Memetic Comp. (2016) 8:3-15
DOI 10.1007/s12293-015-0173-y

@ CrossMark

REGULAR RESEARCH PAPER

Genetic programming for feature construction and selection
in classification on high-dimensional data

Binh Tran!® - Bing Xue! - Mengjie Zhang!

Received: 21 July 2015 / Accepted: 7 December 2015 / Published online: 19 December 2015

© Springer-Verlag Berlin Heidelberg 2015

Abstract Classification on high-dimensional data with
thousands to tens of thousands of dimensions is a chal-
lenging task due to the high dimensionality and the quality
of the feature set. The problem can be addressed by using
feature selection to choose only informative features or fea-
ture construction to create new high-level features. Genetic
programming (GP) using a tree-based representation can
be used for both feature construction and implicit feature
selection. This work presents a comprehensive study to inves-
tigate the use of GP for feature construction and selection on
high-dimensional classification problems. Different combi-
nations of the constructed and/or selected features are tested
and compared on seven high-dimensional gene expression
problems, and different classification algorithms are used to
evaluate their performance. The results show that the con-
structed and/or selected feature sets can significantly reduce
the dimensionality and maintain or even increase the classi-
fication accuracy in most cases. The cases with overfitting
occurred are analysed via the distribution of features. Fur-
ther analysis is also performed to show why the constructed
feature can achieve promising classification performance.

Keywords Genetic programming - Feature construction -
Feature selection - Classification - High-dimensional data

< Binh Tran
binh.tran@ecs.vuw.ac.nz

Bing Xue
bing.xue @ecs.vuw.ac.nz

Mengjie Zhang
mengjie.zhang @ecs.vuw.ac.nz

Evolutionary Computation Research Group, Victoria
University of Wellington, PO Box 600, Wellington 6140,
New Zealand

1 Introduction

Classification is a major supervised machine learning task
that aims to classify an instance into its corresponding
category [20,28,31]. A classification problem is typically
described by a set of features and the class labels. The quality
of the feature set is a key factor influencing the performance
of a classification/learning algorithm [28]. Irrelevant and
redundant features may negatively affect the classification
accuracy, increase complexity of the learnt classifier and the
running time.

Feature selection and feature construction are data pre-
processing techniques used to enhance the quality of the
feature space. Feature selection aims at selecting only useful
features from the original feature set. Feature construction
combines original features to obtain new high-level features
that may provide better discrimination for the problem [22].

Three different types of feature selection and construction
approaches have been proposed: wrapper, filter and embed-
ded approaches [7]. While the classification performance of
a learning algorithm is used as the evaluation criterion in
wrapper methods, intrinsic characteristics of the data is used
in filter methods. Wrapper methods thereby usually require
a higher computation time, but the selected or constructed
features usually have better performance than those selected
or constructed by filter methods. Embedded methods simul-
taneously select or construct features and learn a classifier.

Evolutionary computation has been widely used for fea-
ture selection [8,23] as well as feature construction [26].
Among many evolutionary algorithms, genetic programming
(GP)isavery flexible technique that can automatically evolve
mathematical models without a predefined template such as
linear or non-linear. GP allows us to use complex representa-
tions such as trees with any kind of operators or functions to
represent the model. These properties make GP an excellent

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-015-0173-y&domain=pdf
http://orcid.org/0000-0002-2445-1231

Memetic Comp. (2016) 8:3-15

choice for feature construction where the learnt model is a
mathematical function used to generate new features based
on the original ones. GP constructed features have been used
to effectively augment the original feature space of the prob-
lem [17,22].

GP is not only used to construct new high-level features,
it is also used as a feature selection method [2,18]. Since a
GP tree does not use all the original features to construct the
high-level features, the features that are used in leave nodes
of the tree, i.e. terminal features, are useful/informative fea-
tures. Feature selection can be achieved by using the terminal
(original) features for classification [24]. Although many GP
algorithms have been proposed for feature construction and
feature selection, most studies have been applied on small
datasets with about tens of features.

Recently, Ahmed et al proposed a GP-based feature con-
struction method in [3] to construct multiple features by
forming new features based on all possible subtrees in the
best individual. The method was applied on mass spectrom-
etry data with thousands to tens of thousands of features.
A comparison of the constructed features with the selected
features in the best individual was conducted. The results
showed that the constructed feature achieved better perfor-
mance on common classification algorithms. However, no
investigation has been done on different combinations of GP
constructed and/or selected features using this approach. In
addition, in order to achieve the best classification perfor-
mance with these GP generated feature sets, it is important
to know which combination of selected and constructed fea-
tures works better than others in general or for a specific
learning algorithm.

Goals

In this study, we aim to investigate the potential of GP in
feature construction and feature selection for classification
on high-dimensional data. A feature construction embedded
approach is used here, where a GP tree itself is a constructed
high-level feature and also a classifier. Since each possible
subtree also represents a constructed high-level feature, a GP
tree implicitly construct multiple new high-level features [3].
Furthermore, feature selection can be achieved by using only
the terminal (original) features for classification. Therefore,
an embedded GP for feature construction approach produces
new high-level features, a set of original useful features, and
a classifier. In this work, we aim to investigate the following
questions:

1. Whether GP can select informative features from thou-
sands of original features.

2. Whether GP can construct features that improve the per-
formance of common classification algorithms on gene
expression data.

@ Springer

3. Which combinations of the constructed and/or selected
features can work better for common learning algorithms.

2 Background
2.1 Genetic programming algorithm

GP is a domain-independent method that genetically breeds
a population of computer programs to solve a problem. As
a population-based evolutionary computation technique, GP
typically follows these steps:

1. Generate an initial population of individuals (trees or pro-
grams) composing of primitive functions and terminals
of the problem.

2. Iteratively perform the following sub-steps until a stop-
ping criterion is met:

(a) Evaluation: each individual is executed and its fitness
is calculated based on a predefined fitness function.

(b) Selection: select one or two individuals from the
population with a probability based on fitness to par-
ticipate in the evolution step.

(c) Evolution: create new individuals for the new pop-
ulation by applying the following genetic operators
with specific probabilities:

i. Reproduction Copy the selected individuals to
the new population.

ii. Crossover Create new offsprings by recombin-
ing randomly chosen parts from two selected
programs.

iii. Mutation Create anew offspring program by ran-
domly mutating a randomly chosen part of one
selected program.

3. Return the program with the highest fitness as the best
solution.

Applying GP to solving problem has to specify a terminal
set, a function set, a fitness function, a stopping criterion and
control parameters such as population size, crossover and
mutation probabilities.

2.2 GP for feature construction and selection

Although application of GP for inducing classifiers usually
implies a feature selection and construction process [10], this
section is restricted to studies that use GP explicitly for pre-
processing purposes.

When using GP for feature selection or feature construc-
tion, the terminal set comprises of features chosen from the
original features and/or random constants. The function set
typically comprises of mathematical operators.

Memetic Comp. (2016) 8:3-15

As feature selection is an intrinsic characteristic of GP,
some studies have attempted to use GP for feature selec-
tion. Features appeared in the best GP individuals are used to
form a feature subset [2]. Feature ranking or feature weight-
ing is also achieved by counting the occurrence of features in
the good individuals [25]. Although these methods obtained
promising results, the most fruitful application of GP in
preprocessing task is still feature construction thanks to its
ability to combine original features in such a flexible way
that can create better discriminating features. GP has been
proposed as filter or wrapper feature construction using sin-
gle or multiple-tree representation to construct a single or
multiple features.

2.2.1 GP for single feature construction

GP has been proposed to construct a single new feature for
a given problem. These methods used the single-tree GP
representation. Each individual program in the population
is represented by a single tree and forms a constructed fea-
ture. In [22], a filter GP-based single feature construction was
proposed using four different measures in fitness evaluations
including information gain, the gini index, a combination of
information gain and gini index, and chi-square. The aug-
mented feature sets were evaluated using three decision tree
algorithms (C5, CHAID, CART) and a multilayer percep-
tron. Results on five datasets with 4 to 21 features showed
that the constructed feature in general improved the perfor-
mance of all classifiers without any bias toward the fitness
measures used in feature construction process. A similar
single-tree GP approach to [22] but using scattering between
class as a fitness measure was proposed in [12]. Results on
Breast cancer dataset with 30 features showed that the one
constructed feature by GP outperformed two to five fea-
tures extracted by principle component analysis and three
other methods based on Fisher linear discriminant analy-
sis. Although these methods have shown promises, applying
them on high-dimensional data needs further investigation.

2.2.2 GP for multiple feature construction

Unlike single-feature construction methods, multiple-feature
construction methods employ different strategies in GP. A
straight forward strategy is to use multi-tree GP in which
a GP individual program comprises a number of trees, each
corresponding to a constructed feature. In [16], each GP indi-
vidual represents predefined numbers of constructed features
and hidden features. Hidden features were used as an elitist
repository which were updated from constructed features that
had highest usage frequency in the decision tree learnt in the
fitness function. A similar multi-tree GP feature construction
method was proposed in [11] without using hidden features.
Results of these methods showed that the proposed meth-

ods achieved competitive prediction rates and significantly
reduced the dimensionality of the problems with tens of fea-
tures. However, it is difficult to set an appropriate number of
features especially in high-dimensional problems.

Another multi-tree GP was also used in [29] to construct
as many new features as original numeric features. DT was
used in fitness function. Experiments on 10 UCI datasets with
5 to 60 features showed that the proposed method improve
the performance of C4.5 on 8 datasets. However, on top of
the high computational cost of wrapper approach, the GP
representation of this method is not suitable for problems
with thousands of features.

Another strategy for constructing multiple features is to
use cooperative coevolution [19], where m concurrent pop-
ulations of single-tree individuals were used to evolve m
constructed features. Another method proposed in [13] also
used single-tree GP to construct multiple features, however,
without needing to predefine the number of constructed fea-
tures. It included a special primitive function in the function
set to automatically define a new feature based on the subtree
under this function node. K-Nearest Neighbour was used to
evaluate GP individuals.

Constructing one feature for each class of the problem is
another approach. A multiple feature construction method
using filter approach was proposed in [26] by running a
single-tree GP program multiple times. Each time GP con-
structed one feature for each class. Constructed features
were evaluated based on the impurity of the intervals using
information measures which were formed by applying class
dispersion to the transformed datasets.

Instead of using multiple GP runs, Ahmed et al proposed
to use only one GP run to construct multiple features from all
possible subtrees of the best individual [3]. Fisher criterion is
used in fitness function to maximize the between-class scat-
ter and minimize the within-class scatter of the constructed
feature. P-value is also combined to ensure a significant sepa-
ration between feature values. The method was evaluated on
mass spectrometry datasets with several hundreds to more
than ten thousand features.

3 Methodology

To answer the raised questions, we use standard GP with an
embedded approach to feature construction and selection on
binary classification problem.

The GP algorithm includes a population of individuals.
Each individual is a tree. Leaf nodes or terminal nodes of
the tree are either original feature values or random constant
values. Its internal nodes are operators or functions chosen
from a predefined function set. Each individual is considered
aconstructed high-level feature because it can generate a new
value from the original feature values.

@ Springer

Memetic Comp. (2016) 8:3-15

Fig. 1 An example of GP tree

An individual also works as a simple classifier that can
classify binary problem: if an instance x has a negative value
on the constructed high-level feature, GP will classify x to
Class 1; otherwise to Class 2. The classification accuracies
of GP will be used as a fitness measure to guide the search.

Because many of gene expression datasets have unbal-
anced data, the balanced accuracy [6,27] as shown in Eq. (1)
is used to evaluate the fitness of each GP individual. TP, TN,
FN, FP are the numbers of true positive, true negative, false
negative and false positive respectively. We choose the same
weight 1/2 to treat the two classes equally important.

i 1 P IN 0
n = —
eSS =s\7P+FN T TN+ FP

At the end of each GP run, the best GP tree is used to
create six different feature sets. Figure 1 shows a simple GP
tree, which uses Feature 4 (Fy), Feature 11 (Fp), Feature
22 (F»2), and Feature 4 (F|5) as the terminal nodes. We take
Fig. 1 as an example to illustrate how we generate six feature
sets as follows:

1. Set 1: The single constructed feature only (“CF’’), which
is F(; = Fy* Fi1 — (F2 + Fis5);

2. Set 2: The original feature set augmented by the con-
structed feature (“FullCF”), which is {F(;, Fi, F,,
..., F,,}, where n is the total number of original features;

3. Set 3: Terminal feature set that are used to construct the
new feature (“Ter”), which is {F4, F11, F22, Fis5};

4. Set 4: The combination of Sets 1 and 3 (“CFTer”), which
is {F(;, Fy, F11, F, Fis5};

5. Set 5: Multiple constructed features from all possible
subtrees of the GP tree (“mCF”), which is {F(;, Fl/, Fz/},
where Fll = F4 % Fy1, and Fz/ = F» + Fis5; and

6. Set 6: The combination of Sets 3 and 5 (“mCFTer”),
which is {Fy, F11, Fa, Fis, Fy, Fy, F,).

In general, the proposed method uses single-tree GP to
generate six different feature subsets. It can be seen that Set
1 and Set 2 have been used in many existing methods [22,26].
Set 3 and Set 5 have been proposed in [3]. The other subsets
have not been proposed. In addition, no investigation has
been done to compare the performance of these sets. Further

@ Springer

Table 1 Description of seven microarray datasets

Dataset #Features # Instances # Classes
Colon 2000 62 2
DLBCL 5469 77 2
Leukemia 7129 72 2
CNS 7129 60 2
Prostate 10,509 102 2
Breast 24,188 96 2
Ovarian 15,154 253 2

more, this method takes the embedded approach instead of
filter as in many existing methods for feature construction
and selection on high dimensional data. While filter methods
are said to be faster than wrapper methods, their performance
is usually not as good as wrappers. Embedded approach is a
compromise of these two. Since a GP tree can be used as a
classifier, GP can be employed as an embedded method for
feature construction and selection.

4 Experimental design

Seven binary-class gene expression datasets' are used to test
the performance of the six feature sets. The Breast dataset
has a smaller number of features than the downloaded dataset
since 293 features with identical values in all instances have
been removed. One instance with more than 10,000 missing
values is also deleted. Details about the datasets used in this
experiment are shown in Table 1.

All datasets are discretised in the same way as in [9] to
reduce noise. Each feature is discretised into three category
values (—1, 0 and 1) using mean (x) and standard deviation
(o) of the feature values. A feature value x is set to 0 if it
falls into the interval [(u — o) /2 ...(u 4+) /2]. x will be set
to-lifx < (u—o)/2andsetto lifx > (u+0)/2.

Since the number of instances in these datasets are very
small, we split the datasets into 10 folds and perform 10-fold
cross validation (10-CV) to test the performance of GP for
feature construction. Figure 2 shows the process of perform-
ing GP with 10-CV, where the same GP algorithm is run 10
times on different 10 training sets.

Since GP is a stochastic method, the process in Fig. 2 is
repeated for 30 independent runs with 30 different random
seeds for GP. Therefore, totally 300 GP runs are executed.
Note that performing experiments using this way is different
from many papers in GP (or EC) for feature construction
or selection [1,21,32], where GP is performed for 30 (or
slightly more) times and 10-CV on the whole dataset is used
in each fitness evaluation during the GP (or EC) evolutionary

! http://www.gems-system.org,
Datasets.html.

http://csse.szu.edu.cn/staff/zhuzx/

http://www.gems-system.org
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html

Memetic Comp. (2016) 8:3-15

Training set
Test set

[«———Whole Dataset——>|

LT LT T o retmmgsn] o [rotse—f TRy
GP F Classificati
LRL LT LT L on rraiming set [Sor [Testeet= "0 2™ | | [Classfication
Accuracy
| | | | | | | | | |10|—> on Tra?rfi‘ng Set > Fesaettlre Test se Clzscscilfli::;on

Fig. 2 GP for feature construction using 10-CV

Table 2 Parameters in GP feature construction method

Parameters Parameter value

Initial population Ramped half-and half

Maximum tree depth 17
Generations 50
Mutation rate 0.2
Crossover rate 0.8
Elitism 1

Population size #feature x B

Selection method Tournament method
Tournament size 7
+, = %, %, fimax,if

Features of a dataset,

Function set
Terminal set

random constant value

process. The results reported are “optimistically biased and
are a subtle means of training on the test set” [15]. This issue
is called selection bias in feature selection and has caught
much attention from researchers [4,30]. Although the bias
issue in feature construction has not been thoroughly studied,
since feature selection and construction play a similar role in
classification, the construction bias should also be seriously
considered and avoided.

Table 2 describes the parameter settings in GP. The number
of features in these datasets varies from thousands to tens of
thousands; therefore, the search spaces of these problems
are very different. As a result, the population size should be
proportional to the number of features to explore more areas
of the search space [5]. However, due to the limitation of
computer memory, we set the population size equal to the
number of features multiplied by 8 where 8 = {3, 2, or 1} if
the number of features is less than 5,000, between 5,000 and
20,000, or more than 20,000 respectively.

The function set comprises of arithmetic operators (4, —,
x, %, \/) in which protected division (%) results in zero
when dividing by zero. max(x1, x2) returns the maximum
of the two inputs. i f function takes three values and returns
the second if the first value is greater than zero, otherwise it
returns the third value.

The performance of the feature sets obtained from GP
is tested on the fest set using K-nearest Neighbour (KNN)
(K=1), Naive Bayes (NB), Decision tree (DT) and GP as a
classification algorithm (GPCA). GPCA is run 30 times for
each created feature set on each dataset and the average clas-
sification accuracy is reported. Since the created feature sets
are not as big as the original feature sets, the maximum tree
depth is set to 5, the number of maximum generations is set to
30 and the population size is set to 2000. The Weka package
[14]is used to run KNN (IB1), NB and DT (J48) with default
settings. The ECJ library is used to run GP. Experiment runs
on PC with Intel Core i7-4770 CPU @ 3.4 GHz, running
Ubuntu 4.6 and Java 1.7 with a total memory of 8GB.

In order to compare the classification accuracies of dif-
ferent GP created feature sets against using full feature set,
in each dataset, a statistical significance test, Wilcoxon test,
is performed with the significance level 0.05. Friedman test
is also used to compare the performance of different feature
sets for each learning algorithm over all datasets.

5 Results and discussions

The results are shown in Tables 3 and 4, where “B” shows
the best and “A=4Std” shows the average and the standard
deviation of the accuracy achieved through the 30 indepen-
dent runs. “+” or “—" means the result is significantly better
or worse than using all features and “=" means they are sim-
ilar in Wilcoxon tests. The numbers under the dataset name
is the number of instances in the dataset followed by the
average CPU running time (in minutes) used by a single run
comprising of 10 folds cross validation execution.

5.1 Created feature set size and GP running time

It can be seen from Table 3 that the average numbers of
selected and constructed features are much smaller than the
original feature number. These proportions are smaller than
1 % on all datasets except Colon with 1 to 3 %. Beside “CF”
with the size of one, “Ter” is always the smallest among the
created sets with the average size ranging from 9 in Ovarian

@ Springer

Memetic Comp. (2016) 8:3-15

Table 3 Training results

Dataset Subset #F A £ Std-KNN B-NB A £ Std-NB B-DT A £ Std-DT B-GP A + Std-GP
Colon Full 2000 100.0 £ 0.00 84.96 84.96 £ 0.00 97.13 97.13 £0.00 100.0 99.87 £ 0.21
(62) CF 1 99.83 £047- 97.14 91.62+3.87+ 100.0 99.87 £0.21 + 100.0 99.88 £ 0.21 =
5.89 (m) FullCF 2001 100.0 £0.00= 86.75 85.65+ 037+ 100.0 99.92 +£0.14 + 99.88 99.74 £ 0.11 (-)
Ter 22 100.0 £0.00= 89.80 87.17 £ 1.58 + 96.24 9421 £1.07 (=) 96.62 95.65 +£0.42 (-)
CFTer 23 100.0 £ 0.00= 9445 9212+ 157+ 100.0 99.87 £0.21 + 100.0 99.91 +£0.18 +
mCF 37 99.99 £0.05= 9428 9258 +1.42+ 100.0 99.87 £0.21 + 100.0 9991 £0.17 +
mCFTer 59 100.0£0.00=94.10 9257+ 1.13+ 100.0 99.87 £0.21 + 100.0 99.91 £0.17 +
DLBCL Full 5469 100.0 £ 0.00 90.91 90.91 £ 0.00 98.85 98.85 £ 0.00 100.0 100.0 £ 0.00
(77) CF 1 100.0 £0.00= 100.0 9824 +1.15+ 100.0 100.0 & 0.00 + 100.0 100.0 £ 0.00 =
12.35 (m) FullCF 5470 100.0 £0.00=91.34 91.024+0.11+ 100.0 100.0 & 0.00 + 99.99 99.97 £0.01 (-)
Ter 15 100.0 £0.00= 98.70 9643 £1.23 + 98.70 97.13 £ 0.57 (-) 99.59 9891 +042(-)
CFTer 16 100.0 £0.00= 99.71 98.36 £ 0.81+ 100.0 100.0 & 0.00 + 100.0 100.0 &£ 0.00 =
mCF 25 100.0 £0.00= 98.85 97.354+1.00+ 100.0 100.0 & 0.00 + 100.0 100.0 & 0.00 =
mCFTer 40 100.0 £0.00= 98.99 97.58 £1.00+ 100.0 100.0 & 0.00 + 100.0 100.0 £ 0.00 =
Leukemia Full 7129 100.0 £ 0.00 98.15 98.15 £ 0.00 99.38 99.38 £ 0.00 100.0 100.0 £ 0.00
(72) CF 1 100.0 £0.00= 99.54 96.93 +3.30= 100.0 100.0 £ 0.00 + 100.0 100.0 £ 0.00 =
14.22 (m) FullCF 7130 100.0 £0.00= 9830 9828 £0.05+ 100.0 100.0 £ 0.00 + 100.0 100.0 £ 0.00 =
Ter 12 100.0 £0.00= 98.61 97.07 £0.92 - 98.92 97.63 £ 0.66 (-) 99.85 99.35+0.31(-)
CFTer 13 100.0 £0.00= 99.54 9828 £0.66= 100.0 100.0 £ 0.00 + 100.0 100.0 £ 0.00 =
mCF 19 100.0 £0.00= 98.77 97.54+£092- 100.0 100.0 £ 0.00 + 100.0 100.0 £ 0.00 =
mCFTer 31 100.0 £0.00= 99.08 98.03+0.68= 100.0 100.0 £ 0.00 + 100.0 100.0 £ 0.00 =
CNS Full 7129 100.0 = 0.00 73.89 73.89 £+ 0.00 98.71 98.70 & 0.00 100.0 99.96 £ 0.09
(60) CF 1 99.96 £0.09- 97.04 90.14+3.44+ 100.0 99.96 £+ 0.09 + 100.0 99.96 + 0.09 =
19.42 (m) FullCF 7130 100.0 £ 0.00= 75.18 7426+ 030+ 100.0 99.97 £ 0.07 + 99.75 99.65 £ 0.05 (-)
Ter 30 100.0 £ 0.00= 87.78 81.68 +2.06 + 96.30 94.20 £ 1.08 (-) 93.50 92.53 +£0.49 (-)
CFTer 31 100.0 £0.00= 9278 90.02+1.84+ 100.0 99.97 £0.07 + 100.0 99.98 £+ 0.04 +
mCF 48 100.0 £0.00= 93.70 90.99 +£1.85+ 100.0 99.97 £0.07 + 100.0 99.98 £ 0.05 +
mCFTer 78 100.0 £0.00=93.70 9035+ 181+ 100.0 99.97 £0.07 + 100.0 99.98 £+ 0.06 +
Prostate Full 10509 100.0 £ 0.00 66.67 66.67 = 0.00 98.59 98.59 £ 0.00 100.0 99.84 +0.18
(102) CF 1 99.75+0.77- 9946 96.52+£245+ 100.0 99.84 £ 0.18 + 100.0 99.84 £ 0.18 =
71.37 (m) FullCF 10510 100.0+0.00= 67.32 6697 £0.11+ 100.0 99.84 £ 0.18 + 99.83 99.71 £ 0.11 (-)
Ter 22 99.99 £0.04 = 9358 91.42+1.02+ 97.17 96.17 £ 0.62 (-) 98.54 9754 £0.51(-)
CFTer 23 99.99 £0.04= 96.73 9431097+ 100.0 99.84 £ 0.18 + 100.0 99.85 £0.17 +
mCF 35 9998 £0.10= 9793 9511091+ 100.0 99.84 £ 0.18 + 100.0 99.85 £0.17 +
mCFTer 57 99.99 £0.04= 97.39 9485+0.85+ 100.0 99.84 £ 0.18 + 100.0 99.85 £ 0.17 +
Breast Full 24188 100.0 £ 0.00 88.31 88.31 £ 0.00 98.03 98.03 £ 0.00 100.0 99.97 £+ 0.06
(96) CF 1 9998 £0.07= 9826 92.68 £3.69+ 100.0 99.97 £ 0.06 + 100.0 99.97 £ 0.06 =
294.41 (m) FullCF 24189 100.0 £0.00= 88.42 88.324+0.04= 100.0 99.98 £ 0.05 + 99.35 99.17 £ 0.09 (-)
Ter 34 100.0 £0.00= 88.78 86.20 = 1.12 - 95.95 9487 £0.76 (-) 93.80 91.60 £ 0.81 (-)
CFTer 35 100.0 £0.00= 94.10 92.01 =1.54+ 100.0 99.97 £ 0.06 + 100.0 99.98 £ 0.05 +
mCF 60 100.0 £0.00= 95.14 9131 4+£198+ 100.0 99.97 £ 0.06 + 100.0 99.98 £ 0.05 +
mCFTer 95 100.0 £0.00= 9480 91.524+1.63+ 100.0 99.97 4 0.06 + 100.0 99.98 £ 0.05 =

@ Springer

Memetic Comp. (2016) 8:3-15

Table 3 continued

Dataset Subset #F A + Std-KNN B-NB A + Std-NB B-DT A + Std-DT B-GP A + Std-GP
Ovarian Full 15154 100.0 £ 0.00 91.79 91.79 +£0.00 99.91 99.91 £ 0.00 100.0 100.0 £ 0.00
(253) CF 1 100.0 £0.00= 99.91 99.22 £0.95+ 100.0 100.0 £ 0.00 + 100.0 100.0 £ 0.00 =
325.77 (m) FullCF 15155 100.0+0.00= 9192 91.82+0.03+ 100.0 100.0 £ 0.00 + 100.0 100.0 £ 0.00 (=)
Ter 9 100.0 £0.00= 99.17 98.63 £0.29 + 99.82 9929 £0.29(-) 100.0 99.91 +0.09 (-)
CFTer 10 100.0 £0.00= 99.82 99.28 +0.27+ 100.0 100.0 £ 0.00 + 100.0 100.0 £+ 0.00 =
mCF 16 100.0 £0.00= 99.87 98.89 +£0.49+ 100.0 100.0 £ 0.00 + 100.0 100.0 4+ 0.00 =
mCFTer 25 100.0 £ 0.00= 99.65 99.05+ 034+ 100.0 100.0 £+ 0.00 + 100.0 100.0 + 0.00 =
Table 4 Test results
Dataset Subset #F B-KNN A +Std-KNN B-NB A + Std-NB B-DT A &£ Std-DT B-GP A + Std-GP
Colon Full 2000 74.28 74.28 +0.00 72.62 72.62 £ 0.00 74.29 74.29 + 0.00 79.28 71.82 +4.55
(62) CF 1 79.28 7140+ 4.46- 7881 69.64 +4.17 - 79.28 72.25+4.07- 7934 71.80+£4.50=
FullCF 2001 7428 7428 £0.00= 7429 7259 4+0.92= 79.28 72.254+4.07- 79.12 72.02 £4.06=
Ter 22 8547 7640 +4.82+ 8548 7581 +£395+ 80.95 7332+4.18= 79.02 7437 £240+
CFTer 23 87.38 7690 £5.21+ 87.14 75.96 +4.03 + 79.28 72.254+4.07- 79.12 7176 £442=
mCF 37 80.95 7124 +473- 87.14 7356 +494= 79.28 72.254+4.07- 7945 T71.75+448=
mCFTer 59 84.05 75.05+3.85= 87.14 74.66£431+ 79.28 72.25+4.07- 7920 71.79+440=
DLBCL Full 5469 84.46 84.46 +0.00 81.96 81.96 &+ 0.00 80.89 80.89 £ 0.00 94.64 86.34 +£4.17
77) CF 1 96.07 86.65+3.76+ 9232 8627 £4.28 + 94.64 86.51 £4.08+ 9472 86.37 £4.08=
FullCF 5470 8446 8446 +0.00= 8196 81.96+0.00= 94.64 86.51 =4.08+ 9288 86.74 £2.82=
Ter 15 95.00 86.36 =4.13+ 9625 88.49 +£3.49 + 98.75 85.04+545+ 9426 87.28 +3.80=
CFTer 16 95.00 86.80 +=4.83+ 96.07 89.36 +4.00 + 94.64 86.51 +4.08+ 9477 86.33+4.07=
mCF 25 92.50 85.03+4.39= 9339 87.50+4.07+ 93.39 86.30+4.06+ 9398 86.29 £3.98=
mCFTer 40 92.32 86.14 340+ 9375 88434371+ 93.39 86.30 +4.06+ 94.01 86.27 £3.99=
Leukemia Full 7129 88.57 88.57 £0.00 91.96 91.96 + 0.00 91.61 91.61 £ 0.00 9446 88.89 +2.83
(72) CF 1 9446 89.03 £2.71= 9321 87.26+4.44- 95.89 88.97+296- 9456 88.84+2.78=
FullCF 7130 88.57 88.57+£0.00= 9321 92.01+023= 95.89 88.97+296- 9371 89.11 +£223=
Ter 12 9589 89.39+353= 96.07 9224 +2.69= 98.75 89.85+432= 9643 89.98 + 2.81 +
CFTer 13 9732 90.28 +3.58+ 97.32 9146+291= 95.89 88.97+296- 9443 88.76 +2.74 -
mCF 19 93.39 86.71 £4.48—- 96.07 88.89 £3.79 - 9446 89.01 £2.69—- 9452 88.92+2.67=
mCFTer 31 95.89 89.08 £3.99= 96.07 90.34 £3.43- 9446 89.01 £2.69—- 9461 88.86+2.71=
CNS Full 7129 56.67 56.67 &+ 0.00 58.33 58.33 £ 0.00 50.00 50.00 & 0.00 70.00 57.44 +6.31
(60) CF 1 70.00 57.56 £587= 70.00 58.44 +5.94= 70.00 57.78 +£6.05+ 6994 57.46+6.23=
FullCF 7130 56.67 56.67+0.00= 60.00 58.44+042= 70.00 57.78 +£6.05+ 67.61 57.12+544=
Ter 30 70.00 57.56 £6.09= 70.00 59.89 +3.86 + 73.33 5778 £5.63+ 6356 5642 +3.07=
CFTer 31 73.33 5733 4+£6.25= 70.00 60.22 +4.85 + 70.00 57.78 +£6.05+ 70.78 57.53 £6.26 =
mCF 48 71.67 5744 4+6.773= 70.00 58.94+7.10= 70.00 57.78 £6.05+ 7044 57.51 +6.26=
mCFTer 78 70.00 58.56 +-6.83= 71.67 58.78 £6.31= 70.00 57.78 +£6.05+ 70.28 57.52+£6.20=
Prostate Full 10509 81.55 81.55+0.00 60.55 60.55 + 0.00 86.18 86.18 £ 0.00 91.18 83.96 £ 3.08
(102) CF 1 90.18 83.72+3.18+ 90.18 83.18 £3.68 + 90.18 83.82+2.85- 91.08 83.96+3.04=
FullCF 10510 81.55 81.55+£0.00= 60.55 60.55+0.00= 90.18 83.82+2.85- 90.24 84.20+£2.55+
Ter 22 90.36 83.05+3.77+ 9027 87.04 £2.06 + 90.18 82.324+3.39- 90.84 85.69 + 1.87 +
CFTer 23 90.36 84.09 +3.71+ 9036 87.07 £2.52 + 90.18 83.82+2.85- 91.02 8393+3.01=
mCF 35 88.27 8284 +239+ 9027 8537+£245+ 90.18 83.82+2.85- 90.88 8391 £298=
mCFTer 57 89.27 8350+2.89+ 91.18 86.43 £2.65+ 90.18 83.82+2.85- 9098 8391 +3.00=

@ Springer

10

Memetic Comp. (2016) 8:3-15

Table 4 continued

Dataset Subset #F B-KNN A +£Std-KNN B-NB A £ Std-NB B-DT A + Std-DT B-GP A + Std-GP
Breast Full 24188 57.78 57.78 £ 0.00 74.89 74.89 £ 0.00 63.56 63.56 + 0.00 71.56 60.55 +5.49
(96) CF 1 70.78 60.59 £537+ 71.78 60.26 +5.63 - 70.78 6049 £533- 7156 60.54 £5.51=
FullCF 24189 57.78 5778 £0.00=75.89 7532 £ 0.51 + 70.78 60.53 £529- 69.15 60.84 £4.44 =
Ter 34 72.11 6140 £4.73+ 73.67 6773 £291- 70.67 61.194+493- 67.94 63.20 +2.42 +
CFTer 35 71.00 61.68 =4.52+ 73.67 6630 £4.57- 70.78 6049 £533- 7146 60.58 £5.47=
mCF 60 70.56 60.96 =4.99 + 73.67 6333 +:4.32- 70.78 60.53 +£532- 7146 60.57 £545=
mCFTer 95 68.44 61.16 381+ 72.67 64.44+£439- 70.78 60.53 £532- 71.66 60.54 £5.48 =
Ovarian ~ Full 15154 91.28 91.28 £ 0.00 90.05 90.05 £ 0.00 98.41 98.41 & 0.00 99.62 97.86 £1.21
(253) CF 1 99.62 97.86 =122+ 99.62 9722148+ 99.62 97.89 £1.18— 99.60 9786 £121=
FullCF 15155 91.28 9128 £0.00=90.05 90.05 £ 0.00 = 99.62 97.89+1.18— 9925 97.98+0.93=
Ter 9 100.0 98.15+ 096+ 9882 97.75£0.68+ 100.0 97.87+£1.08—- 99.60 97.92£0.88=
CFTer 10 100.0 98.42+0.99+ 99.62 98.20 & 0.89 + 99.62 97.89 £1.18— 9956 97.85£1.19=
mCF 16 99.60 97.41+1.24+ 99.62 97.40+1.01+ 99.62 97.84+1.19- 9959 97.84+1.20=
mCFTer 25 99.62 98.09 £1.03+ 99.60 97.65£0.94 + 99.62 97.84+1.19- 9952 9785+1.18=

Bold values indicate the best results achieved by each learning algorithm for each dataset

to 34 in Breast dataset. The small size of the resulting feature
sets is consistent with previous studies that although gene
expression data has a large number of features, only a small
number of features (less than 100 for two-class datasets) are
relevant to the problems [33]. By using embedded approach,
the running time of our method is relatively fast. This can
be observed in the recorded running time in Table 3. The
smallest dataset (Colon) takes about 6 minutes and the largest
dataset (Ovarian) requires about 5.25 hours to finish one run.

5.2 Training results

To analyse the performance of GP and different generated
feature sets, first we show the training results in Table 3.
These accuracies are obtained by firstly using each of the six
features sets to transform the training set (i.e. 9 folds), then
applying each classification algorithm on these transformed
training set. The best and average training accuracies of the
learnt models over 30 runs are reported.

KNN is a lazy learning algorithm, in theory, its training
accuracies should be 100 %. However, it can be seen that the
accuracies of using the constructed feature on five datasets
are less than 100 %. The reason of this strange phenom-
enon is that the constructed features have the same values for
multiple instances which belong to different classes. These
inconsistent instances obviously affect the quality of these
feature sets as well as the learning algorithm performance.
Solution of this problem should be further investigated. One
possible solution can be applying penalty to these GP indi-
viduals during the evolutionary process.

For NB algorithm, all the six created sets can either obtain
similar or significant better accuracies than using all features

@ Springer

on six out of seven datasets. Among these feature sets, “Full”
and “FullCF” have the worst results on all datasets. This indi-
cates that these datasets contain many redundant or correlated
features which degrade NB performance because the condi-
tional independence assumption no longer holds [28]. On
the Prostate dataset, NB can achieve an increase of 25 % in
accuracy using GP selected features and 30 % using only the
constructed feature. The results show that GP has the abil-
ity to select only informative features and construct better
discriminating features. Using these features, NB can sig-
nificantly improve its performance on datasets which have
many correlated features.

Similarly, the created feature sets also help DT and GP
achieve nearly maximum classification accuracies. However,
unlike in NB, not all the created sets can outperform the
results of DT and GP using full feature set. A clear pattern
can be seen in Table 3 with the minus signs shown in paren-
theses consistently appear in the “Ter” rows of DT column,
as well as in the “FullCF” and “Ter” rows of GP column. It
is also observed in NB that “Ter” accuracies on all datasets
are always smaller than the other four created sets which
comprise the constructed feature (“CF”, “CFTer”, “mCF”
and “mCFTer”). This indicates that the constructed feature
perform better than the selected features on the training data.

In general, the training results from NB, DT and GP show
that GP has the ability to select informative features and
construct new high-level features that provide a much bet-
ter discriminating power than the original features.

5.3 Test results

The test accuracy is achieved by firstly transforming the train-
ing and test sets according to the six feature sets. Then a

Memetic Comp. (2016) 8:3-15

classifier is learnt based on the transformed training set and
tested on the transformed test set. The best and average accu-
racies of 30 runs are reported in Table 4.

For KNN, the selected and/or constructed features can
either maintain or improve the performance of KNN with a
much smaller number of features. Using only one constructed
feature, KNN can achieve significantly better accuracies than
using all features on four datasets, similar accuracies on the
two datasets. Only in Colon dataset, it has lower accuracy
than using all features but its best accuracy is 5 % higher
than using all features. We also see that the “FullCF” always
have the same results as using all features. This is trivial
because adding one more feature to thousands of features
cannot make any difference for KNN. Among the six created
sets, “CFTer”, which is the constructed feature combined
with terminal features, obtains the best accuracies on six out
of seven datasets. Similarly, this feature set also helps NB
achieve the highest results on five datasets with a maximum
increment of 27 % in Prostate dataset. In general, the created
sets can improve the performance of NB on most datasets
except Leukemia and Breast.

For DT and GP, all the six created sets obtain similar accu-
racies on each dataset. While GP has either similar or slightly
better accuracies than using all features on all datasets, DT
increases 6 and 7 % on DLBCL and CNS datasets, and
decreases 1 to 3 % on the remaining five datasets. However,
the best accuracies obtained by DT using all the six sets are
always higher than using all features with a maximum dif-
ference of 23 % in CNS dataset. It is noticed that when using
feature sets containing the constructed feature, DT always
use this feature in its learnt models. This indicates that the
constructed feature is the best splitting feature according to
DT feature selection criterion. This explains why DT accu-
racies obtained by these created sets are very similar to GP
“CF” accuracies.

5.3.1 Comparison between the best and the average
accuracy

In most datasets, the differences between the best and the
average results are quite high. For example, the best result
NB achieves using “CFTer” is 75.96 % on the Colon dataset
which is 12 % lower than its best result (87.14 %). This gap is
even higher than 15 % in the DT results on the CNS dataset.
The results indicate that the learning algorithms may perform
well on some test folds and poorly on some other folds. To see
if this is the case, we look at the accuracies of each classifier
on each data fold. To leave out the effect of feature selection or
construction, we use the result of using full feature set. Table
5 show the “Full” accuracies of Colon dataset with KNN, NB
and DT which are deterministic learning algorithms. It can be
seen that the gap between the obtain accuracies in different
folds is very high with the maximum of 50 % in NB.

11
Table 5 Results of “Full” feature set on each fold of Colon dataset
Fold KNN NB DT
0 57.14 71.43 71.43
1 85.71 71.43 71.43
2 83.33 50.00 83.33
3 83.33 100.0 83.33
4 66.67 66.67 66.67
5 83.33 50.00 83.33
6 83.33 83.33 66.67
7 83.33 100.0 66.67
8 50.00 66.67 66.67
9 66.67 66.67 83.33
Max difference 35.71 50.00 16.66

This result shows that some test folds may have a very
different distribution to their corresponding training folds.
As a result, it is difficult for learning algorithms to learn
a model that can perform well on the test folds. We will
further investigate this problem in Sect. 5.6. In addition,
with a small number of instances in one test fold (less than
ten instances in most datasets), one misclassified instance
can significantly decrease the classification accuracies. This
explains why datasets with the smallest number of instances,
such as CNS with 60 and Colon 62 instances, have the biggest
difference between the best and the average accuracies. In
contrast, this gap in Ovarian dataset with 253 instances is
only about 2 %.

It is also noticed that while the selected feature set (“Ter”)
performs worse than other sets on the training data, it achieves
the highest average accuracies on five out of seven datasets
in GP and performs better than other sets on Colon and
Leukemia in DT. This result is in contrast with the obser-
vation in the training results. This phenomenon suggests that
the constructed features are overfitting to the training data.
This overfitting problem is clearer when observing the big
differences between the training and test accuracies. How-
ever, these gaps vary between different datasets. In “CF” set,
this difference can be as small as 3 % in Ovarian, or as large
as 27 % in Colon, or even very large as in CNS with 42 %.
This indicates that this overfitting problem is related to the
characteristics of the dataset. We will further analyse this in
Sect. 5.6.

5.4 Comparison between different created feature sets

In Table 4, the highest average accuracy among different
created feature sets of the same classifier on a certain dataset
(the best in a cell) is shown in bold. It can be seen that the
“CFTer” which combines the constructed feature with termi-
nal features seems to outperform other feature sets in both
KNN and NB on most datasets. However, to confirm if it is

@ Springer

12

Memetic Comp. (2016) 8:3-15

Fig. 3 Freidman Post-hoc test

Boxplots (of the differences)

for KNN on seven datasets

10
§ o © o o © o
5 - o 2
! : T o : o
Sl o = Bl 0. o o
0 H ‘ gj]ag L= FE: —
T Uo7 "W
L o © 4 o : o © I o -
-5 o 6
I | I T T T T T T T T T 1 I I T T T I T
o o o o o o ~— ~— -~ - -~ o [aV) o o o o (o) < < wn
o N [} < wn © N (32 < T2} © [} < wn ©o < w ©0 wn © ©
Fig. 4 Freidman Post-hoc test Boxplots (of the differences)
for NB on seven datasets
30
°© o 4 o © o 4 o
o]
20
10 T
L O BEOH - s asEH
O~ L i 1] T e e~
10 4 L
20 —
o
| | I T T I I I T I I | 1 ! I | I I T I
o o o o o o = i - - o [a\} [a\) [a\) [aV) (o] o o < < w
— o (] e o w0 © o (o] < w © (] < w © & 5 w © w0 © ©

really significantly better than others, we perform Friedman
test with Tukey as the post hoc test using R package. The
results show that there is no significant difference between
different created sets in DT and GP. This again confirms
that the constructed feature achieves similar performance as
other sets with a much higher number of features in these two
learning algorithms. On the other hand, a significant differ-
ence between these feature sets is found in KNN with p-value
= 0.01 and NB with p-value <0.01. Figures 3 and 4 show the
boxplots of the differences between pairs of created feature
sets in KNN and NB results respectively. In these figures, the
“Full” and the six created sets are indexed from zero to six
with the same order as shown in Table 4. If the difference
between two feature sets is significant with p-value <0.5, its
corresponding boxplot is filled.

The first five columns in these two figures show that in
average all the six created sets have similar or better results
than the full feature set even though not all of these differ-
ences are significant. For KNN, “CFTer” obtains significant
better result than “Full”, “FullCF” and “mCF” with p-value
<0.05. This means that among the six created sets, combi-
nation of the constructed and selected features help KNN

@ Springer

achieve its best performance. For NB, “CFTer” and “Ter”
sets outperform the constructed feature. These results again
confirm the ability of GP in selecting informative features
and constructing new features that can significantly reduce
the feature set size while improve or at least maintain the
classification performance of these learning algorithms.

5.5 Constructed feature

To see why the constructed and selected features can achieve
good performance, we take a constructed feature in a GP run
on the DLBCL dataset as a typical example to make analy-
sis. Figure 5 shows the GP tree of a constructed feature in
DLBCL dataset. It is constructed from three original features
which are feature F1156, F1259, and F3228. The values of
these three features and the constructed feature are plotted in
Figs. 6 and 7. It can be seen from these scatter plots that these
selected features have low impurity with one nominal value
already belong to one class. By combining the three orig-
inal features, the constructed feature splits instances in the
two classes into two completely separate intervals. Therefore,
using this constructed feature, the GP classifier can easily
classify an instance x by executing the following rule:

Memetic Comp. (2016) 8:3-15

13

N
K

o
AN N
0.7

F3228](0.61

Fig. 5 DLBCL constructed feature

5

DLBCL F1156 DLBCL F1259

o Class 0 o Class 0
4 Class 1 4 Class 1

5 U A

class
class

§ s

T T T T T T T T T
-1.0 -05 00 05 1.0 -1.0 -05 00 05 1.0

Feature values Feature values

Fig. 6 DLBCL Feature F1156 and F1259

IF constructedFF <=0 THEN x € classy,
ELSE x € class

The results show that GP has the ability to select infor-
mative features to build high-level features with a higher
discriminating ability.

5.6 Overfitting problem

The overfitting problem that we have seen in the results has
different effects on different datasets. Therefore, to analyse
this problem, we look at the distributions of each feature in
these datasets. All features in the six out of seven datasets
have a skew distribution with many outliers. We take Colon
as an example. Figure 8 shows the boxplot of its first 50
features. We can see that these features have a skewed dis-
tribution. Each feature has many outliers scattering far away
from its mean value. In the experiments, Colon is divided
into 10 folds each of which has about 6 instances. There-

DLBCL F3228 DLBCL CF
o Class 0 o Class 0
4 Class 1 4 Class 1
N B . Ll
n n
n 7]
8 8
o o

i L %%g%ﬁ%

T T T T T T \
-1.0 -05 00 05 1.0 -3 —2 - O 1

Feature values Feature values

Fig. 7 DLBCL Feature F3228 and the constructed feature

fore, it is likely that the distributions of the training and the
test folds are very different. As a result, the constructed or
selected features based on the training fold cannot generalise
well to correctly predict the unseen data in the test fold. This
may be the reason why the training and test accuracies are
so different. This explanation is concordant to the result of
Ovarian dataset where all of the learning algorithms achieve
similar performance on training and test sets. The boxplot
of the first 50 features of Ovarian in Fig. 9 shows that these
features have a rather symmetric distribution without many
outliers. Besides outliers, the small number of instances is
another reason for overfitting problem. It is difficult for learn-
ing algorithms to generalise a good model from a small set
of examples. This explains why the overfitting problem has
more effect in Colon and CNS than other datasets. It also sug-
gests that using mean and standard deviation for such data
with many outliers might not be an ideal method for discreti-
sation and we will make further investigation in the future.

6 Conclusions and future work

This paper investigates the use of GP for feature construc-
tion and selection on high-dimensional data by analysing
the performance of six different sets of constructed and/or
selected features on four different classification algorithms.
The experiments on seven binary-class datasets show that
in most cases, the features constructed or selected by GP
can improve the performance of KNN and NB with a much
smaller feature set. The constructed features in general can
work as good as other GP created feature sets to maintain the
performance of DT and GP classifiers.

Further analysis on the constructed feature shows that by
choosing informative features, GP can construct new fea-
tures which have better discriminating ability than original
features. The difference between the training and test results
on some datasets indicates the problem of overfitting. By
analysing the datasets, it is found that this problem occurs
when the data has a skewed distribution with many outliers.

@ Springer

14

Memetic Comp. (2016) 8:3-15

15000

+

+H+ +

10000

++ o+ 4

—————— i+
+ o+

S oL

++

5000

e i LR L
i s L
-{TF--

-1 F-—-4
F-{ 1T F--—4 + +

S i S

[

R i S
i SR

-]

i S

Fe-CTF----
Fo-CTF---+

S I

++

-——

+
+

+
+

+
+

m
m

F-C T F-——4 + +#
LT F———1
-

T S
{1 F--1

F-{ T F-———4+ + +

LT F-—-4

1T _F———#+

{1 F-——1+ 4+

FOI -4+

-

FLT F-—-4+++

eI -t

{1 F—-—4+

oI —F----

FITF -4+ + +

I -1++

F‘Ei}“ﬂr

HI- -+

- —

o

Fig. first 50 features

P S o S

K -
G-

+

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

|

——————— =
——————— =
—_—————————

—_———————
———————d o+

—————————
—_——————

-4 44

e ——— — —
e ———— —
e ——— — —

F;A;A;A;A
o m
o
b
e
e
T
b
o m
b

Ly b

-+

e o
e ——— — —

e ———— —

+

rrrrrr

—_———————
————————
B

—_———————
————————
—————————
————————

F;A;A;A;
N
b
b
e
o
N
b
b
e
N
b
b
i s o S Y s Sl By

e
e

N
S+

I
I
I
I
I
I
!
L
|
5

—_
[$)]

Fig. 9 Ovarian: first 50 features

The fewer instances the dataset, the worse the overfitting
problem.

Although the constructed feature combined with terminal
features seems to be the best feature set in improving learn-
ing performance, this feature set size may be still too small
to effectively classify the problem. Increasing the size of
this feature set may further improve the classification perfor-
mance on high-dimensional data. Results have shown GP’s
potential in selecting and constructing features with better
discriminating ability. Comparison between GP and other
algorithms addressing the similar problems should be made
to provide better solutions for feature selection and construc-
tion to different tasks. In this study, only binary problems
have been used to test the performance of GP. GP effective-
ness should also be tested on multi-class problems. Our future
work will focus on these directions and we will also work on
solving the overfitting problem.

References

1. Ahmed S, Zhang M, Peng L (2012) Genetic programming for
biomarker detection in mass spectrometry data. In: Advances in

@ Springer

N
[$}]

o
3+
al
o

Artificial Intelligence, Lecture Notes in Computer Science vol.
7691, pp 266-278

. Ahmed S, Zhang M, Peng L (2013) Enhanced feature selection for

biomarker discovery in lc-ms data using gp. In: IEEE Congress on
Evolutionary Computation (CEC’13), pp 584-591

. Ahmed S, Zhang M, Peng L, Xue B (2014) Multiple feature con-

struction for effective biomarker identification and classification
using genetic programming. In: Proceedings of the 2014 Con-
ference on Genetic and Evolutionary Computation, GECCO ’14,
ACM, pp 249-256

. Ambroise C, McLachlan GJ (2002) Selection bias in gene extrac-

tion on the basis of microarray gene-expression data. Proc Natl
Acad Sci 99(10):6562-6566

. Banzhaf W, Francone FD, Keller RE, Nordin P (1998) Genetic

Programming: An Introduction on the Automatic Evolution of
Computer Programs and Its Applications. Morgan Kaufmann Pub-
lishers Inc, USA

. Bhowan U, Johnston M, Zhang M, Yao X (2014) Reusing genetic

programming for ensemble selection in classification of unbal-
anced data. Evolut Comput IEEE Trans 18(6):893-908

. Chandrashekar G, Sahin F (2014) A survey on feature selection

methods. Comput Electr Eng 40:16-28

. De Stefano C, Fontanella F, Marrocco C, di Freca AS (2014) A GA-

based feature selection approach with an application to handwritten
character recognition. Pattern Recognit Lett 35:130-141

. Ding C, Peng H (2005) Minimum redundancy feature selection

from microarray gene expression data. J Bioinf Comput Biol
03(02):185-205

Memetic Comp. (2016) 8:3-15

15

10.

12.

13.

14.

16.

17.

18.

19.

20.

21.

Espejo P, Ventura S, Herrera F (2010) A survey on the application
of genetic programming to classification. IEEE Trans Syst Man
Cybern Part C Appl Rev 40(2):121-144. doi:10.1109/TSMCC.
2009.2033566

. Estébanez C, Valls JM, Aler R (2008) Gppe: a method to generate

ad-hoc feature extractors for prediction in financial domains. Appl
Intell 29(2):174-185

Guo H, Nandi AK (2006) Breast cancer diagnosis using genetic
programming generated feature. Pattern Recognit 39(5):980-987
Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A (2011) Auto-
matic feature extraction using genetic programming: An applica-
tion to epileptic eeg classification. Expert Syst Appl 38(8):10425—
10436

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten
IH (2009) The weka data mining software: an update. SIGKDD
Explor 11:931-934

. Kohavi R, John GH (1997) Wrappers for feature subset selection.

Artif Intell 97:273-324

Krawiec K (2002) Genetic programming-based construction of fea-
tures for machine learning and knowledge discovery tasks. Genet
Program Evolv Mach 3:329-343

Krawiec K (2010) Evolutionary feature selection and construction.
In: Encyclopedia of Machine Learning, Springer, pp 353-357
Langdon WB, Buxton BF (2004) Genetic programming for mining
dna chip data from cancer patients. Genet Program Evolv Mach
5(3):251-257

Lin Y, Bhanu B (2005) Evolutionary feature synthesis for object
recognition. IEEE Trans Syst Man Cybern Part C Appl Rev
35(2):156-171

Lones M, Smith SL, Alty JE, Lacy SE, Possin KL, Jamieson D,
Tyrrell AM et al (2014) Evolving classifiers to recognize the move-
ment characteristics of parkinson’s disease patients. Evolut Comput
IEEE Trans 18(4):559-576

Mohamad M, Omatu S, Deris S, Yoshioka M, Abdullah A, Ibrahim
Z (2013) An enhancement of binary particle swarm optimization
for gene selection in classifying cancer classes. Algorithms Mol
Biol 8(1):15

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Muharram M, Smith G (2005) Evolutionary constructive induction.
IEEE Trans Knowl Data Eng 17:1518-1528

Nekkaa M, Boughaci D (2015) A memetic algorithm with sup-
port vector machine for feature selection and classification. Memet
Comput 7(1):59-73

Neshatian K, Zhang M (2009) Dimensionality reduction in face
detection: A genetic programming approach. In: 24th International
Conference on Image and Vision Computing, pp 391-396
Neshatian K, Zhang M (2011) Using genetic programming for
context-sensitive feature scoring in classification problems. Con-
nect Sci 23(3):183-207

Neshatian K, Zhang M, Andreae P (2012) A filter approach to
multiple feature construction for symbolic learning classifiers using
genetic programming. IEEE Trans Evolut Comput 16(5):645-661
Patterson G, Zhang M (2007) Fitness functions in genetic pro-
gramming for classification with unbalanced data. In: AI 2007:
Advances in Artificial Intelligence, Springer, pp 769-775

Russell S, Norvig P (2009) Artificial Intelligence: a modern
approach, 3rd edn. Prentice Hall Press, USA

Smith M, Bull L (2005) Genetic Programming with a Genetic Algo-
rithm for Feature Construction and Selection. Genet Program Evol
Mach 6:265-281

Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A
comprehensive evaluation of multicategory classification methods
for microarray gene expression cancer diagnosis. Bioinformatics
21:631-643

Wang P, Emmerich M, Li R, Tang K, Back T, Yao X (2015) Convex
hull-based multiobjective genetic programming for maximizing
receiver operating characteristic performance. Evolut Comput
IEEE Trans 19(2):188-200

Yu H, Gu G, Liu H, Shen J, Zhao J (2009) A modified ant colony
optimization algorithm for tumor marker gene selection. Genom
Proteom Bioinf 7(4):200-208

ZhuZ,Ong YS, Dash M (2007) Markov blanket-embedded genetic
algorithm for gene selection. Pattern Recognit 40(11):3236-3248

@ Springer

http://dx.doi.org/10.1109/TSMCC.2009.2033566
http://dx.doi.org/10.1109/TSMCC.2009.2033566

	Genetic programming for feature construction and selection in classification on high-dimensional data
	Abstract
	1 Introduction
	Goals

	2 Background
	2.1 Genetic programming algorithm
	2.2 GP for feature construction and selection
	2.2.1 GP for single feature construction
	2.2.2 GP for multiple feature construction

	3 Methodology
	4 Experimental design
	5 Results and discussions
	5.1 Created feature set size and GP running time
	5.2 Training results
	5.3 Test results
	5.3.1 Comparison between the best and the average accuracy

	5.4 Comparison between different created feature sets
	5.5 Constructed feature
	5.6 Overfitting problem

	6 Conclusions and future work
	References

