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Abstract When solvingmulti-objective optimizationprob-
lems (MOPs) with big data, traditional multi-objective
evolutionary algorithms (MOEAs) meet challenges because
they demand high computational costs that cannot satisfy
the demands of online data processing involving optimiza-
tion. The gradient heuristic optimizationmethods show great
potential in solving large scale numerical optimization prob-
lems with acceptable computational costs. However, some
intrinsic limitations make them unsuitable for searching
for the Pareto fronts. It is believed that the combination
of these two types of methods can deal with big MOPs
with less computational cost. The main contribution of this
paper is that a multi-objective memetic algorithm based on
decomposition for big optimization problems (MOMA/D-
BigOpt) is proposed and a gradient-based local search
operator is embedded in MOMA/D-BigOpt. In the exper-
iments, MOMA/D-BigOpt is tested on the multi-objective
big optimization problems with thousands of variables. We
also combine the local search operatorwith otherwidely used
MOEAs to verify its effectiveness. The experimental results
show that the proposed algorithm outperformsMOEAswith-
out the gradient heuristic local search operator.
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1 Introduction

In the era of Big Data, there is an urge of fast data processing
methods with optimization. Tackling complex optimization
problems, more and more researchers turn to computational
intelligent methods, especially to evolutionary algorithms
(EAs). However, traditional EAs are facing great challenges
for the intolerable costs of thousands even millions of evalu-
ations that blocks the real time application [1]. In this paper,
we solve amulti-objective optimization problem (MOP)with
thousands of variableswhich is a big optimization introduced
by Abbass et al. [1].

A faster convergence rate is an essential property of any
methods solving big optimization problems. Compared with
EAs, traditional optimization methods using gradient infor-
mation show potentials in numerical optimization because
their computational cost is low. Decomposition approaches
[2,3] transforming an MOP into a set of single objective
optimization problemsmake the gradient-based optimization
methods be capable for solving MOPs. It is known that clas-
sical numerical optimization methods meet great troubles in
approximating entire Pareto fronts (PFs), because only one
solution is found. For this issue, the advantages of EAs are
obvious since a population is used.Literature [4] and [5] show
this property with numbers of applications and instances.

The scheme that employs a local search operator directly
improving the individual in EAs is also named as “memetic
algorithm” [6,7]. Memetic algorithms have been revealed to
be of high-efficiency for discrete optimization in both single
and multi-objective optimization [8–10]. For the continu-
ous optimization, the strategy of randomly searching around
needs to be altered. The gradient is an immediate heuristic
knowledge guiding search without meaningless exploration
[11]. It is significant for large scale numerical optimiza-
tion, and the experiments in this paper will demonstrate this
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property. Moreover, the population based gradient searching
method can overcome the defect of being sensitive to initial
points and can approximate the PF simultaneously.

The main contribution of this paper is a new algo-
rithm, named as multi-objective memetic algorithm based
on decomposition for big optimization problems (MOMA/D-
BigOpt), is proposed. We employ gradient information and
the decompositionmethod to design the local search operator.
The designed local search operator improves the robustness
and generalization of algorithm. It can deal with more com-
plicated landscapes. Nevertheless, we are not going to design
a state-of-the-art new MOEA. We want to demonstrate and
analyze the effectiveness and limitation of gradient-based
local search operators and gradient information in solving
big optimization problems. So the next contribution is that,
experimentally, we discuss the issues on the quick conver-
gence ofMOEAs in solvingmulti-objective big optimization
problems.

Multi-objective evolutionary algorithm based on decom-
position (MOEA/D) is a well-known MOEA with its good
performance in convergence [3]. Compared with the dif-
ferential evolutionary (DE) version of MOEA/D [12], the
experimental results show that MOMA/D-BigOpt has bet-
ter convergence with similar computational cost. When we
integrate the specially designed gradient-based operator with
some widely used MOEAs, they also get the satisfactory
results that reveal the generalization of this operator. In addi-
tion, the experiments also show that the gradient directions
of the decomposition function used in the local search oper-
ator can also guide the search of the algorithms with other
decomposition approaches which exceeds our expectations.

The remaining parts of this paper are organized as follows.
In Sect. 2, a brief review of hybrid MOEAs especially the
employment of gradient information in MOPs is provided.
MOMA/D-BigOpt is described in detail in Sect. 3, and the
effectiveness of local search operator is discussed in Sect. 4.
In Sect. 5, a big dataMOP is introduced. Section 6 reports the
experimental results on 6 datasets, and Sect. 7 summarizes
the work in this paper.

2 Related work

The combination of gradient related methods with MOPs
has appeared for many years. Filege and Svaiter did the first
analytic description and investigation on the generation of
gradient in multi-criteria optimization in 2000 [13]. In 2007,
Emmerich et al. [14] put forward the gradient of the 1-D indi-
cator inMOPs concerning the geometric of a set-basedPareto
front. Moreover, in 2014, Newton’s method was employed to
optimize this indicator in [15].With the similar idea, Bosman
[11], in 2011, proposed another set-based multi-objective
gradient direction, named as non-dominated direction. A

solution can bemoved in this direction so that objective func-
tion values can be improved or remain the same.

However, the complexity of computing gradient involving
set of individuals is unacceptable in dealing with multi-
objective big optimization problems. So a straightforward
knowledge we would like to use is related to the objective
function. Sindhya et al. [16] employed the scalarizing func-
tion and gradient-based sequential quadratic programming to
implement local search, but, unfortunately, this is also intol-
erable because the number of evaluations in local search is
closely related to the dimensions of decision space. In this
paper, the derivations of objective function with the same
amount of evaluations and the gradient directed local search
with small numbers of evaluations save the computational
costs, which is simple but satisfies the demands of big opti-
mization.

Even so, the hybrid strategy in the above literature is an
appropriate structure for the integration of other optimization
methods and MOEAs. Goh et al. [17] initiatively utilized the
evolutionary method to improve the gradient search direc-
tion. Tang and Wang [18] referenced the idea from particle
swarm optimization and hybridized the personal and global
best individual’s information to individuals. In the problem
we are solving, since a wide distribution of individuals can-
not be guaranteed because of the quantity of variables, we
did not use these two methods.

Memetic strategies have attracted high attentions in some
recent literatures. In [19], a greedy-based local searchmethod
was employed in the artificial bee colony algorithm which
accelerates the convergence to the best local optimal solu-
tions. Liang et al. [20] emphasized the domain-specific
knowledge employed in solving complex optimization prob-
lems. Additionally, Liang et al. [21] also proposed a transfer-
learning-based evolutionary algorithm that makes full use
of knowledge generated by other previous optimizations to
promote the distribution of initial population. The method
proposed in this paper is also inspired by these ideas and
make individuals explore its preference with strong heuris-
tics knowledge, gradient.

For a direct combination of MOEA and gradient-based
search, decomposition method becomes our first choice.
Decomposition approaches have attracted increasing atten-
tions in the multi-objective, even many-objective [22], opti-
mization society since first comprehensively investigated by
Zhang [3]. Some modified versions of MOEA/D improved
the original one, like the adaptive operator selection, pro-
posed by Li et al. [23] and a sub-problem decomposition
mechanism used by Liu et al. [24].

3 Algorithm description

In MOMA/D-BigOpt, the gradient of objective functions is
used as a strong heuristic knowledge guiding the local search
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operator. The basic framework is inspired by MOEA/D [3],
which decomposes the multi-objective problem into a series
of single objective problems. Concerning the single objec-
tive optimization, we find that in [25,26], the algorithms have
good performance in solving large-scale numerical optimiza-
tion problems and also have potential in solvingMOPs when
supported by decomposition approach.

3.1 Initialization

During the initialization procedure, each individual is repre-
sented by a vector of decision variables, i.e. x = {x1, x2, . . . ,
xNdim } where xi is a real number and Ndim is the dimension
of decision space. Besides, a random value evenly distributed
in the feasible interval of each dimension is the initial value
of xi .

A set of direction vectors are assigned to each individual
that will be used in decomposition function and local search
operators, i.e. d(i) = {d(i)(1), d(i)(2), . . . , d(i)(Nobj )} is
the reference direction of individual i . For this vector,
d(i)( j), j = 1, 2, . . ., Nobj , is a real number ranges from
0 to 1, and Nobj is the number of objectives. d(i) is gener-
ated uniformly distributed in the objective space by the same
means in MOEA/D [3].

Inspired by the lattice structure, proposed in [25], where
individuals live in, we create neighborhood lists for individ-
uals that each list contains at least one individual with the
direction vector adjacent and at least two individuals with
the direction vector not adjacent. The size of each list is set
to be 4 which is used in [25].

3.2 Evolutionary operators

The fitness function determines which individual is better
and should be kept into the next generation. An indicator to
evaluate individuals is designed as follows,

f i ti = Func
(
f (i), d(i), ref

)
(1)

where f i ti , a real number indicator of individual i , corre-
sponds to the fitness value of traditional genetic algorithms,
and Func(·) is a decomposition function with independent
variables f (i) and d(i), which are the vector of objective func-
tion values and direction vector of individual i . ref is the
reference information like reference points which is the same
for all individuals. More specifically, weighted sum function
[2,3] is with the form:

f i ti =
Nobj∑
j=1

d(i) ( j) × f (i) ( j) (2)

where f (i)( j) is the j-th objective function value of individ-
ual i .

Other decomposition functions employed by MOEA/D
like Tchebycheff approach [2,3], which needs the reference
points z∗ haveweaker differentiability than theweighted sum
function. So the weighted sum function becomes our first
choice.

Crossover operator is designed with the similar idea in
[25]. For individual i , comparisons will be made with its
neighbors using following function:

cpi, j = f i ti − Func
(
f ( j), d(i), ref

)
j ∈ neig(i) (3)

where cpi, j indicates the difference between individual i and
its neighbor individual j in the direction d(i) and neig(i)
is the list of neighbors of individual i assigned before. If
cpi, j > 0 for all j , individual iwill not change. Otherwise,
with crossover probability Pc, the crossover operationwill be
applied on individual iadding some information from jmin ,
i.e. the neighbor individual generates the minimum cpi, j .
Here, the strategy employed in [26] is used.

e(i)
(m) = αmx

(i)

(m)
+ (1 − αm)x ( jmin)

(m)
(4)

where e(i)
(m) and x

(i)
(m) are them-th elements of new and original

individual i . Coefficient αm = U (0, 1) is a random number
uniformly distributed in the range of 0 and 1. It is not nec-
essary to assign the same weight on different elements of
chromosome. This operator makes use of the information of
two individuals and can guarantee the new individual does
not beyond the feasible region if the region is convex.

In the mutation operator, following the same compar-
ison procedure conducted with (3), all the individuals can
be modified with mutation probability Pm who have one
or more neighbor individuals with better performance. For
example, considering individual i , if there is a neighbor j
that cpi, j < 0, i will be modified with probability Pm . It
means that this individual is not optimal along its direction
vector when compared with its neighbors. The same muta-
tion method used in [25] is applied. The operator follows the
function:

e(i)
(m) =

{
x (i)
(m) U (0, 1) < 1

Ndim

bound
(
x (i)
(m) + Gaus(0, 1

ngen
)
)

otherwise

(5)

where bound(·) is used to make sure the new element
stays in the feasible region. If one or more elements of e(i)

exceed the bound, we set them to be the boundary values.
Gaus(0, 1/ngen) is a random number with normal distribu-
tion with the mean being 0 and variance being 1/ngen where
ngen is the number of generations.
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The occupation operator is motivated by the idea that
an individual i will copy another individual around if the
neighbor’s performance in individual i’s direction is better.
The comparison function (3) is used again. Individual i , for
example,will copy individual jmin whohas theminimumand
negative cpi, j ; otherwise, if all cpi, j > 0, individual iwill not
change. This operator has the similar idea of related opera-
tors employed in [3] and has the identical effect of selection
operator in traditional genetic algorithms.

In order to improve the convergence, the local search
operatormakes full use of gradient information, as a strong
prior knowledge [11,26] of problems. In MOMA/D-BigOpt,
the search direction vector s(i) of individual i , if available, is
generated by the following function:

s(i)
(m) =

∂ Func
(
f (i), d(i), ref

)

∂x(m)

(6)

where s(i)
(m) is the m-th element of s(i). This function’s struc-

ture is similar to the method in [26], but the decomposition
functions are used and the direction information and the ref-
erence global information, if necessary, are added. If s(i) is
unavailable, it will be replaced by a randomvector thatmeans
the individual will randomly search around.

We use the term “sub-gradient”, as is used in [26], to call
the search direction vector because, in some cases, there may
exists some points with no gradient mathematically. We will
discuss this scenario there-in-after.

A naive but sufficient search strategy, Steepest Descent
method proposed by Cauchy in 1847, is employed in this
operator. The update function is given as follows:

e(i)
(m) = x (i)

(m) + θ̂
s(i)
(m)∥∥s(i)∥∥ (7)

where θ̂ is the optimizing step length along this search direc-
tion. ||s(i)|| is the 2- norm of s(i) generated before.

To reduce the computational cost, this operator is only
applied once on each individual in each generation. For the
same purpose, we choose a simple liner search method, ran-
dom sampling which stems from [26], to search for θ̂ . The
new individual with as small variation as possible and as high
f i ti as possible is preferred in the algorithm.

At the very beginning of this liner searchmethod, we need
to generate a number of random values of θk that have the
exponential distribution,

θk =
{
Exp

(
c×ngen×p

‖s(i)‖
)

k = 1, 2, . . . , Ntry; p ≥ 1

0 k = 0
(8)

where positive constant c is the factor need to be speci-
fied that controls the length of trial step and should satisfy
the scale of searching space, and p is the punishment fac-
tor whose function and variation will be introduced later.
c × ngen × p/

∥∥s(i)∥∥ turns into the parameter of random
number generator, Exp(λ). Ntry is the number of times
each individual can try in its sub-gradient direction.1 This
is also a parameter need to be specified, and will influence
the velocity of convergence. After that, we will evaluate
each feasible temporary individual i(k) corresponding to
each θk . Greedily, we will choose the one with the highest
f i ti(k) to replace individual i or keep it unchanged if none
of f i ti(k) > f i ti(0), k > 0.

We can use some information generated in local search
operator as an effective terminal criterion. When an individ-
ual reaches the point whose ||s(i)|| is smaller than a threshold
ε, this operator is not conducted. If the individual has chances
to be modified in other operators, the local search operator
will be conducted on it again; otherwise, the individual will
skip local search operation within this generation. The rea-
son why this criterion is necessary is that, in this situation,
the local search operator has little chance to improve this
individual. When all individuals stop to improve themselves
with identical condition, the algorithm stops before the max-
imum generation is reached. For a specific individual, in the
case of θ0 being chosen as the best step length in the previous
iteration, we will enlarge the parameter of random number
generator in (8) to shorten step length because the steps tried
are identified as longer than the proper length. To achieve
this goal, p is set to the square of times of iterations that the
individual has not changed continually. When an individual
has not changed during the number of iterations exceeding a
threshold Nerror , we believe that this individual has reached
the ideal point and we stop to conduct local search opera-
tion on it. Algorithm 1 provides the details of MOMA/D-
BigOpt, and the local search operator is described in
Algorithm 2.

1 This is the case of maximization problem. For the minimization prob-
lem, minus sub-gradient direction will be used.
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The motivation that we employ the strategies mentioned
before is the simplicity and generalization pursued in local
search operator. With low in complexity of calculation and
small in external data storage, sub-gradient is effective local
information of majority of problem and can guide individual
to be improved. Finding the optimal solution near an individ-
ual is more practical since the gradient of a point in decision
space has good performance only in its neighborhood. Low-
order derivation is not suitable for approximating landscape
globally.

4 Discussion of the local search operator

In the gradient-based memetic algorithm, local search oper-
ator is the most powerful technique that improves the
convergence with reducing iterations and evaluation times
which is meaningful for optimization problems with thou-
sands of variables. The landscape of searching space can be
extremely irregular with increasing dimensions. Hence, we
will illustrate the generalization of our local search operator
in various example functions. Let us observe the following
two simple problems:

min f1 (x1, x2) =
(√

x21 + x22 + 1

)2

s.t. − 1 ≤ xi ≤ 1, i = 1, 2
(9)

min f2 (x1, x2) = − 1√
x21+x22+1

s.t. − 1 ≤ xi ≤ 1, i = 1, 2
(10)

Each one is a single-objective problem with box con-
strains. Since the decomposition function converts the multi-
objective problem into several single-objective problems for
each individual with different directions, the single-objective
problems are proper examples to illustrate some properties
of optimization problems and methods. f1 and f2 are the
continuous optimization problems that objective functions
are connective everywhere and derivable everywhere except
point (0, 0). The objective function f1 is convex while the
objective function f2 is not.

Newton’s method does not perform well in both two
problems while the descent method can deal with these prob-
lems. In the first problem, the search direction generated by
Newton’s method is workable but unchanging step length
is misleading and liner search is necessary. However, the
second problem cannot be solved by Newton’s method for
non-positive definition of Hessian matrix. In contrast, sub-
gradient can provide a useful search direction in both two
problems, and is not sensitive to convexity and the initial
point. In addition, sub-gradient is easier to be obtained and
stored. In aword, the gradient-basedmethod ismore adaptive

for complex optimizationwith the framework of evolutionary
algorithm.

The liner search method we employed is suitable for vari-
ous kinds of extreme value points. How to find extreme value
point of objective functions is the core to solve single and
multi-objective optimization problems. The theoretical opti-
mal solution of these two problems is x1 = 0 and x2 = 0
obviously.Meanwhile, this is the point without gradient. Cal-
culus knowledge guide us that extreme value points exist in
the points with the norm of its gradient being 0, or without
gradient, or the boundary of searching area. Since the ana-
lytics methods are not sufficient for complexity of real world
problems, we need to employ optimization methods even
evolutionary algorithms. The challenge is that how could we
search for the theoretical optimal solution with the frame-
work of genetic or memetic algorithms. The points with
gradient = 0 or without gradient is the most promising points
in our algorithm. Owing the fact that the ideal point we find
is non-differentiable in the examples and its neighborhood is
differentiable without tending to be 0, the norm of gradient
being smaller than a threshold and other gradient-basedmea-
suring methods are invalid terminal criteria in this condition.
Iterative sequence convergence is a widely used method to
overcome the challenge above and liner search method used
in local search operator, randomsamplingwith adaptive para-
meter, have the same function.

Additionally, facing the challenge of multimodal scenar-
ios, this local search operator still own the potential to explore
local landscape and discover the unexpected region with
possibility. Sampling techniques are practical approaches
in dealing with the multimodal scenarios, but traditional
sampling techniques, which are controlled by the sampling
interval and density, are sensitive to the fast changes in land-
scape. In contrast, the random sampling partly avoids this
defect and has probability to discovery the nearest local opti-
mal solution as illustrated in Fig 1. Figure 1a is the part of
curve of the following function

f (x) = 2

x + 1.2
× sin

(
10π

x + 0.6

)
(11)

where x corresponds to step length θ mentioned above, and
we limit x ∈ [0, 5]. The uniform sampling may lose the near-
est minimum while the random sampling with exponential
distribution finds it with probability according to the com-
parison of Fig. 1b, c (λ = 1), 1d (λ = 2). Each figure is with
sampling in 50 points.

5 Big optimization problems

The test problem stems from the Optimization of Big Data
2015 Competition [1], which has also been used in [26] with
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Fig. 1 Comparison of the uniform sampling and the random sampling in a simple multimodal example. a The curve of example function, b uniform
sampling with 50 points from 0 to 5, c random sampling with 50 points (λ = 1), and d random sampling with 50 points (λ = 2)

a single objective optimization problem. In this problem, the
model is encompassed with thousands of variables and the
number of fitness function evaluations (NFES) is the indica-
tor that we must concern.

The background of this problem is electroencephalo-
graphic (EEG) signals processing with independent compo-
nent analysis (ICA) [27–29]. For the convenience of further
usage and analysis, the data of EEG signal should be filtered
in real time when it is obtained from sensors.

The mathematic model of this problem with deterministic
functions is abstracted as shown below. Two large matrixes,
S and X which are of dimensions N × M , and a relatively
smallmatrix,Awith dimension being N×N , are the building
blocks of the functions. According to the datasets used in the
experiments, N ranges in 4, 12, and 19; M = 256 is with a
constant value. The relationship of these three matrixes is

X = A × S (12)

The goal is separating S into two matrixes with same dimen-
sion that S = S(1) + S(2). Assume that C is the matrix of
Pearson correlation coefficient

Ci, j = covar
(
xi , (A × S(1)) j

)

σ (xi ) × σ
(
(A × S(1)) j

) (13)

where covar(·) is the covariance of two vectors, and σ(·) is
the standard deviation of a vector. The element of C in row i
and column j is generated by i-th row of matrix X and j-th
row of matrix A × S(1).

The first objective function is used to generate C with
maximal diagonal elements and minimal non-diagonal ele-
ments. The second objective function is used to minimize the
difference between S and S(1). Naturally, the elements of S(1)

are the decision variables. There is a box constrain that each
element of S(1) varies from −8 to 8.

min f1 = 1

N 2 − N

∑
i, j �=i

C2
i j + 1

N

∑
i

(1 − Cii )
2 (14)

min f2 = 1

N × M

∑
i, j

(
Si j − S(1)

i j

)2
(15)

Aiming at the objective functions, we apply the afore-
mentioned weighted sum decomposition function, because
primal experiments and observations show that the Pareto
front tends to be convex in objective space. The sub-gradient
for each direction is easy to be generated according to [26].

Assume T = A× S(1), and Tqk = ∑
l Aql S

(1)
lk . The mean

and standard deviation of Tq , the q-th row of matrix T, is
obtained firstly
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Table 1 The parameters of
MOMA/D-BigOpt used in
experiments

Parameters Nindiv c Nerror Ntry Pc Pm ε

Value 49 5 × 10−4 10 30 0.8 0.1 1 × 10−4

μ(Tq) = 1

M

∑
k

Tqk (16)

σ
(
Tq

) =
(

1

M − 1

∑
k

(
Tqk − μ

(
Tq

))2
) 1

2

(17)

Then the derivative of μ(Tq) and σ(Tq) can be generated by

∂μ
(
Tq

)

∂S(1)
i j

= Aqi

M
(18)

∂σ
(
Tq

)

∂S(1)
i j

= Tqk − μ
(
Tq

)
Aqi

(M − 1) σ
(
Tq

) (19)

The covariance of X p and Tq can be calculated by

cover
(
X p, Tq

) = 1

M

∑
k

(
X pk − μ

(
X p

)) (
Tqk − μ

(
Tq

))

(20)

Hence, the derivative of covariance can be obtained by the
equation

∂cover
(
X p, Tq

)

∂S(1)
i j

= 1

M

(
X pj − μ

(
X p

))
Aqi (21)

If σ
(
Tq

) �= 0, we can get the derivation of Cpq that

∂Cpq

∂S(1)
i j

=
(
X pj − μ

(
X p

))
Aqi

M · σ
(
X p

)
σ

(
Tq

) −
(
X pj − μ

(
X p

))
Aqi · Cpq

(M − 1) σ
(
Tq

)2
(22)

Now, the sub-gradient of two objective functions can be
obtained.
⎧⎪⎨
⎪⎩

∂ f1
∂S(1)

i j

= 2
N2−N

∑
p,q �=p

∂Cpq ·Cpq

∂S(1)
i j

+ 2
N

∂Cpp(Cpp−1)
∂S(1)

i j
∂ f2

∂S(1)
i j

= 2
N×M

(
S(1)
i j − Si j

) (23)

In our algorithm, x = {xm} = {S(1)
11 , S(1)

12 , . . ., S(1)
1M , S(1)

21 ,

S(1)
22 , . . ., S(1)

2M , . . ., S(1)
N1, . . ., S

(1)
NM }, and Ndim = N × M .

According to (2), searching directions in local search opera-
tor are generated by the following equation,

s(i)
(m) = −d(i) (1) × ∂ f1

∂x (i)
m

− d(i)(2) × ∂ f2

∂x (i)
m

(24)

6 Experiments and results

MOMA/D-BigOpt is tested on 6 datasets, namely D4, D4N,
D12, D12N, D19, and D19N, which are available online.2

The “N” in the name of datasets means noisy that each origi-
nal dataset is added noisy component at the level of 0.1.More
details about the noise added can be referenced in [1,30].
With the same population size and parameters of operators,
the proposed algorithm outperforms baseline and theDE ver-
sion of MOEA/D, proposed in [12].The parameters used in
the experiments are given in Table 1.

Hypervolume (HV) is one of the most popular indicators
that can measure both the convergence and the diversity of
the approximation of the PF simultaneously, which is intro-
duced by Zitzler [31]. Because of the unknown of optimal
PFs, we cannot apply any indicators that measure the dif-
ference between the ideal PF and its approximation, so the
hypervolume is the major numerical indicator used in the
following experiments.

Firstly,we conductMOEA/Dand improvednon-dominated
sorting genetic algorithm (NSGA-II) [32] on 6 datasets to
construct a baseline in objective space. The number of indi-
viduals is set to be 49 in all experiments below.Themaximum
generation are specified to be 2040 and 40,800, correspond-
ing to 100 thousands (99,960) and 2 millions (1,999,200) of
NFES approximately. The maximum number of generations
is set to be 50 for the proposed algorithm corresponding to
about 80 thousands NFES. The two maximum generations
set above can be the reference results of the algorithmwithout
local search. Corresponding to the dataset D4, D12, andD19,
Figs. 2, 3, and 4 preliminarily illustrate the insufficiency of
MOEA/D without local search operator in solving this prob-
lem, and the insufficiency enlarges with the increasing of the
number of variables. Given the limitation of space available,
the PFs generated by NSGA-II are not plotted in the figures
because they are dominated by PFs obtained by MOEA/D,
and the distance is too far to be combined in one or two fig-
ures. Numerically, we compare the performance of proposed
algorithm, MOEA/D with 100k NFES, and NSGA-II with
100k NFES in Table 2 in terms of hypervolume. The refer-
ence point is set to be (1.01, 22.34) which is the mean value
of two objectives steam from the solutions randomly gener-
ated. A great number of experiments show that this reference
point is suitable for all 6 datasets.

The above experiments demonstrate the necessity of a
gradient-based local search mechanism for solving the big

2 http://www.husseinabbass.net/BigOpt.html.
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optimization problem used in this paper. In order to verify
the generalization of local search operator, we design the
following experiments to transplant this operator to the other

Fig. 2 3 PFs obtained by two methods on D4

MOEAs and the aforementioned 6 datasets are used to test the
performance of these combinations with the same parameter
setting.

Based on the previous experiments, MOEA/D is selected
to be added this operator. Since the reference direction has
already been used and each direction was assigned to indi-
vidual, the implementation of this local search operator in
the structure of MOEA/D is not hard. At the end of each
generation, individual searches in the decision space with
the guidance of sub-gradient. The decomposition function
employed in MOEA/D is still weighted sum. This modified
algorithm is called MOEA/D-local.

Additionally, we choose NSGA-III [33] as another basic
framework to be integrated with gradient-based local search
operator, because the idea of decomposition is appeared in
this basic algorithm and the good performance in traditional
test problems shows the potential in dealing with big opti-
mization problems. However, the reference points are not

Fig. 3 PFs obtained by two methods on D12. a Global view of 3 PFs and b partial enlarged drawing of the bottom left corner of the global view

Fig. 4 PFs obtained by two methods on D19. a Global view of 3 PFs and b partial enlarged drawing of the bottom left corner of the global view

Table 2 The hypervolume
generated by three algorithms
on 6 datasets

Dataset D4 D4N D12 D12N D19 D19N

MOME/D-BigOpt 22.3402 22.3522 22.5586 22.5589 22.5522 22.5514

MOEA/D 100k 21.8301 21.8668 16.6269 16.9594 12.6812 12.1832

NSGA-II 100k 16.3265 16.7924 8.6611 9.2461 7.2814 7.1086

123



Memetic Comp. (2016) 8:45–61 55

assigned fixedly to individuals, so we employed the associ-
ation operation as is used in NSGA-III to assign the nearest
reference points to individuals in each generation. This mod-
ified algorithm is called NSGAIII-local.

What needs to explain is that since the difference of the
other original operators in the above comparison algorithms,
the stop criteria and amplifying factor p of (8) in gradient-
based local search operator employed have to be removed,
but the core function of this operator is kept. Therefore, in

Table 3 Hypervolume, standard derivation, and NFES of three algorithms tested on 6 datasets

D4 D4N D12 D12N D19 D19N

MOMA/D-BigOpt

HV 22.34013 22.35215 22.55864 22.55898 22.55202 22.55121

SD 3.05 × 10−5 2.08 × 10−5 1.89 × 10−4 8.54 × 10−5 5.43 × 10−4 5.80 × 10−4

NFESa 39423 39716 78682 78712 77364 77901

MOEA/D-local

HV 22.34015 22.35216 22.55882 22.55907 22.55306 22.55258

SD 5.60 × 10−6 7.43 × 10−6 6.36 × 10−5 3.95 × 10−5 1.23 × 10−4 2.09 × 10−4

NFES 39249 39249 78449 78449 78449 78449

NSGAIII-local

HV 22.28587 22.28587 22.53942 22.53918 22.53035 22.52914

SD 0.007593 0.005438 0.003282 0.00269 0.004147 0.004886

NFES 41652 41652 83252 83252 83252 83252

a For the uncertainty of proposed algorithm, NFES cannot be fixed for independent running. So it is the average value and is rounded to the nearest
integer. The variation of it is less than 5% of total NFES

Fig. 5 Performance of three algorithms tested on D4 dataset. a Hypervolume vs. NFES, b set cover ratio vs. generations, and c distribution of
population after the last generation in the objective space
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Fig. 6 Performance of three algorithms tested on D4N dataset. a Hypervolume vs. NFES, b set cover ratio vs. generations, and c distribution of
population after the last generation in the objective space

Fig. 7 Performance of three
algorithms tested on D12
dataset. a Hypervolume vs.
NFES, b set cover ratio vs.
generations, and c distribution
of population after the last
generation in the objective space
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each generation, each individual has chance to be applied
local search operator constantly. So the NFES in this two
modified algorithms are constant but not the same.

The maximum generation of both three tested algorithms
are set to be 25, 50, and 50 corresponding to datasets D4
(and D4N), D12 (and D12N), and D19 (and D19N). The
reason why we choose the same maximum generation for
the large datasets and simply double it compared with the
smaller datasets is that the local search operator employed
is not sensitive to the quantity of variables. To guarantee the
convergence in the lager dataset tests, we simply double the
maximum generation.

To analyze the convergence rate of three algorithms, we
record the variation of hypervolume with the increasing of
NFES, and, on the other hand, the variation of set cover ratio
(SCR) over the number of generation [34,35]. SCR is the
proportion of individuals in the population of previous gen-
eration (t − 1) dominated by individuals in the population of
current generation (t).

Each algorithm is tested on each dataset with 20 inde-
pendent runs. The average hypervolume and its standard
deviation (SD) obtained by them is given in Table 3. Addi-
tionally, the NFES for each algorithm is also shown in the
table. Due to the difference of basic structure of algorithms,

the number of evaluations is different. In Figs. 5, 6, 7, 8, 9
and 10, the performances of three different algorithms on 6
datasets are compared.

Observing the variation of hypervolume and set cover
ratio, we can draw a brief conclusion that all the three algo-
rithms can rapidly converge. The influence of quantity of
variables is not obvious. Statistic data show the stability
of MOMA/D-BigOpt and MOEA/D-local, while the per-
formance of NSGAIII-local relatively shows the instability.
From the distribution of final population, it can be seen
that NSGAIII-local dose not converge to the PF evenly,
while the indicator variation indicates the convergence of
algorithm.

From the PFs generated by the three algorithms, it can be
discovered that the distribution of finial population is dense in
the optimal value of the second objective and sparse in that of
the other objective. Because the decomposition function we
employed has the inherent limitation which is sensitive to the
shape of PF approximated, especially the scale of different
objectives, all the algorithms showan unbalance convergence
to these two objectives. More reference directions (or points)
concentrate on the objective with wider range in PF, which
confirms the results in Table 3. The ratio of range of two
objectives in PFs is 0.5 (for D4 and D4N), 0.14 (for D12 and

Fig. 8 Performance of three algorithms on D12N dataset. a Hypervolume vs. NFES, b set cover ratio vs. generations, and c distribution of
population after the last generation in the objective space
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Fig. 9 Performance of three algorithms tested on D19 dataset. a Hypervolume vs. NFES, b set cover ratio vs. generations, and c distribution of
population after the last generation in the objective space

D12N), and 0.17(for D19 and D19N) approximately accord-
ing to our experiments.

Diversity loss is another issue that affects the distribution
of Pareto sets. It is more evident in NSGAIII-local because
the individuals are assigned with the similar reference points
if they are distributing closely before the implementation
of local search operator. This unfixed assignment has much
worse effects if the diversity of population lost before. It is
much easy that individuals aggregate to one or more clusters,
and this phenomenon appears in two terminals of PF in D4
and central of PF in D19. Compared with NSGAIII-local,
two other algorithms show less diversity losing, but they still
need mechanism to maintain or improve it.

In a word, three algorithms can rapidly converge to
the uniform PF with the guidance of gradient-based local
search operator. The distribution of population after the final
generation is different because of the reference direction
assignment. Defects of the decomposition function and the
unbalance of different objectives influence the density of
individual distribution. It can be concluded that a higher
convergence velocity, although necessary in big optimiza-
tion, sacrifices diversity and the current diversity maintain
and recovery mechanism does not work very well with small
NFES.

In order to generate PFs evenly distributed, we change the
decomposition method. However, gradients or sub-gradients
of other decompositionmethods are not easy to be generated.
Therefore, local search direction generation method in the
following experiment does not change, but the calculation of
fitness function value uses different methods.

TheMOEA/D-local framework is selected to conduct this
experiment because it has the best performance in the pre-
vious experiments. Tchebycheff approach, normal-boundary
intersection method (NBI) [3,35], and penalty-based bound-
ary intersection method (PBI) [3] with θ = 2 are employed
corresponding to Fig. 11a–c. We also give the result of
weighted sum method, which has been shown above, as a
reference in Fig. 11d. This experiment is conducted on D4
datasetwith the same parameter setting as used before.More-
over, the same experiments are also conducted onD19dataset
because the unbalance of two objectives is much larger and
the quantity of variables increases. The population’s distri-
butions with different decomposition functions in objective
space are plotted in Fig. 12.

Some unexpected PFs obtained by this experiment reveal
that the convergence is kept and the distribution is improved.
The features of population distribution, born from decompo-
sition methods, are also kept. PBI method shows a uniformly
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Fig. 10 Performance of three algorithms tested on D19N dataset. a Hypervolume vs. NFES, b set cover ratio vs. generations, and c distribution
of population after the last generation in the objective space

Fig. 11 PFs generated by
MOEA/D-local with different
decomposition functions on D4
dataset. a Tchebycheff
approach, b NBI method, c PBI
method, and d weighted sum
method
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Fig. 12 The distribution of population after the last generation in the
objective space obtained by MOEA/D-local with 4 different decompo-
sition functions tested on D19 dataset

distributed PF which is better than other methods on D4
dataset. Although the convergence decreases on D19 dataset,
the result is better than our anticipation yet. Compared with
other methods, NBI decomposition method gets the best
distribution evenness and does not sensitive to the scale
of different objectives. The results beyond our expectation
because the local search directions are not used in the three
other decomposition functions directly. We can find that the
guidance from weighed sum function is still workable for
some other decomposition functions but the theoretical basis
remains to be investigated.

7 Conclusions and futurework

In this paper, we propose a new decomposition-based multi-
objective memetic algorithm using sub-gradient information
to guide local search operator. Analyses and experimental
tests on a big MOP, i.e. EEG data processing, illustrate the
effectiveness and efficiency of MOMA/D-BigOpt, and its
local search operator. The analysis on more widely used
MOEAs with designed local search operator reveals the
diversity of population is an important issue for solving big
optimization problems.

In the future, more works of us will focus on the research
that how to overcome defects of quick convergence in
MOEAs. Besides, a more universal and easy-to-be-obtained
gradient-based searching direction is interesting to us.

Previous experiments inspire us that the diversity keep-
ing mechanism in MOEAs is worth to be studied. The
normalization methods show great improvement in solving
optimization problemswhose objectives arewith unbalanced
scale, but the generation of gradient or sub-gradient of this
converting function is still a problem. In addition, other
decomposition methods only get some preliminary investi-
gation and the analysis does not reach the end.
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