE

10°%°

10-100

10-150

1 0-200

1 0-250

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
generations
fa(D =30,NP = 100)

; 10°
oran/DE/ oran/DE/1
+JADE +JADE
+ RSM-DE +RSM-DE
10°
S
= 10°
>
10710
ey
ieess
. 10‘15
0 500 1000 1500 2000 ~ 2500 3000 0 500 1000 1500 2000 2500 3000 3500
generations generations
f7(D =30,NP =100) fs(D =30,NP =100)
1010
o ran/DE/ o ran/DE/1
+ JADE + JADE
+ RSM-DE + RSM-DE
10°
1070
(]
3
®©
>
10-20
10-30
1040 ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 7000 1500

generations
fo(D =30,NP =100)

generations

f12(D = 30,NP = 100)

Fig. 5 Comparison of convergence curves between rand/DE/1, JADE, RSM_DE on six representative benchmark

@ Springer

Memetic Comp. (2016) 8:223-233 231
::I?Cl;;arski’;?gl ‘;?;‘:féggﬁ}im Func Gen RSM-DE JADE DE/rand/1
runs Mean (std dev) Mean (std dev) Mean (std dev)
i 2000 9.7E-40 1.8E-25 1.6E-14
(2.5E-31) (8.8E-25) (1.1E-09)
fa 5000 3.7E-227 4.3E-66 4.2E-01
(0.0E+00) (1.2E-65) (1.1E+00)
fa 3000 5.2E-04 6.4E-04 5.9E+03
(5.1E-04) (2.5E-04) (1.1E+03)
I3 1000 1.2E-11 3.3E-05 5.7E+01
(6.8E-08) (2.3E-05) (7.6E+01)
9000 0.0E+00 0.0E+00 5.7E+01
(0.0E+00) (0.0E+00) (7.6E+01)
fo 1000 7.1E-12 1.0E-04 1.8E+02
(6.8E-10) (6.0E-05) (1.3E+01)
5000 0.0E+00 0.0E+00 7.1E+01
(0.0E+00) (0.0E+00) (2.1E+01)
fi2 500 1.8E-17 4.6E-17 1.2E-02
(3.8E-16) (1.9E-16) (1.0E-02)
1500 1.5E-46 1.6E-32 1.1E-14
(2.1E-47) (5.5E-48) (1.0E-14)

5.2 RSM-DE-ELM for market price prediction

In this section, several sequential data series extracted from
the Australian Energy Market Operator (AEMO) website
[29] are used to test the performance of our new method.
For a convenient comparison, the first dataset in our case
study is a whole year’s RRPs from QLD market just as [1]. It
includes total of 17520 observations and the period crosses
over 01 June, 2006 to 31 May, 2007. Without loss generality,
the dataset can be divided into four seasons in Australia and
the main features are summarized as Table 4.
e The dataset format is constructed as follows,

1. All observation points in every two weeks are defined
as input attributes and their targets are those observation
data from the following day, that is to say the data in the
last day of each fifteen days is the target set and each day
includes 48 even observation points.

2. In each season, the data archive from the last seven suc-
cessive days is used as the testing dataset. In order to
compare efficiently, four other representative methods,
BPNN, RBFNN, ELM and SaE-ELM are collected here
to compare with the proposed approach via three differ-
ent criteria, i.e., MAE, MAPE, and RMSE, respectively,
which are listed in Eq. (17).

MAE = 3 37 Iyi — ti
MAPE =} 300 il 100 % 17)

RMSE = \/% S i —1)?

e Parameter setting for RSM-DE-ELM:
The population size NP = 100 and maximum generation
is 60. Since the iteration number of RSM-DE is not high,
so the mean values of the parameters are initialized as,
Stepm.1 = 1.1, Fy1 = 0.7, CR,’; 1 =075, (k=1,2).
The candidate range [L{, Ly] of hidden layers L is set to
[10,150].

e Results analysis:

Table 5 shows the comparisons between the new approach
and four existing methods [1,18]. All these results are the
mean values collected by multiple trails which include 50
independent forecasts of each season model. From Table 5
the new algorithm wins most of the lowest testing crite-
ria in four season dataset among all these five approaches.
For testing in Spring and Autumn, the performances have
been improved dramatically. For example, the testing MAE
of Spring using RSM-DE-ELM is 1.9443, while the other
four methods, the testing MAEs of this season dataset are all
greater than 2.2000.

In Fig. 6., the prediction results is given out, which is run
by RSM-DE-ELM on first half of 7#48 observation points
belonging to the testing dataset. The error curve shows the
new algorithm can forecast with low and stable error rate in
most points.

In terms of the training time, due to our approach falls into
E- ELM category, the training procedure practically consists
of several sub-trainings of basic ELM, thus it takes longer

@ Springer

232

Memetic Comp. (2016) 8:223-233

Table S Comparison of five methods on RRP Forecast

Season Method MAE MAPE (%) RMSE
Training
BPNN 1.1566 5.1936 1.5225
Winter RBFNN 0.8345 3.8910 1.1430
ELM 0.9458 4.3466 1.3544
SaE-ELM 0.8843 3.4782 1.1768
RSM-DE-ELM 0.80145 2.9366 1.1698
Spring BPNN 1.3195 6.2802 1.7272
RBFNN 1.0048 4.7648 1.3311
ELM 1.2548 5.9897 1.6882
SaE-ELM 1.2078 4.7655 1.5431
RSM-DE-ELM 1.1896 4.6761 1.35257
Summer BPNN 4.4040 15.3203 6.0542
RBFNN 3.1721 11.4565 4.3307
ELM 3.7803 12.3331 5.5882
SaE-ELM 3.4862 9.01324 5.2344
RSM-DE-ELM 3.2582 7.4954 4.4953
Autumn BPNN 5.3081 9.6121 6.7923
RBFNN 3.9860 7.6349 5.1718
ELM 5.5116 10.0494 6.8658
SaE-ELM 5.3983 8.7654 6.0065
RSM-DE-ELM 5.1377 7.43097 5.7401
Testing
BPNN 2.3611 9.9423 3.3470
Winter RBFNN 2.1046 8.5440 3.0537
ELM 2.0278 8.3372 2.9371
SaE-ELM 2.2789 7.6353 2.9922
RSM-DE-ELM 2.0365 6.0780 2.9835
Spring BPNN 2.2337 9.9291 3.1190
RBFNN 2.6382 11.5712 3.6026
ELM 2.3021 10.2642 3.1781
SaE-ELM 2.2033 9.8776 3.0332
RSM-DE-ELM 1.9443 9.1967 3.0549
Summer BPNN 10.9983 24.4636 17.2313
RBFNN 10.8783 227230 17.7526
ELM 10.1656 21.8798 16.5881
SaE-ELM 10.1966 21.472 16.3685
RSM-DE-ELM 10.1797 21.1376 16.2054
Autumn BPNN 7.8198 13.7900 10.7256
RBFNN 7.9618 13.5447 11.4401
ELM 7.3193 12.7363 10.3818
SaE-ELM 7.3102 12.3147 10.3489
RSM-DE-ELM 7.0116 11.9539 10.2671

time in training than one single basic ELM. However, the
proposed approach is definitely faster than SaDE-ELM [18]
because only two basic DE strategies are included rather than
four in SaDE-ELM. Secondly, rational DE model provides

@ Springer

Spring
c 100 —e— Actual Data
; —e— Forecast
: l |
<
:D) 50 « [? $
Z JJ
Z ¥
s 3
o 0 H

0 20 40 60 80 100 120 140 160 180
3.5*48 Observation Points

40
g 20 Jl
5
= 0 A /\/\A AL AL V/(J\ A A A4
w v AR v V %% \[¥
-20

0 20 40 60 80 100 120 140 160 180
3.5*48 Observation Points

Fig. 6 Average RRP of forecast by RSM-DE-ELM in spring

our method fast convergence in addition to promising exper-
imental results, e.g., RSM-DE-ELM can get better results
within 60 generations whilst SaDE-ELM need 100 more
generations to reach the same magnitude. What’s more, our
approach is no longer running on the way mentioned in the
previous literature [17,18] in which the number of hidden
layers is often gradually increased and the one with the best
generalization performance is adopted in final. In our pro-
posed approach, the binary search frame helps the algorithm
not only find the optimum at last, but also keep in less time
complexity.

6 Conclusion

In this paper, a self-adaptive DE-like frame embedded with
a rational approximation operator is proposed intending to
optimize E-ELLM with faster speed and better solution. Based
on the benchmark experimental results, it can be seen that the
reliability of rational means become a less crucial problem
in optimization, i.e., they are no more the patent of local
optimum or premature convergence, on the contrary, their
fast convergence becomes more attractive as long as a well-
design scheme is provided. Furthermore, supported by the
new rational approach, E-ELM has obtained better results
than many state-of-art ones in the practical application of
electricity price predication. Overall, the experimental results
have illustrated that mathematical auxiliary guiding during
evolving optima may create better performances for E-ELM
than stochastic strategies did.

Acknowledgements This work is supported in part by the Aus-
tralian Research Council (ARC) through a Linkage Project (Grant No.
120100302), in part by the University of Newcastle through a Faculty
Strategic Pilot Grant, in part by the Research Foundation of Educa-
tion Bureau of Hunan Province, China (Grant No. 14A136) and in part

Memetic Comp. (2016) 8:223-233

233

by General Financial Grant 2015M572796 from the China Postdoc-
toral Science Foundation. The authors would like to thank Prof. Qingfu
Zhang(UK & Hongkong) for his fruitful discussions and patient tutor-
ing when I was in UK. Thank Dr. Jinggiao Zhang for providing the
source code of JADE. Meanwhile, the authors wish to express gratitude
to anonymous reviewers for their constructive comments.

References

Chen X, Dong ZY, Meng K, Xu Y, Wong KP, Ngan HW (2012)
Electricity price forecasting with extreme learning machine and
bootstrapping. IEEE Trans Power Syst 27(4):2055-2062

Xu 'Y, Dong ZY, Xu Z, Meng K, Wong KP (2012) An intelligent
dynamic security assessment framework for power systems with
wind power. IEEE Trans Ind Inf 8(4):995-1003

Meng K, Dong ZY, Wong KP (2009) Self-adaptive RBF neural
network for short-term electricity price forecasting. IET Gen Trans
Dist 3(4):325-335

Wan C, Xu Z, Pinson P, Dong ZY, Wong KP (2014) Probabilis-
tic forecasting of wind power generation using extreme learning
machine. IEEE Trans Power Syst 29(3):1033-1044

Amjady N, Keynia F (2009) Day-ahead price forecasting of elec-
tricity markets by mutual information techniques and cascaded
neuroevolutionary algorithm. IEEE Trans Power Syst 24(1):306—
318

Contreras J, Espinola R, Nogales FJ, Conejo AJ (2003) ARIMA
models to predict next-day electricity prices. IEEE Trans Power
Syst 18(3):1014-1020

Conejo AlJ, Plazas MA, Espinola R, Molina AB (2005) Day-
ahead electricity price forecasting using the wavelet transform and
ARIMA models. IEEE Trans Power Syst 20(2):1035-1042
Garcia RC, Contreras J, Akkeren MV, Garcia JBC (2005) A
GARCH forecasting model to predict day-ahead electricity prices.
IEEE Trans Power Syst 20(2):867-874

Li G, Liu CC, Mattson C, Lawarree J (2007) Day-ahead electricity
price forecasting in a grid environment. IEEE Trans Power Syst
22(1):266-274

Bishop CM et al (2006) Pattern recognition and machine learning,
vol 1. Springer, New York

. Goldberg DE, Holland JH (1988) Genetic algorithms and machine

learning. Mach Learn 3(2):95-99
LiM-B, Huang G-B, Saratchandran P, Sundararajan N (2005) Fully
complex extreme learning machine. Neurocomputing 68:306-314

. Huang GB, Chen L, Siew CK (2006) Universal approximation

using incremental constructive feedforward networks with random
hidden nodes. IEEE Trans Neural Netw 17(4):879-892

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Huang GB, Chen L (2007) Convex incremental extreme learning
machine. Neurocomputing 70(16-18):3056-3062

Huang GB, Chen L (2008) Enhanced random search based
incremental extreme learning machine. Neurocomputing 71(16—
18):3460-3468

Cao J, Lin Z, Huang G-B, Liu N (2012) Voting based extreme
learning machine. Inf Sci 185(1):66-77

Zhu Q-Y, Qin AK, Suganthan PN, Huang G-B (2005) Evolutionary
extreme learning machine. Pattern Recognit 38(10):1759-1763
Cao J, Lin Z, Huang G-B (2012) Self-adaptive evolutionary
extreme learning machine. Neural Process Lett 36:285-305

Storn R, Price K (1997) Difterential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Global Optim 11(4):341-359

Abbass HA (2002) The self-adaptive pareto differential evolution
algorithm. In: Evolutionary computation, 2002. CEC’02. Proceed-
ings of the 2002 Congress on, vol. 1, pp 831-836

Zhang J, Sanderson AC (2009) JADE: adaptive differential evo-
lution with optional external archive. Evol Comput IEEE Trans
13(5):945-958

Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-
adapting control parameters in differential evolution: a comparative
study on numerical benchmark problems. Evol Comput IEEE Trans
10(6):646-657

Brest, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-
adapting control parameters in differential evolution: a comparative
study on numerical benchmark problems. IEEE Trans Evol Comput
10(6):646-657

Das S, Suganthan PN (2011) Differential evolution: a survey of the
state-of-the-art. Evol Comput IEEE Trans 15(1):4-31

Subudhi B, Jena D (2008) Differential evolution and Levenberg
Marquardt trained neural network scheme for nonlinear system
identification. Neural Process Lett 27(3):285-296

Montgomery DC (2006) Design and analysis of experiments.
Wiley, Hoboken, NJ

Xiao C, Xue Z, and Yin J (2014) Rational models to improve
performance of differential evolution for MOEA/D. In: Natural
computation (ICNC), 2014 10th International Conference on, pp
335-342

Trelea IC (2003) The particle swarm optimization algorithm:
convergence analysis and parameter selection. Inf Process Lett
85(6):317-325

Australian Energy Market Operator (AEMO), www.aemo.com.au

@ Springer

www.aemo.com.au

	Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast
	Abstract
	1 Introduction
	2 Brief reviews
	2.1 Extreme learning machine (ELM)
	2.2 Basic differential evolution framework
	2.3 SaE-ELM

	3 Approximation model
	3.1 First-order approximation model
	3.2 Direction to optimum

	4 Proposed algorithm
	4.1 Historical pool
	4.2 Self-adaptive parameters
	4.3 Hybrid strategy for trial vector
	4.4 RSM-DE algorithm
	4.5 RSM-DE-ELM

	5 Experimental results
	5.1 Performance on single objective benchmark
	5.2 RSM-DE-ELM for market price prediction

	6 Conclusion
	Acknowledgements
	References

