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Abstract In this paper, a new hybrid algorithm, Hybrid
Symbiosis Organisms Search (HSOS) has been proposed by
combining Symbiosis Organisms Search (SOS) algorithm
with Simple Quadratic Interpolation (SQI). The proposed
algorithm provides more efficient behavior when dealing
with real-world and large scale problems. To verify the
performance of this suggested algorithm, 13 (Thirteen)
well known benchmark functions, CEC2005 and CEC2010
special session on real-parameter optimization are being con-
sidered. The results obtained by the proposed method are
compared with other state-of-the-art algorithms and it was
observed that the suggested approach provides an effective
and efficient solution in regards to the quality of the final
result as well as the convergence rate. Moreover, the effect
of the common controlling parameters of the algorithm, viz.
population size, number of fitness evaluations (number of
generations) of the algorithm are also being investigated by
considering different population sizes and the number of fit-
ness evaluations (number of generations). Finally, themethod
endorsed in this paper has been applied to two real life prob-
lems and it was inferred that the output of the proposed
algorithm is satisfactory.
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1 Introduction

One of the greatest challenges faced by researchers in the
field of optimization is to acquire the techniques to solve
a non-linear complex optimization problem. For the prob-
lems that include discontinuity, gradient based algorithms
are not at all suitable and the traditional mathematical pro-
gramming techniques are quite not appropriate enough for
solving various multi-objective optimization problems and
also the problems that involve a large number of constraints
[7]. The nature based optimization algorithms are the best
alternative to deal with these types of optimization prob-
lems. Some of the optimization algorithms that can be found
in the literature are Genetic Algorithm (GA) [5], based on
the Principle of the Darwinian Theory; Particle Swarm Opti-
mization (PSO) [34], based on the principle of Foraging
Behavior of the Swarm of Birds; and Differential Evolution
(DE) [9], based on the Darwinian Theory of Evolution; Sym-
biosis Organisms Search (SOS) algorithm [1], based on the
Interaction Relationship among the organisms in the Ecosys-
tem, Biogeography-Based Optimization (BBO) [8], Artifical
bee colony algorithm [32], Memetic Algorithm [21,33] and
so on. These techniques have a huge number of applica-
tions over a wide range of real world problems, in almost
all branches of Humanities, Science and Technology. Since
heuristic algorithms do not guarantee to find the optimal solu-
tion in a finite amount of time [11], a large number of studies
have been performed to amalgamate meta-heuristics algo-
rithms with other forms of algorithms and it was found that
these hybridmethods are impressive for fixing exclusive opti-
mization problems. For this reason, the hybridmeta-heuristic
methods are currently enjoying an increasing interest in the
optimization community. Some of the hybrid optimization
algorithms available in the literature are found in [4,6,38].
An algorithm is successful, if it depends on its exploration
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and exploitation ability. Global exploration ability indicates
that the optimization algorithm effectively uses the whole
search space, whereas, local exploitation ability indicates
that the optimization algorithm searches for the best solu-
tion near a new solution in which it has already discovered
[15]. SOS is a population based iterative global optimiza-
tion method proposed by Cheng and Prayogo [1] on natural
phenomena of the relationship of organisms in an ecosystem.
This algorithm is executed in three phases. These three phases
are mutualism phase, commensalism phase and parasitism
phase. This algorithm has only common control parameters
viz. Eco size and number of generation (number of fitness
evaluation). However, though SOS has only two common
control parameters, it is quite difficult to set the value of the
parameters when executing the algorithm. On the other hand,
the Simple Quadratic Interpolation (SQI) is used to acceler-
ate the evolution process by producing a new set of solution
vector which lies on a point of minima quadratic curve that
goes through three randomly selected solution vectors [22].
In the present study, we propose a hybrid Symbiosis Organ-
isms Search (HSOS) algorithm, by combining SOS and SQI.
The SQI is used to enhance the algorithm’s exploration abil-
ity, and at the same time, it can expedite the convergence of
the algorithm. The proposed algorithm is tested against a set
of 13 (thirteen) well known benchmark functions, CEC2005
and CEC2010 special session on real-parameter optimiza-
tion. The experimental results are compared extensively with
the other meta-heuristic algorithmswhich are available in the
literature. Also the effect of the common control parameters
viz. population size and number of generations are also been
discussed. For the validity of the proposed algorithm, two
real world problems are solved and the results are compared
with the state-of-the art PSO variants.

The remaining part of this paper, Sects. 2 and 3 review the
basic notions of SOSandSQI respectively. The newproposed
HSOS is presented in Sect. 4. Sections 5, 6 and 7 of the
paper empirically demonstrates the efficiency and accuracy
of the hybrid approach in solving unconstrained optimization
problems and Sect. 8 deals with the application of two real
world problems. Finally, Sect. 9 summarizes the contribution
of the paper in a concise way.

2 Overview of Symbiosis Organism Search
algorithm

Symbiosis Organisms Search (SOS) algorithm is a nature
inspired algorithm, based on the interactive behavior of the
organisms in nature (Ecosystem) [1]. There are different
types of symbiotic relationships that occur in nature. In an
ecosystem, the most common symbiotic relationships are
mutualism, commensalism and parasitism. If both the species
of interaction get benefit from the interaction then the sym-
biosis relationship is called ‘Mutualism’. An example of

mutualism can be represented in the relationship between
Bullhorn Acacia trees and certain species of ants. ‘Commen-
salism’ is an association between two different species where
one species enjoys a benefit and the other is neither signifi-
cantly affected nor benefited. For example, birds build a nest
in a tree. The bird gets to benefit because the tree is giving
shelter to the bird while the tree is neither getting any benefit
nor any harm from the bird. ‘Parasitism’ is a relationship in
which one organism gets benefits and the other organism is
harmed, but not always destroyed. The organism that gets
the benefit is called the parasite. For example, the mosquito
is a parasite, feeding on a human. While feeding the mos-
quito may transfer different types of diseases (e.g. Malaria)
to human because of which a human may or may not die. By
combining these three phases, the SOS algorithm is imple-
mented. A group of organisms in an ecosystem is analogous
to the population in SOS algorithm. Each organism is repre-
sents one candidate solution corresponding to the problem.
Each organism inside the ecosystem is related to an explicit
fitness value that replicates the degree of adaptation to the
specified objective. The implementation of SOS requires
only common controlling parameters like population size and
number of fitness evaluations (generations) for its working.

In the initial ecosystem, a bunch of organisms is gener-
ated randomly within the search area. In SOS, new solution
generation is ruled through imitating the biological interplay
between two organisms in the ecosystem. In the next three
subsections, three phases that resemble the real-world biolog-
ical interaction model viz. mutualism phase, commensalism
phase, and parasitism phase are discussed briefly.

2.1 Mutualism phase

In this phase, an organism Org j is selected randomly from
the ecosystem to interact with the organism Orgi , the ith
member in the ecosystem. Both organisms interact in amutu-
alistic relationship with the intention of expanding common
survival abilities in the ecosystem. The new organismOrgnewi
and Orgnewj in the ecosystem for each of Orgi and Org j is
calculated based on the mutualistic symbiosis between them
by Eqs. (1) and (2).

Orgnewi =Orgi + rand(0, 1) ∗ (Orgbest−MutualVector ∗ BF1)

(1)

Orgnewj =Org j + rand(0, 1) ∗ (Orgbest−MurualVector ∗ BF2)

(2)

Where Orgbest is the best organism in the ecosystem and

MutualVector = Orgi + Orgj
2

(3)

Here, benefits factors (BF1 and BF2) are determined ran-
domly as either 1 or 2. These factors represent the level
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of benefit to each organism, i.e., whether an organism gets
respectively partial or full benefit from the interaction. Equa-
tion (3) shows a vector called “MutualVector” representing
the relationship characteristic between organisms Orgi and
Org j .

2.2 Commensalism phase

In the commensalism phase, organism Orgi gets benefitted
by organism Org j and organism Orgi increases the ben-
eficial advantage in the ecosystem to the higher degree of
adaption. The new organism Orgnewi is calculated by Eq. (4)
and updated in the ecosystem by only if its new fitness is
better than its pre-interaction fitness.

Orgnewi = Orgi + rand(0, 1) ∗ (Orgbest − Org j ) (4)

Here Orgbest is the best organism in the ecosystem.

2.3 Parasitism phase

In this phase, an artificial parasite called “Parasite_Vector”
is created by duplicating organism Orgi within the search
space. Then modifying the randomly selected dimensions by
using random quantity of the organism Orgi . Another organ-
ism Org j is considered randomly from the ecosystem which
serves as a host to the parasite vector (Parasite_Vector). If the
Parasite_Vector has a better fitness value, it will kill organism
Org j and assumes its position in the ecosystem. If the fitness
value of Org j is better, Org j will have immunity from the
parasite and the Parasite_Vector will no longer be able to live
in that ecosystem.

The algorithm steps of SOS are as follows:

Step 1: Initialize the organisms randomly and evaluate
the fitness value of each initialized organism.
Step 2: Update each organism bymutualism phase which
is represented by Eqs. (1) and (2).
Step 3: Update the new organisms by commensalism
phase using Eq. (4).
Step 4: Calculate the new organisms and update them by
parasitism phase as given in Sect. 2.3.
Step 5: If the stopping criterion is not satisfied, go to Step
2, else return with the best fitness value of the organism
as the solution.

3 The Simple Quadratic Interpolation Method

The Simple Quadratic Interpolation (SQI) operator is used
to obtain a set of the new organism after all the step of the
SOS algorithm is completed at the present iteration. The new
organism is placed in the ecosystem if the fitness value of the
new organism is better than that of the corresponding organ-
ism in the ecosystem.Mathematically SQI can be formulated
as follows:

Consider the two organisms Org j and Orgk ( j �= k)
where Org j = (org j,1, org j,2, org j,3, ............, org j,D)

and Orgk = (orgk,1, orgk,2, orgk,3, .........., orgk,D) from
the ecosystem. Then the organism Orgi is updated according
to the three point’s quadratic interpolation. The mth dimen-
sion of the new organism OrgNew

i,m is calculated following
Eq. (5)

OrgNew
i,m = 0.5

((Orgi,m)2 − (Org j,m)2) fk + ((Org j,m)2 − (Orgk,m)2) fi + ((Orgk,m)2 − (Orgi,m)2) f j
(Orgi,m − Org j,m) fk + (Org j.m − Orgk,m) fi + (Orgk,m − Orgi,m) f j

(5)

Where m = 1, 2, 3. . .D; fi, fj and fk are the fitness value of
ith, jth and kth organisms respectively. The SQI is intended
to enhance the entire search capability of the algorithm.

4 The proposed approach

The exploration and exploitation capability play a major role
in the development of an algorithm [12]. In Sect. 3, it has been
observed that the SQI method may be used for the better
exploration of the search space. On the other hand, Cheng
and Prayoga [1], has discussed the better exploitation ability
of SOS for global optimization. Also, the SQI is used to
accelerate the evolution process by producing a new point
which lies at the minima point of the quadratic curve that
goes through the three selected points [22]. In the proposed
HSOS method, the exploration capability of SQI and the
exploitation potential of SOS have been combined in order
to increase the robustness of the algorithm. This combination
can improve the searching capability of the algorithm for
attaining the global optimum. The proposed HSOS approach
is described below: Firstly, the organism is updated by three
phases of SOS algorithm and then updated by three points
SQI. If an organism violates any boundary condition, the
violating organism is reflected back following the rule as
given in Eq. (6) [4].

Orgi=
{
UBi + rand(0, 1) ∗ (UBi − lBi) if Orgi < LBi

UBi − rand(0, 1) ∗ (UBi − LBi) if Orgi > UBi

(6)
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Fig.1. Convergence graph of 9 benchmark func�on compare to basic SOS algorithm

Input: 
Eco-Size: The number of Organism in the ecosystem;
D: Dimension of the problem;
MAX_FES: Set the maximum function evaluations number;
Initialization:
(1) Set the initial generation number G=0;
(2) Generate a group of Organisms randomly to the search space;
(3) Evaluate the fitness function values of each organism;
(4) FE= Eco-Size; % Count the number of fitness evaluations %;
% Main loop %
(5) While FE<MAX_FES
(6) Identify the best Organism according to their fitness function value;
(7) For i=1: Eco-Size
(8) % Mutualism Phase %
(9) Randomly select one Organism (i ≠ j);
(10) Determine mutual relationship vector (Mutual_Vector) of and by Eqn. (3)
(11) Update Organism and based on their mutual relationship according to Eqn. (1) and (2);
(12) Calculate fitness value of the new Organisms;
(13) FE = FE +2;
(14) % Commensalism Phase %
(15) Randomly select one Organism (i ≠ j);
(16) Update Organism with the succour of Organism  according to Eqn. (4);
(17) Calculate fitness value of the new Organism;
(18) FE = FE +1;
(19) % Parasitism Phase %
(20) Randomly select one Organism (i ≠ j);

(21) Create a Parasite (Parasite_Vector) from Organism  
(22) Calculate fitness value of the new Organism;
(23) FE = FE +1;
(24) End
(25) For i=1: Eco-Size
(26) Select two Organisms randomly and (i ≠ j ≠ k);
(27) Determine the minimal point of each dimension of according to Eqn. (5);
(28) Update the Organism ;
(29) Calculate the fitness value of the new Organism;
(30) FE = FE + 1;
(31) End
(32) End
Output: The best Organism with the minimum fitness function value in the ecosystem(for minimization problem); 

(a)

Fig. 1 a Pseudo code of the proposed HSOS method. b Flowchart of the proposed HSOS method

where LBi and UBi are respectively the lower and upper
bounds of the ith organism.

The Pseudocode and flowchart of the HSOS algorithm for
solving benchmark functions are shown in Fig.1a, b. Also,
the algorithm steps can be summarized in the following way:

Step 1: Randomly initialize the ecosystem organisms and
evaluate the fitness of each organism.
Step 2: Main loop
Step 2.1: Calculate the new organisms and update by
mutualism phase using Eqs. (1) and (2) and repair the
infeasible organisms of the ecosystem to be feasible using
Eq. (6).
Step 2.2: Calculate the new organisms and update by
commensalism phase using Eq. (4) and repair the infea-

sible organisms of the ecosystem to be feasible using
Eq. (6).
Step 2.3: Calculate the new organisms and update by
parasitism phase.
Step 2.4: Update organisms by SQI method using Eq. (5)
and repair the infeasible organisms of the ecosystem to
be feasible using Eq. (6).
Step 3: If the stopping criterion is not satisfied to go to
Step 2 and proceed until the best fitness value is obtained.

5 Experimental studies and discussion

To validate the proposedmethod, thirteenwell known bench-
mark functions [10], CEC2005 [13] and CEC2010 [23]
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(b)

Fig. 1 continued

special session on benchmark functions are being considered.
Details of the thirteen well known benchmark functions are
given in Table 1. The algorithm is coded in MATLAB7.10.0
(R2010a). In each table, the boldface represents the best
result found after a certain number of function evaluation.

5.1 Comparison with basic SOS

Table 2 shows the comparison of results in terms of absolute
value of the error of the functions with the basic SOS algo-
rithm for 13 benchmark functions which are given in Table 1.
The experimental results of absolute error of 13 benchmark
functions are presented in Table 2 after reaching 200,000
fitness evaluations for dimension (D) = 30. The algorithm
runs 25 times taking Eco-size = 50. The mean and standard

deviation of the fitness evaluation before reaching the VTR
(value to reach) and success full run (SR) are also presented
in Table 2, where the value of VTR is taken as 1e−08. From
Table 2, it has been observed that the proposed HSOS per-
formbetter in all the functions exceptTF5.Also, the proposed
method obtained the optimal result of seven functions (TF1,
TF2, TF3, TF4, TF6, TF9, TF11). From Table 2, it has been
seen that the proposed method requires the minimum num-
ber of the function (fitness) evaluation to reach the VTR.
Figure 2 represents the convergence graph of nine bench-
mark functions. Figure 2a, b, c and d (for functions F1–F4)
demonstrates that the convergence curves tend to reach to its
global optima linearly with the change in number of func-
tion evaluations and also convergence graphs reach its global
optima drop by drop with the change in number of function
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Table 1 Benchmarks function to be used for checking the validity of the proposed method

Sl.No. Function Formulation of the problem Dimension Search space fmin

TF1 Sphere f (x) =
D∑
i=1

x2i 30 [−100, 100] 0

TF2 Schwefel2.22 f (x) =
D∑
i=1

|xi | +
D∏
i=1

|xi | 30 [−10, 10] 0

TF3 Schwefel1.2 f (x) =
D∑
i=1

i∑
j=1

x2i 30 [−100, 100] 0

TF4 Schwefel2.21 f (x) = max {|xi | , 1 ≤ i ≤ D} 30 [−100, 100] 0

TF5 Rosenbrock f (x) =
D∑
i=1

[100(xi+1 − x2i )
2 + (xi − 1)2] 30 [−30, 30] 0

TF6 Step f (x) =
D∑
i=1

(xi + 0.5)2 30 [−100, 100] 0

TF7 Quartic f (x) =
D∑
i=1

i x4i + random(0, 1) 30 [−1.28, 1.28] 0

TF8 Schwefel f (x) = 418.9828872724338∗D −
∑

xi sin(
√|xi |) 30 [−500, 500] 0

TF9 Rastrigin f (x) = 10D +
D∑
i=1

[x2i − 10 cos(2πxi )] 30 [−5.12, 5.12] 0

TF10 Ackley f (x) = 20 + e − 20e
1
D

(√
1
D

∑D
i=1 x

2
i

)
− e

1
D (

∑
cos(2πxi )) 30 [−32, 32] 0

TF11 Griewank f (x) =
D∑
i=1

x2i
4000

−
D∏
i=1

cos

(
xi√
i

)
− 1 30 [−600, 600] 0

TF12 Penalized1

f (x) = π

D

⎧⎪⎪⎨
⎪⎪⎩
10 sin2(πyi ) +

D−1∑
i=1

(yi − 1)2[1 + 10 sin2(3πyi+1)

+(yD − 1)2]

⎫⎪⎪⎬
⎪⎪⎭

+
D∑
i=1

u(xi , 10, 100, 4)

30 [−50, 50] 0

Where yi = 1 + 1

4
(xi + 1),

u(xi , a, k,m) =
⎧⎨
⎩
k(xi − a)m

0
k(−xi − a)m

xi > a
−a < xi < a
xi < a

TF13 Penalized2

f (x) = 0.1

⎧⎪⎪⎨
⎪⎪⎩
10 sin2(πxi ) +

D−1∑
i=1

(xi − 1)2[1 + 10 sin2(3πxi+1)

+(xD − 1)2[1 + sin2(2πxD)]]

⎫⎪⎪⎬
⎪⎪⎭

+
D∑
i=1

u(xi , 5, 100, 4)

30 [−50, 50] 0

evaluation for functions F5, F7, F8, F12, and F13 (Fig. 2e-i).
So, it can be concluded that HSOS converge faster than basic
SOS.

5.2 Effect of eco-size i.e. population size and number
of variable (dimension)

To identify the effect of population size (Eco-size) on 13
benchmark functions, given inTable 1, the algorithm is exper-

imented with different population sizes (Eco-size) viz. 50,
100 and 200. The dimension (D) is considered as 50 and
100. The fitness evaluations are considered as 200000 on the
dimension of 50 and 300000 on the dimension of 100 respec-
tively. The comparative results of each benchmark function
for each strategy (Eco-size) are represented in Tables 3 and
4, over 25 independent runs on each benchmark function
with each strategy. The boldface values indicate the global
optimum value among the strategy of that function.
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Table 2 Statistical results of absolute error function value after reaching 200,000 fitness evaluations of 13 benchmark functions for D = 30 over
25 runs (Eco-size = 50)

Function SOS HSOS SOS HSOS SOS HSOS
Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev SR SR

TF1 1.05E−279 ± 0.00E+00 0.00E+00 ± 0.00E+00 9258 ± 196 8160 ± 162.66 100 100

TF2 1.99E−142 ± 6.81E−142 0.00E+00 ± 0.00E+00 14562 ± 252 13270 ± 231.84 100 100

TF3 3.20E−279 ± 0.00E+00 0.00E+00 ± 0.00E+00 10090 ± 216 8810 ± 264.97 100 100

TF4 2.57E−113 ± 6.66E−113 0.00E+00 ± 0.00E+00 18010 ± 283 13090 ± 4954.31 100 100

TF5 2.12E+01 ± 1.32E+00 2.16E+01 ± 4.79E−01 NA NA 0 0

TF6 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 3394 ± 187 2960 ± 159.43 100 100

TF7 2.61E−04 ± 1.08E−04 1.71E−04 ± 8.18E−05 NA NA 0 0

TF8 9.71E+02 ± 3.99E+02 1.18E−01 ± 1.84E−01 NA NA 0 0

TF9 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 15562 ± 1621 14810 ± 1624.17 100 100

TF10 3.73E−15 ± 1.45E−15 2.19E−15 ± 1.74E−15 14058 ± 255 12680 ± 192.57 100 100

TF11 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 9602 ± 247 8620 ± 470.59 100 100

TF12 3.27E−18 ± 1.21E−17 1.57E−32 ± 5.57E−48 32138 ± 3010 27330 ± 2837 100 100

TF13 2.44E−02 ± 5.23E−02 1.46E−03 ± 8.02E−03 94056 ± 82892 38378 ± 35772 64 96

Number of fitness evaluation (NFEs) and SR required to obtain accuracy levels less than VTR of 13 benchmark functions for D = 30 over 25 runs.
(Eco-size = 50)

Table 3 demonstrates the effect of the population size of 13
benchmark functions with dimension D = 50 and 200,000
function evaluations. Similarly, Table 4 shows the statisti-
cal results of 13 benchmark functions for D = 100 with
300,000 function evaluations. From Table 3, it is observed
that the strategy with population size 50, the proposed HSOS
method produce the better result than the strategy with popu-
lation size 50 into the SOSmethod except the function F6, F9
and F11. For functions F6, F9, and F11 produce the identical
results and hence there is no effect of population size on these
functions to achieve their respective global optimum values
with the same number of function evaluations either in pro-
posedmethodor SOSmethod. It is also seen that the proposed
method performs well than SOS when population size is 100
and 200. But, one should note that no algorithm can have a
single successful run in any test functionwith population size
100 and 200, which indicates that a high population size may
severely decline the performance of SOS. It is because of the
fact that the number of iteration will significantly decrease
with the increase of the population size. Thus, SOS cannot
find any high-quality solutions, and incomplete convergence
may frequently occur under this condition. That is, if the
number of variables is high, the population size should be
high, and vice versa. The similar case is shown in Table 4.

6 Experimental results of thirteen benchmark
functions (given in Table 1)

Table 5 presents the experimental result of 13 benchmark
functions of dimension (D)= 10 with D*10,000 fitness eval-

uations. The experimental results are then compared with
the state of the art algorithms like DE [9], EPSDE [17], PSO
[34], and CLPSO [18]. From Table 5, it is observed that
HSOS is superior to DE for ten functions, superior to EPSDE
for seven functions, superior to PSO for eleven functions and
superior toCLPSO for ten functions. Table 6 shows the statis-
tical rank of the algorithms obtained by Friedman test for the
mean performance of 13 benchmark function. From Table 6
it can be inferred that overall performance of HSOS on these
benchmark function is significantly better than other com-
pared algorithms.

6.1 Experimental results of CEC2005 benchmark
function

Table 7 shows the comparison result of CEC 2005 special
session on real-parameter optimization benchmark functions
with dimension (D) = 10 which can be divided into four
classes:

(1) Unimodal Functions F1–F5;
(2) Basic Multimodal Functions F6–F12;
(3) Expanded Multimodal Functions F13–F14;
(4) Hybrid Composition Functions F15–F25.

The experimental results are then compared with other evo-
lutionary algorithms like CMA-ES [19], DE/best/2/bin (F
= 0.5, CR = 0.9) [16] and DE/rand/1/bin (F = 0.5, CR
= 0.9) [9] with 100,000 fitness evaluations over 25 inde-
pendent runs. Table 8 displays the statistical rank of all the
algorithms obtained by Friedman rank test for the mean per-
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Fig. 2 Converges graph of nine
benchmark function of
dimension 30 with 200,000
function evaluation: a F1, b F2,
c F3, d F4, e F5, f F7, g F8, h
F12, i F13
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Table 6 Ranks obtained by Friedman test of thirteen benchmark func-
tions (given in Table 1) with dimension 10 of all the algorithms using
their mean performances

Algorithms Mean rank Rank

DE 3.19 3

EPSDE 2.08 2

PSO 4.19 5

CLPSO 3.85 4

HSOS 1.69 1

formance of all the function. The best results obtained by
different algorithms for each function are mentioned in bold
in Table 7. From Table 7, it is perceived that the proposed
HSOS algorithm performs better than other algorithms for
twelve functions with respect to the mean performance of
the algorithms. Also, from Table 8, it is seen that the rank
of proposed method obtained by Friedman rank test is one.
Hence, it can be said that HSOS is significantly better than
others from the statistical points of view.

Also, the proposed HSOS method experiments on twelve
CEC2005 benchmark functions for dimension (D) = 50.
The parameters setting for this experiment were conducted
with 50 eco-size and 500,000 fitness evaluations over 100
runs as same of reference [20]. The experimental results
are compared with seven state-of-the-art PSO variants (FIPS
[26], UPSO [25], CLPSO [18], χPSO [28], BBPSO [29],
DMSPSO [30], and DMeSR-PSO [20]) and five meta-
heuristic algorithms (GA [5], BBO [8], DE [9], PSMBA [31]
and ABC [32]). For each function, the performance results
are compared in terms of median, mean and standard devia-
tion of all the algorithms. Table 9 illustrates the experimental
results of six (F1–F6) CEC 2005 benchmark functions for
dimension 50. In Table 9, results except proposed HSOS are
taken from references [20]. From Table 9, it can be detected
that for function F1, F4 and F6, HSOS performs better than
other algorithms; for function F2 and F3 the best result pro-
vides by the DMeSR-PSO method and for F5, provides the
best result by DE method.

Table 10 provides the performance result of next six (F7–
F12) CEC2005 benchmark functions with respect to the
median, mean, and standard deviation for each function of all
the algorithms. From the table, it can be concluded thatHSOS
performs much better than other algorithms for functions F8,
F9, F10, F11, and F12 in terms of mean performance of all
the algorithms and for function F7, PSMBA performs better
than other algorithms. Table 11 indicates the statistical rank
obtained by Friedman rank test for the mean performance of
all the algorithms. From Table 11,the average rank of HSOS
is minimum, which indicates that the final rank of HSOS is
one. So, it can easily be perceived that HSOS significantly
performs better than other algorithms.
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Table 7 Experimental results of CEC2005 benchmark functions of HSOS compared to other state of the art algorithms over 25 independent runs
with 10 variables, after D*10,000 FES

Function CMA-ES Mean
error ± std dev

DE/best/2/bin (F = 0.5, CR
= 0.9) Mean error ± std
dev

DE/rand/1/bin (F = 0.5, CR
= 0.9) Mean error ± std
dev

HSOS Mean error ± std dev

F1 8.916E−28 ± 3.8105E−028 1.21 E -029 ± 4.19 E -029 0.00E+000 ± 0.00E+000 0.0000E+000 ± 0.0000E+000

F2 5.443E−27 ± 2.7578E−027 2.68 E -029 ± 5.60 E -029 4.04E−030 ± 2.02E−029 8.0779E−030 ± 2.7958E−029

F3 3.1734E−23 ± 1.5991E−023 1.03E−025 ± 5.00 E−026 4.64 E +003 ± 1.40 E +004 3.9566E+004 ± 2.7250E+004

F4 8.1339E+004 ± 2.3737E+005 3.13E−029 ± 6.40E−029 4.55 E -011 ± 1.73 E -010 2.8436E−012 ± 1.3243E−011

F5 2.9453E+03 ± 7.1253E+02 4.07E−012 ± 1.42E−012 2.57E+000 ± 1.57E+000 2.9453E+03 ± 7.1253E+02

F6 1.6684E−24 ± 7.1500E−025 3.19E−001 ± 1.10E+000 2.57E+000 ± 1.57E+000 1.1381E+000 ± 1.8180E+000

F7 1.2670E+003 ± 3.0079E−013 3.22E−001 ± 1.62E−001 1.01E+000 ± 3.96E+000 1.2670E+003 ± 1.0179E−012

F8 2.0000E+001 ± 1.0756E−014 2.03E+001 ± 7.23E−002 2.03E+001 ± 9.05E−002 2.0358E+001 ± 7.4944E−002

F9 1.4032E+002 ± 4.9189E+001 1.04 E +001 ± 5.76E+000 1.48E+000 ± 3.06E+000 3.1474E+000 ± 2.2676E+000

F10 6.7457E+001 ± 8.5240E+001 2.41E+001 ± 7.14E+000 9.17E+000 ± 7.62E++000 1.0629E+001 ± 5.1659E+000

F11 1.9899E+000 ± 1.1916E+000 8.65E+000 ± 7.16E −001 7.58E+000 ± 1.93E+000 1.5285E+000 ± 1.0734E+000

F12 4.7925E+003 ± 8.3993E+003 1.49E+002 ± 3.88E +002 5.63E+002 ± 1.46E+003 1.2501E+002 ± 4.0056E+002

F13 1.1398E+000 ± 6.3978E−001 1.87E+000 ± 3.69E−001 1.12E+000 ± 5.81E−001 9.7589E−001 ± 2.8381E−001

F14 4.9036E+000 ± 1.1515E−001 2.97E+000 ± 2.63E −001 3.24E+000 ± 2.75E−001 2.6853E+000 ± 3.8351E−001

F15 5.1727E+002 ± 2.1931E+002 3.12E+002 ± 1.52E +002 2.68E+002 ± 1.10E+002 1.6579E+002 ± 1.8548E+002

F16 1.7905E+002 ± 1.7735E+002 1.44E+002 ± 2.87E+001 1.09E+002 ± 1.61E+001 1.0347E+002 ± 9.6120E+000

F17 3.9725E+002 ± 3.6446E+002 1.78E+002 ± 6.30E +001 1.11E+002 ± 2.17E+001 1.1124E+002 ± 1.1860E+001

F18 6.4788E+002 ± 2.3794E+002 7.46 E+002 ± 2.25E+002 7.73E+002 ± 1.82E+002 8.1352E+002 ± 1.8185E+002

F19 7.0780E+002 ± 3.7227E+002 8.37 E+002 ± 1.17E+002 8.30E+002 ± 3.29E+001 8.4492E+002 ± 1.3675E+002

F20 7.3679E+002 ± 2.5912E+002 8.15 E+002 ± 1.64E+002 8.14E+002 ± 1.14E+002 9.1162E+002 ± 8.2904E+001

F21 8.5443E+002 ± 2.6814E+002 8.44E+002 ± 3.53E+002 9.58E+002 ± 2.11e+002 6.3899E+002 ± 3.3457E+002

F22 7.6999E+002 ± 2.3247E+001 7.89E+002 ± 1.03E +002 7.54E+002 ± 1.32E+002 7.3337E+002 ± 1.3137E+002

F23 9.5405E+002 ± 2.3201E+002 9.99E+002 ± 1.82E +002 1.08E+003 ± 2.54E+001 8.1871E+002 ± 2.2477E+002

F24 3.5800E+002 ± 2.3528E+002 4.02E+002 ± 5.00E +001 3.74E+002 ± 2.72E+000 2.7200E+002 ± 1.3077E+002

F25 1.7667E+003 ± 1.6456E+001 4.37E+002 ± 1.71E +002 3.75E+002 ± 2.10E+000 1.7580E+003 ± 8.6596E+000

“Mean error” and “std dev” indicate the average and standard deviation of the function error values, respectively. (Eco-size = 50)

Table 8 Ranks obtained by Friedman test of CEC2005 benchmark
functions with dimension 10 using their mean performances

Algorithms Mean rank Rank

CMA-ES 2.94 4

DE/best/2/bin (F = 0.5, CR = 0.9) 2.60 3

DE/rand/1/bin (F = 0.5, CR = 0.9) 2.30 2

HSOS 2.16 1

6.2 Experimental result of Ten well known and
Fourteen CEC2005 benchmark function

In this experiment, 24 benchmark functions are considered
from the literature and the details of these functions are
given in reference [24]. For the comparison of the result,
the parameter setting is taken as same as in reference [24].
The experimental results are presented in Table 12 and the
results are compared with state of the art DE variants like
DE/rand/1/bin (F = 0.5, CR = 0.9) [9], ODE [14], OXDE

[24]. In Table 12, results except HSOS are taken from [24]
and the best results are highlighted in boldface. It is seen
that in Table 12, the proposed method performs better for
seventeen functions. The rank obtained by Friedman rank
test for the mean result of the entire problem is presented in
Table 13. According to the statistical rank given in Table 13,
it is inferred that the proposed method significantly performs
better than others methods.

7 Experimental results of CEC2010 benchmark
functions

In this section, the CEC2010 special session on large scale
global optimization problems is considered for the justifica-
tion of the efficiency of the proposedmethod. The parameters
setting for this experiment are considered as eco-size 50,
run times 25 with 120,000 fitness evaluations. The exper-
imental results are presented in Table 14 in terms of best,
worst, mean, median and standard deviation and the results
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Table 9 Performances results
for F1-F6 CEC2005 benchmark
functions for dimension (D) 50
with 500,000 fitness evaluation
over 100 independent runs

Algorithm F1 F2

Median Mean STD. Median Mean STD.

χPSO 5.33E+00 9.66E+00 1.23E+01 2.33E+02 7.77E+02 1.81E+03

BBPSO 0.00E+00 0.00E+00 0.00E+00 2.41E+02 2.89E+02 1.45E+02

DMSPSO 2.35E+02 3.87E+02 3.86E+02 3.31E+02 9.67E+02 1.41E+03

FIPS 1.15E+03 1.67E+03 1.52E+03 2.63E+04 2.57E+04 4.42E+03

UPSO 6.84E+02 7.10E+02 3.29E+02 3.63E+03 4.22E+03 2.89E+03

CLPSO 0.00E+00 0.00E+00 0.00E+00 1.01E+04 1.02E+04 1.36E+03

GA 2.99E+01 5.25E+01 6.51E+01 4.02E+03 3.72E+03 1.61E+03

BBO 3.28E+00 3.25E+00 7.160E−02 4.81E+02 5.24E+02 2.16E+02

ABC 9.689E−04 1.80E−03 2.000E−03 2.98E+04 2.84E+04 6.06E+03

PSMBA 0.00E+00 0.00E+00 0.00E+00 2.270E−02 3.38E−02 2.620E−02

DE 0.00E+00 0.00E+00 0.00E+00 2.100E−02 3.002E−02 3.293E−02

DMeSR-PSO 0.00E+00 0.00E+00 0.00E+00 1.043E−07 8.271E−06 1.267E−05

HSOS 0.00E+00 0.00E+00 0.00E+00 9.00E−06 1.55E−05 2.09E−05

F3 F4

χPSO 1.85E+07 1.99E+07 1.27E+07 2.81E+04 2.76E+04 1.01E+04

BBPSO 3.69E+06 3.71E+06 9.35E+05 3.03E+04 2.97E+04 6.09E+03

DMSPSO 8.84E+06 1.32E+07 1.58E+07 1.31E+04 1.34E+04 3.95E+03

FIPS 5.59E+07 5.87E+07 2.35E+07 3.36E+04 3.42E+04 3.85E+03

UPSO 4.89E+07 5.34E+07 3.74E+07 1.35E+04 1.45E+04 4.46E+03

CLPSO 5.08E+07 4.93E+07 1.16E+07 3.48E+04 3.43E+04 5.64E+03

GA 1.62E+07 1.79E+07 7.44E+06 2.44E+04 2.47E+04 4.38E+03

BBO 1.04E+07 1.14E+07 4.17E+06 1.91E+04 2.00E+04 6.69E+03

ABC 3.23E+07 3.33E+07 1.16E+07 5.24E+04 5.14E+04 1.15E+04

PSMBA 2.16E+06 2.24E+06 9.23E+05 5.02E+04 5.21E+04 1.15E+04

DE 6.93E+05 6.61E+04 2.14E+05 2.97E+02 3.42E+02 2.12E+03

DMeSR-PSO 6.17E+01 6.22E+01 1.69E+01 1.51E+03 1.61E+03 7.14E+02

HSOS 3.72E+05 2.21E+05 2.59E+05 1.19E+02 1.31E+02 1.17E+02

F5 F6

χPSO 1.13E+04 1.12E+04 1.98E+03 3.98E+01 6.37E+06 2.13E+07

BBPSO 1.30E+04 1.26E+04 1.97E+03 4.02E+01 5.83E+01 4.58E+01

DMSPSO 5.31E+03 5.53E+03 1.45E+03 2.23E+06 1.77E+07 4.10E+07

FIPS 1.59E+04 1.59E+04 1.15E+03 6.48E+07 8.02E+07 6.12E+07

UPSO 1.18E+04 1.21E+04 2.30E+03 1.16E+06 2.73E+06 3.67E+06

CLPSO 9.75E+03 9.70E+03 7.90E+02 9.00E+01 8.71E+01 3.76E+01

GA 7.20E+03 6.84E+03 1.84E+03 4.56E+02 4.62E+02 1.51E+02

BBO 6.76E+03 7.09E+03 1.64E+03 1.03E+03 9.93E+02 2.41E+02

ABC 1.36E+04 1.38E+04 1.47E+03 2.07E+02 2.29E+02 1.11E+02

PSMBA 1.35E+04 1.42E+04 3.50E+03 1.92E+01 1.17E+02 3.01E+02

DE 3.06E+03 3.07E+03 4.05E+02 4.09E+01 6.99E+01 6.26E+01

DMeSR-PSO 4.41E+03 4.36E+03 9.18E+02 1.88E+01 2.38E+01 2.08E+01

HSOS 1.50E+04 1.21E+04 1.05E+03 1.29E−02 1.28E+00 3.66E+00

are compared with CLPSO [18], FI-PS [26], UPSO [25], and
CPSO-H [27]. The results are compared in terms of mean
results and it can be observed from Table 14 that the pro-
posed HSOS method performs better than other methods for
fourteen benchmark functions. Also, the statistical rank by

Friedman rank test for themean performance for all the func-
tions is presented in Table 15 and found that the rank of
HSOS is one. So, it can be said that the HSOS method sig-
nificantly performs better for large scale global optimization
problems.
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Table 10 Statistical
performances results for F7–F12
CEC2005 benchmark functions
for D = 50 with 500,000 fitness
evaluation over 100 independent
runs

Algorithm F7 F8

Median Mean STD. Median Mean STD.

χPSO 6.16E+03 6.15E+03 7.42E+01 2.11E+01 2.11E+01 4.368E−02

BBPSO 6.20E+03 6.20E+03 4.55E+00 2.12E+01 2.11E+01 2.978E−02

DMSPSO 6.03E+03 6.05E+03 1.31E+02 2.11E+01 2.11E+01 3.770E−02

FIPS 1.04E+04 1.04E+04 2.12E+02 2.12E+01 2.11E+01 4.304E−02

UPSO 7.42E+03 7.42E+03 3.03E+02 2.09E+01 2.09E+01 5.023E−02

CLPSO 6.20E+03 6.20E+03 4.594E−12 2.11E+01 2.10E+01 4.617E−02

GA 4.75E+03 4.75E+03 1.58E+01 2.09E+01 2.09E+01 8.630E−02

BBO 4.70E+03 4.70E+03 1.13E+00 2.10E+01 2.10E+01 5.190E−02

ABC 4.70E+03 4.70E+03 6.521E−01 2.11E+01 2.10E+01 5.630E−02

PSMBA 1.240E−02 1.910E−02 1.610E−02 2.02E+01 2.03E+01 1.142E−01

DE 6.20E+03 6.20E+03 0.00E+00 2.12E+01 2.12E+01 4.574E−02

DMeSR-PSO 1.829E−02 1.909E−02 1.048E−02 2.11E+01 2.10E+01 4.560E−02

HSOS 6.20E+03 3.20E+03 1.72E−07 2.11E+01 2.01E+01 3.59E−02

F9 F10

χPSO 1.78E+02 1.77E+02 2.50E+01 1.84E+02 1.82E+02 3.69E+01

BBPSO 1.34E+02 1.33E+02 2.13E+01 1.69E+02 1.76E+02 4.10E+01

DMSPSO 1.01E+02 9.89E+01 2.17E+01 1.67E+02 1.66E+02 2.17E+01

FIPS 1.55E+02 1.53E+02 1.79E+01 3.87E+02 3.93E+02 3.63E+01

UPSO 6.33E+01 6.52E+01 1.76E+01 1.45E+02 1.44E+02 4.56E+01

CLPSO 0.00E+00 0.00E+00 0.00E+00 2.18E+02 2.17E+02 2.00E+01

GA 6.130E−02 7.29E−02 4.580E−02 2.51E+02 2.48E+02 3.08E+01

BBO 1.05E+02 1.05E+02 1.66E+01 2.10E+02 2.15E+02 3.61E+01

ABC 4.36E+00 5.53E+00 3.31E+00 3.70E+02 3.66E+02 6.21E+01

PSMBA 2.17E+02 2.11E+02 3.04E+01 4.42E+02 4.52E+02 6.06E+01

DE 3.33E+01 3.27E+01 4.35E+00 1.87E+02 1.86E+02 2.02E+01

DMeSR-PSO 4.78E+01 5.05E+01 1.44E+01 5.44E+01 7.93E+01 4.73E+01

HSOS 3.39E+01 3.48E+01 1.93E+01 1.84E+01 1.26E+01 1.13E+01

F11 F12

χPSO 5.87E+01 5.82E+01 3.43E+00 2.90E+05 3.29E+05 1.92E+05

BBPSO 5.48E+01 5.47E+01 3.82E+00 1.45E+04 1.51E+04 9.27E+03

DMSPSO 5.80E+01 5.77E+01 2.26E+00 1.21E+05 1.66E+05 1.46E+05

FIPS 5.36E+01 5.34E+01 3.79E+00 2.77E+05 2.93E+05 1.49E+05

UPSO 2.91E+01 2.95E+01 4.44E+00 6.05E+04 7.14E+04 4.79E+04

CLPSO 5.26E+01 5.27E+01 2.21E+00 9.00E+04 8.95E+04 2.00E+04

GA 3.43E+01 3.39E+01 2.67E+00 9.66E+05 9.70E+05 7.99E+03

BBO 3.62E+01 3.60E+01 2.21E+00 9.70E+05 9.72E+05 5.93E+03

ABC 3.18E+01 3.19E+01 1.69E+00 9.67E+05 9.67E+05 1.37E+03

PSMBA 4.05E+01 4.05E+01 2.70E+00 9.85E+05 9.89E+05 1.82E+04

DE 5.75E+01 5.73E+01 1.92E+00 1.05E+04 1.28E+04 9.23E+03

DMeSR-PSO 1.31E+01 1.29E+01 2.45E+00 8.10E+03 1.11E+04 9.72E+03

HSOS 1.18E+01 1.02E+01 1.27E+00 8.07E+03 1.01E+03 7.04E+03

7.1 Experimental result of six benchmark functions

In this experiment, six well known benchmark function are
considered and the details of these functions are given in [3].

The experimental results of these six functions are compared
with state of the art PSO variant like GPSO [34], LPSO [35],
VPSO [36], FIPS [26], DWS-PSO [30], CLPSO [18], APSO
[37] and CSPSO [3]. The experimental results are presented
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Table 11 Ranks obtained by Friedman rank test of twelve CEC2005
benchmark function with dimension 50 using their mean performances

Algorithms Mean rank Rank

xPSO 9.12 12

BBPSO 7.08 5

DMSPSO 7.79 10

FIPS 11.46 13

UPSO 7.58 8

CLPSO 7.33 7

GA 6.96 4

BBO 7.17 6

ABC 8.25 11

PSMBA 7.71 9

DE 5.29 3

HSOS 2.50 1

in Table 16 and all the results except HSOS are taken from
reference [3]. In Table 16 the best results are bolded. From
Table 16, it is observed that the HSOS method performs bet-

Table 13 Ranks obtained by Friedman test of 24 benchmark function
of all the algorithms using their mean performances

Algorithm Mean rank Rank

DE 3.06 4

ODE 2.79 3

OXDE 2.23 2

HSOS 1.92 1

ter than other methods for all the optimization problems in
terms of mean solution. The ranks obtained by Friedman test
for the mean result of all the problems are presented in Table
17. From Table 17, it is seen that the rank obtained by Fried-
man test is minimum and the final rank is one. So,it can be
concluded thatHSOS significantly performs better than other
methods.

8 Real world applications

In this section, the formulation of two real world problems
and the experimental results of the problems are discussed.

Table 12 Experimental results obtained by proposed method and others

Function DE/rand/1/bin Mean
error ± std dev

ODE Mean error ± std dev OXDE Mean error ± std dev HSOS Mean error ± std dev

Fsph 6.88E−32 ± 9.01E−32 (100%) 2.53E−58 ± 4.07E−58 (100%) 4.68E− 39 ± 4.10E− 39 (100%) 0.00e+00 ± 0.00e+00 (100 %)

Fros 2.33E+00 ± 1.33E+00 2.88E+01 ± 1.32E+01 1.12E+00 ± 1.06E+00 (2%) 1.32e−01 ± 9.45e−02

Fack 2.66E−15 ± 0.00E+00 (100%) 2.66E−15 ± 0.00E+00 (100%) 2.66E−15 ± 0.00E+00 (100%) 5.33e−16 ± 1.76e−15 (100%)

Fgrw 0.00E+00 ± 0.00E+00 (100%) 0.00E+00 ± 0.00E+00 (100%) 0.00E+00 ± 0.00E+00 (100%) 0.00e+00 ± 0.00e+00 (100%)

Fras 1.27E+02 ± 3.16E+01 3.76E+01 ± 1.82E+01 7.47E+01 ± 1.18E+01 0.00e+00 ± 0.00e+00 (100%)

Fsch 3.31E+01 ± 6.78E+01 1.98E+01 ± 4.25E+01 0.00E+00 ± 0.00E+00 (100%) 1.84e+03 ± 5.96e+02

Fsal 1.89E−01 ± 2.91E−02 1.49E−01 ± 5.02E−02 1.27E−01 ± 4.13E−02 9.99e−02 ± 8.52e−11

Fwht 4.83E+02 ± 5.81E+01 3.75E+02 ± 2.14E+01 3.62E+02 ± 2.07E+00 3.33e+02 ± 1.50e+01

Fpn1 2.13E−32 ± 1.00E−32 (100%) 1.57E−32 ± 5.52E−48 (100%) 1.57E−32 ± 5.52E−48 (100%) 1.57e−32 ± 5.53e−48 (100%)

Fpn2 5.21E−32 ± 5.38E−32 (100%) 1.34E−32 ± 1.10E−47 (100%) 1.34E−32 ± 1.10E−47 (100%) 1.35e−32 ± 1.11e−47 (100%)

F1 1.31E−29 ± 4.87E−29 (100%) 2.31E−28 ± 2.35E−28 (100%) 0.00E+00 ± 0.00E+00 (100%) 0.00e+00 ± 0.00e+00 (100%)

F2 4.06E−05 ± 5.86E−05 1.16E−04 ± 1.67E−04 5.35E−05 ± 7.89E−05 1.15e−07 ± 1.64e−07 (100%)

F3 4.82E+05 ± 2.65E+05 5.61E+05 ± 4.36E+05 4.18E+05 ± 3.06E+05 3.56e+05 ± 3.02e+05

F4 1.69E−02 ± 1.53E−02 5.20E−02 ± 5.29E−02 1.01E−02 ± 9.80E−03 4.65e+02 ± 4.73e+02

F5 1.84E−01 ± 1.69E−01 3.39E+00 ± 6.13E+00 1.80E−02 ± 2.25E−02 1.95e+04 ± 1.90e+03

F6 1.94E+00 ± 1.51E+00 (8%) 5.53E+01 ± 4.98E+01 1.00E+00 ± 1.04E+00 (10%) 1.73e+01 ± 3.95e+01(10%)

F7 3.46E−04 ± 1.84E−03 (98%) 9.74E−03 ± 8.98E−03 (66%) 1.03E−03 ± 3.19E−03 (96%) 4.70e+03 ± 4.77e−10

F8 2.09E+01 ± 5.95E−02 2.10E+01 ± 5.08E−02 2.09E+01 ± 4.94E−02 2.09e+01 ± 5.92e−02

F9 1.28E+02 ± 2.72E+01 5.18E+01 ± 2.06E+01 7.03E+01 ± 1.11E+01 5.98e+01 ± 1.64e+01

F10 1.79E+02 ± 1.17E+01 5.01E+01 ± 4.79E+01 1.72E+02 ± 1.02E+01 4.45e+01 ± 3.74e+01

F11 3.96E+01 ± 1.25E+00 8.55E+00 ± 8.81E+00 3.94E+01 ± 1.16E+00 1.79e+01 ± 4.18e+00

F12 2.31E+03 ± 3.35E+03 2.49E+03 ± 2.21E+03 1.58E+03 ± 2.30E+03 1.18e+03 ± 1.03e+03

F13 1.49E+01 ± 1.26E+00 7.76E+00 ± 2.06E+00 1.15E+01 ± 9.82E−01 7.73e+00 ± 1.34e+00

F14 1.32E+01 ± 1.71E−01 1.32E+01 ± 3.02E−01 1.32E+01 ± 1.70E−01 1.26e+01 ± 2.64e−01

“Mean error” and “std dev” represents the average and standard deviation of the corresponding problems function error value. The success rate is
given in parentheses and the success rates are zero without parentheses
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Table 14 Experimental result
of CEC2010 benchmark
function with Eco-size = 50,
over 25 independent runs at D =
1000 after 120,000 FES

Function Best Median Worst Mean SD

F1 HSOS 7.1960e+08 1.0662e+09 1.8171e+09 1.0683e+09 2.0710e+08

CLPSO 6.7314e+09 7.6066e+09 8.3506e+09 7.6246e+09 3.6380e+08

FI-PSO 3.0787e+10 3.2549e+10 3.4918e+10 3.2768e+10 1.1393e+09

UPSO 3.6537e+08 5.4443e+08 7.8733e+08 5.5425e+08 9.0229e+07

CPSO-H 2.9429e+07 4.2458e+07 6.5232e+07 4.4422e+07 9.2550e+06

F2 HSOS 9.3410e+03 9.9146e+03 1.0396e+04 9.8947e+03 2.6045e+02

CLPSO 1.0285e+04 1.0492e+04 1.0828e+04 1.0523e+04 1.5818e+02

FI-PSO 1.5853e+04 1.6135e+04 1.6409e+04 1.6099e+04 1.5809e+02

UPSO 1.1090e+04 1.2213e+04 1.3270e+04 1.2187e+04 5.2494e+02

CPSO-H 2.8024e+02 3.2001e+02 3.5645e+02 3.2109e+02 1.6806e+01

F3 HSOS 2.0240e+01 2.0124e+01 2.0315e+01 2.0812e+01 6.5356e−02

CLPSO 2.0455e+01 2.0624e+01 2.0741e+01 2.1222e+01 6.9068e−02

FI-PSO 2.1276e+01 2.1340e+01 2.1382e+01 2.1342e+01 2.1684e−02

UPSO 2.0778e+01 2.0891e+01 2.1012e+01 2.0899e+01 6.5009e−02

CPSO-H 3.8253e+01 4.0292e+01 4.1340e+01 4.0023e+01 8.8387e−02

F4 HSOS 4.7536e+12 6.7720e+12 1.1272e+13 7.0622e+12 1.6046e+12

CLPSO 9.3919e+13 2.1868e+14 3.0237e+14 2.1905e+14 5.3105e+13

FI-PSO 1.3785e+14 2.1099e+14 2.6104e+14 2.0284e+14 3.9718e+13

UPSO 1.3235e+13 2.0486e+13 3.3385e+13 2.0806e+13 4.7828e+12

CPSO-H 1.8048e+14 3.8855e+14 5.9795e+14 3.7590e+14 9.4344e+13

F5 HSOS 1.3135e+08 1.7712e+08 2.5273e+08 1.7843e+08 2.8020e+07

CLPSO 3.6202e+08 4.0436e+08 4.6279e+08 4.0936e+08 2.6982e+07

FI-PSO 3.4762e+08 3.9089e+08 4.1381e+08 3.8929e+08 1.4211e+07

UPSO 1.6274e+08 2.0123e+08 2.5605e+08 2.0654e+08 2.7309e+07

CPSO-H 4.1591e+08 6.0103e+08 7.0923e+08 5.8765e+08 7.4030e+07

F6 HSOS 2.3719e+06 3.9728e+06 6.1622e+06 3.9640e+06 8.9658e+05

CLPSO 8.5084e+06 1.1305e+07 1.5351e+07 1.1487e+07 1.8599e+06

FI-PSO 1.1142e+06 1.4874e+06 1.9983e+06 1.5161e+06 2.4177e+05

UPSO 8.9970e+05 1.8031e+06 2.3169e+06 1.6891e+06 4.0768e+05

CPSO-H 1.9908e+07 2.0189e+07 2.0541e+07 2.0204e+07 1.5219e+05

F7 HSOS 6.1427e+07 1.3113e+08 3.7320e+08 1.7490e+08 8.9102e+07

CLPSO 5.3165e+10 7.9416e+10 9.8476e+10 7.9646e+10 1.0484e+10

FI-PSO 3.0145e+10 4.9547e+10 6.7198e+10 4.9529e+10 8.6510e+09

UPSO 3.7487e+09 5.8618e+09 1.2705e+10 6.0438e+09 1.8476e+09

CPSO-H 1.1059e+11 1.5423e+11 2.5644e+11 1.5131e+11 3.2306e+10

F8 HSOS 3.6619e+07 1.2947e+08 5.0175e+08 1.5826e+08 1.0559e+08

CLPSO 1.2153e+10 1.8903e+10 2.7467e+10 1.9577e+10 4.3224e+09

FI-PSO 1.1790e+10 2.2888e+10 4.6261e+10 2.3811e+10 8.1152e+09

UPSO 1.2495e+08 3.2293e+08 1.1194e+09 4.2878e+08 2.4336e+08

CPSO-H 1.6370e+11 2.9262e+11 7.8564e+11 3.1613e+11 1.3520e+11

F9 HSOS 3.2254e+09 4.1123e+09 6.7597e+09 4.3363e+09 9.3114e+08

CLPSO 2.2554e+10 2.4426e+10 2.6857e+10 2.4633e+10 1.0345e+09

FI-PSO 5.8609e+10 6.5739e+10 6.9386e+10 6.5064e+10 2.8217e+09

UPSO 4.9453e+09 6.7008e+09 1.0162e+10 6.9859e+09 1.2782e+09

CPSO-H 3.8241e+09 4.9416e+09 6.0700e+09 4.8567e+09 4.5789e+08

F10 HSOS 1.0057e+04 1.0440e+04 1.1016e+04 1.0496e+04 2.3066e+02

CLPSO 1.3719e+04 1.3917e+04 1.4277e+04 1.3961e+04 1.7894e+02

FI-PSO 1.5729e+04 1.6244e+04 1.6738e+04 1.6274e+04 2.1721e+02
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Table 14 continued
Function Best Median Worst Mean SD

UPSO 1.1929e+04 1.2682e+04 1.4276e+04 1.2736e+04 5.2639e+02

CPSO-H 6.6197e+03 7.4619e+03 8.3505e+03 7.4398e+03 3.2726e+02

F11 HSOS 1.9622e+02 2.0643e+02 2.2570e+02 2.0695e+02 6.9267e+00

CLPSO 2.2936e+02 2.3096e+02 2.3229e+02 2.3095e+02 8.3320e−01

FI-PSO 2.1579e+02 2.1877e+02 2.2163e+02 2.1860e+02 1.5269e+00

UPSO 2.1970e+02 2.2544e+02 2.2818e+02 2.2471e+02 2.1439e+00

CPSO-H 2.0647e+02 2.0750e+02 2.0831e+02 2.0741e+02 4.9346e−01

F12 HSOS 1.3384e+06 1.4545e+06 1.5838e+06 1.4548e+06 5.4826e+04

CLPSO 8.0416e+06 8.3402e+06 8.7574e+06 8.3866e+06 2.4848e+05

FI-PSO 1.4207e+07 1.5447e+07 1.7564e+07 1.5619e+07 8.4169e+05

UPSO 3.2137e+06 3.8554e+06 4.4597e+06 3.8966e+06 3.3100e+05

CPSO-H 1.8982e+06 2.1043e+06 2.4970e+06 2.1498e+06 1.6478e+05

F13 HSOS 1.9725e+09 4.3245e+09 1.8034e+10 5.4453e+09 3.4610e+09

CLPSO 2.4190e+10 2.7651e+10 3.2999e+10 2.7888e+10 2.0057e+09

FI-PSO 1.9992e+11 2.3792e+11 2.5333e+11 2.3626e+11 1.2425e+10

UPSO 3.9612e+08 6.5736e+08 1.0757e+09 7.1966e+08 2.1960e+08

CPSO-H 3.0766e+06 4.2680e+06 4.9780e+06 4.2330e+06 5.2823e+05

F14 HSOS 5.6323e+09 6.4882e+09 8.1104e+09 6.5321e+09 6.5718e+08

CLPSO 3.0553e+10 3.4046e+10 3.7050e+10 3.4382e+10 1.5915e+09

FI-PSO 8.4084e+10 8.9990e+10 9.3639e+10 8.9468e+10 2.5054e+09

UPSO 9.3133e+09 1.1436e+10 1.4825e+10 1.1789e+10 1.2862e+09

CPSO-H 8.1104e+09 9.7715e+09 1.1081e+10 9.7913e+09 6.9648e+08

F15 HSOS 9.3264e+03 9.6856e+03 1.0677e+04 9.7320e+03 2.6177e+02

CLPSO 1.4898e+04 1.5203e+04 1.5529e+04 1.5219e+04 1.8213e+02

FI-PSO 1.6053e+04 1.6362e+04 1.6970e+04 1.6381e+04 2.0371e+02

UPSO 1.1949e+04 1.2813e+04 1.3804e+04 1.2835e+04 4.3133e+02

CPSO-H 1.3430e+04 1.4533e+04 1.5252e+04 1.4474e+04 4.7349e+02

F16 HSOS 4.1247e+02 4.1668e+02 4.1770e+02 4.1608e+02 1.4031e+00

CLPSO 4.2088e+02 4.2235e+02 4.2308e+02 4.2229e+02 4.8425e−01

FI-PSO 4.1501e+02 4.1799e+02 4.2484e+02 4.1806e+02 2.2074e+00

UPSO 4.1107e+02 4.1487e+02 4.1794e+02 4.1496e+02 1.6863e+00

CPSO-H 4.0578e+02 4.0712e+02 4.0829e+02 4.0695e+02 6.3361e−01

F17 HSOS 1.9060e+06 2.1902e+06 2.4049e+06 2.2138e+06 1.1025e+05

CLPSO 1.3634e+07 1.4450e+07 1.5988e+07 1.4486e+07 6.1737e+05

FI-PSO 2.2186e+07 2.4673e+07 2.6885e+07 2.4783e+07 1.1598e+06

UPSO 4.8241e+06 5.6860e+06 6.5860e+06 5.5923e+06 4.2843e+05

CPSO-H 4.1810e+06 4.5886e+06 4.9595e+06 4.5825e+06 2.2290e+05

F18 HSOS 1.0957e+11 1.4542e+11 1.7440e+11 1.4623e+11 1.6391e+10

CLPSO 2.4497e+11 2.6720e+11 2.8805e+11 2.6483e+11 1.1376e+10

FI-PSO 1.3111e+12 1.4388e+12 1.5577e+12 1.4480e+12 5.8777e+10

UPSO 4.5719e+10 6.0251e+10 8.6446e+10 6.0178e+10 9.8204e+09

CPSO-H 7.6290e+06 8.7203e+06 1.2070e+07 8.9528e+06 1.0390e+06

F19 HSOS 4.9067e+06 5.5235e+06 6.7221e+06 5.5596e+06 4.5210e+05

CLPSO 3.1364e+07 3.7306e+07 4.8800e+07 3.7965e+07 4.4678e+06

FI-PSO 8.7527e+07 1.1689e+08 1.8392e+08 1.1880e+08 2.3270e+07

UPSO 1.2606e+07 1.6328e+07 1.9455e+07 1.6229e+07 1.6455e+06

CPSO-H 6.5524e+07 1.5079e+08 3.1333e+08 1.6028e+08 5.5183e+07
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Table 14 continued
Function Best Median Worst Mean SD

F20 HSOS 1.5638e+11 1.9061e+11 2.4197e+11 1.8855e+11 2.0260e+10

CLPSO 2.8236e+11 3.1406e+11 3.5105e+11 3.1303e+11 1.7631e+10

FI-PSO 1.4530e+12 1.5221e+12 1.6686e+12 1.5403e+12 5.3813e+10

UPSO 4.9633e+10 7.7963e+10 1.1431e+11 7.9921e+10 1.5804e+10

CPSO-H 1.6223e+06 2.1053e+06 2.4673e+06 2.1066e+06 2.0110e+05

Boldface indicates better result obtained

Table 15 Ranks obtained by Friedman test of CEC2010 benchmark
functions for the mean result of all the algorithms

Algorithms Mean rank Rank

HSOS 1.70 1

CLPSO 3.90 4

FIPSO 4.20 5

UPSO 2.45 2

CPSOH 2.75 3

8.1 Problem formulation

The performance of the proposed HSOS method over two
real life non-linear optimization problems, namely, the Fre-
quency modulation sounds parameter identification problem
and spread spectrum radar polyphase code design problem
[2]. The formal statement of the problem can be defined as
follows [2]:

RP 1: Frequencymodulation sounds parameter identification
problem

Frequency-Modulated (FM) sound wave synthesis has an
important role in severalmodernmusic systems.Theproblem
FM synthesizer is a six dimensional optimization parameter
problem where the vector to be optimized is X = {a1, ω1,
a2, ω2, a3, ω3} of the sound wave given in Eq. (7). The
problem is to generate a sound as given in Eq. (7) similar
to target sound is given in Eq. (8) and is a highly complex
multimodal one having strong epistasis. The optimum mini-
mum value of this problem is f (X∗) = 0. The expressions
for the estimated sound and the target sound waves are given
as:

y(t) = a1 sin(ω1tθ + a2 sin(ω2tθ + a3 sin(ω3tθ))) (7)

y0(t) = 1.0 × sin(5.0 × tθ + 1.5

× sin(4.8 × tθ + 2.0 sin(4.9 × tθ))) (8)

Table 16 Comparison performance of six functions of HSOS with GPSO [65], LPSO [66], VPSO [67], FIPS [57], DWS-PSO [61], CLPSO [46],
APSO [68] and CSPSO [7]

Algorithms Function Schwefel Rastrigin NCRastrigin Ackley Griewank Penalized

GPSO Mean −10090.16 30.7 15.5 1.31e−014 2.37e−002 1.04e−002

Std. 495 8.68 7.4 2.08e−015 2.57e−002 3.16e−002

LPSO Mean −9628.35 34.90 30.40 8.20e−008 2.10e−002 2.18e−030

Std. 456.54 7.25 9.23 8.73e−008 1.60e−002 5.14e−030

VPSO Mean −9845.27 34.09 21.33 1.4e−014 1.31e−002 3.46e−003

Std. 588.87 8.07 9.46 3.48e−015 1.35e−002 1.89e−002

FIPS Mean −10133.8 29.98 35.97 2.33e−014 9.04-004 1.22e−031

Std. 889.58 10.92 9.49 7.19e−016 2.78e−003 4.85e−032

DWS-PSO Mean 9593.33 28.1 32.8 1. 84-014 1. 31e−002 2. 05e−032

Std. 441 6.42 6.49 4.35e− 015 1.73e−002 8.12e−033

CLPSO Mean −12557.65 2.57e−011 0.167 3.66e−007 6.45e−013 1.59e−021

Std. 36.2 6.64e−011 0.379 7.57e−008 2.07e−012 1.93e−021

APSO Mean −12569.5 5.8e−015 4.14e−016 1.11e−014 1.67e−002 3.76e−031

Std. 5.22e−011 1.01e−014 1.45e−015 3.55e−015 2.41e−002 1.2e−030

CSPSO Mean −12569.5 0 0 2.57e−014 0 1.57e−032

Std. 3.78e−012 0 0 1.77e−015 0 2.73e−048

HSOS Mean −1.43e+103 0.00e+00 0.00e+00 2.13e−15 0.00e+00 1.57e−32

Std. 3.16e+103 0.00e+00 0.00e+00 1.74e−15 0.00e+00 2.81e−48
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Table 17 Ranks obtained by Friedman test of six benchmark function
for the mean result of all the algorithms

Algorithms Mean rank Rank

GPSO 6.00 6

LPSO 6.80 8

VPSO 5.80 5

FIPS 6.40 7

DWSPSO 7.80 9

CLPSO 5.00 4

APSO 3.40 3

CSPSO 2.40 2

HSOS 1.40 1

respectively (where θ = 2π
100 ) and each parameter is defined

in the range [−6.4, 6.35]. Thefitness function is defined as the
summation of the square of the errors between the estimated
wave (Eq. 7) and the target wave (Eq. 8) as follows:

f (
−→
X ) =

100∑
t=0

(y(t) − y0(t))
2 (9)

RP 2: Spread spectrum radar polyphase code design problem

The problem is based on the properties of the aperiodic
auto-correlation function and the assumption of coherent
radar pulse processing in the receiver and this design prob-
lem is widely used in the radar system design and it has no
polynomial time solution. The problem under consideration
is modelled as a min–max nonlinear non-convex optimiza-
tion problem with continuous variables and with numerous
local optima. It can be expressed as follows:

Global min f (X) = max {φ1(X), φ2(X), .........φ2m(X)}
(10)

where X = {
(x1, x2, x3, ..........xD) ∈ RD|0 ≤ x j ≤

2π, j = 1, 2, 3, ......., D
}
and m = 2D-1, with

φ2i−1(X) =
D∑
j=i

cos

⎛
⎝ j∑

k=|2i− j−1|+1

Xk

⎞
⎠ , i = 1, 2, 3, .....D

(11)

φ2i (X) = 0.5 +
D∑

j=i+1

cos

⎛
⎝ j∑

k=|2i− j |+1

Xk

⎞
⎠ ,

i = 1, 2, 3, .......D − 1 (12)

φm+i (X) = −φi (X), i = 1, 2, 3, .......,m (13)

Here, the objective is to minimize the module of the biggest
among the samples of the so called auto-correlation function

which are related to the complex envelope of the compressed
radar pulse at the optimal receiver output, while the variables
represent symmetrized phase differences.

8.2 Results and discussions

The RP1 problem is a six dimension Parameter Estimation
for Frequency-Modulated (FM) Sound Waves problem and
for RP2, the dimension is considered as 20. For each of the
two real world problems, we perform 25 independent runs
with Eco-size = 50 and 150,000 function evaluations. The
performance results in terms of best, mean and standard devi-
ation of two real world problems are reported in Table 18
and the results are compared with the state of the art other
algorithms. From Table 18, it is observed that for RP1 and
RP2, HSOS reach the optimal solution; also, the mean result
(accuracy of the algorithms) and standard deviation (robust-
ness of the algorithm) of HSOS are better than those of other
algorithms. Also, Fig.3a, b indicate the convergence graph
of the two real world problems. From the figures, it is seen
that the proposed hybrid method converges faster than other
algorithms.

9 Conclusion

This paper presents a new hybrid method called HSOS
for optimizing large scale non-linear complex optimization
problems. For the validity of the proposed algorithm, 13 well
known benchmark functions, CEC2005, and CEC2010 spe-
cial session on real-parameter optimization are considered.
Also, two real life problems are taken to justify the efficiency
of the proposed method. In HSOS algorithm, the steps of
SOS are executed first to enhance its exploitation capability
and then SQI method is implemented to enhance the global
search ability of SOSmethod. Moreover, since the algorithm
has only two common control parameters, such as, popu-
lation size and number of function evaluation (generation),
the effect of these two parameters on the performance of the
algorithm are also investigated by considering different pop-
ulation sizes and number of function evaluations. The results
obtained by usingHSOS algorithm have been comparedwith
the other state-of-the-art optimization algorithms which are
available in the literature for the considered benchmark prob-
lems. Extensive experiments are conducted to investigate the
performance of the HSOS in various benchmark problems.
The statistical Friedman rank testwas conducted for themean
performance of each considering functions of all algorithms.
On the basis of all investigation, it may be concluded that
the proposed HSOS outperforms other algorithms in terms
of the numerical results and a statistical test for multimodal
functions and large scale optimization problems.
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Table 18 Best, Mean and SD
results for two real life problem
compared to state of the art
other algorithms

Function HSOS SOS FDR-PSO CPSO-H UPSO

RP1 Best 0.00E+00 2.59E+01 0.00E+00 1.41E−19 3.43E−27

Mean 2.21E+00 2.86E+01 1.12E+01 1.67E+01 9.00E+00

SD 4.19E+00 1.27E+00 3.97E+00 6.38E+00 2.83E+00

RP2 Best 5.00E−01 1.79E+00 7.74E−01 1.23E+00 8.98E−01

Mean 5.00E−01 2.56E+00 1.03E+00 1.69E+00 1.19E+00

SD 0.00E+00 2.84E−01 1.84E−01 2.04E−01 1.31E−01
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Fig. 3 a Converges graph of Frequency modulation sounds parameter identification problem. b Converges graph of Spread spectrum radar poly
phase code design problem

Further, the proposed HSOS algorithm can be applied
to constraint and multi objective engineering optimization
problems and also on the industrial environment as it is suit-
able for the optimization of any system involving a large
number of variables and objectives. Also, it can be applied to
safety-critical system performance; business models, power
system problem, modelling, simulation and optimization of
complex systems and service engineering design problems
etc.
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