
Memetic Comp. (2016) 8:17–33
DOI 10.1007/s12293-015-0174-x

REGULAR RESEARCH PAPER

Differential evolution framework for big data optimization

Saber Elsayed1,2 · Ruhul Sarker1

Received: 31 July 2015 / Accepted: 7 December 2015 / Published online: 7 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract During the last two decades, dealing with big
data problems has become a major issue for many indus-
tries. Although, in recent years, differential evolution has
been successful in solving many complex optimization prob-
lems, there has been research gaps on using it to solve big
data problems. As a real-time big data problem may not be
known in advance, determining the appropriate differential
evolution operators and parameters to use is a combinator-
ial optimization problem. Therefore, in this paper, a general
differential evolution framework is proposed, in which the
most suitable differential evolution algorithm for a prob-
lem on hand is adaptively configured. A local search is also
employed to increase the exploitation capability of the pro-
posed algorithm. The algorithm is tested on the 2015 big
data optimization competition problems (six single objec-
tive problems and six multi-objective problems). The results
show the superiority of the proposed algorithm to several
state-of-the-art algorithms.

Keywords Differential evolution · Big data optimization ·
EEG signals

1 Introduction

Optimizing big data problems has become a significant
research topic for many organizations; for instance, in August

B Saber Elsayed
s.elsayed@adfa.edu.au

Ruhul Sarker
r.sarker@adfa.edu.au

1 School of Engineering and Information technology,
University of New South Wales, Canberra, Australia

2 Faculty of Computers and Informatics, Zagazig University,
Zagazig, Egypt

2010, the White House announced that along with healthcare
and national security big data is a national challenge and
priority. The underlying complexity of big data problems is
having to deal with a massive number of decision variables,
different mathematical properties of the objective function(s)
and/or constraints, and the computational time required for
the optimization process.

The concept of big data set/matrix or big database is dif-
ferent from the emerging research topic “big data”. By “big
data” we mean data that is too big, too fast, or too hard for
existing tools to process [14]. It is also defined using 4Vs—
volume, velocity, variety and veracity [38], where volume
measures the amount of data that can be captured, commu-
nicated, aggregated, stored and analyzed, velocity the speed
of data creation, streaming and aggregation, variety the rich-
ness of the data representation—text, images video, audio,
etc. while veracity suggests that, despite data being avail-
able, its quality is a major concern [38]. Big data is assumed
to be a ‘big blessing’ but comes with huge challenges. Run-
ning optimization algorithms on voluminous data sets using
available processors and storage units is difficult and, with the
advent of streaming data sources, the optimization process
must often be performed in real time, typically without a
chance to revisit past entries [25]. The problem areas that can
benefit from optimizing big data are found in many indus-
tries including, but not limited to healthcare, the public sector
(i.e., enabling sophisticated tax agencies to apply automated
algorithms to systematically check tax returns and automat-
ically flag those that require further examination or auditing
which can reduce the gap in tax revenue by up to 10 %
points [16]), cyber security (i.e., providing network man-
agers with the means to process millions of daily attacks and
identify the more serious ones), logistics, and the air traffic,
retail, manufacturing, and defence sectors [23]. The prob-
lem considered in this paper is abstracted from dealing with

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-015-0174-x&domain=pdf

18 Memetic Comp. (2016) 8:17–33

Electroencephalographic (EEG) signals through independent
component analysis (ICA) which to some extend approxi-
mate a big optimization problem, as it requires a real-time
handling of EEG signals [10,11,37].

Evolutionary algorithms (EAs) are population-based sto-
chastic search methods that have demonstrated great success
in solving complex optimization problems, of which DE has
shown its powerful search capabilities [1,6–8,19]. Although
DE does not need to satisfy some mathematical properties,
such as convexity, continuity and differentiability, of the
objective function and constraints of a problem which are
required by the deterministic methods [24], as it can flex-
ibly represent knowledge, has innate parallelism behavior
and performs better than many other EAs, it is not the best
algorithm for all types of problems [6]. It has some basic
operators (representation, mutation and crossover) and para-
meters (population size, mutation rate and crossover rate)
but there is a research gap regarding adopting it to solve big
data problems. In addition, no single operator and/or control
parameter is the best for all types of test problems.

Recently, the adaptation of DE control parameters and
search operators has attracted a great deal of interest among
the evolutionary computation (EC) community. Based on
how a DE algorithm’s control parameters are adapted, it
can be classified into one of the following three classes [5]:
(1) deterministic approaches—the parameters are changed
based on some deterministic rules regardless of any feedback
from the algorithm; (2) adaptive approaches—the parame-
ters are dynamically updated based on learning from the
evolutionary process; and (3) self-adaptive approaches—
the parameters are directly encoded within individuals and
undergo recombination . Also, recent studies have been pro-
posed, which used ensemble of DE operators [1,6–8,19].
However, such methodologies for optimizing big data prob-
lems do not exist [11].

In this paper, an automatic integration of DE variants
framework is developed and analyzed considering big data
problems, both single and multi-objective. In it, three popu-
lations are initially run in parallel for a predefined number of
generations (cycle), and during this cycle information regard-
ing the performance of every DE is recorded. After that, an
exponential curve is fitted and used to predict the future per-
formance that can be achieved by each DE operator. The
one with the best predicted future value is selected to opti-
mize the best set of individuals among all populations. Also,
information sharing and local search procedures are adopted.
The algorithm is tested on the 2015 big data optimization
problems. The objective is to decompose the obtained EEG
signals into two parts, where the first part needs to be simi-
lar to the original signals to keep useful information, while
the other part is used to remove as much artifacts as possi-
ble. For the problems considered in this paper, data available
represent around 20 KB of data per second if the data is

accessed in its binary form and 0.5 MB per second if the data
is accessed in its text form. This scale requires solving an
optimization problem every second. So the big optimization
studied in this paper includes big volume of data and solving
the problem quickly by ensuring quality of solutions. How-
ever, as the time constraint was not imposed in this version
of problems as described in [10], we have demonstrated the
problem solving ability for a single period. In practice, the
process can be used repeatedly for multiple-period in a con-
tinuous time scale. Each optimization problem is based on
a number of interdependent time series forming a dataset.
The number of time series, together with the length of each
time series, defines the number of variables in the problem.
Each time series is of length 256; thus, each optimization
problem has a multiple of 256 variables. The number of vari-
ables considered in this paper are 1024, 3072 and 4864. The
solutions obtained are compared with the same several algo-
rithms with the experimental results showing its superiority
to all the algorithms considered.

This paper is organized as follows. An overview of DE is
provided in Sect. 2. The proposed algorithm is then described
in Sect. 3. The description of the problem and the simulation
results are given in Sect. 4. Finally, the conclusions and future
research directions are elaborated in Sect. 5.

2 Differential evolution

DE is as a powerful global search algorithm for real para-
meter optimization. DE differs from other EAs mainly in its
generation of new vectors by adding the weighted difference
vector (DV) between two individuals to a third individual
[27]. It performs well when the feasible patches are parallel
to the axes. Its main operators are briefly discussed below.

– Mutation: A mutant vector is generated by multiplying
an amplification factor, F , by the difference between two
random vectors and the result is added to a third random
vector (DE/rand/1)

−→v z = −→x r1, j + F.(
−→x r2, j − −→x r3, j) (1)

where r1, r2, r3 are different random integer numbers ∈
[1, PS] and none of them is similar to z and PS the
population size. As. the mutation operator has a great
effect on the performance of DE, different types have
been introduced in the literature, such as DE/best/1 [26],
DE/rand-to-best/1 [19] and DE/current-to-best [36].

– Crossover: There are two well-known crossover schemes,
exponential and binomial. In the exponential crossover,
firstly, an integer index, l, is randomly selected from a
range [1, D], where D is the problem dimension. This
index acts as an initial position in the target vector from

123

Memetic Comp. (2016) 8:17–33 19

where an exchange of variables with the donor vector
begins. An integer index, L , that defines the number of
components the donor vector contributes to the target
vector, is randomly selected, such that L ∈ [1, D]. Sub-
sequently, a trial vector is calculated as follows:

uz, j =
{

vz, j f or j = 〈l〉D, 〈l + 1〉D, . . . , 〈l + L − 1〉D
xz, j ∀ j ∈ [1, D]

(2)

where j = 1, 2, . . . , D and 〈l〉D denotes a modulo func-
tion with a modulus of D and a starting location of l.
On the other hand, the binomial crossover is conducted
on every variable with a predefined crossover probability,
such that:

uz, j =
{

vz, j i f (rand ≤ cr or j = jrand)
xz, j otherwise

(3)

jrand ∈ {1, 2, . . . , D} is a randomly selected index,
which ensures −→uz gets at least one component from −→vz .

– Selection The selection process is simple, in which an
offspring survives to the next generation, if it is better
than its parent.

As mentioned earlier, many research studies have been
proposed to deal with the fact that no single DE control
parameter and/or search operator is the best for all kinds of
optimization problems. However, pushing such mechanisms
to solve big data problems has not been explored yet. Some
of existing DE algorithms are discussed below.

Caraffini et al. [2] proposed a super fit multi-adaptive
DE for solving unconstrained problems. In their proposed
algorithm, four DE operators with equal probability were
used. Then, based on the normalized relative fitness improve-
ment and normalized distance to the best individual, each
operator’s probability was updated. Additionally, F and
Cr were generated using Cauchy and normal distributions,
respectively. Both parameters were then adapted during
the evolutionary process. Furthermore, a covariance matrix
adaptive evolution strategy was used as a local search.

Elsayed et al. [6] proposed a general framework that
divided the population into four sub-populations, each of
which used one combination of search operators. During the
evolutionary process, the sub-population sizes were adap-
tively varied based on the success of each operator, which was
calculated based on changes in the fitness values, constraint
violations and the feasibility ratio. The algorithm performed
well on a set of constrained problems. Elsayed et al. [8] also
proposed two novel DE variants, each of which utilized the
strengths of multiple mutation and crossover operators, to
solve constrained problems. The algorithms demonstrated

superior performance in comparison with the state-of-the-art
algorithms.

Zamuda and Brest [35] introduced an algorithm that
employed two mutation strategies in jDE [1], with popula-
tion size adaptively reduced during the evolutionary process.
The algorithm was tested on 22 real-world applications and
performed better than two other algorithms.

Tvrdík and Polakova [31] introduced a DE algorithm for
solving a set of constrained optimization problems. In it, with
a predefined probability (q), one set of control parameters,
from 12 available, was selected and during the evolutionary
process, q was updated based on its success rate in previous
steps. It was evaluated using a set of unconstrained problems
and showed competitive performance [32].

Wang et al. [33] introduced a composite DE algorithm
(CoDE), in which at each generation a trial vector was gen-
erated by randomly combining three DE variants with three
control parameter settings. The algorithm performed well on
a set of unconstrained test problems.

In [15], a framework which used a mix of mutation strate-
gies and discrete control parameters within DE was proposed
for solving unconstrained problems. In it, a pool of differ-
ent mutation strategies, along with a pool of values for each
control parameter, coexisted during the entire evolutionary
process and competed to produce new individuals.

An improved adaptive DE algorithm was introduced [3],
in which a mechanism was used to reduce the population
size, along with using four mutation strategies with F and
Cr were adapted using the Cauchy distribution.

Qiu et al. [22] proposed an adaptive cross-generation
DE (ACGDE) for solving multi-objective problems. In it,
two new mutation strategies were proposed to enhance both
the convergence speed and diversity maintenance. The for-
mer was the neighborhood-based cross-generation (NCG)
mutation which generated mutant vectors based on the differ-
ence between two individuals from consecutive generations,
while the later was the population-based cross-generation
(PCG), which incorporated the use of the entire set of indi-
viduals from two consecutive generations to produce new
individuals. Both the NCG and PCG mutation operators were
employed in a half-half manner. In addition, a self-adaptive
mechanism was used to adapt both F and Cr values. The
algorithm implemented into non-dominated sorting genetic
algorithm II (NSGA-II) [4] and showed its superiority to
many other algorithms.

Guo et al. [12] proposed a mechanism to properly select
parents to participate in the mutation and crossover processes.
In it, successful solutions were stored in an archive, then par-
ents were selected from the archive when stagnation was
occurred. The algorithm was employed with many DE vari-
ants and showed its ability to improve their results. In [13],
an eigenvector-based crossover operator was proposed. It
utilized eigenvectors of covariance matrix of individual solu-

123

20 Memetic Comp. (2016) 8:17–33

tions to make the crossover rotationally invariant, that is the
crossover operator exchanged information between the tar-
get and donor vectors in the eigenvector basis instead of the
natural basis. The proposed crossover was employed with
several algorithms and showed its effectiveness in solving
54 optimization problems.

Tang et al. [30] introduced a DE variant with an individual-
dependent mechanism which incorporated an individual-
dependent parameter (IDP) setting and an individual-
dependent mutation (IDM) strategy. IDP setting ranked indi-
viduals based on their fitness values and then their assigned F
and Cr were calculated based on each individual’s ranking.
In the IDM strategy, four vectors differences mutation were
used to generate new offspring. The algorithm was tested on
28 unconstrained problems, with the results demonstrated
that it was superior to state-of-the-art algorithms.

3 Automated DE framework

In this section, an automated DE framework (ADEF) is
described.

3.1 ADEF

As described earlier, the main goals of the proposed algo-
rithm are (1) extending DE for optimizing big data problems;
and (2) developing a DE framework to automatically config-
ure the best set of operators to use, as no single DE operator is
the best for solving all types of optimization problems [9,34].

The main steps of the proposed framework are presented
in Algorithm 1. Firstly, κ DE variants are considered, where
all of them start with the same population of individuals of
size PS. Assume the population size of each DE variant
is PS1, PS2, . . . , PSκ , respectively. Subsequently, the solu-
tions of each population are evolved by DE1, DE2, . . . , DEκ ,
respectively. At each generation, information about each
operator’s performance is recorded to be used in the auto-
matic selection step (Sect. 3.4). Once the best DE variant is
determined, an information sharing scheme is adopted, such
that

– For single objective problems: all PSi=1:κ are combined
and sorted based on the fitness values. Then, redundant
vectors are removed, while unique vectors are kept in
xunique. Subsequently, the best PS vectors from xunique
are selected.

– For multi-objective problems: all PSi=1:κ are combined.
Then, the unique vectors are kept in xunique. From
xunique, the non-dominated solutions are determined.
Then, the first PS non-dominated solutions are selected.
If the number of non-dominated solutions is less than PS,
random solution vectors are selected from the remaining
set of solutions from (−→x unique) to form the final PS.

Algorithm 1 The general steps of ADEF
1: PS ← Generate an initial population;
2: PS1, PS2, . . . , PSκ ← PS;
3: t ← 1;
4: while t < tmax do
5: while i ter < CS do
6: for i= 1: κ do
7: Evolve PSi using the corresponding mutation, crossover and

selection operators of DEi ;
8: Update c f e;
9: if the problem has a single objective then
10: Record the performance based on refeq:sosuccess.
11: else if the problem has multiple objectives then
12: Record the performance based on refeq:success.;
13: end if
14: end for
15: t ← t + 1;
16: end while
17: Determine the best DE variant (Section 3.4);
18: Information sharing, as described in Section 3.1.
19: Apply a local search procedure;
20: Evovle the new population using the best DE variant for the

remaining tmax − t fitness evaluaitons;
21: end while

Then, a local search procedure is applied to the best individ-
ual, in case of a single optimization problem, or a solution
from the Pareto frontier, in case of a multi-objective problem.
Subsequently, the best DE variant is used to evolve the entire
population till the end of the evolutionary process.

3.2 DE variants

In this paper, three DE variants (three mutation operators
with the binomial crossover) are considered

– DE1: DE/current-to-rand/1/bin

uz, j =

⎧⎪⎨
⎪⎩
xz, j + Fz .(xr1, j − xz, j + xr2, j − xr3, j)

i f (rand ≤ crz or j = jrand)

xz, j otherwise

(4)

– DE2: DE/current-to-φbest/1/bin

uz, j =

⎧⎪⎨
⎪⎩
xz, j + Fz .(xφ, j − xz, j + xr1, j − xr2, j)

i f (rand ≤ crz or j = jrand)

xz, j otherwise

(5)

– DE3: DE/rand/1/bin

uz, j =

⎧⎪⎨
⎪⎩
xr1, j + Fz .(xr2, j − xr3, j)

i f (rand ≤ crz or j = jrand)

xz, j otherwise

(6)

123

Memetic Comp. (2016) 8:17–33 21

Algorithm 2 MOEA/D
1: Generate uniform weight vectors and identify the neighborhood Bz

of each individual z = 1 : PS;
2: Evaluate the initial population and update the ideal reference point

(f ∗);
3: for each subproblem z do
4: Select r1, r2 and r3 from Bz ;
5: φ is randomly selected from the best [1-50%] individuals in Bz ,

Eq. 5;
6: Generate new offspring using Eqs. 4 to 6;
7: Replace a maximum of two individuals from the randomly mixed

B(z), when their fitness values are worse than the new offspring;
8: Update the ideal reference point (f ∗);
9: end for

where −→x ϕ is a random vector selected from the range [1, ϕ],
r1
= r2
= r3 are random integer numbers and each one is dif-
ferent from z, while Fz and Crz are self-adaptively updated,
as will be shown later.

3.3 Evolving individuals in multi-objective problems

To adapt the algorithm to handle a multi-objective problem,
a multi-objective EA based on decomposition (MOEA/D)
[20,21] is considered. The main idea behind MOEA/D is to
decompose a multi-objective problem into a number of single
objective optimization problems. A Tchebycheff scalariza-
tion function is adopted and then ADEF is applied, as
described above.

minimize g(x |λ, f ∗) = maximize λ| fz − f ∗
z

Subject to

x ∈ � (7)

where
−→
λ = (λ1, . . . , λm) is a weight vector representing the

weights for each of them objectives to be optimized, such that∑λ
z=1 λ = 1 and f ∗ = (f ∗

1 , . . . , f ∗
m) is a vector representing

the ideal objective values for m objectives. MOEA/D utilizes
the relations between neighborhood among all sub-problems,
optimization of a sub-problem by using the information from
its neighboring sub-problems. The main steps of the adapted
MOEA/D used in this paper are presented in Algorithm 2.

3.4 Selection of best DE variant

To decide the best DE variant, the following steps are
conducted:

– At each iteration (t), and till the algorithm reaches CS
generations, information from every DE is recorded, such
that

– For single objective problems: the average fitness
value of every PSi=1:κ is recorded

infk,t =
∑PSk

z=1 fz,t
PSk

(8)

– For multi-objective problems: information based on
the quality of solutions and number of non-dominated
solutions (numnds) is recorded

infk,t =
∑PSk

z=1

∑m
obj=1 λz,obj fz,obj,t

PSk
+

(
1

numnds

)

(9)

Note that the smaller the value of in f , the better-
performing the DE variant.

– For each DE variant, the exponential curve is fitted, such
that

y = aebt (10)

– Find a and b; then calculate the predicted values (ŷ).
– Calculate the goodness of fit or coefficient of determina-

tion to find the likelihood of future events falling within
the predicted outcomes as follows:

R2 =
(

n
∑

y ŷ − ∑
x

∑
ŷ√

n
∑

(y2) − (
∑

y)2
√
n

∑
(ŷ2) − (

∑
ŷ)2

)2

(11)

where y is the actual values and ŷ is the predicted ones.
– For each DE variant, calculate the expected performance

after the subsequent CS generations such that

E f vi=1:κ = ai ebi×2×CS

R2
i

(12)

It is very common that the best fitness value, within the
population, improves rapidly at the early stages of the
evolutionary process, while the improvement rate is too
slow at later stages. From the pattern of improvement
rate, one can argue that rate is decreasing exponentially,
which motivated us to use an exponential function for
prediction. However, other patterns can be considered
which will be investigated in our future studies.

– Consequently, the one with the minimum expected value
is considered the best and is selected to evolve its popu-
lation till the end of the evolutionary process.

123

22 Memetic Comp. (2016) 8:17–33

3.5 Adaptation of F and Cr

It is a fact that F and Cr have a great impact on the per-
formance of any DE. In this paper, the mechanism proposed
in [29], which is considered as an improvement of JADE
[36], is adopted. There are some changes done to improve its
performance on the problem on hand.

– A historical memory with H entries for both parameters
(MCr , MF) is initialized, where all values are set to a
value of 0.5.

– Each individual xz is associated with its own Crz and Fz ,
such that

Crz = randni(MCr,rz , σcr) (13)

Fz = randci(MF,rz , 0.1) (14)

where rz is randomly selected from [1, H], and if a value
is outside the range of [0,1], it is handled by the technique
used in [36], randni(μ, σ) and randci(μ, σ) are values
randomly selected from normal and Cauchy distributions
with mean μ and variance σ , σcr is set at a value of 0.01,
while its original value was 0.1. To add to this, Fz is set
to be within [0.2–0.8].

– Similar to JADE, at the end of each generation, the Crz
and Fz values used by the successful individuals are
recorded in SCr and SF , and then the contents of memory
are updated as follows

MCr,d,i ter =
{

meanW A(SCr) if SCr
= null

MCr,d,i ter otherwise
(15)

MF,d,i ter =
{

meanWL(SF) if SF
= null

MF,d,i ter otherwise
(16)

where 1 ≤ d ≤ H is the the position in the memory to
be updated. It is initialized to 1, and then incremented
whenever a new element is inserted into the history, and
if it is greater than H=6, it is set to 1. The weighted
mean(meanW A(SCr)) is computed as:

meanW A(SCr) =
Scr∑

zd=1

wzd .Scr,zd (17)

wzd = � fzd∑Scr
zd=1 � fzd

(18)

where � fzd = | f (uzd,i ter) − f (xzd,i ter)|.
The weighted Lehmer mean (meanWL(SF)) is calculated
as follows:

meanWL(SF) =
∑SF

zd=1 wzd .S2
F,zd∑SF

zd=1 wzd .SF,zd

(19)

and wzd is calculated similarly to Eq. 18.

3.6 Local search procedure

In this paper, the interior point method is applied as a local
search. “The interior point methods generate one or more
interesting search directions at each iteration and effectively
combine these directions to ensure that sufficient progress
in a suitable convergence function is made” [17]. For con-
strained problems, interior-point methods (1) starts with
adding slack variables to make all inequality constraints
into non-negativities; (2) then nonnegativity constraints are
replaced with logarithmic barrier terms in the objective func-
tion. The idea of the barrier approach is to start from a
point in the strict interior of the inequalities and construct
a barrier that prevents any variable from reaching a bound-
ary; (3) the equality constraints are incorporated into the
objective using Lagrange multipliers; (4) solve the opti-
mality conditions for the barrier problems using Newton’s
method.

– For single objective problems, considering the optimiza-
tion of Eq. 24, the interior point method is applied to the
best solution obtained by of the successful DE variant a
d for a predefined number of fitness evaluations.

– Similarly, in case of a multi-objective problem, a single
solution from the Pareto Front is passed to the interior
point to be optimized, bearing in mind the optimization
of Eq. 24. The solution obtained is then evaluated based
on Eqs. 22 and 23. Subsequently, the ideal reference point
is updated, if required.

4 Experimental analysis

In this section, the simulation results obtained by the pro-
posed algorithm are presented and discussed. The algorithm
was coded in Matlab R2012b1 and run on a PC with a 3.4
GHz Core I7 processor with 16 GB RAM, and Windows
7.

4.1 Problem description

The series of problems used in this paper are both single
objective and multi-objective nonlinear optimization prob-
lems [10,11]. Each optimization problem is based on a
number of interdependent time series forming a dataset. The
number of time series together with the length of each time
series define the number of variables in the problem. For this
dataset, each time series is of length 256, where the number
of times series are 4, 12 and 19, hence there are 1024, 3072
and 4864 variables, respectively.

1 The code is available upon request.

123

Memetic Comp. (2016) 8:17–33 23

Ta
bl

e
1

C
om

pu
ta

tio
na

lr
es

ul
ts

of
A

D
E

F,
D

E
C

C
-D

G
,J

A
D

E
,S

H
A

D
E

an
d

N
SG

A
-I

I
fo

r
si

ng
le

ob
je

ct
iv

e
pr

ob
le

m
s

Pr
ob

le
m

B
es

tfi
tn

es
s

A
ve

ra
ge

fit
ne

ss
St
d.

B
as

el
in

e

A
D

E
F

D
E

C
C

-D
G

JA
D

E
SH

A
D

E
A

D
E

F
D

E
C

C
-D

G
JA

D
E

SH
A

D
E

A
D

E
F

D
E

C
C

-D
G

JA
D

E
SH

A
D

E

D
4

6.
13

E
−0

2
3.

47
E
+0

0
9.

58
E
−0

1
7.

71
E
−0

1
6.

13
E

−0
2

3.
82

E
+0

0
1.

10
E
+0

0
8.

97
E
−0

1
2.

97
E
−0

6
2.

26
E
−0

1
8.

37
E
−0

2
6.

51
E
−0

2
1.

87
09

E
+0

0

D
12

2.
22

E
−0

3
6.

96
E
+0

0
2.

04
E
+0

0
1.

81
E
+0

0
2.

39
E

−0
3

7.
16

E
+0

0
2.

32
E
+0

0
2.

09
E
+0

0
8.

73
E
−0

5
9.

86
E
−0

2
1.

10
E
−0

1
9.

39
E
−0

2
2.

92
94

E
+0

0

D
19

6.
21

E
−0

3
2.

66
E
+0

2
2.

49
E
+0

0
2.

29
E
+0

0
7.

61
E

−0
3

2.
70

E
+0

2
2.

73
E
+0

0
2.

45
E
+0

0
7.

48
E
−0

4
2.

05
E
+0

0
1.

11
E
−0

1
9.

52
E
−0

2
3.

18
54

E
+0

0

D
4N

5.
93

E
−0

2
8.

24
E
+0

0
9.

53
E
−0

1
7.

98
E
−0

1
5.

93
E

−0
2

8.
89

E
+0

0
1.

11
E
+0

0
9.

07
E
−0

1
1.

87
E
−0

6
3.

18
E
−0

1
7.

71
E
−0

2
5.

04
E
−0

2
1.

74
14

E
+0

0

D
12

N
2.

14
E

−0
3

7.
15

E
+0

0
2.

15
E
+0

0
1.

85
E
+0

0
2.

28
E

−0
3

7.
39

E
+0

0
2.

32
E
+0

0
2.

08
E
+0

0
8.

25
E
−0

5
8.

10
E
−0

2
1.

24
E
−0

1
8.

81
E
−0

2
2.

82
36

E
+0

0

D
19

N
6.

54
E

−0
3

2.
69

E
+0

2
2.

46
E
+0

0
2.

29
E
+0

0
7.

88
E

−0
3

2.
73

E
+0

2
2.

66
E
+0

0
2.

45
E
+0

0
7.

45
E
−0

4
2.

16
E
+0

0
1.

02
E
−0

1
9.

33
E
−0

2
3.

16
59

E
+0

0

B
ol

d
va

lu
es

re
pr

es
en

tt
he

be
st

re
su

lts
ob

ta
in

ed

Assume that a matrix X is of dimension N × M , where
N is the number of inter-dependent time series and M is the
length of each time series. Let S be a matrix of N × M , with
N independent time series of length M , such that, given A,
an N × N linear transformation matrix

X = A.S (20)

The problem is to decompose S into two matrices: S1 and
S2 with the same dimensionality of S, that is S = S1 + S2

and X = A.S1 + A.S2. Let C be the Pearson correlation
coefficient between S1 and X

cov(X, A.S1)

σ (X).σ (A.S1)
(21)

where, cov(.) and σ(.) are the covariance matrix and the vari-
ance, respectively. The objective is to maximize the diagonal
elements of C , while minimizing off-diagonal elements to
zeros. At the same time, the distance between S and S1 should
be as minimum as possible, that is S1 needs to be similar as
possible as S.

This definition generates two formulations for the prob-
lem, one as a single objective, while the other as a multi-
objective problem.

– A multi-objective optimization problem is defined as
follows:
Given, X , A, and S, find S1 which optimizes the following
two functions:

Table 2 Scores of proposed algorithm, in reference to baseline algo-
rithm, for single objective problems

Problem Best Average Std.

D4 1.81E+00 1.81E+00 1.52E−07

D12 2.93E+00 2.93E+00 8.73E−05

D19 3.18E+00 3.18E+00 7.48E−04

D4N 1.68E+00 1.68E+00 1.31E−07

D12N 2.82E+00 2.82E+00 8.25E−05

D19N 3.16E+00 3.16E+00 7.45E−04

Table 3 Scores of proposed algorithm, in reference to baseline algo-
rithm, for multi-objective problems

Problem Best Average Std.

D4 2.25E+01 2.25E+01 5.84E−03

D12 2.31E+01 2.31E+01 1.13E−03

D19 2.34E+01 2.34E+01 2.76E−03

D4N 2.19E+01 2.19E+01 7.39E−03

D12N 2.37E+01 2.37E+01 8.99E−04

D19N 2.20E+01 2.20E+01 1.99E−03

123

24 Memetic Comp. (2016) 8:17–33

F1

F2

0.038

0.039

0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048
Pareto Front

F1

0.015 0.02 0.025 0.03 0.035 0.04 0 0.1 0.2 0.3 0.4 0.5 0.6

F2

0

1

2

3

4

5

6

7

8

9
Pareto Front

ADEF: Score 22.502731
Baseline

F1

0.02 0.04 0.06 0.08 0.1 0.12 0.14

F2

0.02

0.025

0.03

0.035

0.04

0.045 Pareto Front

F1

0 0.1 0.2 0.3 0.4 0.5 0.6

F2

0

1

2

3

4

5

6

7
Pareto Front

ADEF: Score 21.868453
Baseline

Fig. 1 Pareto frontier obtained by ADEF for D4 (first row) and D4N (second row) (figures presented in second column are for five solutions
sampled uniformly from Pareto set and corresponding nearest solutions found by baseline algorithm)

Minimize f1 = 1

(N .M)

∑
i j

(Si j − S1,i j)
2 (22)

Minimize f2 = 1

(N2 − N)

∑
i, j
=i

(C2
i j) + 1

N

∑
i

(1 − Cii)
2

(23)

– The single objective formulation is defined as follows:

Minimize f1 + f2

Subject to − 8 ≤ S1 ≤ 8 (24)

4.2 Parameter settings

ϕ was randomly selected within the range [1, 10 %PS] and
[1, 50 %PS] for single and multi-objective problems, respec-
tively. The reason for increasing this range was to maintain
diversity. The maximum number of generations (tmax) was
set to a value of 300, 400 and 500 iterations, for problems

with 1024, 3072 and 4864 variables, respectively, and each
value was increased by 100 generations for multi-objective
problems. CS was equal to 25 iterations. An extra parameter
of MOEA/D was the neighborhood size which was set to a
value of PS

5 . Lastly, 30 runs/seeds were conducted.

4.3 Results and comparison with state-of-the-art
algorithms

The results obtained are discussed in this subsection and com-
pared several algorithms from the literature.

4.3.1 Single objective problems

In this subsection, ADEF is compared with the following
algorithms:

1. A baseline algorithm which is based on NSGA-II. As we
solve single objective problem, NSGA-II was used as it

123

Memetic Comp. (2016) 8:17–33 25

F1 × 10-4
6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

F2
× 10-3

1.6

1.65

1.7

1.75

1.8

1.85
Pareto Front

F1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F2

0

1

2

3

4

5

6

7
Pareto Front

ADEF: Score 23.125420
Baseline

F1 × 10-4
6 6.5 7 7.5 8 8.5

F2

× 10-3

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74
Pareto Front

F1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F2

0

1

2

3

4

5

6

7

8
Pareto Front

ADEF: Score 23.747522
Baseline

Fig. 2 Pareto frontier obtained by ADEF for D12 (first row) and D12N (second row) (figures presented in second column are for five solutions
sampled uniformly from Pareto set and corresponding nearest solutions found by baseline algorithm)

is, while zeroing the second objective, as suggested by
[10,11].

2. A cooperative co-evolution DE with differential group-
ing algorithm (DECC-DG) [18], which used an automatic
decomposition strategy to uncover the underlying inter-
action structure of the decision variables. All the para-
meters were set as mentioned in the published paper.

3. An adaptive DE algorithm with external archive (JADE)
[36], where PS was set to a value of 100.

4. Success-history based adaptive DE (SHADE) [28], which
is an improved version of JADE.

Firstly, as described in [10], the overall best solution found
over 30 runs was considered as a measure of quality. Also,
the stability of the algorithm was assessed using the variance
of the set of best solutions found over 30 runs. The detailed
results [best, average and standard deviation (Std.)] are shown
in Table 1. From these results, it is clear that the proposed
algorithm was much better than the other algorithms. Addi-

tionally, the standard deviation results obtained revealed that
the proposed algorithm was stable.

Furthermore, the score of the proposed algorithm, in ref-
erence to the baseline algorithm, for each test function was
calculated based on the procedure provided in [10]

score =
{
b f vbl − b f v if b f v < b f vbl
−1000(b f vbl − b f v) otherwise

(25)

where b f v and b f vbl are the best fitness values obtained by
any variant and the baseline algorithm, respectively.

Based on the results shown in Table 2, it is clear that the
proposed algorithm was the best.

4.3.2 Multi-objective problems

To measure the quality of the proposed algorithm, five solu-
tions were sampled uniformly from the Pareto set, including
the two extreme solutions. The average distance between

123

26 Memetic Comp. (2016) 8:17–33

F1
0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

F2
× 10-3

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
Pareto Front

F1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F2

0

1

2

3

4

5

6

7

8
Pareto Front

ADEF: Score 23.366404
Baseline

F1
0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017

F2

× 10-3

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7
Pareto Front

F1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F2

0

1

2

3

4

5

6

7
Pareto Front

ADEF: Score 21.977622
Baseline

Fig. 3 Pareto frontier obtained by ADEF for D19 (first row) and D19N (second row) (figures presented in second column are for five solutions
sampled uniformly from Pareto set and corresponding nearest solutions found by baseline algorithm)

those five solutions and corresponding nearest solutions
found in the baseline algorithm (NSGA-II, as reported in
[10]) were recorded. Only those solutions found by the pro-
posed algorithm that dominated the corresponding solution
in the baseline were considered. For those solutions found
which were dominated by the corresponding solutions in the
baseline, a fixed distance value of −1000 was used. Larger
distance values mean the algorithm was better. For problems
with noise, the evaluation was done using the data without
noise [10]. The detailed results are recorded in Table 3, which
revealed that the proposed algorithm was far better than the
baseline algorithm.

To give more information about the algorithm perfor-
mance, the Pareto frontiers obtained, of a random seed/run,
for every problem is presented in Figs. 1, 2 and 3. From these
figures, it is clear that the algorithm was better.

ADEF was also compared with MOEA/D based on DE
(MOEA/D-DE) [20,21], where DE/rand/1 was employed
with F and Cr were set to a value of 0.5 and the other para-
meters set as discussed in Sect. 4.2. Both algorithms were

compared in reference to the baseline algorithm and the algo-
rithm with a higher average score was considered the best.
The results shown in Table 4 clearly reveal that ADEF was
better than MOEA/D-DE. Furthermore, the Pareto frontiers
obtained by both methods are depicted in Figure 4 (x-axis
and y-axis are in log scales), demonstrating that solutions
obtained by ADEF dominated those of MOEA/D-DE.

4.4 Parameters analysis

In this subsection, CS and tmax are analyzed.

4.4.1 CS

Here, effects of CS on the selection of the most suitable DE,
as described in Sect. 3.4, as well as the final results obtained,
are analyzed. To do this, the algorithm was run with different
values ofCS, i.e.,CS = 10, 25 (default), and 50 generations.
All other parameters were set as those described in Sect. 4.2.

123

Memetic Comp. (2016) 8:17–33 27

For single objective problems, considering the computa-
tional results obtained, as presented in Table 5, it was found
that all variants were better than the baseline algorithm.
Among them, ADEF with CS = 25 was the best for D12
and D12N, while using CS = 50 was the best for D19 and
D19N, and no significant differences were found in solving
problems with 1024 variables. For multi-objective problems,
there were no significant differences in scores. The Pareto
front plots are depicted in Fig. 5. From this figure, it can be
concluded that when CS = 25 the Pareto front was evenly
distributed along the two objectives for D4 and D12, while
setting CS to a value of 50 was better for D19 and D19N.

Table 4 Average scores of ADEF and MOEA/D-DE for multi-
objective problems

Problem ADEF MOEA/D-DE

D4 2.25E+01 7.78E+00

D12 2.31E+01 2.74E+00

D19 2.34E+01 3.15E+00

D4N 2.19E+01 7.81E+00

D12N 2.37E+01 3.57E+00

D19N 2.20E+01 1.69E+00

Bold values represent the best results obtained

It was also interesting to know why the results changed
when using differentCS values. One reason for this issue was
the selection of the best DE variant. In other words, a bigger
CS value meant more information was captured about each
DE variant, which could help fitting the exponential curve
well and hence the most preferred DE was properly selected.
The results are presented in Table 6. Based on this analysis,
for single objective problems, it was noticed that DE3 was
not preferred for any test problem with all CS values. For
a small value of CS, DE2 was more frequently preferred
followed by DE1. However, when CS value was increased,
DE1 became first. For the multi-objective problems, it was
noticed that DE3 was selected more times than DE2 when
CS = 10, but DE2 was considered better than DE1 when
CS was increased. However, it was noticed that DE1 was the
most preferred algorithm for the majority of test problems.

It was also good to show the running time, consumed by
ADEF with different values of CS. Table 7 summarizes the
results obtained regarding this issue. Note that the code has
been written in Matlab, hence the computational time could
be further reduced if the code was written in C++. From Table
7, ADEF with CS = 10 was faster than the other variants.
For the multi-objective problems, the computational time was
increased, in comparison with those of single objective prob-

10−2 10−1 100
101

10−2

10−1

100

F1

F2

D4

ADEF
MOEA/D−DE

10−4 10−3 10−2 10−1 100 101
10−3

10−2

10−1

100

F1

F2

D12
ADEF
MOEA/D−DE

10−3 10−2 10−1 100 10
10−3

10−2

10−1

100

F1

F2
D19

ADEF
MOEA/D−DE

10−2 10−1 100 101
10−2

10−1

100

F1

F2

D4N

ADEF
MOEA/D−DE

10−4 10−3 10−2 10−1 100 10
10−3

10−2

10−1

100

F1

F2

D12N

ADEF
MOEA/D−DE

10−3 10−2 10−1 100 10
10−3

10−2

10−1

100

F1

F2

D19N

ADEF
MOEA/D−DE

(a) D4 (b) D12 (c) D19

(d) D4N (e) D12N (f) D19N

Fig. 4 Pareto frontiers obtained by ADEF and MOEA/D-D (x-axis and y-axis in log scales)

123

28 Memetic Comp. (2016) 8:17–33

Table 5 Computational results of ADEF, using different values of CS, for single objective problems

Problem Best Average Baseline

CS = 10 CS = 25 (default) CS = 50 CS = 10 CS = 25 (default) CS = 50

D4 6.13E−02 6.13E−02 6.13E−02 6.13E−02 6.13E−02 6.14E−02 1.8709E+00

D12 3.81E−03 2.22E−03 3.03E−03 4.29E−03 2.39E−03 3.74E−03 2.9294E+00

D19 5.68E−03 6.21E−03 4.12E−03 6.53E−03 7.61E−03 4.84E−03 3.1854E+00

D4N 5.93E−02 5.93E−02 5.93E−02 5.93E−02 5.93E−02 5.93E−02 1.7414E+00

D12N 3.62E−03 2.14E−03 2.86E−03 4.18E−03 2.28E−03 3.62E−03 2.8236E+00

D19N 5.84E−03 6.54E−03 3.99E−03 6.67E−03 7.88E−03 4.79E−03 3.1659E+00

Bold values represent the best results obtained

F1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

F2

0.02

0.025

0.03

0.035

0.04

0.045

0.05
D4

CS=10
CS=25
CS=50

F1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

F2

10-3

1

1.2

1.4

1.6

1.8

2

2.2
D12

CS=10
CS=25
CS=50

F1
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022

F2

10-3

1.6

1.8

2

2.2

2.4

2.6

2.8
D19

CS=10
CS=25
CS=50

F1
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022

F2

10-3

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
D19N

CS=10
CS=25
CS=50

Fig. 5 Pareto frontier for D4, D12, D19 and D19N with different values of CS

lems. However, the results had a similar pattern to that for
single objective problems.

4.4.2 tmax analysis

From the previous subsection,CS was set to a value of 25 for
problems with 1024 and 3072 variables, while it was 50 for

4864 variables. Subsequently, ADEF was run with different
values of tmax as presented in Table 8.

In regards to single objective problems, the best and aver-
age results are shown in Table 9. From the results obtained, it
was found that in all cases the results were better than those
of the baseline algorithm. Among the 3 cases, it was found
that the results of case 1 were inferior to those of case 2 and

123

Memetic Comp. (2016) 8:17–33 29

case 3. Also, the results of case 3 were slightly better than
those of case 2. However, using a higher number of iterations
meant more computational effort.

Considering the multi-objective problems, the final sets
of non-dominated solutions for D4, D12, D19 and D19N are
plotted in Fig. 6. From these plots, in general, case 2 and case
3 are better than case 1, and no much difference in the algo-
rithm’s performance between case 1 and case 2 for solving
D4 and D12. However, increasing the number of generations
lead to better performance in solving D19 and D19N, but this
came with the curse of computational time required.

Table 10 shows the computational time of ADEF with
different values of tmax , which logically revealed that ADEF
based on case 1 had the smallest computational time.

Table 6 Number of times a DE algorithm considered the best out of
30 runs for each test problem

Problems CS Single objective Multi-objective

DE1 DE2 DE3 DE1 DE2 DE3

D4 10 14 16 0 14 3 13

25 22 8 0 15 7 8

50 26 4 0 27 2 1

D12 10 8 22 0 12 10 8

25 18 12 0 18 7 5

50 29 1 0 29 1 0

D19 10 13 17 0 11 12 7

25 16 14 0 13 11 6

50 29 1 0 30 0 0

D4N 10 11 19 0 13 9 8

25 16 14 0 18 11 1

50 22 8 0 29 1 0

D12N 10 12 18 0 18 4 8

25 17 13 0 25 4 1

50 28 2 0 30 0 0

D19N 10 13 17 0 11 9 10

25 17 13 0 18 7 5

50 29 1 0 30 0 0

Bold values represent the best results obtained

4.5 Improved ADEF and discussion

From Sect. 4.4.1, it was clear that DE3 was not preferred in
solving single objective problems. However, this was not the
case in solving multi-objective problems. In addition, it was
noted that DE1 was not good enough during the exploitation
stage (later stages of the optimization process) compared with
DE2, as shown in Fig. 7.

Therefore, for single objective problems, two changes
were undertaken: (1) DE3 was replaced with DE/current-
to-φbest/1/bin with an archive [36] (DE4), where the archive
size was set to a value of 1.4PS. Note that DE2 did not
use such an archive; (2) In case that DE1 was selected (as
described in Sect. 3.4) and during the exploitation stage (here
it is defined as the second half of the optimization process), it
was replaced with DE/current-to-φbest/1/bin with an archive.
This variant was run with and without using a local search,
and named IADEF and IADEF-NLS, respectively. The stop-
ping criterion was similar case 2, with CS was 25 for
problems with 1024 and 3072 variables and 50 for 4864 vari-
ables, as mentioned in Sect. 4.4.2.

For a fair comparison, ADEF was also run with and with-
out using a local search (ADEF-NLS). The experimental
results of all the variants and state-of-the-art algorithms are
shown in Table 11. From these results, it is clear that IADEF
was superior to all other algorithms. In addition, IADEF-
NLS was better than ADEF-NLS as well as all the other
algorithms. Furthermore, it was clear that IADEF and ADEF

Table 8 Different values of tmax

Problems Cases D/tmax

1024 3072 4864

Single objective 1 150 200 250

2 (default) 300 400 500

3 600 800 1000

Multi-objective 1 200 250 300

2 (default) 400 500 600

3 800 1000 1200

Table 7 Computational time, in
seconds, of ADEF with different
values of CS for single and
multi-objective problems

Problem Single objective Multi-objective

CS = 10 CS = 25 CS = 50 CS = 10 CS = 25 CS = 50

D4 8.11E+00 8.75E+00 9.50E+00 1.17E+01 1.23E+01 1.40E+01

D12 3.03E+01 3.23E+01 3.52E+01 3.81E+01 4.10E+01 4.43E+01

D19 5.78E+01 6.01E+01 6.55E+01 6.89E+01 7.12E+01 7.82E+01

D4N 8.06E+00 8.33E+00 9.44E+00 1.17E+01 1.25E+01 1.40E+01

D12N 3.01E+01 3.19E+01 3.54E+01 3.85E+01 4.07E+01 4.42E+01

D19N 5.78E+01 6.01E+01 6.58E+01 6.89E+01 7.18E+01 7.78E+01

123

30 Memetic Comp. (2016) 8:17–33

Table 9 Computational results of ADEF for single objective problems using different values of tmax

Problem Best Average Baseline

Case 1 Case 2 (default) Case 3 Case 1 Case 2 (default) Case 3

D4 6.13E−02 6.13E−02 6.13E−02 6.18E−02 6.13E−02 6.13E−02 1.8709E+00

D12 2.28E−03 2.22E−03 2.15E−03 2.49E−03 2.39E−03 2.28E−03 2.9294E+00

D19 4.23E−03 4.12E−03 3.87E−03 5.07E−03 4.84E−03 4.46E−03 3.1854E+00

D4N 5.93E−02 5.93E−02 5.93E−02 5.96E−02 5.93E−02 5.93E−02 1.7414E+00

D12N 2.18E−03 2.14E−03 2.08E−03 2.39E−03 2.28E−03 2.18E−03 2.8236E+00

D19N 4.12E-03 3.99E−03 3.76E−03 5.04E-03 4.79E−03 4.43E−03 3.1659E+00

Bold values represent the best results obtained

F1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

F2

0.02

0.025

0.03

0.035

0.04

0.045

0.05
D4

iter=200
iter=400
iter=800

F1
0 0.002 0.004 0.006 0.008 0.01 0.012

F2

10-3

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
D12

iter=250
iter=500
iter=1000

F1
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

F2

10-3

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
D19

iter=300
iter=600
iter=1200

F1 10-3
2 4 6 8 10 12 14 16

F2

10-3

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7
D19N

iter=300
iter=600
iter=1200

Fig. 6 Pareto frontier of ADEF for D4, D12, D19 and D19N with different values of tmax

with and without using a local search were better than DE1,
DE2, DE3 and DE4.

It is also important to mention that we have taken the
prediction accuracy into consideration to properly select the
better-performing DE variant, as described by Eqs. 11 and
12, in which the predicted value, which could be achieved by
each DE, was penalized, if the prediction accuracy was low.
To add to this, we calculated the average prediction rate for

DE1, DE2 and DE4 and found that the prediction rates were
high, as depicted in Fig. 8. Also, it was noted that the func-
tion used for prediction had a great effect of the prediction
accuracy. As an example, a linear function was considered
for prediction, with its prediction accuracy was lower than
that of the exponential function, as demonstrated in Fig. 8.

Generally speaking, it was noticed that for better results
and convergence patterns, it was better to (1) apply a powerful

123

Memetic Comp. (2016) 8:17–33 31

Ta
bl

e
10

C
om

pu
ta

tio
na

lt
im

e,
in

se
co

nd
s,

of
A

D
E

F
w

ith
di

ff
er

en
tv

al
ue

s
of

C
S

fo
r

si
ng

le
ob

je
ct

iv
e

pr
ob

le
m

s

Pr
ob

le
m

Si
ng

le
ob

je
ct

iv
e

M
ul

ti-
ob

je
ct

iv
e

C
as

e
1

C
as

e
2

(d
ef

au
lt)

C
as

e
3

C
as

e
1

C
as

e
2

(d
ef

au
lt)

C
as

e
3

D
4

5.
86

E
+0

0
8.

75
E
+0

0
1.

43
6E

+0
1

7.
88

E
+0

0
1.

23
E
+0

1
2.

19
1E

+0
1

D
12

2.
04

E
+0

1
3.

23
E
+0

1
5.

60
9E

+0
1

2.
47

E
+0

1
4.

10
E
+0

1
7.

35
3E

+0
1

D
19

4.
26

E
+0

1
6.

55
E
+0

1
1.

13
6E

+0
2

4.
97

E
+0

1
7.

82
E
+0

1
1.

40
5E

+0
2

D
4N

5.
78

E
+0

0
8.

33
E
+0

0
1.

39
3E

+0
1

7.
97

E
+0

0
1.

25
E
+0

1
2.

29
7E

+0
1

D
12

N
2.

02
E

+0
1

3.
19

E
+0

1
5.

53
2E

+0
1

2.
49

E
+0

1
4.

07
E
+0

1
7.

44
2E

+0
1

D
19

N
4.

30
E

+0
1

6.
58

E
+0

1
1.

10
5E

+0
2

4.
95

E
+0

1
7.

78
E
+0

1
1.

36
8E

+0
2

B
ol

d
va

lu
es

re
pr

es
en

tt
he

be
st

re
su

lts
ob

ta
in

ed

0 50 100 150 200 250 300
100

101

generations

fit
ne

ss
 v

al
ue

DE1

DE2

DE3

Fig. 7 Convergence of DE1, DE2 and DE3 for D4 (y-axis in log scale)

local search; (2) properly select the right set of operators.
Here, it was useful to avoid using DE/rand/1/bin for single
objective problems; (3) design or use a powerful mechanism
for adapting the control parameters; (4) carefully design a
framework that combines all of these components together.

5 Conclusions and future work

In this paper, a differential evolution framework was pro-
posed for optimizing the big data 2015 benchmark problems
with both single and multi-objective problems. In the pro-
posed algorithm, three differential evolution variants were
run in parallel, each of which used to evolve its own popula-
tion of individuals. After a predefined number of generations,
exponential curve was fitted to predict the future performance
of each variant. The one with the best predicted value was
considered the winner. At the same time, an information shar-
ing scheme was adopted as well as a local search procedure.
Subsequently, the best differential evolution was continued
to evolve the new set of individuals till the end of the opti-
mization process.

The test functions used contained 1024, 3072 and 4864
variables. Based on the results obtained, the algorithm was
found better than a baseline algorithm, for single and multi-
objective problems. The algorithm was also compared with
state-of-the-art algorithms as well as each independent DE
variant used in the proposed framework. The results showed
the superiority of the proposed algorithm. In addition, some
parameters were analyzed which improved the algorithm’s
performance. Also, it was noted that the proper selection of
operators, control parameters and local search procedure had
great effects on the algorithm’s performance.

For future work, we intend to use feature reduction
mechanisms to reduce the complexity of problems and com-
putational time.

123

32 Memetic Comp. (2016) 8:17–33

Ta
bl

e
11

C
om

pu
ta

tio
na

lr
es

ul
ts

of
IA

D
E

F,
IA

D
E

F-
N

L
,A

D
E

F,
A

D
E

F-
N

L
S,

D
E

C
C

-D
G

,J
A

D
E

,S
H

A
D

E
,D

E
1
,

D
E

2
,D

E
3

an
d

D
E

4
fo

r
si

ng
le

ob
je

ct
iv

e
pr

ob
le

m
s

Pr
ob

le
m

IA
D

E
F

A
D

E
F

IA
D

E
F-

N
L

S
A

D
E

F-
N

L
S

D
E

C
C

-D
G

JA
D

E
SH

A
D

E
D

E
1

D
E

2
D

E
3

D
E

4

B
es

tfi
tn

es
s

D
4

6.
13

E
−0

2
6.

13
E

−0
2

5.
48

E
−0

1
5.

99
E
−0

1
3.

47
E
+0

0
9.

58
E
−0

1
7.

71
E
−0

1
9.

76
E
−0

1
8.

43
E
−0

1
2.

40
E
+0

0
6.

11
E
−0

1

D
12

2.
22

E
−0

3
2.

22
E
−0

3
1.

03
E
+0

0
1.

15
E
+0

0
6.

96
E
+0

0
2.

04
E
+0

0
1.

81
E
+0

0
1.

59
E
+0

0
1.

66
E
+0

0
4.

00
E
+0

0
1.

46
E
+0

0

D
19

3.
33

E
−0

3
4.

12
E
−0

3
1.

33
E
+0

0
1.

72
E
+0

0
2.

66
E
+0

2
2.

49
E
+0

0
2.

29
E
+0

0
1.

77
E
+0

0
1.

90
E
+0

0
4.

39
E
+0

0
1.

74
E
+0

0

D
4N

5.
93

E
−0

2
5.

93
E

−0
2

5.
89

E
−0

1
5.

90
E
−0

1
8.

24
E
+0

0
9.

53
E
−0

1
7.

98
E
−0

1
9.

91
E
−0

1
8.

34
E
−0

1
2.

34
E
+0

0
6.

28
E
−0

1

D
12

N
2.

11
E

−0
3

2.
14

E
−0

3
1.

03
E
+0

0
1.

17
E
+0

0
7.

15
E
+0

0
2.

15
E
+0

0
1.

85
E
+0

0
1.

59
E
+0

0
1.

64
E
+0

0
3.

85
E
+0

0
1.

46
E
+0

0

D
19

N
3.

42
E

−0
3

3.
99

E
−0

3
1.

31
E
+0

0
1.

78
E
+0

0
2.

69
E
+0

2
2.

46
E
+0

0
2.

29
E
+0

0
1.

74
E
+0

0
1.

85
E
+0

0
4.

34
E
+0

0
1.

80
E
+0

0

A
ve

ra
ge

fit
ne

ss

D
4

6.
13

E
−0

2
6.

13
E

−0
2

6.
28

E
−0

1
7.

70
E
−0

1
3.

82
E
+0

0
1.

10
E
+0

0
8.

97
E
−0

1
1.

07
E
+0

0
9.

29
E
−0

1
2.

56
E
+0

0
6.

86
E
−0

1

D
12

2.
34

E
−0

3
2.

39
E
−0

3
1.

12
E
+0

0
1.

46
E
+0

0
7.

16
E
+0

0
2.

32
E
+0

0
2.

09
E
+0

0
1.

69
E
+0

0
1.

77
E
+0

0
4.

13
E
+0

0
1.

61
E
+0

0

D
19

3.
66

E
−0

3
4.

84
E
−0

3
1.

42
E
+0

0
1.

83
E
+0

0
2.

70
E
+0

2
2.

73
E
+0

0
2.

45
E
+0

0
1.

85
E
+0

0
2.

07
E
+0

0
4.

56
E
+0

0
1.

91
E
+0

0

D
4N

5.
93

E
−0

2
5.

93
E

−0
2

6.
35

E
−0

1
7.

75
E
−0

1
8.

89
E
+0

0
1.

11
E
+0

0
9.

07
E
−0

1
1.

08
E
+0

0
9.

26
E
−0

1
2.

54
E
+0

0
6.

97
E
−0

1

D
12

N
2.

23
E

−0
3

2.
28

E
−0

3
1.

10
E
+0

0
1.

46
E
+0

0
7.

39
E
+0

0
2.

32
E
+0

0
2.

08
E
+0

0
1.

67
E
+0

0
1.

78
E
+0

0
4.

14
E
+0

0
1.

60
E
+0

0

D
19

N
3.

77
E

−0
3

4.
79

E
−0

3
1.

46
E
+0

0
1.

84
E
+0

0
2.

73
E
+0

2
2.

66
E
+0

0
2.

45
E
+0

0
1.

84
E
+0

0
2.

03
E
+0

0
4.

55
E
+0

0
1.

93
E
+0

0

B
ol

d
va

lu
es

re
pr

es
en

tt
he

be
st

re
su

lts
ob

ta
in

ed

D
4

D
12

D
19

D
4N

D
12

N
D

19
N

0.
9

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
991

P
ro

bl
em

Prediction accuracy

D
E 1

D
E 2

D
E 4

D
4

D
12

D
19

D
4N

D
12

N
D

19
N

0.
750.
8

0.
850.
9

0.
951

P
ro

bl
em

Prediction accuracy

D
E 1

D
E 2

D
E 4

(a
) e

xp
on

en
ti
al

(b
) l
in
ea
r

F
ig

.
8

Pr
ed

ic
tio

n
ac

cu
ra

cy
of

D
E

1
,D

E
2

an
d

D
E

4
us

in
g

ex
po

ne
nt

ia
la

nd
lin

ea
r

fu
nc

tio
ns

123

Memetic Comp. (2016) 8:17–33 33

References

1. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-
adapting control parameters in differential evolution: a comparative
study on numerical benchmark problems. IEEE Trans Evolut Com-
put 10(6):646–657

2. Caraffini F, Neri F, Cheng J, Zhang G, Picinali L, Iacca G, Mininno
E (2013) Super-fit multicriteria adaptive differential evolution. In:
2013 IEEE congress on evolutionary computation (CEC), pp 1678–
1685. doi:10.1109/CEC.2013.6557763

3. Choi TJ, Ahn CW (2015) An adaptive cauchy differential evolu-
tion algorithm with population size reduction and modified multiple
mutation strategies. In: Proceedings of the 18th Asia Pacific sym-
posium on intelligent and evolutionary systems, vol 2. Springer, pp
13–26

4. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evo-
lut Comput 6(2):182–197

5. Eiben AE, Smith JE (2003) Introduction to evolutionary comput-
ing. In: Natural computing series, Springer, Berlin

6. Elsayed SM, Sarker RA, Essam DL (2011) Multi-operator based
evolutionary algorithms for solving constrained optimization prob-
lems. Comput Oper Res 38(12):1877–1896

7. Elsayed SM, Sarker RA, Essam DL (2013a) An improved self-
adaptive differential evolution algorithm for optimization prob-
lems. Ind Inform IEEE Trans 9(1):89–99. doi:10.1109/tii.2012.
2198658

8. Elsayed SM, Sarker RA, Essam DL (2013b) Self-adaptive differen-
tial evolution incorporating a heuristic mixing of operators. Comput
Optim Appl 54(3):771–790

9. Elsayed SM, Sarker RA, Essam DL, Hamza NM (2014) Test-
ing united multi-operator evolutionary algorithms on the cec2014
real-parameter numerical optimization. In: IEEE congress on evo-
lutionary computation, pp 1650–1657

10. Goh SK, Abbass HA, Tan KC (2015a) Optimization of big
data 2015 competition. http://www.husseinabbass.net/BigOpt.
html. Accessed Jan 2015

11. Goh SK, Abbass HA, Tan KC, Al-Mamun A (2015b) Decom-
positional independent component analysis using multi-objective
optimization. Soft Comput. doi:10.1007/s00500-015-1587-7

12. Guo S, Yang C, Hsu P, Tsai J (2014) Improving differential evo-
lution with successful-parent-selecting framework. IEEE Trans
Evolut Comput PP(99):1. doi:10.1109/TEVC.2014.2375933

13. Guo SM, Yang CC (2015) Enhancing differential evolution uti-
lizing eigenvector-based crossover operator. IEEE Trans Evolut
Comput 19(1):31–49. doi:10.1109/TEVC.2013.2297160

14. Madden S (2012) From databases to big data. IEEE Internet Com-
put 16(3):4–6

15. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Dif-
ferential evolution algorithm with ensemble of parameters and
mutation strategies. Appl Soft Comput 11(2):1679–1696

16. Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh
C, Byers AH (2011) Big data: the next frontier for innovation,
competition, and productivity. McKinsey Global Institute. http://
www.mckinsey.com/insights/mgi/research/technology_and_inno
vation/big_data_the_next_frontier_for_innovation. Accessed Mar
2014

17. Mehrotra S (1992) On the implementation of a primal-dual interior
point method. SIAM J Optim 2(4):575–601

18. Omidvar M, Li X, Mei Y, Yao X (2014) Cooperative co-evolution
with differential grouping for large scale optimization. IEEE Trans
Evolut Comput 18(3):378–393. doi:10.1109/TEVC.2013.2281543

19. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution
algorithm with strategy adaptation for global numerical optimiza-
tion. IEEE Trans Evolut Comput 13(2):398–417

20. Qingfu Z, Hui L (2007) Moea/d: a multiobjective evolutionary
algorithm based on decomposition. IEEE Trans Evolut Comput
11(6):712–731

21. Qingfu Z, Wudong L, Hui L (2009) The performance of a new
version of moea/d on cec09 unconstrained mop test instances. In:
IEEE congress on evolutionary computation, pp 203–208

22. Qiu X, Xu J, Tan K, Abbass H (2015) Adaptive cross-generation
differential evolution operators for multi-objective optimization.
Evolut Comput IEEE Trans PP(99):1. doi:10.1109/TEVC.2015.
2433672

23. Sagiroglu S, Sinanc D (2013) Big data: a review. In: 2013 inter-
national conference on collaboration technologies and systems
(CTS). IEEE, pp 42–47

24. Sarker R, Kamruzzaman J, Newton C (2003) Evolutionary opti-
mization (evopt): a brief review and analysis. Int J Comput Intell
Appl 3(4):311–330

25. Slavakis K, Giannakis G, Mateos G (2014) Modeling and opti-
mization for big data analytics: (statistical) learning tools for our
era of data deluge. IEEE Signal Process Mag 31(5):18–31

26. Storn R (1996) On the usage of differential evolution for function
optimization. In: Biennial conference of the North American Fuzzy
Information Processing Society (NAFIPS), pp 519–523

27. Storn R, Price K (1995) Differential evolution—a simple and effi-
cient adaptive scheme for global optimization over continuous
spaces. Technical report

28. Tanabe R, Fukunaga A (2013a) Evaluating the performance of
shade on cec 2013 benchmark problems. In: IEEE congress on
evolutionary computation, pp 1952–1959. doi:10.1109/CEC.2013.
6557798

29. Tanabe R, Fukunaga A (2013b) Success-history based parameter
adaptation for differential evolution. In: IEEE congress on evolu-
tionary computation, pp 71–78. doi:10.1109/CEC.2013.6557555

30. Tang L, Dong Y, Liu J (2015) Differential evolution with an
individual-dependent mechanism. IEEE Trans Evolut Comput
19(4):560–574. doi:10.1109/TEVC.2014.2360890

31. Tvrdík J, Polakova R (2010) Competitive differential evolution for
constrained problems. In: IEEE congress on evolutionary compu-
tation (CEC). IEEE, pp 1–8

32. Tvrdík J, Polakova R (2013) Competitive differential evolution
applied to cec 2013 problems. In: IEEE congress on evolutionary
computation (CEC). IEEE, pp 1651–1657

33. Wang Y, Cai Z, Zhang Q (2011) Differential evolution with com-
posite trial vector generation strategies and control parameters.
IEEE Trans Evolut Comput 15(1):55–66

34. Yang Z, Tang K, Yao X (2011) Scalability of generalized adaptive
differential evolution for large-scale continuous optimization. Soft
Comput 15(11):2141–2155

35. Zamuda A, Brest J (2012) Population reduction differential evolu-
tion with multiple mutation strategies in real world industry chal-
lenges. In: Rutkowski L, Korytkowski M, Scherer R, Tadeusiewicz
R, Zadeh L, Zurada J (eds) Swarm and evolutionary computation.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
pp 154–161

36. Zhang J, Sanderson AC (2009) Jade: adaptive differential evolu-
tion with optional external archive. IEEE Trans Evolut Comput
13(5):945–958

37. Zhang Y, Zhou M, Jiang Z, Liu J (2015) A multi-agent genetic
algorithm for big optimization problems. In: IEEE congress on
evolutionary computation, pp 703–707. doi:10.1109/CEC.2015.
7256959

38. Zhi-Hua Z, Chawla NV, Yaochu J, Williams GJ (2014) Big data
opportunities and challenges: discussions from data analytics per-
spectives [discussion forum]. IEEE Comput Intell Mag 9(4):62–74

123

http://dx.doi.org/10.1109/CEC.2013.6557763
http://dx.doi.org/10.1109/tii.2012.2198658
http://dx.doi.org/10.1109/tii.2012.2198658
http://www.husseinabbass.net/BigOpt.html
http://www.husseinabbass.net/BigOpt.html
http://dx.doi.org/10.1007/s00500-015-1587-7
http://dx.doi.org/10.1109/TEVC.2014.2375933
http://dx.doi.org/10.1109/TEVC.2013.2297160
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://dx.doi.org/10.1109/TEVC.2013.2281543
http://dx.doi.org/10.1109/TEVC.2015.2433672
http://dx.doi.org/10.1109/TEVC.2015.2433672
http://dx.doi.org/10.1109/CEC.2013.6557798
http://dx.doi.org/10.1109/CEC.2013.6557798
http://dx.doi.org/10.1109/CEC.2013.6557555
http://dx.doi.org/10.1109/TEVC.2014.2360890
http://dx.doi.org/10.1109/CEC.2015.7256959
http://dx.doi.org/10.1109/CEC.2015.7256959

	Differential evolution framework for big data optimization
	Abstract
	1 Introduction
	2 Differential evolution
	3 Automated DE framework
	3.1 ADEF
	3.2 DE variants
	3.3 Evolving individuals in multi-objective problems
	3.4 Selection of best DE variant
	3.5 Adaptation of F and Cr
	3.6 Local search procedure

	4 Experimental analysis
	4.1 Problem description
	4.2 Parameter settings
	4.3 Results and comparison with state-of-the-art algorithms
	4.3.1 Single objective problems
	4.3.2 Multi-objective problems

	4.4 Parameters analysis
	4.4.1 CS
	4.4.2 tmax analysis

	4.5 Improved ADEF and discussion

	5 Conclusions and future work
	References

