
Memetic Comp. (2017) 9:199–212
DOI 10.1007/s12293-016-0185-2

REGULAR RESEARCH PAPER

Denoising deep extreme learning machine for sparse
representation

Xiangyi Cheng1,2 · Huaping Liu2 · Xinying Xu1 · Fuchun Sun2

Received: 28 September 2015 / Accepted: 21 March 2016 / Published online: 12 April 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In recent years, a great deal of research has
focused on the sparse representation for signal. Particularly,
a dictionary learning algorithm,K-SVD, is introduced to effi-
ciently learn an redundant dictionary from a set of training
signals. Indeed, much progress has been made in different
aspects. In addition, there is an interesting technique named
extreme learning machine (ELM), which is an single-layer
feed-forward neural networks (SLFNs) with a fast learn-
ing speed, good generalization and universal classification
capability. In this paper, we propose an optimization method
about K-SVD, which is an denoising deep extreme learning
machines based on autoencoder (DDELM-AE) for sparse
representation. In other words, we gain a new learned repre-
sentation through the DDELM-AE and as the new “input”, it
makes the conventional K-SVD algorithm perform better. To
verify the classification performance of the new method, we
conduct extensive experiments on real-world data sets. The
performance of the deep models (i.e., Stacked Autoencoder)
is comparable. The experimental results indicate the fact that
our proposed method is very efficient in the sight of speed
and accuracy.

Keywords K-SVD ·Extreme learningmachine ·Denoising ·
Deep ELM-AE · Representation learning

B Huaping Liu
hpliu@tsinghua.edu.cn

Xinying Xu
xuxinying@tyut.edu.cn

1 Department of Electronic Information, Taiyuan University of
Technology, Shanxi, China

2 State Key Laboratory of Intelligent Technology and Systems,
TNLIST, Department of Computer Science and Technology,
Tsinghua University, Beijing, People’s Republic of China

1 Introduction

Recently sparse signal reconstruction has gained consider-
able interests especially since Michael Elad and colleagues
introduced the K-SVD algorithm [1,2]. Variations and exten-
sions of sparse representation have been applied to a variety
of areas including image denoising [3], image restoration
[4,5], and image classification [6–9]. In these fields, using
sparsity as a prior leads to state-of-art results [7,10]. In par-
ticular, the sparse representation-based classification (SRC)
algorithm proposed in [7] uses sparse representation for face
recognition. Unlike conventional methods, SRC does not
need an explicit feature extraction stage and is robust to the
noise. And the superior performance reported in [7] suggests
that this is a promising direction for face recognition. There-
fore, we can find out that there is a lot of advantages of sparse
signal reconstruction.

A signal y ∈ Rn can be represented by an redundant dic-
tionary D ∈ Rn×K which includes K atoms, {d j }Kj=1 under
strict sparsity constrains. Using an redundant dictionary, the
test signal can be represented by a linear combination of only
a few atoms from this dictionary. The effect of sparse cod-
ing therefore highly relies on the dictionary. Reference [7]
employs the entire set of training samples as the dictionary
for sparse coding and achieves impressive performances on
face recognition.

With the growing development of deep learning, the con-
cept of the layered architecture of regions in the human brain
such as the visual cortex drew much attention [11–13]. And
the revival of interest in such deep architectures is because
of the discovery of methods [14,15] that proved successful
at learning themselves parameters.

On the other hand, Refs. [13,14] showed that a restricted
Boltzmannmachine (RBM) and auto-encoders could be used
for feature engineering [16,17]. In our opinion, feature engi-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-016-0185-2&domain=pdf


200 Memetic Comp. (2017) 9:199–212

neering means how to develop suitable feature descriptors
for specified tasks. These engineered features then could
be used to train multiple-layer neural network, or deep
models. The two types of auto-encoder-based deep mod-
els are the stacked auto-encoder(SAE) [13] and the stacked
denoising auto-encoder (SDAE) [18]. Both of them are con-
structed by stacking auto-encoders. Existing results show that
deep networks outperform traditional multilayered neural
networks.

However, the aforementionedworks still face some issues,
such as parameter adjustment and the speed of dealing with
the dataset. Huang et al. [19] introduced the extreme learn-
ing machines as a single-layer feed-forward neural networks
with a fast learning speed and good generalization capability,
whose hidden node parameters are randomly generated and
the output weights are analytically computed. Then, extreme
learning machines (ELM) as an emerging technology has
achieved exceptional performance in large-scale settings,
and is well suited for binary and multi-class classification,
as well as regression tasks. Like deep networks, Huang
proposed multilayered ELM (ML-ELM) performs layer-by-
layer unsupervised learning. And it also introduces the ELM
based on autoencoder (ELM-AE), which represents features
based on singular values. Similar to deepnetworks,ML-ELM
stacks on top of ELM-AE to create a multilayered neural net-
work [20,21]. It learns significantly faster than existing deep
networks, outperforming DBNs, SAEs, and SDAEs and per-
forming on par with DBMs on the MNIST5 database.

Consequently, ELM offers significant advantages such as
fast learning speed, ease of implementation, and minimal
human intervention [22]. It thus has strong potential as a
viable alternative technique for large-scale computing and
machine learning. Because of this, there are a lot of innova-
tion and development [23–28] which applies ELM to sparse
representation. In our work, the proposed method is also an
optimization for the conventional K-SVD algorithm.

To optimize the conventional K-SVD algorithm, much
progress has been made in different aspects. Several algo-
rithms have been developed for the task of learning dictio-
naries. However, dictionary construction during training and
sparse coding during testing are typically time-consuming
especially there are a large number of classes. And the
improvements to the dictionaries are commonly complex.
Especially, when feature representations is not good, the per-
formance of K-SVD algorithm will be affected.

Motivated by the drawbacks of the current methods, the
new method is proposed in this paper. The proposed method
is a preprocessing method, we can also regard it as feature
extraction. It means that using the DDELM-AE can extract
high level representation, which is much more better than
the raw data. And the newly developed feature representation
can produce the denoising dictionnary that could boost the
performance of the conventional K-SVD.

As mentioned above, the main contributions of this paper
are summarized in the following:

1. The proposed method can be a newly developed feature
representation method. Using the denoising deep ELM-
AE(DDELM-AE) can extract high level representation
instead of using the raw signals (e.g., images)) that could
boost the performance of the conventional K-SVD. That
means, we employ a denoising “input” of the raw data to
the off-the-shelf K-SVD algorithm, which is generated
by (DDELM-AE) and more stable and robust than the
original data.

2. Then, through the denoising “input”, the conventional
K-SVD can get a denoising dictionary. Such a denoising
dictionary is critical to K-SVD and dictionary learning.

Last, according to the smaller restructure error gained by the
new approach, we achieve the image classification problem.
And our best results are much better than the simple K-SVD.
Specially, we gain the test accuracies 96.1, 99.79% on USPS
and Coil-20 database.

To demonstrate the effectiveness and the advantage of the
proposedmethod for face recognition, extensive experiments
have been carried out using the commonly-used face dataset:
the Extended YaleB dataset. In particular, we obtained the
test accuracy 94.23%.

This paper is organized as follows. In Sect. 2, we first
briefly review the conventional K-SVD algorithm and OMP
algorithm. Then we introduced the ELM and the ELM based
on autoencoder in Sect. 3. Section 4 presents our proposed
method in detail. Following this part, we demonstrate the
experimental results and analyse the effect of different para-
meter in Sect. 5. Finally, Sect. 6 concludes the paper with the
summary and demonstrates the superiority of our proposed
method.

2 Related work

Many optimization methods to traditional and complex sys-
tems have been proposed [36], the conventional K-SVD
algorithm is no exception. Indeed, much progress has been
made in different aspects. Several algorithms have been
developed for the task of learning dictionaries. Two of the
mostwell-known algorithms are themethod of optimal direc-
tions (MOD) [41] and the K-SVD algorithm [2].

TheMODalgorithmupdates all the atoms simultaneously.
This way of updating the dictionary is essentially the idea
behind the MOD method. As discussed in [2], one of the
major drawbacks of the MOD method is that it suffers from
the high complexity of matrix inversion during the dictionary
update stage. Several other methods have also been proposed
that focus on reducing this complexity. One such algorithm

123



Memetic Comp. (2017) 9:199–212 201

is K-SVD. In the K-SVD, the dictionary update is performed
atom-by-atom in an efficient way rather than using a matrix
inversion. It has been observed that the K-SVD algorithm
requires fewer iterations to converge than the MOD method.
Therefore, the K-SVD algorithm is adopted to improve in
this paper rather than MOD method.

2.1 Sparse representation and dictionary learning:
K-SVD algorithm

It is due to the fact that signals and images of interest can be
sparsely represented or compressible given an appropriate
dictionary, hence, sparse and redundant signal representa-
tions have recently drawn much interest in computer vision,
signal analysis and image processing [37–40].

A signal y ∈ Rn can be represented by an redundant dic-
tionary D ∈ Rn×K which includes K atoms, {d j }Kj=1. It
can be exact or approximate linear reconstruction of certain
columns ofD. Finding a sparse coding vector entails solving
the following optimization problem

x̂ = argmin
x

‖x0‖ ,

s.t. ‖y − Dx‖2 ≤ ε, (1)

where ε is an error tolerance, ‖x0‖ is the �0 sparsity mea-
sure that counts the number of nonzero elements in the
x, ‖y − Dx‖2 is themean squared error resulting from sparse
approximation.

In this work, we adopt the K-SVD algorithm [2] for devel-
opment. Given a set of N signalsY = {y1, . . . , yN }, the goal
of K-SVD algorithms is to find a dictionary D and a sparse
coding matrix X which solves the following optimization
problem:

(D̂, X̂) = argmin
D,X

‖Y − DX‖2F ,

s.t. ‖xi‖0 ≤ T0, ∀i = 1, . . . , N , (2)

where xi represents the i th column of X, ‖A‖F denotes the
Frobenius norm of A, and T0 denotes the sparsity level. K-
SVD is an iterative method that alternates between sparse-
coding and dictionary update steps. First, a dictionaryDwith
�2 normalized columns is initialized. Then, themain iteration
is composed of the following two stages:

1. Sparse coding: In this step, we fix D and solve the fol-
lowing optimization problem over xi for each example
yi

min
xi

‖yi − Dxi‖22,
s.t. ‖xi‖0 ≤ T0, ∀i = 1, . . . , N .

(3)

2. Dictionary update: In this step, we fix the coding coeffi-
cient matrix and update the dictionary atom-by-atom in
an efficient way.

With an update of dictionary columns and combiningwith
an update of the sparse representations, traditional K-SVD
algorithmachieves sparse signal representations from the raw
signals. However, untreated data may be noisy, it is against
this algorithm itself. According to the reconstruct error it
inevitably leads to a poor classification result.

2.2 Orthogonal matching pursuit algorithm

As we know, exact determination of sparsest representations
proves to be an NP-hard problem. So approximate solutions
are considered instead. In the past decade, several efficient
persuit algorithms have been proposed such as matching
pursuit (MP) [42], basis pursuit (BP) [43]. Like MP algo-
rithm, the problem above can be solved by greedy iterative
algorithm, one of the most commonly used algorithm is the
orthogonal matching pursuit (OMP) method [44].

Given a set of N signals Y = {y1, . . . , yN }, which are
belong to the c classes. Through the abovementionedK-SVD
algorithm, we can get the dictionary of each class, Di ∈
Rd×K , whose columns are the measurement vectors, where
i ∈ {1, 2, . . . , c}. And K is the number of atoms learned
of each dictionary. Thus, through the OMP algorithm, we
can gain a linear combination of m columns from Di , using
the linear combination reconstructs a new signal, which is
different from the original one. Thus, the signal recovery
problem can be handled.

3 Principle of ELM based on autoencoder

3.1 Review of extreme learning machine

As an emerging technology, extreme learning machine
(ELM) has been demonstrated to have excellent learning
accuracy and fast speed. However, with such exceptional per-
formance, ELM is originally derived from the single hidden
layer feedforward neural networks (SLFNs) [29] shown in
Fig. 1 and then extended to the generalized SLFNs. Dif-
ferent from traditional learning algorithms [30], like back
propagation (BP) based beural networks and support vec-
tor machine (SVM), the most outstanding characteristic of
ELM are learning without iteratively tuning hidden neu-
rons in general architectures, generating the weight matrix
randomly between the input layer and the hidden layer
and then calculate the output weights by the least-square
method.

The ELM for SLFNs shows that hidden nodes can be ran-
domly generated. Given N training samples {(xi , ti )}Ni=1, the

123



202 Memetic Comp. (2017) 9:199–212

Fig. 1 The framework of extreme learning machine

input data xi is mapped to L-dimensional ELM random fea-
ture space, and the network output is

oi = h(xi )β =
L

∑

j=1

β jG(α j i , b ji , xi ), (4)

where β = [β1, . . . , βL ]T is the output weight matrix
between the hidden nodes and the output nodes, h(xi ) is the
output of hidden nodes.

Then, extreme learningmachine can resolve the following
learning problem:

Hβ = T, (5)

where T = [t1, . . . , tN ]T are target labels, and

H =
⎡

⎢

⎣

h(x1)
...

h(xN )

⎤

⎥

⎦
=

⎡

⎢

⎣

G(α1, b1, x1) · · · G(αL , bL , x1)
...

. . .
...

G(α1, b1, xN ) · · · G(αL , bL , xN )

⎤

⎥

⎦
,

(6)

If H is nonsquare matrix and the smallest norm least-
square solution of the above linear system is:

β = H†T, (7)

whereH† is theMoore-Penrose generalized inverse ofmatrix
H.

To improve generalization performance and make the
solution more robust, we can add a regularization term as
shown [31]:

β =
(

I
C

+ HTH
)−1

HTT. (8)

3.2 ELM based on autoencoder

In this section, we describe a common framework about
deep ELMbased on autoencoder [32] used for representation
learning.

ELM-AE’s main objective to represent the input features
meaningfully in three different representations [33], one is
compressed, which is representing features from a higher
dimensional input data space to a lower dimensional feature
space, the other is equal, that means feature space dimension
is equal to input data space dimension.

Hence, ELM can be modified as follows: input data
is used as output data t = x, and random weights and
biases of the hidden nodes are chosen to be orthogonal.
Bernard Widrow et al. [34] introduced a least mean square
(LMS) implementation for the ELM and a correspond-
ing ELM based on autoencoder that uses nonorthogonal
random hidden parameters (weights and biases). Orthog-
onalization of these randomly generated hidden parame-
ters tends to improve ELM-AE’s generalization perfor-
mance.

In ELM-AE, the orthogonal randomweights and biases of
the hidden nodes project the input data to a different or equal
dimension space, as shown by the Johnson-Lindenstrauss
lemma [35] and calculated as

h = g(ax + b),

aT a = I, bT b = 1, (9)

123



Memetic Comp. (2017) 9:199–212 203

where a = [a1, . . . , aL ] are the orthogonal random weights,
and b = [b1, . . . , bL ] are the orthogonal random biases
between the input and hidden nodes.

As stated above, ELM-AE’s attractive property is that the
output data is actually the input data, thus, for compressed and
equal ELM-AE representation, we can calculate the output
weights β as follows:

β =
(

I
C

+ HTH
)−1

HTX. (10)

Finally, we learn representation in an unsupervised way
using an ELM based on autoencoder, which in essence is
a multi-layer feed-forward network whose parameters are
learned by cascading multiple layers of ELM. Experimental
results also turn out that the learning procedure of ELM-AE
is highly efficient and has good generalization capabilities.

4 Proposed method

Several algorithms have been developed for the task of learn-
ing dictionaries. Motivated by the drawbacks of the current
methods and the needs of many practical applications, the
new method is proposed in this paper. The proposed method
is a newly developed feature representation. It means that
using the DDELM-AE can extract high level representa-
tion, which is much more better than the raw data. And high
level representation can produce the denoising dictionary that
could boost the performance of the conventional K-SVD.

In our paper, we use high level of representations as
“input” rather than the original image, which is extracted by
the denoising deep ELM based on autoencoder (DDELM-
AE). See Fig. 2. On such a basis, K-SVD algorithm can gain
much better dictionaries of each class and reconstructions
of each test sample, and then estimate its label based on
the smallest reconstruction error. Finally, all testing samples
are classified as it should belong to the certain class. Results
demonstrate that high level of features can be better preserved
and can reduce the reconstruction error effectively.

Since the introduction of the frame of the ELM-AE, in
this part, we intend to focus on our scheme for multilayered
representation, and how this “deep” representation creates a
meaningful learning used for the sparse representation.

4.1 Learning representation with denoising deep
ELM-AE

For K-SVD algorithm itself, the original data are usually
taken as its input. So we cannot defy that learning high level
of representations is vital for achieving better performance.
We can often see stacked autoencoders (SAEs) and stacked
denoising autoencoders (SDAEs), whose outputs are equal

Fig. 2 The whole process of our proposed approach

the real input. Furthermore, many deep neural networks have
yielded good performance in various tasks [12], but they are
generally very slow in training phase. Considering the above
factors, we employ the representations as “input” learned
by our proposed method: denoising deep ELM-AE, which
possesses obvious advantages in the calculation speed, even
though the high dimensional image.

In our paper, we set the output of an ELM network equal
to the input, then, we will get the new representation ̂X from
the denoising deep ELM-AE(DDELM-AE). Figure 3 shows
the process of a denoising deep ELM-AEmodel learning the
representations of the training set X and what is the repre-
sentation of X ultimately.

Weconsider a fully connected deep networkwith L hidden
layers and W = {W1,W2, . . .WL+1} to denote the para-
meters of the DDELM-AE that need to be learned, namely,
β = {β1,β2, . . . ,βL+1}. To reduce the training cost, each
layer is decoupled within the network and processed as an
single ELM, of which targets are the same as its inputs. As
shown in Fig. 3, W1, in other words, βT

1 is learned by con-
sidering a corresponding ELM with T = X.

The weight vectors connecting the input layer to each unit
of the first hidden layer are orthonormal to each other, effec-
tively leading to projection of the input data to a random
subspace. Compared to initializing randomweights indepen-
dent of eachother, orthogonalizationof these randomweights
tends to better preserve pairwise distances in the random
ELM feature space [35] and improves denoising deep ELM
based on autoencoder generalization performance. Next, β1
is calculated by Eq. (7) depending on the number of nodes in
the hidden layer. Note that, β1 re-projects the lower dimen-
sional representation of the input data back to its original
space while minimizing the reconstruction error. Therefore,
this projection matrix is data-driven and hence used as the
weights of the first layer (W1 = βT

1 ).

123



204 Memetic Comp. (2017) 9:199–212

Fig. 3 A denoising deep ELM-AE model for the samples of the training set X

β∗ = min ‖Hβ − X‖2F ,

s.t. βTβ = I. (11)

Similarly, the value of W2 is learned by forcing that the
input and output of Hidden Layer 2 to H1 i.e. the output of
Hidden Layer 1. In this way, all parameters of the multilay-
ered ELM can be computed step by step. However, when the
number of nodes between two consecutive layers is equal,
the random projection obtained in the second layer is in the
same space as the input of the first layer. Using (7) does
not ensure orthogonality of the computed weight matrix β.
Imposing orthogonality in this case results in amore accurate
solution since the data always lies in the same space. There-
fore, the output weights β are calculated as the solution to
the orthogonal procrustes problem.

The closed form solution is obtained by finding the near-
est orthogonal matrix to the given M = HTX. To find
the orthogonal β∗, we use the singular value decomposition
M = U

∑

VT to compute β∗ = UVT .

In DDELM-AE, the orthogonal random weights and
biases of the hidden nodes project the input data to a dif-
ferent or equal dimension space. The deep ELM-AE models
can automatically learn the non-linear structure of data in a
very efficient manner. Compared with deep neural networks,
DDELM-AE does not require expensive iterations of fine
tuning.

4.2 Using a denoising representation and a denoising
dictionary

According to the above described structure of DDELM-AE,
we can achieve a denoising representation from the original

Fig. 4 The denoising deep ELM-AE architecture

data. Figure 4 shows a denoising representation of the proce-
dure. Conventional autoencoder generates a simply copy of
the input or similarly uninteresting ones trivially maximizes
mutual information.Awide variety ofmodification of the tra-
ditional autoencoder framework have been proposed in order
to learn sparse representations [13]. Pascal Vincent and col-
leagues introduced a very different strategy and defined a new
representation into the mentioned below: “a good represen-
tation is one that can be obtained robustly from a corrupted
input and that will be useful for recovering the corresponding
clean input”.

123



Memetic Comp. (2017) 9:199–212 205

Fig. 5 Representation before and after performing the DDELM-AE

In conclusion, here we propose a similar but different
method. For the above-mentioned DDELM-AE, we can gain
the weights of each layer. Based on each layer decoupled
within the network and processed as an ELM, particularly,
the last layer whose output is the image of input. Then,
we desired not to get the same as the input but a clean or
denoising “input”, X̂, which is reconstructed by our net-
work.

Using DDELM-AE, we get a clean input x̂ = f (x) =
g(Wx + b), comparing with the initial input x. Figure 5
shows two pairs of samples, the former is the initial input,
the latter is representations applied the clever mapping f
of DDELM-AE. What the representation DDELM-AE has
learned demonstrates the features are denoised.

Through the above high level representation, we get a
denoising dictionary by the conventional K-SVD algorithm.
See Fig. 6. Take the USPS database as an example. That
demonstrates the new method can get a denoising dictionary
in the training phase, rather than a noisy dictionary.

For a fair comparison, the learned dictionary by the con-
ventional K-SVD is shown in the next picture.

Obviously, the dictionaries learned by the proposed
method are more clear and more stable than anyone learned
by the K-SVD algorithm.

5 Experimental results and analysis

In this section, we examine the efficiency of the new method
by comparing it against the conventional K-SVD algo-
rithm.And, considering that the state-of-the-art deep learning
method, stacked auto-encoder(SAE) has an important ref-
erence for our algorithm, we use it for comparision. As a
note, it is not used as a preprocessing step for K-SVD algo-
rithm. Furthermore, we make an attempt to other technique
such as sparse filtering [46] to verify whether it can also be
used before K-SVD in order to boost its performance or not.
Experiments present that the results are unsatisfactory.

123



206 Memetic Comp. (2017) 9:199–212

Fig. 6 With different hidden nodes in the DDELM-AE structure, different dictionaries are used for K-SVD. a–d are in the case of 20, 30, 50, 100
hidden nodes respectively

In the same case of K-SVD’s parameters, such as T0 = 5,
maximum number of training iterations is set to 80, the
above framework includes a number of parameters that can
be changed : (i) the number of hidden layers, L , (ii) the num-
ber nodes of hidden layers of DDELM-AE, (iii) the ridge
parameter C = [C1,C2,C3]. In this section, we present our
experimental results on the impact of these parameters on
performance.

First, we will evaluate the effects of these parameters on
the USPS dataset and Coil-20 dataset respectively. Further-
more, in order to demonstrate the advantage of the proposed
method, experiments are conducted on the Extended YaleB
dataset (Fig. 7). Secondly, we will report the results achieved
on all of them. Besides, the parameter settings that our analy-
sis suggests is best overall (i.e., in our final results, we use
the same setting for K-SVD algorithm).

We conducted the experiments on a laptop with a core i5-
3337U 1.80GHz processor and 4 Gbytes of RAM running
Matlab 2013a.

5.1 Digit recognition

We apply our approach on the real-world handwritten digits
classificationproblem.Weuse theUSPSdatabase [45] shown
in Fig. 8, which contains ten classes of 256-dimensional
handwritten digits. In other words, input training samples
are the vectorization of USPS digit images with the dimen-
sion of n = 256. For each class, we select Ntraining = 500
samples for training and Ntest = 200 samples for testing.
Specifically, we choose the following parameters for learn-
ing the dictionaries for all classes: each class dictionary is

123



Memetic Comp. (2017) 9:199–212 207

Fig. 7 The dictionary learned by the conventional K-SVD

Fig. 8 Random samples on the USPS database [45]

learned with K = 300 atoms, T0 = 5, maximum number of
training iterations is set to 80.

We use Yi = [yi,1, . . . , yi,N ] ∈ R256×500 to repre-
sent the set of training samples of the i-th class, where
i ∈ {1, . . . , 10}. During our training procedure, there are
two sequential stages: we first learn the stable and robust rep-
resentations through a DDELM-AE. In the meanwhile, we
also get 10 different kinds of deep ELM-AE model used to
reconstruct testing samples later. The whole learning process
is a very efficient and rapid manner in comparison to autoen-
coder.

In the second stage, K-SVD is applied to get the dictionary
of the training set, Di ∈ R256×300, where i ∈ {1, . . . , 10}. In
other words, all above is to get the model of each class and
the dictionary of every training class.

In the test phase, given a query image z ∈ R256×1, we
first perform the DDELM-AE to get its denoising represen-
tation and then implement OMP algorithm (defined function
s) separately for eachDi , as shown in Fig. 3, to get the sparse
code xi . The sparse setting is the same as the training phase,
namely T0 = 5. Finally, the reconstruction error ri is com-
puted as:

Table 1 Comparison of digit recognition accuracies for various hidden
nodes in the case of two hidden layers

Structure Accuracy (%) Structure Accuracy (%)

200-50 85.1 100-50 85.55

200-100 85.3 100-100 95.4

200-200 95.3 100-200 84.35

50-50 95.65 20-20 95.45

50-100 84.4 20-50 84.9

50-200 84.4 20-100 84.8

r(i,N ) = ‖z − Dixi‖2F = ‖z − (YiX)xi‖2F ,

i ∈ {1, . . . , 10}, N = {1, . . . , 2000}, (12)

where X ∈ R256×300 is sparse coefficient matrix of training
samples, xi ∈ R300×1 is sparse coefficient matrix of each
testing sample and N is the total number of testing samples.
The test sample is simply classified to the class that gives the
smallest reconstruction error.

5.1.1 Number of hidden layers

Our experiments consider that how many hidden layers are
favorable for the denoising DELM-AE. Through extensive
experimentswefind that 3 hidden layers based on ourmethod
is better than 2 layers. Furthermore, we also realize that
increasing the number of hidden layer is not too good in
surprise.

Before we present classification results, we first show the
effect of different hidden nodes between hidden layers.

Table 1 shows that the effect of with different nodes in the
case of two hidden layers. Extensive experiments turn out 3
hidden layers of DDELM-AE and 50 hidden nodes in each
layer will perform better.

5.1.2 Ridge parameters

Through the above experiments, we get a certain con-
clusion that we should adapt 3 hidden layers. And we
speculate we may get the best result with 50 neurons in
each layer. Next, we will further confirm the parameter
C = [C1,C2,C3]. We set the parameter C in the range
from {10−2, 1010} from the first hidden layer to the last
one. We follow this protocol: for example, we make C1

range from 10−2, 1010 with fixing the other two parame-
ters C2 and C3. Then we can get the best accuracy using
the most proper C1. And so on, for each parameter of
C .

Experiments are repeated with different nodes but all is 3
layers. There are 4 groups of figures which show the effect
of C1,C2 and C3 to relevant layer with different nodes. In

123



208 Memetic Comp. (2017) 9:199–212

Fig. 9 Effect of different parameters C = [C1,C2,C3] to each layers
with 20 nodes. We follow this protocol: for example, we makeC1 range
from {10−2, 1010}with fixing the other two parametersC2 andC3. Then
we can get the best accuracy using the most proper C1. And so on, for
each parameter of C

Table 2 Test recognition accuracy and consumed time on USPS. The
unit of the consumed time is second

Algorithm Accuracy (%) Consumed Time

K-SVD 93.10 2067.46

SAE 95.25 60

Proposed method 96.10 2011.57

Fig. 10 Effect of different parametersC = [C1,C2,C3] to each layers
with 30 nodes

Figs. 8 and 9, we can see that with 20 or 30 nodes in each
layer, C1 = 0.1,C2 = 107,C3 = 108 leads to the best result
95.7 and 96.1% respectively (Figs. 10, 11, 12, 13, 14).

Fig. 11 Effect of different parametersC = [C1,C2,C3] to each layers
with 50 nodes

Fig. 12 Effect of different parametersC = [C1,C2,C3] to each layers
with 100 nodes

We can also obtain the best testing accuracy 96.1% in the
case of 50 nodes when C1 = 0.1,C2 = 0.01,C3 = 108.
Moreover, the result with 100 nodes is a little poor, only
95.7% when C1 = 0.1,C2 = 105,C3 = 108.

5.1.3 Final classification results

As we have mentioned, we employ the best and the most
applicable number of neurons and hidden layers on the USPS
database. In Table 2 we can see that our proposed method
performs better obviously compared with the traditional K-
SVD algorithm and SAE algorithm.

123



Memetic Comp. (2017) 9:199–212 209

Fig. 13 Examples of 20 classes in Coil-20

5.2 Coil-20 recognition

In this part, we will report the image set classification results
on the Coil-20 database, which is established by Columbia
Object Image Library and contains 20 classes objects as
shown in the following figure.

The data set consists of gray-level images with 128 ×
128 = 16,384 pixels in 20 classes. Each class includes 72
images, we take 50 of them as training samples, the rest are
chosen to test. So there are 1000 samples for training and
440 samples for testing in total.

As same as the setting of USPS, we set T0 = 5, max-
imum number of training iterations is still set to 80, and

Table 3 Comparison of Coil-20
recognition accuracies for
various hidden nodes in the case
of two hidden layers

Structure Accuracy (%)

20-20 99.55

20-50 99.41

20-100 99.37

20-200 99.32

input training samples are the vectorizationofCoil-20 images
with the dimension of n = 16,384. Similarly, we employ
Yi = [yi,1, . . . , yi,N ] ∈ R16,384×50 to represent the set of
training samples of the i-th class, where i ∈ {1, . . . , 20}. And
it should be emphasized that each class dictionary is learned
with K = 30 atoms to use the K-SVD algorithm. There are
still two sequential stages during our training procedure like
the experiments on the USPS dataset.

In the test phase, given a query image z ∈ R16384×1, we
first perform the DDELM-AE to get its denoising represen-
tation and then implement OMP algorithm(defined function
s) separately for each Di . The test sample is classified to the
class that gives the smallest reconstruction error.

5.2.1 Number of hidden layers

We use the same parameters setting and verify that 3 hidden
layers in the DDELM-AE are better than 2 layers, and more
layers are not useful to the result. Table 3 states the results
with different nodes in 2 layers.

Therefore, we decide to use 3 hidden layers with 20 neu-
rons in each layer.

Fig. 14 The denoising dictionary and noising dictionary

123



210 Memetic Comp. (2017) 9:199–212

Table 4 Test recognition accuracy and consumed time on Coil-20

Algorithm Accuracy (%) Consumed Time

K-SVD 91.36 4051.39

SAE 76.01 21,600

Proposed method 99.79 3410.40

5.2.2 Ridge parameters

As same as the method of USPS, we still perform the same
experiments on Coil-20 to verify the effect of various C for
the results.We findC1 = 10,C2 = 103,C3 = 108 generates
the best testing accuracy.

5.2.3 Final classification results

Experimental results show that the proposed method outper-
forms the conventional K-SVD in the view of classification
rate, so the proposed method has more practical value. Our
best result is illustrated in Table 4 and in Fig. 15.

5.3 Extended YaleB recognition

The Extended YaleB database contains about 2414 frontal
face images of 38 individuals and around 64 images under
different illuminations per individual. Further, Professor Cai
and colleagues resized them to 32 × 32 pixels shown in

Fig. 16 Examples of 10 classes in extended YaleB

Table 5 Test recognition accuracy and consumed time on Extended
YaleB

Algorithm Accuracy (%) Consumed Time

K-SVD 84.88 5555.89

SAE 62.60 2220

Proposed method 94.23 3097.46

Fig. 16. We randomly split the dataset into two halves
(Table 5). One half, which contains 51 images for each per-
son, was used for training the dictionary. The others were
used for testing.

Due to the complexity of the face data, the setting is differ-
ent from the first two datasets. We set T0 = 16 in the K-SVD
algorithm, only maximum number of training iterations is
still set to 80. For the Extended YaleB, input training sam-
ples are the vectorization of images with the dimension of
n = 1024. Similarly, we employ Yi = [yi,1, . . . , yi,N ] ∈

1.00

0.00

0.14

0.00

0.14

0.00

0.18

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

0.00

0.00

0.77

0.00

0.00

0.00

0.00

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.18

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.23

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

0.00

0.77

0.00

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.55

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.73

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.09

0.00

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.95

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fig. 15 The confusion matrix repots the results on the Coil-20 database

123



Memetic Comp. (2017) 9:199–212 211

R1024×51 to represent the set of training samples of the i-th
class, where i ∈ {1, . . . , 38}. And it should be emphasized
that each class dictionary is learnedwith K = 31 atoms to use
the K-SVD algorithm. There are still two sequential stages
during our training procedure like the first two datasets.

Moreover, judge from the previous experiments and para-
meter analysis, when C1 = 10,C2 = 105,C3 = 109, the
new method used in the Extended YaleB perform the best.

It is worth noting that the best recognition performance
of SAE is only 62.60% in comparison with 94.23% of the
proposed method.

6 Conclusion

In this work we have conducted extensive experiments on the
USPS dataset, Coil-20 dataset and the Extended YaleB.

The point that we want to make in this work is that
using the representation learned by the denoising deep ELM-
AE can achieve the denoising dictionary. Then, we have
carried out several experiments to explore the recognition
performancewith different parameters.When combining our
denoising representationwith theK-SVDalgorithm,we have
shown more importantly that these elements such as ridge
parameter C can be as significant as our proposed method
itself.

There are many classical and distinguished method about
denoising such as SAE, even so, compared with more com-
plex algorithms, which may have greater representational
power simple, fast algorithms like our denoising deep ELM-
AE can be highly competitive.

Acknowledgements This work was supported in part by the National
Key Project for Basic Research of China under Grant 2013CB329403,
the National Natural Science Foundation of China under Grant
61327809, the National High-Tech Research and Development Plan
under Grant 2015AA042306, the Natural Science Foundation of Shanxi
Province under Grant 2014011018-4, the Shanxi Scholarship Council
of China under Grant 2013-033, and the Shanxi Scholarship Council of
China under Grant 2015-045

References

1. Aharon M, Elad M, Bruckstein A (2005) K-SVD: design of dictio-
naries for sparse representations. Proc Spars 5:9–12

2. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm
for designing overcomplete dictionaries for sparse representation.
IEEE Trans Image Process 54(11):4311–4322

3. Elad M, Aharon M (2006) Image denoising via sparse and redun-
dant representations over learned dictionaries. IEEE Trans Image
Process 15(12):3736–3745

4. Mairal J, Elad M, Sapiro G (2008) Sparse representation for color
image restoration. IEEE Trans Image Process 17(1):53–69

5. Christopher P,ChopraS,CunYL (2006)Efficient learningof sparse
representationswith an energy-basedmodel. In:Advances in neural
information processing systems (NIPS), pp 1137–1144

6. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyra-
mid matching using sparse coding for image classification. In:
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)

7. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust Face
Recognition via Sparse Representation. IEEE Trans Pattern Anal
Mach Intell 31(2):210–227

8. Wang J, SuG,XiongY,Chen J, ShangY,Liu J,RenX (2013)Sparse
representation for face recognition based on constraint sampling
and face alignment. Tsinghua Sci Technol 1:62–67

9. Zheng Y, Sheng H, Zhang B, Zhang J, Xiong Z (2015) Weight-
based sparse coding for multi-shot person re-identification. Sci
China Inf Sci 58(10):1–15

10. Cheng H, Liu Z, Yang L, Chen X (2013) Sparse representation and
learning in visual recognition: theory and applications. Sig Process
93(6):1408–1425

11. BengioY, LeCunY (2007) Scaling learning algorithms towardsAI.
In: Bottou L, Chapelle O, DeCoste D, Weston J (eds) Large-scale
kernel machines, vol 34. MIT Press, pp 321–359

12. Bengio Y (2009) Learning deep architectures for AI. Found Trends
Mach Learn 2:1–55

13. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010)
Stacked denoising autoencoders: learning useful representations in
a deep network with a local denoising criterion. Mach Learn Res
11:3371–3408

14. Hinton GE, Osindero S (2006) A fast learning algorithm for deep
belief nets. Neural Comput 18:1527–1554

15. Hinton Geoffrey E, Salakhutdinov RR (2006) Reducing the dimen-
sionality of datawith neural networks. Science 313(5786):504–507

16. Scott S, Matwin S (1999) Feature engineering for text classifica-
tion. Int Conf Icml:379-388

17. Dong J, Karianakis N, Davis D, Hernandez J, Balzer J, Soatto
S (2015) Multi-view feature engineering and learning. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp 3251–3260

18. Salakhutdinov R, Larochelle H (2010) Efficient learning of deep
Boltzmann machines. Mach Learn Res 9:693–700

19. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine:
theory and applications. Neurocomputing 70:489–501

20. Yang Y, Wu J (2016) Mutilayer extreme learning machine with
subnetwork nodes for representation learning. IEEE Trans Cybern
(in press)

21. Tang J, Deng C, Huang GB (2016) Extreme learning machine for
multilayer perceptron, IEEE Trans Neural Netw Learn Syst (in
press)

22. Cao J, Lin Z (2015) Extreme learningmachine on high dimensional
and large data applications: a survey. Math Probl Eng:1–12

23. Cao J, Lin Z, Huang G-B, Liu N (2012) Voting based extreme
learning machine. Inf Sci 185(1):66–77

24. Shojaeilangari S, Yau WY, Nandakumar K, Li J, Teoh EK (2015)
Robust Representation and Recognition of Facial Emotions Using
Extreme Sparse Learning. IEEE Trans Image Process 24(7):2140–
2152

25. Sun Z, Yu Y (2015) Sparse coding extreme learning machine for
classification. In: Extreme Learning Machine

26. Peng Y, Lu BL (2015) Discriminative extreme learning machine
with supervised sparsity preserving for image classification. In:
Extreme Learning Machine

27. Bai Z,HuangGB,WangD (2015) Sparse extreme learningmachine
for regression. In: Extreme Learning Machine

28. He B, Xu D, Nian R, van Heeswijk M, Yu Q, Miche Y, Lendasse A
(2013) Fast face recognition via sparse coding and extreme learning
machine. Cogn Comput 6(2):264–277

29. Huang G, Zhu Q, Siew CK (2004) Extreme learning machine: a
new learning scheme of feedforward neural networks. Neural Netw
2:985–990

123



212 Memetic Comp. (2017) 9:199–212

30. Rumelhart David E, Hinton GE, Williams RJ (1986) Learning rep-
resentations by back-propagating errors. Nature 323(6088):533–
536

31. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning
machine for regression and multiclass classification. IEEE Trans
Syst Man Cybern 42(2):513–529

32. Tang J, Deng C, Huang GB (2015) Extreme learning machine for
multilayer perceptron. IEEE Trans Neural Netw Learn Syst:1–13

33. Cambria E, Huang GB (2013) Extreme learning machines. IEEE
Trans Syst 28(6):30–59

34. Widrow B, Greenblatt A, KimY, Park D (2013) The No-Prop algo-
rithm: a new learning algorithm for multilayer neural networks.
Neural Netw 37:182–188

35. Johnson W, Lindenstrauss J (1984) Extensions of Lipschitz map-
pings into a Hilbert space. Modern Anal Probab 26:189–206

36. Pavone M, Coello CAC (2012) Optimization on complex systems.
Memetic Computing 4(3):163–164

37. RubinsteinR, Bruckstein AM, Elad M (2010) Dictionaries for
sparse representation modeling. Proc IEEE 98(6):1045–1057

38. Wright J, Ma Y, Sapiro G, Huang TS, Yan S (2010) Sparse repre-
sentation for computer vision and pattern recognition. Proc IEEE
98(6):1031–1044

39. Elad M, Figueiredo Mario AT, Ma Y (2010) On the role of sparse
and redundant representations in image processing. Proc IEEE
98(6):972–982

40. Bruckstein AM,DonohoDL, EladM (2010) From sparse solutions
of systems of equations to sparse modeling of signals and images.
SIAM Rev 51(1):34–81

41. Engan K, Aase SO, Husoy Hskon J (1999) Method of optimal
directions for frame design. IEEE Trans Signal Process 5:2443–
2446

42. Mallat SG, Zhang Z (1993)Matching pursuits with time-frequency
dictionaries. IEEE Trans Signal Process 41(12):3397–3415

43. ChenSS,DonohoDL,SaundersMA(2001)Atomic decomposition
by basis pursuit. SIAM Rev 43(1):129–159

44. Tropp JA, Gilbert AC (2007) Signal recovery from random mea-
surements via orthogonal matching pursuit. IEEE Trans Inf Theory
53(12):4655–4666

45. Hull JJ (1994)Adatabase for handwritten text recognition research.
IEEE Trans Pattern Anal Mach Intell 16(5):550–554

46. Ngiam J, Koh PW, Chen Z, Bhaskar S, Ng AY (2011) Sparse fil-
tering. Adv Neural Inf Process Syst 2:1125–1133

123


	Denoising deep extreme learning machine for sparse representation
	Abstract
	1 Introduction
	2 Related work
	2.1 Sparse representation and dictionary learning: K-SVD algorithm
	2.2 Orthogonal matching pursuit algorithm

	3 Principle of ELM based on autoencoder
	3.1 Review of extreme learning machine
	3.2 ELM based on autoencoder

	4 Proposed method
	4.1 Learning representation with denoising deep ELM-AE
	4.2 Using a denoising representation and a denoising dictionary

	5 Experimental results and analysis
	5.1 Digit recognition
	5.1.1 Number of hidden layers
	5.1.2 Ridge parameters
	5.1.3 Final classification results

	5.2 Coil-20 recognition
	5.2.1 Number of hidden layers
	5.2.2 Ridge parameters
	5.2.3 Final classification results

	5.3 Extended YaleB recognition

	6 Conclusion
	Acknowledgements
	References




