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Abstract In this paper, we propose a general framework
for Extreme Learning Machine via free sparse transfer rep-
resentation, which is referred to as transfer free sparse
representation based on extreme learning machine (TFSR-
ELM). This framework is suitable for different assumptions
related to the divergence measures of the data distributions,
such as a maximum mean discrepancy and K-L divergence.
We propose an effective sparse regularization for the pro-
posed free transfer representation learning framework,which
can decrease the time and space cost. Different solutions
to the problems based on the different distribution distance
estimation criteria and convergence analysis are given. Com-
prehensive experiments show that TFSR-based algorithms
outperform the existing transfer learning methods and are
robust to different sizes of training data.
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1 Introduction

Machine learning and big data mining have recently been
more attentions by researchers from different research fields
[1–3]. Support vectormachine (SVM) is based on the statisti-
cal learning and structural risk minimization principle [4,5].
However, it is known that both BP [6] neural network, SVM,
and LS-SVM have some challenging issues such as slow
learning speed, trivial human intervention and poor com-
putational scalability [5,7]. A new learning algorithm, i.e.,
extreme learning machine (ELM) was proposed by Huang
et al. [8]. Compared with BP neural networks, SVMs, and
LS-SVMs, the ELM have better generalization performance
at a much faster learning speed and with least human inter-
vention.

Although ELM has made some achievements, there is
still room for improvement. Some scholars are engaged in
optimizing the learning algorithm of ELM [42–44]. Han et
al. [9] encoded a priori information to improve the function
approximation of ELM. Kim et al. [10] introduced a variable
projection method to reduce the dimension of the parame-
ter space. Zhu et al. [11] used a differential evolutionary
algorithm to select the input weights for the ELM. Some
other scholars dedicated themselves to optimize the struc-
ture of ELM. Wang et al. [12] properly selected the input
weights and bias of ELM in order to improve the perfor-
mance of ELM. Li et al. [13] proposed a structure-adjustable
online ELM learning method, which can adjust the number
of hidden layer RBF nodes. Huang et al. [14,15] proposed an
incremental structure ELM, which can increase the number
of hidden nodes gradually. Meanwhile, another incremen-
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tal approach referred to as error minimized extreme learning
machine (EM-ELM) was proposed by Feng et al. [16]. All
these incremental ELM’s start from a small sized ELM hid-
den layer, and random hidden node (nodes) are added to
the hidden layer. During the growth of networks, the out-
put weights are updated incrementally. On the other hand,
an alternative to optimize the structure of ELM is to train a
network structure that is larger than necessary and then prune
the unnecessarily nodes during the learning. A pruned ELM
(PELM) was proposed by Rong et al. [17,18] as a classifica-
tion problem. Yoan et al. [19] proposed an optimally pruned
extreme learningmachine (OP-ELM)methodology. Besides,
there are still other attempts to optimize the structure of ELM
such as CS-ELM [20] proposed by Lan et al., which used a
subset model selection method. Zong et al. [21] presented
weighted extreme learning machine for imbalance learning.
Fu [22] employed kernel ELM in the field research for the
detection of impact location.

Inmany supervisedmachine learning algorithms, it is usu-
ally required to assume that the training and test data follow
the same distribution. However, this assumption does not
hold true in many real applications and challenges the tradi-
tional learning theories. To deal with such situations, transfer
learning, as a new machine learning algorithm, has attracted
a lot of attention because it can be a robust classifier with
little or even no labeled data from the target domain by using
the mass of labeled data from other existing domains (a.k.a.,
source domains) [23,24]. Pan et al. [25] proposed a Q learn-
ing system for continuous spaces. This is constructed as a
regression problem for an ELM. Zhang et al. [26] proposed
Domain Adaptation Extreme Learning Machine (DAELM),
which learns from a robust classifier in E-nose systems, with-
out loss of the computational efficiency and learning ability
of traditional ELM. Huang et al. [27] extend ELMs for both
semi-supervised and unsupervised tasks based on the mani-
fold regularization. In the past years, researchers have made
substantial contribution to ELM theories and applications in
varying fields. Huang et al. [28,29] studied the general archi-
tecture of locally connected ELM and kernel ELM. Tang et
al. [30] proposed the multilayer perceptron, extending an
ELM-based hierarchical learning framework.

In this paper, this issues will be investigated. Therefore,
an algorithm called free sparse transfer learning based on
the ELM algorithm (TFSR-ELM) is proposed, which uses a
small amount of target tag data and a large amount of source
domain old data to build a high-quality classification model.
The method takes the advantages of the traditional ELM and
overcomes the issue that traditional ELMcannot freely trans-
fer knowledge. In addition, a so-called TFSR-KELM based
on the kernel extreme learning machine ELM is proposed as
an extension to the TFSR-ELM method for pattern classifi-
cation problems. Experimental results show the effectiveness
of the proposed algorithm.

2 Brief review of the ELM and kernel ELM
learning algorithms

In this section, a brief review of the ELM proposed in [31]
is given. The essence of ELM is that in ELM the hidden
layer need not be tuned. The output function of ELM for
generalized SLFNs is

fL(x) =
L∑

i=1

βi hi (x j ) =
L∑

i=1

βi h(wi · x j + bi )

= h(x)β j = 1, . . . , N (1)

where wi ∈ Rn is the weight vector connecting the input
nodes and the i th hidden node,bi ∈ R is the bias of the
i th hidden node, βi ∈ R is the weight connecting the
i th hidden node and the output node, and fL(x) ∈ R is
the output of the SLFN. wi · x j denotes the inner product
of wi and x j · wi and bi are the learning parameters of
hidden nodes and they are randomly chosen before learn-
ing.

If the SLFN with N hidden nodes can approximate the N
samples with zero error, then there exist βi , wi , and bi such
that

L∑

i=1

βi h(wi · x j + bi ) = t j , j = 1, . . . , N (2)

Equation (2) can be written compactly as

Hβ = T. (3)

where

H =
⎛

⎜⎝
h(x1)

...

h(xN )

⎞

⎟⎠=
⎛

⎜⎝
h(w1, b1, x1) · · · h(wL , bL , x1)

...
. . .

...

h(w1, bN , x1) · · · h(wL , bL , xN )

⎞

⎟⎠

N×L

,

T = [t1, . . . , tN ]T , and β = [β1, β2, . . . , βL ]T .

Numerous efficient methods can be used to calculate the
output weights β including but not limited to orthogonal pro-
jection methods, iterative methods [32] and singular value
decomposition (SVD) [33].

According to the ridge regression theory [34], one can
add a positive value to the diagonal of HHT ; the resultant
solution ismore stable and tends to have better generalization
performance:

f (x) = Hβ = h(x)HT
(
I
C

+ HHT
)−1

T, (4)
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The feature mapping h(x) is usually known to the user in
ELM. However, if the feature mapping h(x) is unknown to
users, a kernel matrix for ELM can be defined as follows
[34]:

�ELM = HHT : �ELMi, j = h(xi ) · h(x j ) = K (xi , x j ).

(5)

Thus, the output function of kernel ELM classifier can be
written compactly as:

f (x) = h(x)HT
(
I
C

+ HHT
)−1

T =
⎡

⎢⎣
K (x, x1)

...

K (x, xN )

⎤

⎥⎦

T
(
I
C

+ �ELM

)−1

T. (6)

3 Proposed learning algorithm

In this section, the overall architecture of the proposedTFSR-
ELM is introduced in detail, and a new kernel ELM free
sparse representation is presented, this is utilized to deter-
mine the basic elements of TFSR-ELM.

3.1 Graph-laplacian regularization

Given a set of N-dimensional data points X = {xi }Ni=1, we
can construct the nearest neighbor graph G with N vertices,
where each vertex represents a data point. Let W be the
weight matrix ofG. If xi is among the k-nearest neighbors of
xi , or vice versa, Wi = 1, otherwise, Wi = 0. We define the
degree of xi as di = ∑m

j=1 Wi j , and D = diag(d1, . . . , dm).
Consider the problem of mapping the weighted graph G to
sparse representations V ,

L̂ N = 1

2

∑

i, j

(vi − v j )
2Wi, j = Tr(V̂ T LV̂ ), (7)

where Tr(·) denotes the trace of a matrix and L = D −
W is the Laplacian matrix. By incorporating the Laplacian
regularizer (7) into the original sparse representation, we can
obtain the following objective function of GraphSC [36]:

min
B,S

‖X −UV ‖2F + Tr(V LV T ) + λ

N∑

i=1

‖vi‖1

s.t. ‖uk‖22 ≤ 1, k = 1, . . . , N (8)

where λ ≥ 0is the regularization parameter.

3.2 Unsupervised extreme learning machine

In unsupervised algorithm, the entire training data X =
{xi }Ni=1 are not labeled (N is the number of training pat-
terns) and the target is to find the underlying structure of the
original data. When there is no labeled data, the formulation
is

min
β∈Rnl×no

1

2
‖β‖2 + λTr

(
βT HT LHβ

)
. (9)

Note that the above formulation always attains its minimum
at β = 0. As suggested in [35], it is necessary to intro-
duce additional constraints to avoid a degenerated solution.
Specifically, the formulation of US-ELM is given by

min
β∈Rnl×no

1

2
‖β‖2 + λTr

(
βT HT LHβ

)
.

s.t.(Hβ)T Hβ = Ino (10)

An optimal solution to problem (10) is given by choosing β

as the matrix whose columns are eigenvectors (normalized to
satisfy the constraint) corresponding to the first no smallest
eigenvalues of the generalized eigenvalue problem:

(Inl + λHT LH)ν = γ HT Hν. (11)

In the algorithmof Laplacian eigenmaps, the first eigenvector
is discarded since it is always a constant vector proportional
to 1 (corresponding to the smallest eigenvalue 0) [27,35].
In the US-ELM algorithm, the first eigenvector of (11) also
leads to small variations in the embedding and is not useful
for data representation. Therefore, it is suggested to abandon
this trivial solution as well.
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Let γ1, γ2, . . . , γno+1(γ1 ≤ γ2 ≤ · · · ≤ γno+1) be the
(no + 1) smallest eigenvalues of (11) and ν1, ν2, . . . , νno+1

be their corresponding eigenvectors. Then, the solution to the
output weights β is given by

β∗ = [
ν′
2, ν

′
3, . . . , ν

′
no+1

]
, (12)

where ν′
i = νi/‖Hνi‖, i = 2, . . . , no + 1 are the normalized

eigenvectors. If the number of labeled data is less than the
number of hidden neurons, problem (12) is underdetermined.
In this case, we have the following alternative formulation by
using the same trick as in previous sections:

(Iu + λLHHT )u = γHHT u. (13)

Again, let u1, u2, . . . , uno+1 be generalized eigenvectors cor-
responding to the (no+1) smallest eigenvalues (13), then the
final solution is given by

β∗ = HT [
ũ2, ũ3, . . . , ũno+1

]
, (14)

where ũi = ui
/ ∥∥HHT ui

∥∥ , i = 2, . . . , no + 1 are the nor-
malized eigenvectors.

Our task is classified, the US-ELM in Algorithm 2:

3.3 Framework of TFSR-ELM

To build an effective association between Ys and Yt , we pro-
pose to embed all labels into a latent Euclidean space using
a graph-based representation. As a result, the relationship
between labels can be represented by the distance between
the corresponding prototypes of the labels in the latent space.
Furthermore, we show that predictions made by each source
classifier can also be mapped into the latent space, which
makes the knowledge transfer from source classifiers possi-
ble. Finally, a regularization framework is applied to learning
an effective classifier for the data classification task. In this
manner, the transfer learning framework depends on opti-
mizing the free sparse representation simultaneously by the
problem designer, and for this reason it is called “transfer free
sparse representation learning” (TFSR-ELM in short). The
free sparse representation algorithm is adopted to perform
classification in the embedded space. The framework of the
proposed TFSR-ELM method is shown in Fig. 1.

The traditional TL-ELM builds a learning model using
the training and test data with different distributions that
deal with transfer knowledge. The representations learned
by TFSR-ELM can be used for building a robust and accu-
rate data classifier. For every class, a US-ELM classifier is
introduced, the objective function of which is integrated into
(9). US-ELM hyperplane normal vectors for every class are
coupled as columns of matrix W ∈ RD×m . In addition, all
the margins are grouped for the training objects with respect
to all the classes into matrix � ∈ R

m×Nl .
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Source domain training 
set(unlabeled data)

Free sparse representation 
optimization

Free dictionary learning 
optimization  

Target domain TL-ELM 
classifier

Fig. 1 The framework of proposed TFSR-ELM algorithm

min
U,V,W

‖X −UV ‖2F + λ

N∑

i=1

‖vi‖1 + Tr(V M̃V T )

+ λ1

(
1

2
‖W‖2F + c1T�1

)

s.t. ‖uk‖22 ≤ 1, k = 1, . . . , K , 1 − ��Y ◦ (WT V ), �
0,

(15)

where λ1 is a tuning parameter, c is ELM coefficient, 1 is a
matrix of ones, 1 is a vector of ones, ◦ denotes Hadamard
product, and �;
 stand for element-wise inequalities.

A three-step algorithm is proposed for efficiently solv-
ing the TFSR-ELM optimization problem. The Lagrangian
function for (15) is as follows

L(W, �,U, V, �,	, ν) = ‖X −UV ‖2F + λ

N∑

i=1

‖vi‖1

+ Tr(V M̃V T ) + λ1

(
1

2
‖W‖2F

)
+

K∑

k=1

(‖uk‖22 − 1)

+ 1T ((λ1c1
T + 	)� + � ◦ (1 − � − Y ◦ (WT V )))1, (16)

where �,	 ∈ R
m×NL , v ∈ R

K are the dual variables asso-
ciated with corresponding inequality constraints. According
to the duality theory, the following problem can be solved:

max
�,	,ν

min
W,�,U,V

L(W, �,U, V, �,	, ν)

s.t.�
0,	
0, ν
0. (17)

The first order optimality conditions overW, � will have the
following form

W = (� ◦ Y )V T , 0 = (� ◦ Y )1, ��kc, (18)

By substituting the values of (18) and (16) into (17),weobtain
the following optimization problem

max
�,ν

min
U,V

LD(U, V, �, ν)

s.t.(� ◦ Y )1 = 0, 0���kc, ν
0, (19)

where LD(U, V, �, ν) has the following form

LD(U, V, �, ν) = ‖X −UV ‖2F + λ

N∑

i=1

‖vi‖1 + 1T�1

+
K∑

k=1

νk(‖uk‖22 − 1)

+ Tr

(
V

(
M̃ − 1

2
E

)
V T

)
, (20)

where E = (� ◦Y )T (� ◦Y ). Problem (20) can be efficiently
solved via the following three steps of iterative algorithms.

Free Sparse Codes Learning is done by optimizing

min
V

‖X −UV ‖2F + λ

N∑

i=1

‖νi‖1

+ Tr

(
V

(
M̃ − 1

2
E

)
V T

)
. (21)

where the dictionary U is fixed. Because equation (21) with
L1-regularization is non-differentiable when uk contains 0s,
the standard unconstrained optimization algorithms cannot
be applied. In the following, an optimization algorithm based
on coordinate descent is introduced to solve this problem. It is
easy to see that the problem (21) is convex, thus, the global
minimum can be achieved. In order to solve the problem
by optimization over each uk , the problem (21) should be
rewritten in a vector form.

The reconstruction error ‖X −UV ‖2F can be rewritten as
follows:
N∑

k=1

‖xk −Uvk‖2 (22)

The Laplacian regularizer Tr(V LV T )(L = M̃ − 1
2 E) is the

Laplacian matrix can be rewritten as follows:

Tr(V LV T ) = Tr

⎛

⎝
N∑

k,i=1

Lkivkv
T
i

⎞

⎠

=
K∑

k,i=1

Lkiv
T
i
vk =

K∑

k,i=1

Lkiv
T
k
vi (23)

Combining (22) and (23), problem (21) can be rewritten as

min
V

N∑

i=1

‖xi −Uvi‖2 + λ

N∑

i=1

‖νi‖1 +
K∑

k,i=1

Lkiv
T
k
vi . (24)

When updating νi , the vectors {νk}k �= j are fixed. Thus, the
following optimization problem is obtained:
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min f (vi )
vi

= ‖xi −Uvi‖2 + λ

j∑

k=1

∣∣∣v( j)
k

∣∣∣ + Liiv
T
i

vi + vT
i
hi ,

(25)

where hi = 2(
∑

k �=i Liksk) and s( j)
k

is the kth coefficient of
sk .

Following the feature-sign search algorithm proposed in
[37], Eq. (25) can adopt a subgradient strategy to solve
the non-differentiable problem, which uses subgradients of
f (vi ) at non-differentiable points.
Dictionary learning is performed by solving the problem:

max
v

min
U

(
‖X −UV ‖2F +

K∑

k=1

vk(‖uk‖22 − 1)

)

s.t.v
0, (26)

by the iterative optimization method in [36], while fixing the
coefficient matrix V . Let v = [v1, . . . , vK ],and vk be the
Lagrange multiplier. The problem becomes a least squares
problem with quadratic constraints

min f (U )
U

= ‖X −UV ‖2 +
K∑

k=1

vk(‖uk‖2 − 1), (27)

L(U, v) = ‖X −UV ‖2 + Tr(UTU
) − Tr(
)

= Tr(XT X) − 2Tr(UT XV T )

+ Tr(V TUTUV ) + Tr(UTU
) − Tr(
)

(28)

The optimal solution U∗ can be obtained by letting the first-
order derivative of (28) to be equal to zero

U∗VV T − XV T +U∗
 = 0. (29)

Then, it resolves to

U∗ = XV T (VV T + 
)−1. (30)

Substituting (30) into (28), the Lagrange dual function is

L(v) = Tr(XT X) − 2Tr(XV T (VV T + 
)−1V XT )

+ Tr((VV T + 
)−1V XT XV T ) − Tr(
) (31)

This leads to the following Lagrange dual function:

min



Tr(XV T (VV T + 
)−1V XT + Tr(
)

s.t.v
0. (32)

This equation (32) can be solved by using Newton or conju-
gate gradient algorithm.

Learning Unsupervised ELM. Finally, the optimal classi-
fier parameters are searched:

min
�

(
1

2
Tr(VEV T − 1T�1) +

K∑

k=1

vk(‖uk‖22 − 1)

)

s.t.(� ◦ Y )1 = 0, 0���kc, (33)

123



Memetic Comp. (2016) 8:85–95 91

3.4 Framework of TFSR-KELM

Kernel extreme learningmachine is based on kernel learning.
Specifically, we propose a transfer free sparse representation
based on a kernel ELM algorithmwhich starting from a basic
kernel, tries to learn chains of kernel transforms that can
produce good kernel matrices for the source tasks. The same
sequence of transformations can be then applied to compute
the kernel matrix for new related target tasks. This method
is applied to the unsupervised and transfer learning.

According to kernel ELM, it can be formulated as:

max
�,ν

min
U,V

LD(U, V, �, ν)

s.t.(γKMS(p, q) ◦ Y )1 = 0, 0�γKMS(p, q)�kc, ν
0, (34)

The primal of Eq.(34) is defined as

min
�

(
1

2
Tr(VEV T − 1T�1) +

K∑

k=1

vk(‖uk‖22 − 1)

)

s.t.(kσ/γ (xi , x j ) ◦ Y )1 = 0, 0�kσ/γ (xi , x j )�kc, (35)

Standard Gaussian kernel (i.e.kσ/γ (x, y) = exp
(− 1

2(σ/γ )2
‖x − y‖2), bandwidth σ/γ ) is used as the default

kernel.
As for multiclass classification problems, the traditional

methods, such as one against one (OAO) or one against
all (OAA) classification algorithms, decompose a multiclass
classification problem into several binary classification prob-

lems in. However, these methods suffer from the problem of
high computational complexity. For some multiclass classi-
fication problems, the optimal solution of TFSR-KELM can
be formulated as

min
�

(
1

2
Tr(VEV T − 1T�1) +

K∑

k=1

vk(‖uk‖22 − 1)

)

s.t.(Ks ◦ Y )1 = 0, 0�Ks�kc, (36)

Proposed TFSR-KELMalgorithm can be summarized as fol-
lows.

4 Experimental results

4.1 Performance evaluation of TFSR-ELM

In this section, in order to evaluate the properties of our
framework,we perform the experiments on a non-text dataset
obtained from the UCI machine learning repository.

4.1.1 Dataset

UCI dataset The UCI machine learning repository contains
Iris, Wine, Segment, Heart, Diabetes, Flare Solar, and Splice
dataset (Table 1).

ORL and yale face dataset The ORL face database [38]
contains 10 different images for each of the 40 distinctive
subjects. Subjects are photographed at different times, with
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Table 1 UCI data set used in the experiments

Data sets Cluster Dimensionality Sample Size

Iris 3 4 160

Wine 3 3 178

Segment 7 7 230

Heart 8 13 270

Diabetes 3 8 768

Flare Solar 5 9 1066

Splice 8 60 3175

varying lighting conditions, facial expressions and facial
details. All images are captured against a dark homogeneous
background with the subjects in an upright, frontal position
with a small tolerance for side movement, as shown in Fig. 2.
The Yale face database [39] contains 165 grayscale images
of 15 individuals. There are 11 images per subject, one per
different facial expression or configuration: center-light, with
glasses, happy, left-light,without glasses, normal, right-light,
sad, sleepy, surprised, and winking, as shown in Fig. 3).

MNIST dataset MNIST dataset [41] has a training set of
60,000 examples and a test set of 10,000 examples of size 28
× 28 (Fig. 4).

USPS dataset Experiments are conducted on the bench-
mark USPS handwritten digits dataset. USPS is composed
of 7291 training images and 2007 test images of size 16 ×
16. Each image is represented by a 256-dimensional vector
(Fig. 5).

4.1.2 Classification performance assessment

For the UCI categorization data, the different attributes were
used to classify the data in a dataset. The number of hid-
den neurons was set to 1000 for the first two data sets
(Iris and Wine), and 2000 for the rest data sets. The hyper-
parameter λ was selected from the exponential sequence
{10−5, 100, . . . , 105} based on the clustering performance.

Fig. 4 Sample images in the MNIST dataset

For US-ELM, TFSR-ELM, the same affinity matrix was
used, but the dimension of the embedded space was selected
independently. We ran K-means algorithm was run in the
original space and the embedded spaces of US-ELM, TFSR-
ELM, 200 times independently. There are 200 rounds for all
algorithms to get the average accuracy.

In Table 2, the TFSR-ELM method, delivered more sta-
ble results across all the datasets and is highly competitive
in most of the data sets. It obtained the best classifi-
cation accuracy among all methods. Hence, as discussed
in the above section, TFSR-ELM algorithm possesses the
traditional advantages over other methods in terms of classi-
fication accuracy.

As shown in Table 3, TFSR-ELM is obviously more
superior than US-ELM in training time for almost all these
datasets. Although the TFSR-ELM algorithm has lower
training time, its training time is more compared with the
traditional ELM algorithm.

To test the performance of US-ELM for noisy data, exper-
iments were conducted on a series of data sets with different
levels of noise. Details of the relationship between the noise
level and classification accuracy are showed in Table 4. The

Fig. 2 Sample images in the ORL database

Fig. 3 Sample images in the YALE database
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Fig. 5 Sample images in the USPS dataset

Table 2 Performance comparison of the proposed TFSR-ELM

Data set k-means ELM USELM TFSR-ELM

Avr. Best Avr. Best Avr. Best Avr. Best

Iris 82.20 ± 12.8 89.30 88.22±15.23 98.71 86.02 ± 13.32 97.33 88.12 ± 17.8 97.92

Wine 92.32 ± 3.21 95.63 92.63±0.45 96.58 93.63 ± 0.21 96.63 95.77 ± 0.60 96.73

Segment 60.56 ± 5.80 67.11 64.43 ± 0.53 74.54 64.43 ± 0.53 74.50 69.22 ± 0.70 76.43

Heart 55.62 ± 6.27 61.23 60.9 ± 0.23 65.33 58.92 ± 0.23 62.22 70.22 ± 0.30 71.32

Diabetis 89.01 ± 2.64 90.21 93.58 ± 0.51 95.91 92.67 ± 1.20 93.37 94.23 ± 0.31 95.75

Flare solar 90.30 ± 6.67 91.20 92.15 ± 0.30 92.26 92.24 ± 0.21 93.32 93.27 ± 0.62 96.21

Splice 50.64 ± 5.29 58.27 55.35 ± 5.11 62.85 53.60 ± 5.80 61.54 61.60 ± 6.21 67.33

USPS 63.72 ± 3.43 71.44 75.68 ± 4.82 87.90 76.30 ± 5.90 88.41 82.50 ± 6.15 90.20

MNIST 65.88 ± 4.10 73.89 80.24 ± 5.56 93.12 79.30 ± 6.10 91.30 84.70 ± 7.21 93.23

Table 3 Training time (seconds) comparison between K-means, ELM,
US-ELM, TFSR-ELM

Data set K-means ELM US-ELM TFSR-ELM

Iris 0.006 0.002 0.050 0.030

Wine 0.007 0.005 0.055 0.050

Segment 0.029 0.009 1.763 1.023

Heart 0.035 0.010 2.198 1.987

Diabetis 0.022 0.008 1.532 0.967

Flare Solar 0.033 0.013 2.045 1.923

Splice 0.062 0.022 3.133 2.996

USPS 0.101 0.068 3.242 3.356

MNIST 0.094 0.071 2.293 2.137

Table 4 The relationship between noise level and classification accu-
racy

Noise level 0.01 0.02 0.03 0.04 0.05 0.06

US-ELM 0.928 0.912 0.908 0.892 0.871 0.863

TFSR-ELM 0.956 0.954 0.953 0.953 0.953 0.953

noise experiment was performed on the Wine data set. The
zero mean and different standard deviations of Gaussian
noise were added to the training samples. As shown in
Table 4, TFSR-ELM is obviously superior than US-ELM in
terms of classification accuracy. However, with the increase
of noise, the TFSR-ELM is relatively stable. Therefore, it
shows very good robustness in terms of noise.

4.2 Performance evaluation of TFSR-KELM

In this section, in order to assess the effectiveness of the pro-
posed methods in multi class classification problems, a study
in conducted on the performance of the proposed methods
TFSR-KELMfor face recognition on two benchmarking face
databases, namely, Yale and ORL. The target datasets are
generated by rotating the original dataset clockwise 3 times
by 100, 300, and 500, as shown in Fig. 6. Particularly, the
greater the rotation angle is, the more complex will be the
resulting problem becomes. Thus three faces learning prob-
lems are built for each face dataset.

Because choosing the algorithm parameters for the ker-
nel methods still is a hot field in research, in the algorithm,
parameters are generally preset. In order to evaluate the per-
formance of the algorithm, a set of the prior parameters is first
given and then the best cross-validation mean rate among the
set is used to estimate the generalized accuracy in this work.
Five-fold cross validation is used on the training data for para-
meter selection. Then, the mean of experimental obtained
for the testing data is used to evaluate the performance. The
overall accuracy (i.e., the percentage of the correctly labeled
samples over the total number of samples) is chosen as the
reference classification accuracy measure. The performance
of TFSR-ELM is compared with K-means, traditional ELM,
US-ELM, and TFSR-ELM. For each evaluation, five rounds
of experiments are repeated with randomly selected training
data, and the average result is recorded as the final classifi-
cation accuracy in Table 5.

The overall accuracy of LS-SVM is lower than any other
classifier for all tasks. With the increase in rotation angle, the
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Table 5 Means (%) of classification accuracy(ACC) of all algorithm
on Yale and ORL with different rotation angles

Face data Algorithms

LS-SVM US-ELM ELM TFSR-KELM

Yale 100 72.67 79.90 78.90 90.31

300 71.82 76.66 76.29 85.89

500 69.38 73.32 75.32 81.56

ORL 100 80.32 85.92 82.67 92.71

300 78.35 83.93 81.21 88.23

500 71.39 78.85 79.36 86.67

classification performance of all classifiers degrades gradu-
ally. However, for TFSR-KELM, the performance seems to
degrade more slowly than the other methods. Exceptionally,
traditional ELM exhibits competitive performance to some
extent compared to the other methods, particularly on more
complex datasets. As shown in Table 5, the TFSR-KELM
method delivers more stable results across all the datasets
and is highly competitive for most of the datasets. It obtains
the best classification accuracy more times than any other
method. Hence, as discussed in the above section, TFSR-
KELM possesses overall advantages over other methods in
the sense of classification accuracy.

5 Conclusions and future research

The issue of free sparse learning based on transfer ELM
was addressed. The basic idea of TFSR-ELM is to use
a lot of source data to build a high-quality classification
model. Starting from the solution of independent ELMs,
it was evident that the addition of a new term in the cost
function (which penalizes the diversity between consecu-
tive classifiers) leads to transfer of knowledge. The results
showed that the proposed method that uses TFSR-ELM
can effectively improve the classification by learning free
sparse knowledge and is robust to different sizes of training
data.

In addition, a novel transfer free sparse representation ker-
nel extreme learning machine (TFSR-KELM) based on the
kernel extreme learning machine was proposed with respect
to the TFSR-ELM. Experimental results showed the effec-
tiveness of the proposed algorithm. In the future, a study
will be conducted on verify whether this method can be
extended to transfer knowledge across different domains. It
would be interesting to define a norm between the transfor-
mations obtained in such a setting. This norm can be used to
decide what type of knowledge could be transferred based
on domain similarity.

Fig. 6 Face image samples of the Yale and ORL datasets. aYale faces of object. bYale faces of object with rotation of 100. cORL faces of object.
d ORL faces of object with rotation of 100
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