
Memetic Comp. (2017) 9:183–197
DOI 10.1007/s12293-016-0190-5

REGULAR RESEARCH PAPER

An efficient parallel method for batched OS-ELM training using
MapReduce

Shan Huang1 · Botao Wang1 · Yuemei Chen1 · Guoren Wang1 · Ge Yu1

Received: 27 September 2015 / Accepted: 20 April 2016 / Published online: 29 April 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In this era of big data, more and more models
need to be trained to mine useful knowledge from large scale
data. It has become a challenging problem to train multi-
ple models accurately and efficiently so as to make full use
of limited computing resources. As one of ELM variants,
online sequential extreme learning machine (OS-ELM) pro-
vides a method to learn from incremental data. MapReduce,
which provides a simple, scalable and fault-tolerant frame-
work, can be utilized for large scale learning. In this paper,
we propose an efficient parallel method for batched online
sequential extreme learning machine (BPOS-ELM) training
using MapReduce. Map execution time is estimated with
historical statistics, where regression method and inverse
distance weighted interpolation method are used. Reduce
execution time is estimated based on complexity analysis
and regression method. Based on the estimations, BPOS-
ELMgenerates aMap execution plan and aReduce execution
plan. Finally, BPOS-ELM launches one MapReduce job to
train multiple OS-ELM models according to the generated
execution plan, and collects execution information to further
improve estimation accuracy. Our proposal is evaluated with
real and synthetic data. The experimental results show that
the accuracy of BPOS-ELM is at the same level as those
of OS-ELM and parallel OS-ELM (POS-ELM) with higher
training efficiencies.

Keywords Parallel learning · Extreme learning machine ·
MapReduce · Sequential learning

B Botao Wang
wangbotao@ise.neu.edu.cn

1 School of Computer Science and Engineering, Northeastern
University, Shenyang 110819, Liaoning, China

1 Introduction

With the development of technology and the widespread
use of machine learning, more and more models need to be
trained to mine useful knowledge from large scale data. It
has become a challenging problem to train multiple models
accurately and efficiently so as to make full use of limited
computing resources. For example, in a machine learning
organization where high performance computing cluster is a
limited resource, researchers must schedule the jobs on the
cluster legitimately tomake full use of the cluster. For another
example, resizable cloud hosting services such as Amazon
elastic compute cloud (EC2) [1], which become more and
more popular, enable their users to rent large amount of vir-
tual machines by the hour at lower costs than operating a data
center year-round. It is important for users to schedule mul-
tiple jobs running on this kind of environment as the rented
virtual machines are charged by the used time.

Extreme learning machine (ELM), which was proposed
based on single-hidden layer feed-forward neural networks
(SLFNs) [2], has been verified to have high learning speed
as well as high accuracy [3]. It has also been proved that
ELM has universal approximation capability and classifica-
tion capability [4]. As one of ELMvariants, online sequential
extreme learningmachine (OS-ELM) [5] supports incremen-
tal learning.

MapReduce [6] is a well-known framework which sup-
ports large scale data processing and analyzing on a large
cluster of commodity machines. As an open-source imple-
mentation of MapReduce framework, Apache Hadoop [7]
has been used in various fields including machine learning.
Recent research has studied on outsourcing calculations of
ELM to resourceful workstation [8] or parallelizing ELM
[9–12], however the strategies are not suitable to parallelize
OS-ELM. POS-ELM [13] supports training one single OS-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-016-0190-5&domain=pdf
http://orcid.org/0000-0002-7206-0331

184 Memetic Comp. (2017) 9:183–197

ELM model in parallel with MapReduce, but it does not
support training multiple OS-ELM models efficiently.

In this paper, we propose an efficient parallel method
for batched online sequential extreme learning machine
(BPOS-ELM) training using MapReduce. BPOS-ELM first
estimates the execution time of Map and Reduce tasks for
each OS-ELM model based on historical statistics. Then the
estimations are employed to generate a Map and a Reduce
execution plans based on the greedy strategy. After that,
BPOS-ELM launches a MapReduce job to train multiple
OS-ELM models. At the same time, BPOS-ELM collects
execution information of selected Map tasks and Reduce
tasks, and merges them to historical statistics to improve the
accuracy of time estimation. The algorithm is evaluated with
real and synthetic data. The accuracy is at the same level as
those of OS-ELM and POS-ELM. The speedup reaches 10×
on a cluster with maximum 32 cores.

The main contributions of this paper can be summarized
as follows:

1. We propose an efficient parallel method for batched
online sequential extreme learning machine (BPOS-
ELM) training using MapReduce.

2. According to historical statistics, the costs of Map tasks
are estimated with regression method and inverse dis-
tance weighted interpolation method, and the costs of
Reduce tasks are estimated based on complexity analy-
sis and regression techniques.

3. Map execution plan and Reduce execution plan are gen-
erated and executed to train multiple OS-ELM models
efficiently.

4. BPOS-ELM algorithm is evaluated with synthetic and
real data and the experimental results show that the
speedup of it reaches 10× on a cluster with maximum
32 cores.

The remainder of this paper is organized as follows:
Sect. 2 reviews related work. Section 3 briefly introduces
MapReduce framework,ELM,OS-ELMandPOS-ELM.The
problem definition and basic idea are presented in Sect. 4.
Section 5 describes the efficient parallel method for batched
online sequential extreme learning machine using MapRe-
duce in detail. An extensive experimental evaluation of
BPOS-ELM is presented in Sect. 6. A brief conclusion is
presented in Sect. 7.

2 Related work

ELM and its variants have shown powerful capability in han-
dling large data. Cao et al. [14] reviewed recent applications
that use ELM and its variants to solve problems includ-

ing image processing, video processing and medical signal
processing.

Existing approaches that improve training speed of ELM
and its variants include outsourcing calculations to resource-
ful workstation [8] and parallelizing them [9–13] in a cluster.
Lin et al. [8] proposed a method that reduces ELM training
time by outsourcing to the cloud to handle large data appli-
cations. The results in [8] show that the method increases
training speed of ELM dramatically. Different from this
approach, our proposal focuses on improving training speed
of multiple OS-ELM models.

There is also recent research on improving training speed
of ELM by parallelizing the matrix calculations in a cluster.
He et al. [9] proposed a parallel ELM algorithm which uses
oneMapReduce job tomap training instances to hidden layer
nodes and anotherMapReduce job to calculate the product of
hidden layer outputmatrix and its transpose in parallel. Xiang
et al. [10] used the algorithm in [9] for intrusion detection
in big data environment. Xin et al. [11] proposed another
MapReduce based ELM algorithm which uses one MapRe-
duce job to map training instances to hidden layer nodes and
calculate the product of hidden layer output matrix and its
transpose. Heewijk et al. [12] accelerated the training speed
of ELM using CUDA [15] technique and MATLAB parallel
computing toolbox [16]. It can be observed from experimen-
tal results in [12] that the speedup of the algorithm in [12]
reaches 3.4× on 4 machines. These algorithms support large
scale learning, but they do not support learning from incre-
mental data that commonly generated in our daily life. As the
calculation procedure of OS-ELM is different from that of
ELM, the methods above are not suitable to parallelize OS-
ELM. POS-ELM [13] supports training one single OS-ELM
model in parallel with MapReduce, but it does not support
training multiple OS-ELM models efficiently.

3 Preliminaries

In this section, we briefly introduce MapReduce, ELM, OS-
ELM and POS-ELM.

3.1 MapReduce

MapReduce [6], which was first proposed by Google, is a
framework for large scale data processing and analyzing. As
one open-source version MapReduce framework, Hadoop
[7] has been used by many companies and organizations.
MapReduce hides the details of the complex processing
in distributed computing such as load balancing, network
performance and fault tolerance, so it allows users to imple-
ment parallel algorithms on a large cluster of commodity
machines. In a cluster of MapReduce, one machine works as
Master node and the others work as Slave nodes. The Master

123

Memetic Comp. (2017) 9:183–197 185

node is responsible for task scheduling and the Slave nodes
are responsible for executing tasks that are assigned by the
Master node.

MapReduce provides two main procedures for users
to implement their logics, the map() procedure and the
reduce() procedure. The types involved in these two pro-
cedures are listed as below:

map(k1, v1) → list (k2, v2)

reduce(k2, list (v2)) → list (k3, v3)

The map() procedure takes a key-value pair (k1, v1) as
input, processes it with user’s logic and generates zero or
more output key-value pairs (k2, v2). The reduce() proce-
dure combines all the key-value pairs with the same key,
iterates through the values that are associated with that key
and produces zero or more outputs.

3.2 ELM and OS-ELM

Extreme learning machine (ELM) is designed based on
single-hidden layer feed-forward neural networks (SLFNs)
[2]. Given N distinct arbitrary instances (x j , t j), where
x j = [x j1, x j2, . . . , x jn]T ∈ Rn is the attribute matrix and
t j = [t j1, t j2, . . . , t jm]T ∈ Rm is the tag matrix, ELM is
defined as Formula (1).

Hβ = T (1)

where

H(w1, . . . ,wÑ , b1, . . . , bÑ , x1, . . . , xN)

=
⎡
⎢⎣

g(w1 · x1, b1) . . . g(wÑ · bÑ + x1)
... . . .

...

g(w1 · xN , b1) . . . g(wÑ · bÑ + xN)

⎤
⎥⎦

N×Ñ

(2)

wi = [wi1, wi2, . . . , win]T is the weights vector between
the i th hidden node and the input nodes, bi is the thresh-
old of the i th hidden node, β = [βT

1 , . . . ,βT
Ñ
]T
m×Ñ

, T =
[tT1 , . . . , tTN]Tm×N and Ñ is the number of hidden layer nodes.
H is called the hidden layer output matrix of the neural net-
work. β is called output weights matrix. It has been proved in
[17] that the hidden layer parameters can be randomly gener-
ated if the activation function g is infinitely differentiable in
any interval. It has also been proved that ELM has universal
approximation capability and classification capability [4].

As a variant of ELM, online sequential extreme learning
machine (OS-ELM) [5] has the ability to learn data chunk by
chunk with fixed or varying sizes instead of batch learning.
OS-ELM algorithm is divided into two phases, initialization
phase and sequential learning phase.

Initialization phase uses a small chunk of training data to
initialize the learning machine. First, initial hidden layer out-
put matrix H0 is calculated according to Formula (2). Then
β0 and P0 are calculated according to Formula (3) and (4)
respectively.

β0 = H0
†T0 (3)

P0 = (HT
0 H0)

−1 (4)

where H0
† denotes the Moore-Penrose generalized inverse

of matrix H0.
Sequential learning phase updates βk and Pk for the kth

chunk of training data with Nk distinct arbitrary instances
according to Formula (5) and (6) respectively.

βk = βk−1 + PkHT
k (Tk − Hkβk−1) (5)

Pk = Pk−1 − Pk−1HT
k (I + HkPk−1HT

k)−1HkPk−1 (6)

For more information about ELM and OS-ELM, please
refer to [2,5].

3.3 POS-ELM

Parallel online sequential extreme learning machine (POS-
ELM) algorithm [13] was designed based on OS-ELM and
implemented on MapReduce framework. The basic idea of

Algorithm 1: POS-ELM Map()
Input: (Key, Value): Key is the offset in bytes, value is a sample

pair (xi , ti) ∈ (X,T) where 0 ≤ i ≤| (X,T) |;
Result:
block I D: Output key;
Hb:Output weight;
Tb:Observation value vector;

1 blocknum=0;
2 for blocknum ≤ BLOCK SI Z E do
3 merge a sample pair into block;
4 blocknum++;

5 calculate hidden layer output matrix Hb;
6 output (block I D++, (Hb,Tb));

Algorithm 2: POS-ELM Reduce()
Input:
Set of (b, value): b is the identifier of a block, value is a vector
pair (Hb, Tb);
Result:
β: output weight vector

1 b=0;
2 for b ≤ B do
3 calculate

Pb+1 = Pb − PbHT
b+1(I + Hb+1PbHT

b+1)
−1Hb+1Pb;

4 calculate output weight
βb+1 = βb + Pb+1HT

b+1(Tb+1 − Hb+1βb);
5 b=b+1;

123

186 Memetic Comp. (2017) 9:183–197

POS-ELM is to parallelize the calculation of hidden layer
output matrix of original OS-ELM. Algorithm 1 and Algo-
rithm 2 show the Map phase and Reduce phase algorithms
of POS-ELM, respectively. For more details of POS-ELM
please refer to [13].

4 Problem definition and basic idea

POS-ELM [13] supports training one single OS-ELMmodel
in parallel with MapReduce, but it does not support train-
ing multiple OS-ELM models efficiently. For the training of
multiple OS-ELM models, there are three main challenges
to be solved.

1. Estimating the execution time of training POS-ELM in
Map phase and Reduce phase accurately, which is the
basis of execution plan generation, is a challenging prob-
lem.

2. Generating the most optimized execution plan that all the
jobs complete in minimum possible time is an NP-hard
problem, so it is necessary to find heuristic rules to gener-
ate an approximate optimal execution plan. The problem
of generating the most optimized execution plan is the
same as “multiprocessor scheduling” problem which has
been proven to be an NP-complete problem in [18].
Because NP-complete problems are included in NP-hard
problems, generating the most optimized execution plan
is an NP-hard problem.

3. How to reorganize execution procedure of POS-ELM
algorithm to make it possible to train multiple OS-ELMs
in one MapReduce job. So the problems are how to
estimate the cost of Map task and Reduce task of each
OS-ELM model, how to create an execution plan for the
training of multiple models and how to reorganize the
POS-ELM algorithm.

The basic idea of BPOS-ELM algorithm is to generate an
execution plan which trains multiple OS-ELMmodels in one
MapReduce job according to the estimations of Map execu-
tion time and Reduce execution time. The cost of calculation
of POS-ELM in Map phase and Reduce phase is associated
with parameters as shown in Table 1, and the Map execution
time and Reduce execution time are estimated according to
historical statistics.

5 BPOS-ELM

The main procedures of BPOS-ELM algorithm are first
described in Sect. 5.1. Then ID assigning is introduced in
Sect. 5.2. Execution time estimation is introduced in detail
in Sect. 5.3. Section 5.4 describes execution plan generation

Table 1 Notations used in BPOS-ELM

Parameter Description

B Block size

N Number of training data

D Number of attributes in training data

M Number of training models

Ms Number of actual execution information

Ñ Number of hidden layer nodes

C Number of classifications

in detail. Section 5.5 introduces plan execution and the exe-
cution information collection is introduced in Sect. 5.6.

5.1 Overview

As shown in Fig. 1, BPOS-ELMalgorithmuses the following
steps to train multiple OS-ELM models in one MapReduce
job.

Step 1 Each model is assigned with a unique ID which is
used to specify it from the other training models. The
ID of eachmodel is associated with themodel all over
the following steps until the job execution completes.

Step 2 The Map execution time and Reduce execution
time are estimated according to historical statistics
described with parameters shown in Table 1.

Step 3 A job execution plan is generated according to the
estimations of Map execution time and Reduce exe-
cution time in previous step. The Map tasks that have
short execution time are treated as unit executions
and the Map tasks that have long execution time are
split into multiple unit executions. Each Reduce task
is treated as one unit execution. The Map execution
plan and Reduce execution plan are generated based
on the unit executions.

Step 4 The generated execution plans are executed to train
the models.

Step 5 The actual execution time of the selected Map tasks
and Reduce tasks is collected for future time estima-
tion.

5.2 ID assigning

In this step, each OS-ELM model is assigned with a unique
ID. In the following steps, the BPOS-ELM algorithm uses
these IDs to distinguish one model from the other models.

To facilitate the description of BPOS-ELM, we assume
that there are M OS-ELM models to be trained and each
model is associated with an ID from 1 to M .

123

Memetic Comp. (2017) 9:183–197 187

Fig. 1 Execution framework of BPOS-ELM

5.3 Execution time estimation

TheMap execution time and Reduce execution time are esti-
mated according to historical job execution time statistics.
At the same time, the actual execution time of selected Map
tasks and Reduce tasks are also collected for future time
estimation. In the following, the estimations of Map exe-
cution time and Reduce execution time are introduced in
detail.

5.3.1 Map execution time estimation

We provide twomethods to estimateMap execution time, (1)
regression method and (2) Inverse DistanceWeighted (IDW)
interpolation method.

(1) Regression method
One way to estimate Map execution time is to use regres-

sion method. We use B, N , D, Ñ and C as regression
parameters and Map execution time as regression target.
So the Map execution time estimation is a multi-parameter
regression problem.OS-ELM is used as the regressionmodel
as it has the ability to learn statistics incrementally.

Algorithm 3 shows the regression method. There are
two procedures in this method, MSMapRegression pro-
cedure (lines 1–5) and EMapRegression procedure (lines
6–9).

MSMapRegression procedure is used to merge actual
execution information toMap execution time statistics. There
are two inputs of this procedure, the actual execution infor-
mation and current Map execution time statistics. First,
hidden layer output matrix is calculated according to For-
mula (2) (line 2). Then matrix Pk is updated according to
Formula (6) (line 3). Finally, matrix βk is updated accord-
ing to Formula 5 (line 4). Matrices Pk and βk represent the
current Map execution time statistics.

EMapRegression procedure is used to estimateMap exe-
cution time according to the Map execution time statistics.

Algorithm 3: Map execution time estimation using
regression method
Input: (x j , t j)(1 ≤ j ≤ Ms) : Ms distinct actual execution

information, where x j = [x j1, x j2, ..., x j5]T , x j1, x j2,
x j3, x j4 and x j5 represent Bj ,N j ,Dj ,Ñ j and C j ,
respectively. t j represents the actual Map execution time.

(Pk−1,βk−1): current Map execution time statistics.
Result: (Pk ,βk): updated Map execution time statistics.

1 MSMapRegression()
2 calculate Hk with Formula (2);
3 update Pk with Formula (6);
4 update βk with Formula (5);
5 return (Pk ,βk);

Input: x j (1 ≤ j ≤ M) : M distinct actual execution parameter
vector, where x j = [x j1, x j2, ..., x j5]T , x j1, x j2, x j3, x j4
and x j5 represent Bj ,N j ,Dj ,Ñ j and C j , respectively.

βk : current Map execution time statistics.
Result: T = [t1, t2, ..., tM]T :estimated Map execution time.

6 EMapRegression()
7 calculate H with Formula (2);
8 T = Hβk ;
9 return T;

There are two inputs of this procedure, the current Map
execution time statistics and the actual execution parameter
vector. First, hidden layer output matrix is calculated accord-
ing to Formula (2) (line 7). Then the Map execution time is
estimated according to theMap execution time statistics (line
8).

(2) Inverse distance weighted interpolation method
Inverse distance weighted (IDW) [19] interpolation

method is another way to estimateMap execution time. First,
each parameter of job execution information is mapped to
one dimension at a multi-dimensional space, so the histori-
cal statistics are mapped to a set of points in the space. Then
k nearest neighbour points of the point to be estimated in the
space are selected and used to estimate Map execution time.
After that, IDW interpolation method shown as Formula (7)
is used to estimate Map execution time.

123

188 Memetic Comp. (2017) 9:183–197

tmap(x) ≈

⎧⎪⎨
⎪⎩

∑k
i=1 wi (x)ti∑k
i=1 wi (x)

, if d(x, xi) �= 0 for all i

ti , if d(x, xi) = 0 for some i

(7)

where wi (x) = 1

d(x, xi)p
is a simple IDW weighting func-

tion, as defined by Shepard [19], x denotes the parameter
vector of point to be predict, xi is the selected k nearest neigh-
bour points, d is a given distance from the point xi to point x
and p is a positive real number, called the power parameter.
Euclidean distance is used to measure the distance between
two points.

Algorithm 4 shows the Inverse Distance Weighted (IDW)
interpolation method. There are two procedures in this
method,MSMapIDW procedure (lines 1–4) andEMapIDW
procedure (lines 5–9).

MSMapIDW procedure is used to merge actual execu-
tion information to Map execution time statistics. Similar
to MSMapRegression, there are two inputs of this pro-
cedure, the actual execution information and current Map
execution time statistics. Each of the actual execution
information is added to the Map execution time statistics
(lines 2–3).

EMapIDW procedure is used to estimatedMap execution
time according to the Map execution time statistic. Similar
to EMapRegression, there are two inputs of this procedure,
the current Map execution time statistics and the actual exe-
cution parameter vector. For each of the parameter vector,
the k nearest neighbour statistics of the Map execution time
statistics are found (line 7). Then the Map execution time is
estimated according with IDWmethod according to Formula
(7) (line 8).

5.3.2 Reduce execution time estimation

Reduce execution time is estimated based on complexity
analysis and regression techniques. Figure 2 shows the cal-
culation steps in Algorithm 2 and the calculation complexity
of each step is listed in Table 2. There are three main kinds of
calculations in Reduce phase of POS-ELM, matrix multipli-
cation,matrix addition andmatrix inversion. The calculations

in Table 2 repeats
N

B
times, so the Reduce execution time is

estimated by Formula (8). In Formula (8), αn(1 ≤ n ≤ 5) are
the factors that need to be determined using historical statis-
tics. According to the above analysis, the Reduce execution
time estimation transforms to a multi-parameter regression
problem so it can be solved with regression techniques. In
this paper, OS-ELM is used as the regression model as it has
the ability to learn statistics incrementally.

Algorithm4:Map execution time estimation using kNN
and IDW
Input: (x j , t j)(1 ≤ j ≤ Ms) : Ms distinct actual execution

information, where x j = [x j1, x j2, ..., x j5]T , x j1, x j2,
x j3, x j4 and x j5 represent Bj ,N j ,Dj ,Ñ j and C j ,
respectively. t j represents the actual Map execution time.

list : current Map execution time statistics.
Result: list : updated Map execution time statistics.

1 MSMapIDW()
2 for i = 1 to Ms do
3 list.add((xi , ti));

4 return list;

Input: x j (1 ≤ j ≤ M) : M distinct actual execution parameter
vector, where x j = [x j1, x j2, ..., x j5]T , x j1, x j2, x j3, x j4
and x j5 represent Bj ,N j ,Dj ,Ñ j and C j , respectively.

(list): current Map execution time statistics.
Result:
T = [t1, t2, ..., tM]T :estimated Map execution time.

5 EMapIDW()
6 for i = 1 to Ms do
7 (x′

i , t′i)= kNN(list);
8 ti = IDW(x′

i , t′i);
9 return T;

Fig. 2 Calculation steps in Algorithm 2. Mn(1 ≤ n ≤ 12) are tempo-
rary matrices during the calculation procedure

tred ≈ N

B
(α1B

3 + α2B
2 Ñ + α3BÑ

2 + α4BÑC

+ α5(B
2 + BC + Ñ 2 + ÑC))

= N

(
α1B

2 + α2BÑ + α3 Ñ
2 + α4 ÑC

+ α5

(
B + C + Ñ 2

B
+ ÑC

B

))
(8)

Algorithm 5 shows the algorithm of Reduce execution
time estimation. There are two procedures in this algorithm,

123

Memetic Comp. (2017) 9:183–197 189

Table 2 Calculation
complexities in Reduce phase of
POS-ELM

Step Calculation Complexity Calculation type

(1) M1 = PbHT
b+1 O(BÑ 2) Matrix multiplication

(2) M2 = Hb+1Pb O(BÑ 2) Matrix multiplication

(3) M3 = M2HT
b+1 O(B2 Ñ) Matrix multiplication

(4) M4 = I + M3 O(B2) Matrix addition

(5) M5 = M−1
4 O(B3) Matrix inversion

(6) M6 = M1M5 O(BÑ 2) Matrix multiplication

(7) M7 = M6Hb+1 O(B2 Ñ) Matrix multiplication

(8) M8 = M7Pb O(BÑ 2) Matrix multiplication

(9) Pb+1 = Pb − M8 O(Ñ 2) Matrix addition

(10) M9 = Pb+1HT
b+1 O(BÑ 2) Matrix multiplication

(11) M10 = Hb+1βb O(BÑC) Matrix multiplication

(12) M11 = Tb+1 − M10 O(BC) Matrix addition

(13) M12 = M9M11 O(BÑC) Matrix multiplication

(14) βb+1 = βb + M12 O(ÑC) Matrix addition

MSReduce procedure (lines 1–13) and EReduce procedure
(lines 14–26).

MSReduce procedure takes actual execution information
as input and merges them to the Reduce execution time sta-
tistics. The attributes for regression are first calculated for
each instance of the actual execution information (lines 2–
9). Then matrix Hk is calculated according to Formula (2)
(line 10). Finally, matrices Pk and βk are updated according
to Formula (5) and (6) (lines 11–12), respectively.

EReduce procedure takes actual execution parameters
and estimatesReduce execution time as output. The attributes
are first generates for each of the parameter vector instances
(lines 15–21). Then matrixH is calculated according to For-
mula (2) (line 22).MatrixT is calculatedwith current Reduce
execution time statistic according to Formula (1) (line 23).
Finally, the estimated Reduce execution time is generated by
multiplying each element of T with corresponding N (lines
24–25).

5.4 Execution plan generation

BPOS-ELM generates a Map execution plan and a Reduce
execution plan with greedy strategies. The details of Map
execution plan generation and Reduce execution plan gener-
ation are described in Sects. 5.4.1 and 5.4.2 respectively.

5.4.1 Map execution plan generation

The execution plan generation algorithm of Map phase is
shown in Algorithm 6. The algorithm needs an array of OS-
ELM models as input and generates the execution plan of
Map phase of BPOS-ELM as output. It first calculates the
predictable average execution time of Map tasks (lines 1–3).

Then it scans the OS-ELM models and processes them dif-
ferently according to the estimated Map execution time. The
modelswhose estimatedMapexecution time is less than aver-
age time are treated as unit executions during the execution
plan generation (lines 5–6). The models whose estimated
Map execution time is more than average time are split to
multiple unit executions (lines 7–11). Relax factor α which
is more than 1 is used to make the models whose Map exe-
cution time is at the same level as average time not split
into more unit executions. After generating the list of unit
executions, heuristic algorithm GeneratePlan is executed to
generate Map execution plan.

The GeneratePlan algorithm is shown in Algorithm 7,
which is used in both Map execution plan generation and
Reduce execution plan generation. There are three inputs, a
list of unit executions, the number of tasks and expected exe-
cution time for each task. The output of this algorithm is the
execution plan for Map phase or Reduce phase. When the
number of unit executions in the list is less than that of tasks,
each of the unit execution is assigned to each task (lines 1–
3). Otherwise, greedy strategy is used to generate execution
plan.Unassigned is initialized and used to count the number
of unassigned unit executions in the list (line 5). First, the list
of unit executions is sorted by estimated execution time in
descending order (line 6). Then the sorted list is scanned and
the unit executions in it are added to the execution plan (lines
7–16). The assigned unit executions are skipped (lines 8–9)
and the loop is broken when Count exceeds the number of
tasks (lines 10–11). After that, the unassigned unit execution
which has the longest execution time is added to execution
plan (line 12) and the algorithm scans the remaining list to
find the suitable unit execution and add it to execution plan
recursively (lines 14–15). Finally, the algorithm scans the

123

190 Memetic Comp. (2017) 9:183–197

Algorithm 5: Reduce execution time estimation

Input: (Bj , N j , Dj , Ñ j ,C j , t j)(1 ≤ j ≤ Ms) : Ms distinct
actual execution information, where t j represents the
actual Reduce execution time.

(Pk−1,βk−1): current Reduce execution time statistics.
Result: (Pk ,βk): updated Reduce execution time statistics.

1 MSReduce()
2 for i = 1 to Ms do
3 xi1 = (Bi)2;

4 xi2 = Bi Ñi ;

5 xi3 = (Ñi)
2;

6 xi4 = ÑiCi ;

7 xi5 = Bi + Ci + Ñi
2

Bi
+ ÑiCi

Bi
);

8 xi = [xi1, xi2, xi3, xi4, xi5]T ;
9 ti = ti

Ni
;

10 calculate Hk with Formula (2);
11 update Pk with Formula (6);
12 update βk with Formula (5);
13 return (Pk ,βk);

Input: (Bj , N j , Dj , Ñ j ,C j)(1 ≤ j ≤ M) : M distinct actual
execution parameter vector instances.

βk : current Reduce execution time statistics.
Result: T = [t1, t2, ..., tM]T :estimated Reduce execution time.

14 EReduce()
15 for i = 1 to M do
16 xi1 = (Bi)2;

17 xi2 = Bi Ñi ;

18 xi3 = (Ñi)
2;

19 xi4 = ÑiCi ;

20 xi5 = Bi + Ci + Ñi
2

Bi
+ ÑiCi

Bi
);

21 xi = [xi1, xi2, xi3, xi4, xi5]T ;
22 calculate H with Formula (2);
23 T = Hβk ;
24 for i = 1 to M do
25 ti = ti ∗ Ni ;

26 return T;

list of unit executions again and adds the unassigned unit
execution to the expected shortest task (lines 17–20).

5.4.2 Reduce execution plan generation

The execution plan generation algorithm of Reduce phase is
shown in Algorithm 8. This algorithm needs an array of OS-
ELM models as input and generates the execution plan of
Reduce phase of BPOS-ELM as output. The algorithm first
calculates the expected average execution time of Reduce
tasks (lines 1–3). Then the algorithm scans the OS-ELM
models and adds them to the list of unit executions (lines
4–5). As the calculations of POS-ELM algorithm in Reduce
phase is indivisible, each Reduce task is treated as a unit
execution. Since start and end are not used in Reduce exe-

Algorithm 6:Map execution plan generation
Input: models [] : array of OS-ELM models.

MapNum : the maximum number of Map tasks in the
cluster.
Result: MapPlan < List < I D, start, end >>[]: array

represents Map execution plan, in which each element is
a list of triples. In each triple I D is the OS-ELM model
ID, start and end are the start and end offsets of the
training input file respectively.

1 for m = 1 to sizeof(models) do
2 T imeSum = T imeSum + model[i].EstimatedMapT ime;

3 AvgT ime =
T imeSum

MapNum
;

4 for m= 1 to sizeof(models) do
5 if models[m].EstimatedMapT ime ≤ AvgT ime * α then
6 list.add(< models[m].id, 0 , models[m].I nput Si ze,

models[m].EstimatedMapT ime >);

7 else

8 spli ts =
models[m].EstimatedMapT ime

AvgT ime
;

9 spli tsi ze=
models[m].I nput Si ze

spli ts
;

10 for i =1 to splits do
11 list.add(< models[m].id,

i ∗ spli tsi ze, (i + 1) ∗ spli tsi ze,
models[m].EstimatedMapT ime

spli ts
>);

12 MapPlan = GeneratePlan(list.toArray(), MapNum ,
AvgT ime);

cution plan generation, they are set to 0 to be compatible with
GeneratePlan algorithm. After generating the list of unit exe-
cutions, heuristic algorithmGeneratePlan introduced in Sect.
5.4.1 is executed to generate Reduce execution plan (line 6).
At last, the algorithm scans the execution plan and assigns
the OS-ELM models in the plan with correct ReduceKeys
(lines 7–10). The ReduceKey is used to mark which Reduce
task that intermediate results should pass to.

Figure 3 shows the execution procedure of BPOS-ELM.
Each Map task is responsible for calculating H for multiple
OS-ELM models, one OS-ELM model or part of one OS-
ELM model according to the execution plan generated in
Algorithm 6. Each Reduce task is responsible for calculat-
ing β for multiple OS-ELM models or one OS-ELM model
according to the execution plan generated in Algorithm 8.
The pseudo codes ofBPOS-ELM job execution inMap phase
and Reduce phase are shown in Algorithms 9 and 10 respec-
tively.

5.5 Job execution

The pseudo codes of Map procedure are shown in Algorithm
9. The input is a Key-Value pair in which Key is the OS-
ELM model ID and value represents data chunk (Xm, Tm).
The algorithm first initializes the parameters such as wi and

123

Memetic Comp. (2017) 9:183–197 191

Algorithm 7: GeneratePlan()
Input: Tasks < I D, start, end, time > [] : array of

quadruples, in which each quadruple represents task
information of OS-ELM model.
TaskNum : the maximum number of tasks that the

cluster can hold.
AvgT ime : the expected average execution time for each task.
Result: Plan < List < I D, start, end >>[] : array

represents execution plan, in which each element is a list
of triples. I D is the OS-ELM model ID, start and end
are the start and end offsets of the training input file
respectively, which are omitted for Reduce execution
plan generation.

1 if sizeof(T asks) ≤ TaskNum then
2 for m = 1 to sizeof(T asks) do
3 Plan[m].add(< Tasks[m].id, Tasks[m].start ,

Tasks[m].end >);

4 else
5 Unassigned = Size = sizeof(Tasks);
6 SortByTimeInDescendingOrder(Tasks);
7 for i =1 to Si ze do
8 if used[i] == true then
9 continue;

10 if Count ≥ TaskNum then
11 break;

12 addToPlan(Count , i)
13 Start = i+1;
14 for Start ≤ Size do
15 Start = FindAndAdd(Start);

16 Count = Count+1;

17 for i= 1 to Si ze do
18 if Unassigned >0 && used[i]==false then
19 insert I ndex = findMinTimeIndex(T ime);
20 AddToMapPlan(insert I ndex , i);

21 FindMinTimeIndex(T ime)
22 for i=1 to Si ze do
23 if T ime[i] < MinTime then
24 MinT ime =T ime[i];
25 MinIndex = i ;

26 return MinIndex ;

27 FindAndAdd(Start)
28 for j=Start to Size do
29 if used[j]==false && Tasks[j].time+T ime[Count] ≤

AvgT ime ∗ α then
30 addToMapPlan(Count , j);
31 return j ;

32 return j ;

33 AddToPlan(P_I , T _I)
34 used[T _I]=true;
35 T ime[P_I]=T ime[P_I]+Tasks[T _I].time
36 Plan[P_I].add(< Tasks[T _I].id, Tasks[T _I].start ,

Tasks[T _I].end >)
37 Unassigned =Unassigned-1;

Algorithm 8: Reduce execution plan generation
Input: models [] : array of OS-ELM models.

ReduceNum : the maximum number of Reduce tasks in
the cluster.
Result: ReducePlan < List < I D, start, end >>[]: array

represents Reduce execution plan, in which each element
is a list of triples. In each triple, I D is the OS-ELM ID,
start and end are set to 0 to be compatible with
GeneratePlan algorithm.

1 for m= 1 to sizeof(models) do
2 TimeSum=TimeSum+model[i].EstimatedRedTime;

3 AvgT ime =
T imeSum

ReduceNum
;

4 for m= 1 to sizeof(models) do
5 list.add(< models[m].id, 0 , 0,

models[m].EstimatedRedT ime >);

6 ReducePlan = GeneratePlan(list.toArray(), ReduceNum,
AvgT ime);

7 for i=1 to sizeof(ReducePlan) do
8 for j=1 to sizeof (ReducePlan[i]) do
9 Index = FindByID(models, ReducePlan [i][j].ID);

10 models [Index].ReduceKey = i ;

11 FindByID(list , I D)
12 for i=1 to sizeof(list) do
13 if list[i].I D == ID then
14 return i ;

Fig. 3 Job execution of BPOS-ELM

bi if they have not been initialized (lines 2–4). Then it collects
BLOCKm training instances into a buffer blockm (lines 5–
6). After BLOCKm training instances are collected (line 7),
matrix Hm,k is calculated according to Formula (2) (line 8)
and Tm,k is also generated (line 9). After that, a key-value
pair is generated as output (line 10). key is composed with
OS-ELM model ID m, block ID k and ReduceKeym while
value includesHm,k andTm,k . Finally, the counter is cleared
(line 11) and the block ID k is increased by one (line 12).

123

192 Memetic Comp. (2017) 9:183–197

Algorithm 9: BPOS-ELM map()
Input: (Key, Value): Key is the OS-ELM model ID, Value is a

sample pair (xi , ti) ∈ (Xk , Tk) where 0 ≤ i ≤| (Xk , Tk) |
for the model.

Result: m : OS-ELM model ID;
k : blockID;
ReduceKeym : Key that marks which Reduce task trains

the model;
Hm,k : Output weight;
Tm,k : Observation value vector;

1 m = Key;
2 if ini tm ==false then
3 init(m);
4 ini tm = true;

5 add to blockm ;
6 countm + +;
7 if count ≥ BLOCKm then
8 Hm,k=calcH(blockm);
9 Tm,k=calcT(blockm);

10 output((m,km ,ReduceKeym), (Hm,k ,Tm,k));
11 countm = 0;
12 km++;

Algorithm 10: BPOS-ELM reduce()
Input: Set of (key, value): key is a combination of OS-ELM

model ID m, blockID k and ReduceKey. value is a
vector pair (Hkb, Tkb);

Result: βm : output weight vector (corresponding to βm,k).
1 m = getm(key);
2 if f irst Runm==true then
3 init(m);
4 f irst Runm=false;

5 Hm,k+1 = get H(value);
6 Tm,k+1 = getT (value);
7 Pm,k+1 =
Pm,k − Pm,kHT

m,k+1(I + Hm,k+1Pm,kHT
m,k+1)

−1Hm,k+1Pm,k ;

8 βm,k+1 = βm,k + Pm,k+1HT
m,k+1(Tm,k+1 − Hm,k+1βm,k);

The pseudo codes ofReduce procedure are shown inAlgo-
rithm 10. The output results of Map phase which have the
same ReduceKey are partitioned to the same Reducer and
then sorted by m and k. When the set of key-value pairs are
transferred to Reduce procedure, the OS-ELM model ID m
is first resolved (line 1). The parameters for OS-ELM model
m are initialized if they have not been initialized (lines 2–4)
and thenHm,k andTm,k included in value are resolved (lines
5–6). Finally, the Pm,k and βm,k are updated according to the
formulas (lines 7–8).

5.6 Execution information collection

After job completes execution, the execution information of
selected tasks is collected and merged to historical execution
statistics. The execution information of the tasks that process
one OS-ELM model is collected and merged to histori-
cal statistics. The information is helpful to further improve

the execution time estimation accuracies of Map tasks and
Reduce tasks.

6 Experimental evaluation

The setup of evaluations is firstly introduced in Sect. 6.1.
Then the estimation algorithms of BPOS-ELM are evaluated
in Sect. 6.2. Section 6.3 evaluates the accuracy of BPOS-
ELM with real data. The training speed evaluation with real
and synthetic data is introduced in Sect. 6.4. Finally, the scal-
ability ofBPOS-ELMis evaluatedwith synthetic data inSect.
6.5.

6.1 Experimental setup

POS-ELM indicates parallel online sequential learning
machine algorithm in [13] that trains each OS-ELM model
one by one. BPOS-ELM is compared with POS-ELM and
OS-ELM algorithms. All the three algorithms are imple-
mented in Java 1.6. Universal java matrix package (UJMP)
[20]with version 0.2.5 is used formatrix storage and process-
ing. The activation function of OS-ELM, POS-ELM and

BPOS-ELM algorithm is g(x) = 1

1 + e−x
.

The size of the memory that is used to train an OS-
ELM model increases as the number of nodes in hidden
layer increases. So is the size of the memory on the num-
ber of attributes. In accuracy evaluation, because the number
of attributes is not very large (maximum 780), the number
of hidden nodes is set to 128 in our experimental environ-
ment. In training speed evaluation and scalability evaluation,
because synthetic data with maximum number of attributes
1024 are used, only training speed and scalability are eval-
uated, the number of hidden nodes is set to 64 in our
environment.

Hadoop-0.20.2-cdh3u3 is used as our evaluation platform.
The Hadoop cluster is deployed on 9 commodity PCs in a
high speed Gigabit network, with one PC as the Master node
and the others as the Slave nodes. Each PC has an Intel Quad
Core 2.66 GHZ CPU, 4 GB memory and CentOS Linux 5.6
operating system. Each PC is set to hold maximum 4 Map
or Reduce tasks running in parallel and the cluster is set
to hold maximum 32 tasks running in parallel. Each task
is configured with 1024M java heap. Other parameters are
using the default values of Hadoop.

BPOS-ELM algorithm is evaluated with real data and
synthetic data. The real data sets (MNIST1,DNA1, andKDD-
Cup992) are mainly used to evaluate training accuracy and

1 Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/.
2 Downloaded from http://kdd.ics.uci.edu/databases/kddcup99/kddcu
p99.html.

123

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Memetic Comp. (2017) 9:183–197 193

Table 3 Specifications of real
data

Data set #attributes #class #training data #testing data Size of test data (KB)

MNIST 780 10 60,000 10,000 176001.138

DNA 180 3 2000 1186 1126.301

KDDCup99 41 2 4,898,431 292,300 708197.916

Table 4 Specifications of
synthetic data and running
parameters for scalability
evaluation

Parameter Value range Default value

Data set type F (Flower), C (CIFAR-10) F

#training data 10k, 20k, 40k, 80k, 160k,320k, 640k,
1280k, 2560k, 5120k, 10240k

640k

#attributes 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 64

#cores 1, 2, 4, 8, 16, 32 32

#data per block 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 64

#neurons 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 64

#classifications 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 2

#model groups 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 6

testing accuracy. Some attributes of KDDCup99 data set are
symbolic-valued attributes which cannot be directly used for
BPOS-ELM, POS-ELM or OS-ELM, so we preprocess the
data set by mapping symbolic-valued attributes to numeric-
valued attributes with themethod in [10]. For testing data, we
use the KDDcup99 (corrected) evaluation data set by exclud-
ing those attack instances which do not belong to the set of
attack types in the training data set. The specifications of real
data are shown in Table 3.

The synthetic data sets are used for training speed evalu-
ation and scalability evaluation. Two kinds of synthetic data
are used, which are generated based on Flower3 and CIFAR-
104 respectively. For the data set that generates based on
Flower, the attributes and volume are extended by dupli-
cating the original data in a round-robin way. For the data
set that generates based on CIFAR-10, the attributes of
synthetic data are extracted from the original data and the
volume is extended by duplicating the original data in a
round-robin way. In one training model group, there are 11
OS-ELM models training with synthetic data sets with N
varies from 20 × 104 to 210 × 104. The parameters used in
scalability evaluation are summarized inTable 4. In the exper-
iments, all the parameters use default values unless otherwise
specified.

6.2 Evaluation of execution time estimation

Since the time estimation accuracy is the basis of execution
plan generation, the accuracy of time estimation is first eval-

3 Downloaded from http://www.datatang.com/data/13152.
4 Downloaded from https://www.cs.toronto.edu/~kriz/cifar.html.

uated. The Map execution time and Reduce execution time
are estimated with methods introduced in Sect. 5.3 and then
comparedwith the actual execution time. The estimation time
is evaluated with different B, C , D, Ñ and N .

Figure 4 shows the evaluation of Map execution time esti-
mation with different parameters. Compared with regression
method, the IDW method has higher Map estimation accu-
racy. The reason for this is that noises are superimposed on
Map execution time due to the local/remote data accesses
that generated in Map phase. These noises reduce the regres-
sion feature of Map execution time statistics. Because the
IDW method does not use regression model, it avoids this
problem. It can be found from Fig. 4 that the estimated Map
execution time is almost the same with the actual execution
time. This shows that IDW and k nearest neighbour methods
are effective to estimate Map execution time with historical
statistics.

Figure 5 shows the evaluation of Reduce execution time
estimation. It can be found from Fig. 5 that the estimated
Reduce execution time is almost the same with the actual
execution time. This shows that it is effective to use com-
plexity analysis and regression model to estimate Reduce
execution time with historical statistics.

The high accuracy of execution time estimation also bene-
fits from the execution information collected from the actual
BPOS-ELM tasks. The accurate execution time estimation
lays the foundation for the execution plan generation.

6.3 Accuracy evaluation

We use one MapReduce job to train three OS-ELM models
with DNA, MNIST and KDDCup99 data sets using BPOS-

123

http://www.datatang.com/data/13152
https://www.cs.toronto.edu/~kriz/cifar.html

194 Memetic Comp. (2017) 9:183–197

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

B

Actual
Estimated-KNN-IDW

Estimated-OS-ELM

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

C

Actual
Estimated-KNN-IDW

Estimated-OS-ELM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

D

Actual
Estimated-KNN-IDW

Estimated-OS-ELM

-100

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

Actual
Estimated-KNN-IDW

Estimated-OS-ELM

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

N (x 104)

Actual
Estimated−KNN−IDW

Estimated−OS−ELM

(a) (b) (c)

(e)(d)

Fig. 4 Evaluation of Map execution time estimation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

B

Actual
Estimated

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

C

Actual
Estimated

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

D

Actual
Estimated

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

Ñ

Actual
Estimated

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

N (x 104)

Actual
Estimated

(a) (b)

(d) (e)

(c)

Fig. 5 Evaluation of Reduce execution time estimation

ELM. We also train the three models using OS-ELM and
POS-ELM algorithm one by one as comparisons. Table 5
shows the results of accuracy evaluations with real data. It
can be found that the training accuracy and testing accuracy
of BPOS-ELM algorithm are at the same level with those of
POS-ELM and OS-ELM. The reason for this is that BPOS-
ELM algorithm does not change the computation sequence
of matrices calculation of OS-ELM.

6.4 Training speed evaluation

Table 6 shows the results of training speed evaluation with
real data and synthetic data. The training time in Table
6 includes the time of training multiple OS-ELM models
with different algorithms. The training time of BPOS-ELM
includes time of ID assignation, execution time estimation,
execution plan generation and job execution. The training

123

Memetic Comp. (2017) 9:183–197 195

Table 5 Accuracy evaluation with real data

Data set Algorithm Training accuracy Testing accuracy

MNIST OS-ELM 0.824 0.831

POS-ELM 0.823 0.830

BPOS-ELM 0.825 0.831

DNA OS-ELM 0.845 0.779

POS-ELM 0.846 0.781

BPOS-ELM 0.844 0.780

KDDCup99 OS-ELM 0.992 0.856

POS-ELM 0.991 0.856

BPOS-ELM 0.992 0.855

Table 6 Execution time evaluation with real data and synthetic data

Data set Algorithm Training time (s)

Real OS-ELM 1146

POS-ELM 1025

BPOS-ELM 1021

Synthetic (F) OS-ELM 20701

POS-ELM 10651

BPOS-ELM 2130

Synthetic (C) OS-ELM 20105

POS-ELM 10501

BPOS-ELM 2103

time of OS-ELM and POS-ELM includes time of training
multiple OS-ELM models one by one.

As shown in Table 6, the training speed of BPOS-ELM
is faster than the training speed of POS-ELM and OS-ELM.
For the models training with real data sets, the training speed
of BPOS-ELM is only a little faster than that of POS-ELM.
The reason for this is that most of the cores are idle in Reduce
phase of BPOS-ELMsince the number of the trainingmodels
is less than that of cores and the Reduce tasks are indivisible.
For the models training with synthetic data sets, the training
speed of BPOS-ELM is much faster than that of POS-ELM
andOS-ELM.This is because the cores of the cluster are fully
utilized in the Reduce phase of BPOS-ELM algorithm. This
result also shows that BPOS-ELM trains large scale multiple
OS-ELM models efficiently.

The results in Table 6 also reveal that BPOS-ELM has the
same training speed when training with Flower and CIFAR-
10 based data sets. This is because the costs of calculation
and job execution are almost the same to process these two
data sets.

6.5 Scalability evaluation

BPOS-ELM algorithm is also evaluated by the speedup.
Speedup a metric for improvement in performance between

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32

Sp
ee

du
p

Number of cores

BPOS-ELM-F
BPOS-ELM-C

POS-ELM-F
POS-ELM-C

Fig. 6 Speedup with different number of cores

two systems processing the same problem. The speedup of
parallel algorithm is defined in Formula (9).

Speedup = T ime of one core

T ime of N cores
(9)

Figure 6 shows the scalability (speedup) of BPOS-ELM
compared with that of POS-ELM. Since OS-ELM does not
support training in parallel, we do not compare BPOS-
ELM with it here. The speedup of BPOS-ELM reaches 10×
when the number of cores increases to 32. It means that
BPOS-ELM has good scalability. It benefits from accurate
estimations of Map and Reduce execution time and the exe-
cution plan which is suitable for parallel processing. It can
also be found that the speedup of BPOS-ELM reaches 10×
whereas the speedup of POS-ELM only reaches 1.96×. The
reason is that BPOS-ELM calculates βm,k for different mod-
els in parallel instead of calculating them sequentially. It is
shown in Fig. 6 that the speedups of BPOS-ELMwhich train
with different data sets are at the same level. It also shows
that data set type has little effect on BPOS-ELM algorithm.

There are several reasons for the changing trend of
speedup decreases as the number of cores increases. First,
since the Reduce tasks cannot be further split into smaller
ones, the execution time of the OS-ELM model which has
the longest Reduce execution time does not decrease as the
number of cores increases. In this case, the MapReduce job
has to wait for the completion of the slowest task. Second,
the cost of scheduling tasks among multiple cores increases
as the number of cores increases. Third, the memory and the
number of I/Os become bottlenecks as the number of cores
increases since all the Map tasks and Reduce tasks running
on a physical machine share the same memory and disks.

Figure 7 shows the training time of BPOS-ELMcompared
with that of POS-ELM. The training time of BPOS-ELM is
a little longer than that of POS-ELM on one core due to
the overhead derived from task scheduling. However, as the
number of cores increases, the training time drops signifi-

123

196 Memetic Comp. (2017) 9:183–197

 0

 5000

 10000

 15000

 20000

1 2 4 8 16 32

Tr
ai

ni
ng

 ti
m

e
(s

)

Number of cores

BPOS-ELM-F
BPOS-ELM-C

POS-ELM-F
POS-ELM-C

Fig. 7 Training time with different number of cores

 0

 20000

 40000

 60000

 80000

 100000

 120000

 3 6 9 12 15 18 21 24 27 30

Tr
ai

ni
ng

 ti
m

e
(s

)

Number of training model groups

BPOS-ELM-F
BPOS-ELM-C

POS-ELM-F
POS-ELM-C

OS-ELM-F
OS-ELM-C

Fig. 8 Training time with different number of model groups

cantly and becomes much shorter than that of POS-ELM.
It means that BPOS-ELM is more efficient than POS-ELM
for training multiple models for the reason that BPOS-ELM
trains multiple models in parallel in Reduce phase.

Figure 8 shows the training time of BPOS-ELM with
different number of model groups compared with that of
POS-ELM and OS-ELM. As shown in Fig. 8, the training
time increases much more slowly than that of POS-ELM
and OS-ELM. The reason for this is that BPOS-ELM trains
multiple OS-ELM models in parallel in both Map phase
and Reduce phase whereas POS-ELM only parallelizes the
training in Map phase and OS-ELM does not parallelize
the training. It means that BPOS-ELM utilizes computing
resources efficiently.

7 Conclusions

More and more models need to be trained in this era of big
data, and it has become a challenging problem to train multi-
ple models efficiently. In this work, we proposed an efficient
parallel method for batched online sequential extreme learn-
ing machine (BPOS-ELM) training using MapReduce. The

execution time of Map and Reduce tasks was estimated with
historical statistics. We proposed two methods to estimate
Map execution time, regression method and inverse distance
weighted interpolation method. We estimated Reduce exe-
cution time based on complexity analysis and regression
techniques. A Map execution plan and a Reduce execution
plan were generated with greedy strategy based on the esti-
mations. A MapReduce job was launched to train multiple
OS-ELMmodels according to the execution plans. The algo-
rithm also collected information of selected tasks in the job
and merged it to historical statistics to help to improve the
estimation accuracy. BPOS-ELM algorithm was evaluated
with real and synthetic data. The experimental results showed
that the accuracy of BPOS-ELM was at the same level as
those of POS-ELM and OS-ELM. The speedup of BPOS-
ELM reached 10× on a cluster with maximum 32 cores.
Compared with OS-ELM and POS-ELM, BPOS-ELM trains
multiple OS-ELM models more efficiently.

Acknowledgements This research was partially supported by the
National Natural Science Foundation of China under Grant Nos.
61173030, 61272181, 61272182, 61173029, 61332014; and the Fun-
damental Research Funds for the Central Universities (N120816001).

References

1. Amazon elastic compute cloud (2015). http://aws.amazon.com/cn/
ec2/

2. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine.
In: Technical Report ICIS/03/2004. School of Electrical and Elec-
tronic Engineering, Nanyang Technological University, Singapore

3. Huang GB, Chen L (2007) Convex incremental extreme learning
machine. Neurocomputing 70(16):3056–3062

4. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning
machine for regression and multiclass classification. IEEE Trans
Syst Man Cybern Part B Cybern 42(2):513–529

5. Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A
fast and accurate online sequential learning algorithm for feedfor-
ward networks. Neural Netw IEEE Trans 17(6):1411–1423

6. Dean J, Ghemawat S (2008) MapReduce: Simplified data process-
ing on large clusters. Commun ACM 51(1):107–113

7. White T (2012) Hadoop: The definitive guide. O’ReillyMedia Inc,
Sebastopol, CA, USA

8. Lin J, Yin J, Cai Z, Liu Q, Li K, Leung V (2013) A secure and
practical mechanism for outsourcing ELMs in cloud computing.
IEEE Intell Syst 28(6):35–38

9. He Q, Shang T, Zhuang F, Shi Z (2013) Parallel extreme learn-
ingmachine for regression based onMapReduce. Neurocomputing
102:52–58

10. Xiang J, Westerlund M, Sovilj D, Pulkkis G (2014) Using extreme
learning machine for intrusion detection in a big data environment.
In: Proceedings of the 2014 workshop on artificial intelligent and
security workshop, AISec ’14ACM, New York, pp 73–82

11. Xin J,WangZ,ChenC,DingL,WangG,ZhaoY (2013)ELM*:dis-
tributed extreme learning machine with MapReduce. World Wide
Web, pp. 1–16

12. van Heeswijk M, Miche Y, Oja E, Lendasse A (2011) GPU-
accelerated and parallelized ELMensembles for large-scale regres-
sion. Neurocomputing 74(16):2430–2437

123

http://aws.amazon.com/cn/ec2/
http://aws.amazon.com/cn/ec2/

Memetic Comp. (2017) 9:183–197 197

13. Wang B, Huang S, Qiu J, Liu Y, Wang G (2015) Parallel online
sequential extreme learning machine based on MapReduce. Neu-
rocomputing 149, Part A:224–232

14. Cao J, Lin Z (2015) Extreme learning machines on high dimen-
sional and large data applications: a survey. Math Probl Eng
2015:1–12

15. NVIDIA CUDA home page (2015). http://www.nvidia.com/
object/cuda_home_new.html

16. Matlab parallel computing toolbox (2015). http://www.mathworks.
com/products/parallel-computing/index.html

17. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine:
theory and applications. Neurocomputing 70(1):489–501

18. Garey MR, Johnson DS (1990) Computers and intractability; a
guide to the theory of NP-completeness. W. H. Freeman & Co,
New York

19. Shepard D (1968) A two-dimensional interpolation function for
irregularly-spaced data. In: Proceedings of the 1968 23rd ACM
national conference, ACM ’68ACM, New York, pp 517–524

20. Arndt H, Bundschus M, Naegele A (2009) Towards a next-
generation matrix library for java. In: Computer software and
applications conference, 2009. COMPSAC’09. 33rd Annual IEEE
International, vol 1. IEEE, pp 460–467

123

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.mathworks.com/products/parallel-computing/index.html
http://www.mathworks.com/products/parallel-computing/index.html

	An efficient parallel method for batched OS-ELM training using MapReduce
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 MapReduce
	3.2 ELM and OS-ELM
	3.3 POS-ELM

	4 Problem definition and basic idea
	5 BPOS-ELM
	5.1 Overview
	5.2 ID assigning
	5.3 Execution time estimation
	5.3.1 Map execution time estimation
	5.3.2 Reduce execution time estimation

	5.4 Execution plan generation
	5.4.1 Map execution plan generation
	5.4.2 Reduce execution plan generation

	5.5 Job execution
	5.6 Execution information collection

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 Evaluation of execution time estimation
	6.3 Accuracy evaluation
	6.4 Training speed evaluation
	6.5 Scalability evaluation

	7 Conclusions
	Acknowledgements
	References

