
Memetic Comp. (2017) 9:91–108
DOI 10.1007/s12293-016-0186-1

REGULAR RESEARCH PAPER

Swarm based mean-variance mapping optimization for convex
and non-convex economic dispatch problems

T. H. Khoa1 · P. M. Vasant1 · M. S. Balbir Singh1 · V. N. Dieu2

Received: 18 November 2014 / Accepted: 4 April 2016 / Published online: 27 April 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In power system generation, the economic dis-
patch (ED) is used to allocate the real power output of thermal
generating units to meet the required load demand so as the
total cost of thermal generatingunits isminimized.This paper
proposes a swarm based mean-variance mapping optimiza-
tion (MVMOS) for solving the ED problems with convex
and nonconvex objective functions. The proposed method is
the extension of the original single particle mean-variance
mapping optimization by initializing a set of particles. The
special feature of the proposed method is a mapping function
applied for the mutation based on the mean and variance of
n-best population. The proposed MVMOS is tested on vari-
ous systems and the obtained results are compared to those
from many other optimization methods in the literature. Test
results have shown that the proposedmethod canobtain better
solution quality than the other methods. Therefore, the pro-
posed MVMOS is a potential method for efficiently solving
the convex and nonconvex ED problems in power systems.
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Nomenclature

N Total number of generating units
F Total operation cost
ai , bi , ci Fuel cost coefficients of unit i
ei , fi Fuel cost coefficients of unit i reflect-

ing valve-point effects
Bi j , B0i , B00 B-matrix coefficients for transmission

power loss
PD Total system load demand
Pi Power output of generator i
Pi,max Maximum power output of generator i
Pi,min Minimum power output of generator i
Ps Power output of slack unit
Ps,max Maximum power output of slack unit
Pismin Minimum power output of slack unit
ni Number of prohibited operating zones

of unit i
PL Total transmission loss
Pl
ik Lower bound for prohibited zone k of

generator i
Pu
ik Upper bound for prohibited zone k of

generator i
DRi Ramp down rate limit of unit i
U Ri Ramp up rate limit of unit i
Si Spinning reserve from unit i
Si,max Maximum spinning reserve contribu-

tion of unit i
SR Total system spinning reserve require-

ment
n_var Number of variable (generators)
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n_par Number of particles
mode Variable selection strategy for offspring

creation
archive zize n-best individuals to be stored in the

table
di Initial smoothing factor
�d ini0 Initial smoothing factor increment

�dfinal0 Final smoothing factor increment
f ∗
s_ini Initial shape scaling factor
f ∗
s_final Final shape scaling factor
Dmin Minimum distance threshold to the

global best solution
n_randomly Initial number of variables selected for

mutation
n_randomly_min Final number of variables selected for

mutation
indep.runs m steps independently to collect a set

of reliable individual solutions

1 Introduction

The economic dispatch (ED) is one of the powermanagement
tools that is used to determine real power output of ther-
mal generating units to meet required load demand. The ED
results in minimum fuel generation cost, minimum transmis-
sion power loss while satisfying all units, as well as system
constraints [1,2].

The ED problems may be generally classified into convex
and nonconvex optimization problem based on the nature
characteristic of the generating units. In the convex ED, the
operation cost function is usually approximated by quadratic
function. However, the objective function of the ED is more
accurate when the cubic function is considered to express
the input-output characteristics of thermal generators. Sev-
eral methods are proposed in the literature for solving ED
with cubic fuel cost function such as iterative dynamic pro-
gramming (DP) [3], Newton approach [4], genetic algorithm
(GA) [5] particle swarm optimization (PSO) [6], λ-logic
based algorithm [7,8] and firefly algorithm (FA) [9]. The ED
problem can be represented more exactly by considering var-
ious nonconvex elements and nonlinearities in the objective
function and constraints such as valve point effects, prohib-
ited operating zones, ramp rate limits and spinning reserve.
These effects can cause the input-output curve of thermal
generators to become more complicated. For this reason,
the practical ED problem should be formulated with a non-
convex objective function which is difficult to find global
solution. Many heuristic search approaches are presented in
the literature for solving the nonconvex ED problems such
as hopfield neural network (HNN) [10–12], genetic algo-
rithm (GA) [13–15], evolutionary programming (EP) [16],

evolutionary algorithm (EA) [17], simulated annealing (SA)
[18], artificial bee colony (ABC) [19], evolutionary algorithm
[17], artificial immune system (AIS) [20], biogeography-
based optimization (BBO) [21], and differential evolution
(DE) [22,23], particle swarm optimization (PSO) [24,25].
Recently, PSO is the most popular method applied for solv-
ing the ED problems, especially for nonconvex problems.
Several improvements of PSO method are developed for
solving the ED problems such as self-organizing hierarchi-
cal PSO (SOH_PSO) [26], simulated annealing like particle
swarm optimization (SA-PSO) [27], pseudo-gradient based
particle swarm optimization (PGPSO) [2], new PSO with
local randomsearch (NPSO-LRS) [28], newadaptive particle
swarm optimization (NAPSO) [29], Chaotic particle swarm
optimization (CPSO) [30]. These improved PSO methods
can obtain high quality solutions for the problem. The PSO
method is continuously improved for dealing with large-
scale and complex problems such as in [31,32]. Although,
heuristic search methods can deal with complex optimiza-
tion problems, their search ability often provides near global
optimal solution. The nonconvex ED problems have been
also solved by many hybrid optimization methods such as
hybrid approach based on sequential combination of GA
and active power optimization (APO) usingNewton’s second
order approach (GA-APO, NSOA) [33], self-adaptive differ-
ential evolution with augmented Lagrangemultiplier method
(SADE-ALM) [34], integrated artificial intelligence (ETQ)
[35], bacterial foraging optimization with Nelder –Mead
algorithm (Adaptive BF with NM) [36]. These hybrid meth-
ods become powerful search methods for obtaining higher
solution quality due to using the advantages of each ele-
ment method to improve their search ability for the complex
problems. However, the hydrid methods may be slower and
more complicated than the single methods because of com-
bination of several operations. The nonconvex optimization
problem is still a challenge for solutionmethods.Hence, there
is always a need for developing new techniques for solving
nonconvex problems.

Recently,Mean-variancemapping optimization (MVMO)
is a new meta-heuristic search algorithm which is devel-
oped by István Erlich [37]. This algorithm falls into the
category of the so-called “population-based stochastic opti-
mization technique”. The similarities between MVMO and
the other known stochastic algorithms are in three evolution-
ary operators including selection, mutation and crossover.
The extensions of MVMO is also developed by Rueda
& Erlich, which named swarm based mean-variance map-
ping optimization (MVMOS) [38]. Unlike the single particle
MVMO, the search process ofMVMOS is startedwith a set of
particles. In addition, two parameters of MVMO including
the scaling factor and variable increment parameters have
been extended to enhance the mapping. Hence, the ability
for global search of (MVMOS) is more effective than the
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original version. The MVMOS has been successfully imple-
mented for solving the ED problems [39]. However, the ED
was only considered as nonconvex problem which takes into
account valve-point effects, multiple fuel options and prohib-
ited operating zones. In this paper, the MVMOS is proposed
as a newmethod for solving theEDproblems in general. Both
convex and nonconvex ED problems are considered in this
study. For convex ED problem, the cubic fuel cost function
is considered beside the quadratic fuel cost function which is
the basic ED problem. For nonconvex ED problem, besides
the formulated ED problems in [39], we have proposed a new
problem which combines prohibited operating zones with
valve-point loading effects. Moreover, the spinning reserve
constraint and large-scale test systems have been proposed
for the ED problem with prohibited operating zones which
were not mentioned in [39]. The proposedMVMOS is tested
on several convex and nonconvex systems and the obtained
results are compared to those from many other methods in
the literature. The comparisons have shown that theMVMOS

method is more effective and provides better solution quality
than the other methods in the literature for the problem in
terms of optimal solution, especially for large-scale systems.
Therefore, the MVMOS is a favorable method for solving
the ED problems.

The remaining organization of this paper is as follows.
Section 2 presents the formulation of the ED including con-
vex and nonconvex problems. Handling of constraints and
implementation of the proposedMVMOS to ED problem are
addressed in Sect. 3. Section 4 reports results of the proposed
MVMOS method. A number of case studies using standard
test systems are used to test the proposed method. The com-
parisons of results between the proposedmethod and existing
methods are also carried out in this section. The discussion
is followed in Sect. 5. After all, the conclusion is given.

2 Problem formulation

2.1 Convex economic dispatch problem

The objective function of the ED problem is to minimize the
total production cost, which be written as:

Minimize FT =
N∑

i=1

Fi (Pi ) i = 1, 2, . . . , N (1)

Mathematically, the fuel cost of a thermal generation unit is
represented as quadratic function [1]:

Fi (Pi ) = ai + bi Pi + ci P
2
i (2)

The solution of ED can be highly improved by introducing
higher order generator cost functions. Cubic cost function

displays the actual response of thermal generatorsmore accu-
rately. The cubic fuel cost function of a thermal generating
unit is represented as follows [4]:

Fi (Pi ) = ai + bi Pi + ci P
2
i + di P

3
i (3)

subject to
Real power balance equation The total active power out-

put of generating units must be equal to total power load
demand plus power loss:

N∑

i=1

Pi = PD + PL (4)

where the power loss PL is calculated by the below formu-
lation [1]:

PL =
N∑

i=1

N∑

j=1

Pi Bi j Pj +
N∑

i=1

B0i Pi + B00 (5)

Generator capacity limits The active power output of gener-
ating units must be within the allowed limits:

Pi,min ≤ Pi ≤ Pi,max (6)

2.2 Nonconvex economic dispatch problems

2.2.1 ED problem with valve point effects

The valve point effects (VPE) is considered as practical oper-
ation of thermal generating units.When each steam valve in a
turbine of the thermal unit starts to open, produces a rippling
effect on the input-output curve. The ripples are shown in
Fig. 1. The VPE makes the fuel cost function highly nonlin-
ear and havingmultiple local optimum.The fuel cost function
is described as the superposition of sinusoidal functions and
quadratic functions. The model of ED problem with VPE is
formulated as follows [2]:

Fi (Pi ) = ai + bi Pi + ci P
2
i + ∣∣ei sin( fi (Pi,min − Pi ))

∣∣ (7)

subject to the real power balance constraint in Eq. (4) and
generator capacity limits in Eq. (6).

2.2.2 ED problem with prohibited operating zones

The prohibited operating zones (POZ) are the range of output
power where the thermal generating unit must avoid operat-
ing because it causes undue vibration of the turbine shaft and
might bring damage to the shaft and bearings. The cost curve
function of units with prohibited zones is described in Fig. 2
[2].
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Fig. 1 Fuel cost curve of units with valve-point effects

Fig. 2 Fuel cost curve of units with prohibited zones

The objective function for the ED problem with POZ can
be a quadratic function in Eq. (2) or a quadratic function with
VPE in Eq. (7). For units without POZ, only the equality con-
straint in Eq. (4) and inequality constraint in Eq. (6) are con-
sidered. As for units operating with POZ, more constraints
are added to the constraints mentioned above as follows:

Prohibited operating zone constraint The feasible oper-
ating points should be located at one of the sub-regions as
follows [2]:

Pi ∈
⎧
⎨

⎩

Pi,min ≤ Pi ≤ Pl
i1

Pu
ik−1 ≤ Pi ≤ Pl

ik , k = 2, . . . , ni
Pu
ini

≤ Pi ≤ Pi,max

(8)

Spinning reserve constraint The spinning reserve constraint
for all units is defined as [17]:

N∑

i=1

Si ≥ SR (9)

where the operating margin of each unit Si is determined by:

Si = min
{
Pi,max − Pi , Si,max

} ; ∀i /∈ � (10)

Si = 0; ∀i ∈ � (11)

Ramprate limit constraintsThe increasedor decreasedpower
output of a unit from its initial operating point to the next one
should not exceed its ramp up and down rate limits. The ramp
rate constraints are determined by [2]:

Pi − Pi0 ≤ URi , if generation increases (12)

Pi0 − Pi ≤ DRi , if generation decreases (13)

To handle the ramp rate limits, the highest and lowest
possible power outputs of units are determined based on their
power output limits, the generator capacity limits in Eq. (6)
can be rewritten as follows [2]:

max(Pi,min, Pi0−DR) ≤ Pi ≤ min(Pi,max, Pi0+UR) (14)

3 MVMOS for ED problems

3.1 MVMOS

MVMOS is an extension of the original version MVMO.
The difference between MVMO and MVMOS is the initial
search process with particles. MVMO starts the search with
single particle while MVMOS starts the search with a set of
particles. MVMO is extended to two parameters: the scaling
factor fs and variable increment�dparameter to enhance its
mapping. Therefore, the global search ability of theMVMOS

is strengthened.Thedetail ofMVMOS algorithm is described
in [38].

3.2 Calculation of power output for slack unit

Slack variable method is usually used for handling equal-
ity constraints in optimization problems where the value of
variables is calculated from the others based on the equality
constraints [27]. This method is used for calculation of the
power output for a slack unit from the power outputs of the
remaining units in the system based on the power balance
constraint in Eq. (4). The power output of the slack unit is as
follows:

Ps = PD + PL −
N∑

i = 1
i �= s

Pi (15)

Equation (15) represents the calculation of slack unit s which
is randomly selected from the available N units and the limit

123



Memetic Comp. (2017) 9:91–108 95

violations of the slack unit will be penalized in the fitness
function in Eq. (18). The first unit of all test system is selected
as slack unit in this paper.

3.3 Implementation of MVMOS to ED

3.3.1 Initialization of algorithm

The parameters for MVMOS have to be initialized
including i termax , n_var, n_par, mode, di ,�d ini0 ,�dfinal0 ,
archive zize (n), f ∗

s_ini , f ∗
s_final,n_randomly,n_randomly_min,

indep.runs(m), Dmin..

3.3.2 Normalization and de-normalization of variables

In the proposed MVMOS method, each particle represents
a solution. A set of particles is used for finding best solu-
tion for the problem. The initial optimization variables are
normalized to the [0,1] bound as follows:

x_normali zed = rand(n_par, n_var) (16)

The search space of the algorithm is always restricted inside
the [0,1] range. However, the function evaluation is carried
out in the original scales [Pi,min, Pi,max ]. The denormaliza-
tion of the optimization variables is carried as follows:

Pi = Pi,min + (Pi,max − Pi,min).x_normali zed(ι, :) (17)

This initial solution is further checked for POZ violation. If
the violation is found, the repairing strategy in [2] is used to
move the operating point to a feasible region. After that, the
power output for the slack generator is calculated by using
Eq. (15). The fitness function includes the objective function
in Eq. (1), penalty terms for the slack unit if the generator
capacity limits constraint in Eq. (6) is violated and the penalty
terms for spinning reserve constraint in Eq. (9). The fitness
function FT to be minimized for the considered problem is
calculated as follows:

FT =
N∑

i=1

Fi (Pi ) + Ks .[(max(0, Ps − Ps,max))

+ (max(0, Ps,min − Ps))]

+ Kp.max

(
0, SR −

N∑

i=1

Si

)
(18)

where Ks and Kp are the penalty factor for the slack unit and
spinning reserve constraint, respectively.

MVMOS utilizes swarm implementation to enhance the
power of global searching of the classical MVMO by start-
ing the search process with a set of particles, each having its
own memory and represented by the corresponding archive

# Fitness x1 x1 ... xi... xN

1      
...      
n 
Mean ---

Nx

Variance --- v1 v2 vi vN

1x 2x ix

Fig. 3 The archive is used to store n-best population

and mapping function. At the beginning of the optimiza-
tion process, each particle performs m steps independently
to collect a set of reliable individual solutions. Then, the par-
ticles start to communicate and to exchange information. It
is worthless when particles are very close to each other since
this would entail redundancy. To avoid closeness between
particles, the normalized distance of each particle’s local
best solution xlbest,i to the global best xgbest is calculated by
Eq. (19). This normalized distance is employed to attempt
to reduce the swarm size provided. The i-th particle is dis-
carded from the optimization process if the distance Di is less
than a certain user defined threshold Dmin [38]. The infor-
mation exchange between particles and swarm reduction are
aimed at enhancing the global search ability while avoiding
redundancy in the search process.

Di =
√√√√ 1

N

N∑

j=1

(
xgbestj − xlbest,ij

)2
(19)

3.3.3 Solution archive

The best fitness and variables are stored in the archive table
which is described as Fig. 3. The archive size (n) is taken to
be a minimum of two. The table of best individuals is filled
up progressively over iterations in a descending order of the
fitness. When the table is filled with n members, an update is
performed only if the fitness of the new population is better
than those in the table.

Mean x̄i and variance vi are computed from the archive
as follows [37]:

x̄i = 1

n

n∑

j=1

xi ( j) (20)

vi = 1

n

n∑

j=1

(xi ( j) − x̄i )
2 (21)

Where j goes from 1 to n (archive size). At the beginning x̄i
corresponds with the initialized value of xi and the variance
vi is set to 1.
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Fig. 4 Variable mapping

3.3.4 Offspring creation

The individual with the best fitness, fbest , and its correspond-
ing optimization values, xbest , are stored in the memory of
the parent population for that iteration. This parent is used for
creation of the next offspring. Three common evolutionary
operations in offspring creation are: selection, mutation and
crossover operators.

Selection
Among N variables of the optimization problem, d vari-

ables are selected for mutation operation. There are four
strategies which are described in [37] for selecting the vari-
ables.

Mutation
For each of the d selected dimension, mutation is used to

assign a new value of that variable. Given a uniform random
number x∗

i ∈ [0,1], the transformation of x∗
i to xi viamapping

function is calculated in Eq. (22) and depicted as Fig. 4.
The transformation mapping function, h, is calculated by the
mean x̄ and shape variables si1 and si2 as in Eq. (24) [37]:

xi = hx + (1 − h1 + ho).x
∗
i − ho (22)

where hx , h1, h0 are the outputs of transformation mapping
function in Eq. (24) based on different inputs given by [37]:

hx = h(x = x∗
i ), ho = h(x = 0), h1 = h(x = 1) (23)

h(x̄i , si1, si2, x)= x̄i .(1−e−x .si1)+(1−x̄i ).e
−(1−x).si2 (24)

where

si = − ln(vi ). fs (25)

The scaling factor fs in Eq. (25) is a MVMO parameter
which can be used to change the shape of the function during
iteration. In MVMOS , this factor is extended due to the need
for exploring the search space more globally at the beginning

of the iterations. At the end of the iterations, the focus should
be on exploitation procedures. In [38], the factor fs is given
as follows:

fs = f ∗
s . (1 + rand()) (26)

where

f ∗
s = f ∗

s_ini +
(

i

ifinal

)2 (
f ∗
s_final − f ∗

s_ini

)
(27)

In Eq. (27), f ∗
s denotes the smallest value of fs and the vari-

able i represents the iteration number. f ∗
s_ini and f ∗

s_final are
the initial and final values of f ∗

s , respectively. The recom-
mended range of f ∗

s_ini is from 0.9 to1.0, and range of f ∗
s_final

is from 1.0 to 3.0. When f ∗
s_final = f ∗

s_ini = 1, which means
that the option for controlling the fs factor is not used [38].
The shape variables si1 and si2 in Eq. (24) are determined by
using the following algorithm[38]:

The above procedure fully exploits the asymmetric char-
acteristic of the mapping function by using different values
for si1 and si2.�d0 is calculated in Eq. (28), this factor is
allowed to decrease from 0.4 to 0.01.

�d0 = �d ini0 +
(

i

ifinal

)2 (
�dfinal0 − �d ini0

)
. (28)

Crossover
The crossover operation is done for the remaining unmu-

tated dimensionswhere the genes of the parents are inherited.
In other words, the values of these unmutated dimensions are
clones of the parent. Here, the crossover is done by direct
cloning of certain genes. In this way, the offsprings are cre-
ated by combining the vector xbest , and vector of d mutated
dimensions.
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Yes 

Stop 

Setting parameters of algorithm 
Normalize a set of  particles 

i = 1 

Using de-normalized variables to evaluate the fitness 
Fill / Update the solution archive 

Termination criteria satisfied? 

Start

k = 1 

i = i + 1 

i < m

Check for the global best 

Identification of redundant particle 

Deletion of  
particle? 

Offspring generation 
(Parent assignment and mutation via 

mapping function) 

k < np

k = k + 1 
np = np - 1 

k = k + 1 

No 

Yes

No 

Yes 

No 

Yes 

No 

Fig. 5 The flowchart of MVMOS

3.3.5 Termination criteria

The algorithm of the proposed MVMOS is terminated when
the maximum number of iterations i termax is reached.

3.3.6 Overall procedure

The flowchart of MVMOS is depicted in Fig. 5 [36]:
The steps of procedure of MVMOS for the ED problem

are described as follows:

Step 1 Setting theparameters forMVMOS including i termax ,
n_var, n_par, mode, di ,�d ini0 ,�dfinal0 , archive zize,
f ∗
s_ini , f ∗

s_final, n_randomly, n_randomly_min,

indep.runs(m),Dmin Set i = 1, i denotes the func-
tion evaluation

Step 2 Normalizing initial variables to the range [0,1] (i.e.
swarm of particles) by using Eq. (16).

Step 3 Set k = 1, k denotes particle counters.
Step 4 De-normalizing variables using Eq. (17), check for

POZ violation and repair,calculate power output for
the slack generator using Eq. (15), evaluate fitness
function in Eq. (18), store fbest and xbest in archive.

Step 5 Increase i = i + 1. If i < m(independent steps), go
to Step 6. Otherwise, go to Step 7.

Step 6 Check the particles for the global best, collect a
set of reliable individual solutions. The i-th parti-
cle is discarded from the optimization process if
the distance Di is less than a certain user defined
threshold Dmin . If the particle is delected, increase
k = k + 1, n p = n p – 1 and go to step 4. Otherwise,
go to Step 7.

Step 7 Create offspring generation through three evolution-
ary operators: selection, mutation and crossover.

Step 8 if k < n p, increase k = k + 1 and go to step 4.
Otherwise, go to step 9.

Step 9 Check termination criteria. If stoping criteria is satis-
fied, stop. Otherwise, go to step 3. The algorithm of
the proposed MVMOS is terminated when the max-
imum number of iterations i termax is reached.

4 Numerical results

The proposed MVMOS is mplemented to different convex
and nonconvex ED problems. TheMVMOS is more effective
than the original MVMO in term of the global search abil-
ity [38]. For this confirmation, the single particle MVMO
is also implemented to the ED problems by set the num-
ber of particles n p to 1. Different systems corresponding to
the formulated problems are used for testing the proposed
method. The implementation of the MVMOS is coded in
Matlab R2013a platform and executed for 50 independent
trials on a core i5-3470 CPU 3.2 GHz PC with 4GB of RAM
for each case.

4.1 Selection of parameters

Since different parameters of the proposed method have
effects on the performance of MVMOS . Hence, it is impor-
tant to determine a set of optimal parameters of the pro-
posed methods for dealing with ED problems. For each
problem, the selection of parameters is carried out by
varying only one parameter at a time while fixing the
others. The parameter is first fixed at the low value and
then increased. The obtained result after one run is com-
pared to the previous one. If the obtained result after
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Table 1 Parameter setting of MVMOS

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

i termax 10,000 4000 40,000 3000 30,000 50,000 70,000 90,000 1,500,000

n_var (generators) 20 3 26 6 15 30 60 90 140

n p 5 20 10 5 20 5 5 5 5

archive size 4 4 4 4 4 4 4 4 4

mode 4 4 4 4 4 4 4 4 4

indep.runs (m) 200 200 200 200 800 800 800 800 800

n_randomly 7 2 12 3 7 10 25 30 20

n_randomly_min 6 2 10 2 6 5 20 25 10

f ∗
s_ini 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

f ∗
s_final 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

di 1 1 1 1 1 1 1 1 1

�d ini0 0.25 025 0.25 0.25 0.25 0.25 0.25 0.25 0.25

�dfinal0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Dmin 0 0 0 0 0 0 0 0 0

one run is considerably better than the previous one, their
obtained value is chosen as the proper value. Otherwise,
their value will be increased. Multiple runs are carried
out to choose the suitable set of parameters. By experi-
ments, the set of optimal parameters for each test system
are shown in Table 1. The typical parameters are selected as
follows:

– i termax : maximum number of iterations depend on the
scale of test systems and complexity of the problem. The
maximum number of iterations is selected in the range
from 2000 to 150000 iterations.

– n_var: number of optimization variables. This parameter
denotes the number of generating units in system.

– n_par: number of particles is varied from 5, 10, 20, 30, 40
and 50, respectively. The number of particles is chosen
by experiments for each case.

– mode : There are four variable selection strategy for off-
spring creation . Afer all simulations, stragy 4 (mode =
4) is suporior to the other stragy.

– �d ini0 ,�dfinal0 : The range of �d0 in Eq. (28) is [0.01 –
0.4]. By experiments,�d ini0 and�dfinal0 is set to 0.25 and
0.02, respectively for all cases.

– f ∗
s_ini , f ∗

s_final : The range of values of f ∗
s_ini is from 0.9

to 1.0 and for values of f ∗
s_final is from 1.0 to 3.0. For

all cases, f ∗
s_ini is set to 0.95 in the range [0.9, 1.0] and

f ∗
s_final is set to 2.5 in the in the range [1.0, 3.0].

– indep.runs(m): The maximum number of independent
runs can be selected in the range from 200 to 800.

– Dmin is set to 0 for all cases.

The penalty factor Ks for the slack unit and the penalty factor
Kp spinning reserve constraint are large enough and set to
103 for all systems.

4.2 Convex ED problems

The fuel cost function is in turn as the quadratic and cubic
form for the convex ED problems.

4.2.1 Case 1: 20-unit test system with quadratic cost
function

This system supplies to a total load demand of 2500 MW.
The input data of the 20-unit system are from [10] includ-
ing fuel cost coefficients, generator capacity limits and B
loss matrix. The results obtained by the proposed MVMOS

are compared to those from lamda-iteration [10], HNN [10],
BBO [21] and MVMO in Table 2. The comparison shows
that the total cost and power loss obtained by the proposed
MVMOS are very close to the other methods in Table 2.
It is noted that the MVMOS achieves the optimal solution
with a high probability (the standard deviation is 0%) while
the solutions of lamda-iteration and HNNmismatch with the
total power demand and power loss.

4.2.2 Case 2: 3-unit test system with cubic cost function

The data information for 3-generating units with cubic cost
function are given in [3]. The total power load demand for
this system is 1400MW. The transmission power loss is con-
sidered in this case. The B loss matrix for the calculation of
power loss is referred from [1]. The obtained results by the
MVMO and MVMOS are presented in Table 3 along with
the solutions of SA1, SA2 [18] and IGA_MU [13]. The total
cost and power loss obtained by the proposed MVMOS are
very close to the other methods except SA1. This system has
two local optimum (about 6639 and 6642) [13], and SA1 are
likely to get stuck in a local solution.
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Table 2 Results and comparisons for 20-unit system with quadratic fuel cost function

Method Lamda iteration [10] HNN [10] BBO [21] MVMO MVMOS

Unit Pi (MW) Pi (MW) Pi (MW) Pi (MW) Pi (MW)

1 512.7805 512.7804 513.0892 512.7921 512.8032

2 169.1033 169.1035 173.3533 169.0396 169.0356

3 126.8898 126.8897 126.9231 126.8966 126.9038

4 102.8657 102.8656 103.3292 102.8659 102.8794

5 113.6836 113.6836 113.7741 113.6836 113.6801

6 73.5710 73.5709 73.06694 73.5790 73.5880

7 115.2878 115.2876 114.9843 115.2981 115.3130

8 116.3994 116.3994 116.4238 116.4029 116.4186

9 100.4062 100.4063 100.6948 100.4000 100.3979

10 106.0267 106.0267 99.99979 106.0532 106.0461

11 150.2394 150.2395 148.9770 150.2495 150.2079

12 292.7648 292.7647 294.0207 292.7497 292.7671

13 119.1154 119.1155 119.5754 119.1091 119.1058

14 30.8340 30.8342 30.54786 30.8429 30.8156

15 115.8057 115.8056 116.4546 115.8041 115.8156

16 36.2545 36.2545 36.22787 36.2551 36.2531

17 66.8590 66.8590 66.85943 66.8609 66.8630

18 87.9720 87.9720 88.54701 87.9606 87.9716

19 100.8033 100.8033 100.9802 100.8077 100.7986

20 54.3050 54.3050 54.2725 54.3146 54.2975

Total power (MW) 2591.9671 2591.9670 2592.1011 2591.9653 2591.9615

Power loss (MW) 91.9670 91.9669 92.1011 91.9653 91.9615

Power mismatch (MW) −0.000187 0.000021 0.0 0.0 0.0

Min cost ($/h) 62,456.9391 62,456.6341 62,456.7926 62,456.6331 62,456.6331

Average cost ($/h) – – 62,456.7928 62,456.6331 62,456.6331

Max cost ($/h) – – 62,456.7935 62,456.6331 62,456.6331

Standard deviation($/h) – – – 0.0 0.0

Average CPU time (s) 0.033757 0.006355 0.29282 6.334 6.365

Table 3 Results and
comparisons for 3-unit system
with cubic fuel cost function by
MVMO and MVMOS

Method SA1 [18] SA2 [18] IGA_MU[13] MVMO MVMOS

Unit Pi (MW) Pi (MW) Pi (MW) Pi (MW) Pi (MW)

1 359.546 376.123 365.4085 365.3941 365.5376

2 406.734 100.052 100.000 100.0000 100.0000

3 677.152 986.273 997.3436 997.3585 997.2108

Total power (MW) 1443.434 1462.448 1462.7521 1462.7526 1462.3517

Power loss (MW) 43.434 62.448 62.7521 62.7526 62.7484

Min cost ($/h) 6642.657 6639.504 6639.1849 6639.1853 6639.1853

Average cost ($/h) – – – 6642.4732 6640.1013

Max cost ($/h) – – – 6642.6830 6642.6830

Standard deviation ($/h) – – – 0.8391 1.5308

Average CPU time (s) – – – 1.758 1.823
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Table 4 Results and
comparisons for 26-unit system
with cubic fuel cost function by
MVMO and MVMOS

Method GA [6] PSO [6] MVMO MVMOS

Unit Pi (MW) Pi (MW) Pi (MW) Pi (MW)

1 2.40 2.40 2.3938 2.3937

2 2.40 2.40 2.400 2.400

3 2.40 2.40 2.400 2.400

4 2.40 2.40 2.400 2.400

5 2.40 2.40 2.400 2.400

6 4.00 4.00 4.000 4.000

7 4.00 4.00 4.000 4.000

8 4.00 4.00 4.000 4.000

9 4.00 4.00 4.000 4.000

10 15.20 15.20 16.5434 15.2000

11 15.20 15.20 15.2000 15.2002

12 15.20 15.20 15.2058 15.2006

13 15.20 15.20 15.3700 18.3375

14 25.00 25.00 25.0000 25.0000

15 25.00 25.00 25.0000 25.0000

16 25.00 25.00 25.0000 25.0000

17 129.71 129.69 143.1421 131.2265

18 124.71 124.69 124.7450 110.5722

19 120.42 120.40 134.7322 123.5438

20 116.72 116.70 134.3684 114.8961

21 68.95 68.95 68.9500 68.9500

22 68.95 68.95 68.9500 68.9500

23 68.95 68.95 68.9500 68.9500

24 337.76 337.85 290.8493 345.9793

25 400.00 400.00 400.0000 400.0000

26 400.00 400.00 400.0000 400.0000

Total power (MW) 2000.00 2000.00 2000.00 2000.00

Min cost ($/h) 27,671.2441 27,671.2276 27,261.8836 27,252.1262

Average cost ($/h) – – 27,342.9673 27,292.5052

Max cost ($/h) – – 27,741.6415 27,345.2012

Std. deviation($/h) – – 76.5519 22.7301

Average CPU time (s) – – 21.303 21.565

4.2.3 Case 3: 26-unit test system with cubic cost function

The data of the test system including 26 thermal generat-
ing units with cubic fuel cost function can be found in [8].
The system load demand for this case is 2000 MW neglect-
ing transmission power loss. The obtained results by the
MVMOS are compared to those from GA, PSO [6] and
MVMO as given in Table 4. The proposed MVMOS pro-
vides the total cost less than GA, PSO and MVMO.

4.3 Nonconvex ED problems

The proposed method is tested on different nonconvex prob-
lem including VPE and POZ characteristics. In order to

demonstrate the efficiency of the proposed approach, it is
also tested on large-scale systems.

4.3.1 Case 4: ED problem with valve point effects

The proposed MVMOS are applied to IEEE test systems
including 30 bus and 6 thermal generating units with VPE.
The fuel cost coefficients, generator capacity limits and B
loss matrix for this test systems are refered from [33]. The
test systemhere is for 283.4MW load demand. Table 5 shows
the results obtained by the MVMO and MVMOS . The com-
parisons of fuel costs obtained by the proposedMVMOS and
other methods are listed in Table 6. The proposed MVMOS

can obtain better fuel costs thanGA, GA-APSO, NSOA [33],
DE [23] and λ-logic [40], and close to MVMO.
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Table 5 Results for 6-unit system with VPE by MVMO and MVMOS

Method MVMO MVMOS

Unit Pi (MW) Pi (MW)

1 199.5997 199.5997

2 20.0000 20.0000

3 18.7881 21.1230

4 12.9487 10.4509

5 30.6650 30.1236

6 12.0010 12.5795

Total power (MW) 294.0026 293.8766

Power loss (MW) 10.6026 10.4766

Min cost ($/h) 927.7827 926.9800

Average cost ($/h) 949.2403 938.2780

Max cost ($/h) 998.7118 943.9712

Standard deviation ($/h) 19.8170 5.2368

Average CPU time (s) 1.649 1.747

4.3.2 ED problem with prohibited operating zones

(a) Case 5: 15-unit system with POZ The proposed
MVMOS is testes on 15-unit test system [17]. This system
consists of 15 thermal generating units, in which four units
have POZ. The system supplies to a power load demand of
2650MWwith a system spinning reserve requirement of 200
MW. Power loss and ramp rate constraint are neglected.

In order to show the efficiency of the proposed method,
the MVMOS is also tested on a system with some modified
units’ data of above 15-unit system. Themodifed data system
is found in [14]. Table 7 shows the solutions of the MVMO
and MVMOS for the original and modified cases.

For the orginal case, the fuel cost of the MVMOS are
compared to those of λ − δ iterative method [41], IHNN
[11], EHNN [12], EP [42], FCEPA [42], QEA [17], IQEA
[17] and MVMO. From the Table 8, the fuel cost of MVMO
and MVMOS are less than IHNN and slightly lower than
other methods except EHNN. Although the fuel cost from
the EHNN is slightly lower than that of the MVMO and
MVMOS , power balance constraint in the EHNN is not sat-
isfied, where 0.8 MW is not dispatched yet.

For the modified case, the fuel cost obtained by the
MVMOS are compared to that of SGA [14], DCGA [14],
ETQ [35], CEP [16], FEP [16], IFEP [16] and MVMO. As
shown in the Table 9, the cost from the proposed method is
slightly lower than that from SGA and DCGA in [14], and
close to that from the other methods.

The 15-unit test system above includes the ramp rate con-
straint and neglects spinning reserve required. The power
loss is considered for this case. The power load demand for
this system is 2630MW. The fuel cost coefficients, generator
capacity limits, prohibited operating zones and B loss matrix
are from [24]. Table 10 presents the solutions obtained by the
MVMO and MVMOS . The solution comparison is shown in
Table 11, where the fuel costs of the MVMOS are slightly
lower than SA-PSO [27], PGPSO [2], ABC [19], CSA [41]
and MVMO, and less than the other methods.

(b) Case 6: Large-scale systems with prohibited operating
zones In order to demonstrate the applicable capability to
large-scale systems, the proposedMVMOS is test on 30-unit
system, 60-unit system and 90-unit system with POZ. These
large-scale systems are built from the basic 15-unit system
[17] which supplies to the power load demand of 2650 MW
with a required spinning reserve of 200M.The loaddemand is
proportionally adjusted to the size of each large-scale system.
Table 12 shows the fuel cost and CPU times obtained by the
MVMO and MVMOS .

TheMVMOS are compared to the convention GA (CGA),
improved GA with multiplier updating method (IGAMUM)
[15] and MVMO in term of average total costs and CPU
times in Table 13. The comparison shows that the MVMOS

can obtain better solution quality than other methods.

4.3.3 Case 7: ED problem with both valve point effects and
prohibited operating zones

The test system here is also a large-scale system includ-
ing 140 generating units which supplies to the power load
demand of 49342 MW neglecting transmission power loss.
In order to show the efficiency of the proposed MVMOS ,

Table 6 Comparisons for 6-unit system with VPE

Method Min cost ($/h) Average cost ($/h) Max cost ($/h) Power loss (MW) CPU (s)

GA [33] 996.0369 – 1117.1285 8.7060 0.578

GA-APO [33] 996.0369 – 1101.491 10.7563 0.156

NSOA [33] 984.9365 – 992.4815 10.4395 0.015

DE [23] 963.0010 – – 9.3425 0.6558

λ-logic [40] 961.5654 – – 6.4195 0.064

MVMO 927.7827 949.2403 998.7118 10.6026 1.649

MVMOS 926.9800 938.2780 943.9712 10.4766 1.747
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Table 7 Results for 15-unit
system with POZ by MVMO
and MVMOS

Original Modified units’ data

Method MVMO MVMOS MVMO MVMOS

Unit Pi (MW) Pi (MW) Pi (MW) Pi (MW)

1 450.0000 450.0000 455.0000 455.0000

2 450.0000 450.0000 455.0000 455.0000

3 130.0000 130.0000 130.0000 130.0000

4 130.0000 130.0000 130.0000 130.0000

5 335.0000 335.0000 259.6383 259.0906

6 455.0000 455.0000 459.9992 460.0000

7 465.0000 465.0000 465.0000 465.0000

8 60.0000 60.0000 60.0000 60.0000

9 25.0000 25.0000 25.0000 25.0000

10 20.0000 20.0000 26.5966 20.0000

11 20.0000 20.0000 64.3295 60.6415

12 55.0000 55.0000 64.4364 75.2679

13 25.0000 25.0000 25.0000 25.0000

14 15.0000 15.0000 15.0000 15.0000

15 15.0000 15.0000 15.0000 15.0000

Total power (MW) 2650 2650 2650 2650

Min cost ($/h) 32,544.9704 32,544.9704 32,506.5807 32,506.2863

Average cost ($/h) 32,550.8295 32,545.9417 32,509.0947 32,507.7312

Max cost ($/h) 32,561.5595 32,547.9949 32,524.4595 32,508.5308

Std. deviation ($/h) 5.5653 1.2882 2.7784 0.4414

Average CPU time (s) 8.712 9.445 8.617 9.310

Table 8 Comparisons of best cost for 15-unit system with POZ for
original case

Method Total cost ($/h) Total power (MW)

λ − δ iterative method [41] 32,549.80 2650

IHNN [11] 32,568.00 2650

EHNN [12] 32,536.90 2649.2

EP [42] 32,545.20 2650

FCEPA [42] 32,544.97 2650

QEA [17] 32,548.48 2650

IQEA [17] 32,544.97 2650

MVMO 32,544.97 2650

MVMOS 32,544.97 2650

both nonconvex characteristics including VPE and POZ are
consider for this case. The data of this system can be found in
[25] where 12 units have VPE and 4 other units have POZ. A
comparison of fuel costs and CPU times from the MVMOS

and PSOmethods [25] is shown in Table 14. The comparison
shows that the proposed MVMOS dominates PSO methods
including conventional PSO with the constraint treatment
strategy (CTPSO), PSO with chaotic sequences (CSPSO),
PSO with crossover operation (COPSO) and PSO with both
chaotic sequences and crossover operation (CCPSO) in term

Table 9 Comparisons of best cost and CPU time for 15-unit system
with modified units’ data neglecting ramp rate constraint and power
loss

Method Total cost ($/h) Total power (MW) CPU (s)

SGA [14] 32,517.00 2649.900 454.3

DCGA [14] 32,515.00 2649.900 398.5

ETQ [35] 32,507.50 2650.000 15.8

CEP [16] 32,507.55 2649.997 3.746

FEP [16] 32,507.55 2649.995 2.769

IFEP [16] 32,507.46 2649.994 3.318

MVMO 32,506.85 2650.000 8.617

MVMOS 32,506.29 2650.000 9.310

of optimal solution quality. Note that the maximum fuel cost
obtained by MVMOS is even better than the minimum fuel
costs obtained by PSO methods. The optimal dispatch solu-
tion for 140-unit system is shown in Table 15.

5 Discussion

TheproposedMVMOShas been implemented todifferentED
problems including convex and nonconvex characteristics.
The issues from the numerical results are given as follows:
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Table 10 Results for 15-unit
system with POZ including
ramp rate constraint and power
loss by MVMO and MVMOS

Method MVMO MVMOS

Unit Pi (MW) Pi (MW)

1 455.0000 455.0000

2 380.000 380.0000

3 130.0000 130.0000

4 130.0000 130.0000

5 170.0000 170.0000

6 460.0000 460.0000

7 430.0000 430.0000

8 86.0128 74.5596

9 45.3576 56.1155

10 159.3699 159.9994

11 79.9999 79.9997

12 80.0000 80.0000

13 25.0000 25.0000

14 15.0000 15.0000

15 15.0000 15.0000

Total power(MW) 2660.7402 2660.6742

Power loss (MW) 30.7402 30.6742

Min cost ($/h) 32,705.0250 32,704.4721

Average cost ($/h) 32,711.5821 32,706.6475

Max cost ($/h) 32,725.4457 32,709.3152

Standard deviation ($/h) 5.4956 1.1143

Average CPU time (s) 14.242 14.820

Table 11 Comparisons for
15-unit system with POZ

Method Min cost
($/h)

Average
cost ($/h)

Max cost
($/h)

Power loss
(MW)

CPU (s)

GA [24] 33,113.00 33,228.00 33,337.00 38.2782 49.31

PSO [24] 32,858.00 33,039.00 33,331.00 32.4306 26.59

AIS [20] 32,854.00 32,873.25 32,892.00 32.4075 –

CPSO1 [30] 32,835.00 33,021.00 – 32.1302 –

CPSO2 [30] 32,834.00 33,021.00 – 32.1303 –

SOH-PSO [26] 32,751.00 32,878.00 32,945.00 32.2800 0.0936

PSO-MSAF [43] 32,713.09 32,759.64 32,798.2 30.4900 19.15

SA-PSO [27] 32,708.00 32,732.00 32,789.00 30.9080 12.79

PGPSO [2] 32,705.75 32,716.84 32,726.08 30.6644 1.631

ABC [19] 32,707.85 32,707.95 32,708.27 30.9591 11.02

CSA [41] 32,706.66 – – 30.8577 2.226

MVMO 32,705.05 32,711.58 32,725.45 30.7402 14.242

MVMOS 32,704.47 32,706.65 32,709.32 30.6742 14.820

5.1 Solution quality

From Tables 2, 3, 4, 6, 8, 9, 11, 13 and 14, the proposed
MVMOS provides better total fuel cost than other reported
methods. Especially for large-scale system, as seen from
Table 14, the proposed MVMOS dominates PSO methods
in term of all minimum, average and maximum total fuel

cost. Moreover, the power outputs obtained by MVMOS

are always between the minimum and maximum generator
capacity limits and the total power output of generating units
always equals to the power load demand. It is indicated that
the equality and inequality constraints always satisfy. Conse-
quently, the MVMOScan obtain very good solution quality
for ED problems.
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Table 12 Fuel costs and CPU times for large-scale systems with POZ

Methods MVMO MVMOS

Number of units 30 60 90 30 60 90

Min cost ($/h) 65,086.3370 130,170.8046 195,258.6600 65,086.2051 130,170.7797 195,258.4951

Average cost ($/h) 65,090.2023 130,175.0956 195,263.5962 65,089.2153 130,175.0130 195,263.5819

Max cost ($/h) 65,096.4193 130,184.1467 195,273.9091 65,090.7489 130,181.1126 195,269.1161

Standard deviation ($/h) 1.6844 3.1922 3.2920 1.4061 2.9197 3.1618

Average CPU time (s) 17.051 30.030 41.574 18.096 31.325 43.633

Table 13 Comparison of
average total costs and CPU
times for large-scale systems
with POZ

Method No. of units Average cost ($) CPU time (s)

CGA [15] 30 65,784.740 275.73

60 131,992.310 563.81

90 198,831.690 940.93

IGAMUM [15] 30 65,089.954 79.80

60 130,180.030 162.58

90 195,274.060 255.45

MVMO 30 65,090.2023 17.051

60 130,175.0956 30.030

90 195,263.5962 41.574

MVMOS 30 65,089.2153 18.096

60 130,175.0130 31.325

90 195,263.5819 43.633

Table 14 Comparisons of fuel costs for 140-unit system with both VPE and POZ

Method Min cost ($/h) Average cost ($/h) Max cost ($/h) Standard deviation($/h) CPU (s)

CTPSO [25] 1,657,962.73 1,657,964.06 1,658,002.79 7.3150 100

CSPSO [25] 1,657,962.73 1,657,962.74 1,657,962.85 0.0235 99

COPSO [25] 1,657,962.73 1,657,962.73 1,657,962.73 0.0002 150

CCPSO [25] 1,657,962.73 1,657,962.73 1,657,962.73 0.0000 150

MVMO 1,655,787.4348 1,656,002.8755 1,656,280.0410 122.8641 57.908

MVMOS 1,655,758.0755 1,655,998.2312 1,656,268.6523 127.0692 64.460

5.2 Computational efficiency

In this paper, both the total cost and computational time are
used for result comparison. However, it is difficult for the
computational time comparison among the methods for opti-
mization problems due to different computer processors and
programming languages used. Therefore, the key factor for
result comparison is usually the objective function rather than
the computational time. The proposed MVMOS has been
tested on large-scale systems and the obtained results includ-
ing total cost and computational time have compared to those
frommany othermethods. The comparison has indicated that
the proposed method can obtain better solution quality than
other methods. Although the proposed method is not as fast
as some methods, it is also faster than many other methods.

Moreover, the computational time from the proposedmethod
is not too long compared to the faster methods. In fact, the
large-scale and complex optimization problems are always a
challenge for solution methods in both global optimal solu-
tion and computational time. In future, the proposed method
can be further improved for efficiently dealing with different
large-scale and complex problems.

5.3 Convergence characteristic

Figures 6, 7, 8, 9 and 10 depict the convergence characteristic
of the MVMO and MVMOS for case 1 (ED with quadratic
fuel cost function), case 3 (ED with cubic fuel cost func-
tion), case 4 (ED with VPE), case 5 (ED with POZ) and case
7 (ED with both VPE and POZ), respectively. All the figures
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Fig. 6 Convergence property of MVMO and MVMOS for case 1 (ED
with qudratic fuel cost function)

Fig. 7 Convergence property of MVMO and MVMOS for case 3 (ED
with cubic fuel cost function)

shows that both MVMO and MVMOS provide the solution
without premature convergence or trapping in local optima.
It indicates their search ability can balance between explo-
ration and exploitation. The MVMO converges faster than
the MVMOS . This is because the MVMO starts the search
process with single particle while MVMOS starts the search
process with a set of particles. It makes the MVMOS take
more time than the original MVMO to converge. However,
from all numerical results, theMVMOS achieves better solu-
tion thanMVMO. It is confirmed that the global search ability
of the MVMOS is better than the MVMO.

5.4 Robustness analysis

The MVMO and the MVMOS are run 50 independent trials.
Theminimumcost,maximumcost, average cost and standard
deviation obtained by the MVMO and MVMOS to evaluate
the robustness characteristic of the proposed method for ED
problems. For case 1, the proposed MVMOS achieves the

Fig. 8 Convergence property of MVMO and MVMOS for case 4 (ED
with VPE)

Fig. 9 Convergence property ofMVMOandMVMOS for case 5 (orig-
inal case) ED with POZ

Fig. 10 Convergence property ofMVMOandMVMOS for case 7 (ED
with both VPE and POZ)

optimal solution with a high probability (the standard devi-
ation is 0%). As observed from Tables 1, 6, 11 and 13, the
proposed MVMOS robust than most of the other methods in
literature. Figures 11, 12, 13 and 14 show the distribution of
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Fig. 11 Distribution of fuel cost of the MVMO and MVMOS for case 2 (3 units with cubic fuel cost function)

Fig. 12 Distribution of fuel cost of the MVMO and MVMOS for case 3 (26 units with cubic fuel cost function)

Fig. 13 Distribution of fuel cost of the MVMO and MVMOS for case
4 (6 units with VPE)

fuel cost of the MVMO and MVMOS of 50 trials for case
2, 3, 4 and case 5, respectively. All figures show that the
MVMOS is more robust than the the MVMO.

6 Conclusion

In this paper, the proposed MVMOS has been effectively
implemented for solving both convex and nonconvex ED

Fig. 14 Distribution of fuel cost of the MVMO and MVMOS for case
5 (15 units with POZ). a Case 5: original case. b Case 5: modified case.
c Case 5: system with poz including ramp rate constraint and power
loss

problems. For the convex ED problem, the fuel cost function
is in turn as the quadratic and cubic form. For the noncon-
vex ED problem, the nonconvex elements and nonlinearities
in objective function and constraints are considered such as
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valve point effects, prohibited operating zones, ramp rate
limits and spinning reserve. The proposed method keeps
the concept of the conventional MVMO and starts search
process with a set of particles to improve its global search
ability and solution quality for optimization problems. The
proposed MVMOS has merits of easy implementation, good
solutions, robust algorithm and applicable to large-scale sys-
tems. The numerical results have shown that the proposed
MVMOS has better performance than the other optimization
techniques available in the literature in terms of global solu-
tion and robustness. Therefore, the proposed MVMOS could
be a favorable method for solving the ED problems in power
systems.
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Appendix

Table 15 Power output of 140-unit system with both VPE and POZ by
MVMOS

Unit Pi (MW) Unit Pi (MW) Unit Pi (MW)

1 119.0000 47 250.0000 94 175.0000

2 164.0000 48 250.0000 95 175.0000

3 190.0000 49 250.0000 96 188.1755

4 190.0000 50 250.0000 98 175.0000

5 186.7611 51 177.8151 99 575.4000

6 190.0000 52 183.4212 100 547.5000

7 490.0000 53 198.0368 101 836.8000

8 490.0000 54 165.0000 102 837.5000

9 496.0000 55 180.0000 103 682.0000

10 495.9964 56 180.0000 104 720.0000

12 496.0000 57 103.0000 105 718.0000

13 496.0000 58 198.0000 106 720.0000

14 506.0000 59 312.0000 107 964.0000

15 509.0000 60 309.0610 108 958.0000

16 505.9985 61 163.0000 109 947.9000

17 505.0000 62 95.0000 110 934.0000

18 506.0000 63 511.0000 111 935.0000

19 506.0000 64 503.7111 112 876.5000

20 505.0000 65 490.0000 113 880.9000

21 505.0000 66 260.1385 114 873.7000

22 505.0000 67 490.0000 115 877.4000

23 504.9605 68 490.0000 116 871.7000

24 505.0000 69 130.0000 117 864.8000

25 505.0000 70 282.5584 118 882.0000

26 537.0000 71 158.3615 119 94.0000

27 537.0000 72 358.8404 120 94.0000

28 549.0000 73 195.0000 121 94.0000

Table 15 continued

Unit Pi (MW) Unit Pi (MW) Unit Pi (MW)

29 549.0000 74 189.2363 122 244.0000

30 501.0000 75 285.5849 123 244.0000

31 499.0000 76 260.9699 124 244.0000

32 506.0000 77 295.9341 125 95.0000

33 506.0000 78 332.3602 126 95.0000

34 505.9815 79 531.0000 127 116.0000

35 506.0000 80 531.0000 128 175.0000

36 500.0000 81 541.9981 129 2.0000

37 500.0000 82 56.0000 130 4.0000

38 241.0000 83 115.0000 131 15.0000

39 241.0000 84 115.0000 132 9.0000

40 774.0000 85 115.0000 133 12.0000

41 768.9993 86 207.0000 134 10.0000

42 3.0000 87 207.0000 135 112.0000

43 3.0000 88 250.0000 136 4.0000

44 250.0000 89 250.0000 137 5.0000

45 250.0000 90 250.0000 138 5.0000

46 250.0000 91 250.0000 139 50.0000

45 250.0000 92 177.8151 140 5.0000

46 119.0000 93 183.4212
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