
Memetic Comp. (2015) 7:119–133
DOI 10.1007/s12293-015-0157-y

REGULAR RESEARCH PAPER

A novel two-level particle swarm optimization approach
for efficient multiple sequence alignment

Soniya Lalwani · Rajesh Kumar · Nilama Gupta

Received: 28 February 2014 / Accepted: 5 February 2015 / Published online: 22 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract This paper presents two-level particle swarm
optimization (TL-PSO) algorithm as an effective framework
for providing the solution of complex natured problems. Pro-
posed approach is employed to solve a challenging problem
of bioinformatics i.e. multiple sequence alignment (MSA)
of proteins. The major challenge in MSA is the increas-
ing complexity of the problem as soon as the number of
sequences increases and average pairwise sequence iden-
tity (APSI) score decreases. Proposed TLPSO-MSA firstly
maximizes the matched columns in level one followed by
maximization of pairwise similarities in level two at the
gbest solutions of level one. TLPSO-MSA efficiently han-
dles the premature convergence and trapping in local optima
related issues. The benchmark dataset for MSA of protein
sequences are extracted from BAliBASE3.0. The special
features of proposed algorithm is its prediction accuracy at
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very lowerAPSI scores. Proposed approach significantly out-
performs the compared state-of-art competitive algorithms
i.e. ALIGNER, MUSCLE, T-Coffee, MAFFT, ClustalW,
DIALIGN-TX, ProbAlign and standard PSO algorithm. The
claim is supported by the statistical significance testing using
one way ANOVA followed by Bonferroni post-hoc analysis.

Keywords Particle swarm optimization · Multiple
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1 Introduction

Nature has produced several efficient processes which offer
solutions for complex and dynamic real world problems.
These efficient processes are the nature-inspired novel
problem-solving techniques, that include evolutionary algo-
rithms, swarm intelligence (SI), artificial neural networks and
many more. One of the nature inspired process i.e. SI defines
the behaviour of natural or artificial self-organized systems,
in which agents interact locally with each other and with
external agents. Individual agents do not show any ‘intel-
ligent’ behaviour or centralized control structure. Despite,
decentralized system of the agents shows ‘intelligent’ global
behaviour known as swarm intelligence. This decentralized
system of the agents is known as swarm. This self-organized
system can be in the form of bird flocks, ant colonies, animal
herds, bee swarm, fish schools, bacterial growth and more
[1].

Population-based stochastic optimization technique par-
ticle swarm optimization (PSO) is the most popular SI
approach, introduced byKennedy and Eberhart [2]. PSOwas
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proposed for simulating social (or collective) behaviour, as
embodiment of themovement of the organisms in a birdflock.
The population of the potential solution is called as swarm
and each individual in the swarm is defined as particle. The
particles fly in a multi-dimensional search space to search
their best solution based on experience of their own and the
other particles in swarm.

The reasons of astounding popularity of PSO are: its flex-
ibility; requirement of primitive mathematical operators and
very fewparameters to adjust; capacity of high global conver-
gence performance; efficiency to work at reduced memory
with good computation speed [3,4]. Therefore, PSO has been
effectively implemented on several kind of problems from
various fields [5]. There have been many recent reviews on
PSO algorithm variants [6–8]. In past few years, PSO has
been employed in numerous exigent areas of bioinformatics
[9]. Multiple sequence alignment (MSA) is one of the most
prominent areas and essential tool in bioinformatics which
discovers functional, structural and evolutionary information
of biological sequences. The challenges regarding employ-
ment of laboratory experiments and equipments for MSA
are their very high expenses, time consumption and sensi-
tiveness to experimental errors whereas classical computa-
tion approaches are not efficient enough for these kinds of
problems due to the computational complexities. This creates
the requirement of heuristics algorithms to generate align-
ments in a reasonable time with computational efficiency
[10].

This paper proposes a novel two-level PSO (TL-PSO)
algorithm to solve the problems that contain (or can be gen-
erated) two different objectives to be optimized, out from
these one is quite complex. Proposed TL-PSO variant is
employed to MSA of protein sequences with different com-
plexities. The simulation results over the benchmark dataset
BAliBASE3.0 show TL-PSO to be producing significantly
accurate results over the compared state-of-art and compet-
itive algorithms.

The work is classified as follows: Sect. 2 presents a brief
literature survey of the work performed for MSA followed
by Sect. 3 presenting the basics of PSO and MSA. Section
4 delineates the structure of TL-PSO algorithm followed
by the details of its implementation for MSA in Sect. 5.
Section 6 contains the experimental setup for benchmark
dataset and algorithm parameters for TL-PSO. Section 7 dis-
cusses the results obtained, followed by the conclusions in
Sect. 8.

2 Related work

The computational methods to solve MSAs are divided into
four categories: Progressive approach; Exact approach; Con-
sistency based approach and Iterative approach [11,12]. Pro-

gressive approaches construct the alignment with most sim-
ilar sequences first and then incrementally align lesser sim-
ilar sequences. The most popular example of progressive
approaches is ClustalW [13]. ClustalW is a deterministic,
non-iterative algorithm that aims to optimize the weighted
sums-of-pairs with affine gap penalties. The basic problem
with progressive approaches is that they are dependent on
initial pairwise alignment and require appropriate scoring
schemes to measure the alignment quality. Exact approaches
are different from progressive approaches, since they simul-
taneously align multiple sequences despite of adding them
one by one to a multiple alignment [14]. These algorithms
are specially useful to deal with sets of extremely divergent
sequences whose pair-wise alignments are generally incor-
rect. To align multiple sequences, one would need to gener-
alize the Needlman and Wunsch algorithm [15] to a multi-
dimensional space. Practically (at time and memory aspects)
this is only possible for a maximum of three sequences.
Divide and conquer algorithm (DCA) [16] is one of the most
popular example of exact algorithms. DCA first cuts the
sequences in subsets of segments, then the sub-alignments
are later reassembled by DCA. Despite of being quite popu-
lar in previous decades, exact approaches lack efficiency at
time andmemory criteria. Consistency based approaches find
the maximum consensus optimal pairwise alignment within
the created library of alignments of provided sequences. T-
Coffee [17] and DIALIGN [18,19] are the most popular
examples of consistency based approaches. T-Coffee aligns
the sequences in a progressivemanner but uses a consistency-
based objective function aiming tominimize potential errors,
that appear specially in the early stages of the alignment
assembly. Although, these approaches are quite accurate, yet
are computationally quite complex [20]. Iterative approaches
iteratively improve the obtained solution until the stopping
criteria has met. Iterative algorithm are subdivided in two
categories: stochastic iterative algorithms and non-stochastic
iterative algorithms. Simulated annealing (SA) [21] was the
first stochastic iterative method described for simultaneously
aligning a set of sequences. The employed concept is ordered
as: alignment is randomly modified; its score assessed; it
is kept or discarded according to an acceptance function;
the process is kept iterating until a stopping criteria is met.
These techniques include hidden Markov model training
[22], SA [23], evolutionary algorithms [24] andSI algorithms
[25]. The examples of non-stochastic iterative algorithms
include Praline [26] and IterAlign [27]. In these methods
sequences are preprocessed, so that the regions get consis-
tently conserved across the family to get their signal enhanced
and tend to drive the alignment. Iterative approaches have
the drawback of taking long time to converge towards
solution.

Due to the certain limitations of all the above discussed
state-of-art approaches including the most popular sequence
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alignment tools based on these approaches i.e. ClustalW and
T-Coffee, there remains a scope of developing more heuris-
tics that produce better alignments. Proposed heuristic is
based on particle swarm optimization (PSO), which belongs
to fourth category i.e. stochastic iterative approach, the most
salient SI based approach. PSOhas been proven to be a potent
approach forMSAwith numerous kinds of proposed variants
discussed in [28].

Out from all the above mentioned approaches the popu-
lation based computational approaches include genetic algo-
rithms (GA), differential evolution, ant colony optimization
(ACO), artificial bee colony algorithm and PSO. The char-
acteristics of population based approaches include: taking
population of candidate solutions; employing trial-and-error
search; using graduated solution quality and performing sto-
chastic search of solution landscape [29]. A comprehensive
surveyof all the stochastic optimization techniques employed
for performing MSA is presented in [25]. This study regard-
ing SA, GA, ACO and PSO based algorithms for MSA con-
cludes that SA has the major drawbacks of getting trapped
in a local optimal alignment and being too slow to converge.
GA is a good alternative for finding the optimal solution
for small number of sequences but the increase in number
of sequences may enhance falling behind optimal solutions
and exponentially growing time complexity. SImethods have
the advantages of being self-organized, robust and flexible.
Self-organization in SI means the cooperation of individu-
als to accomplish difficult tasks without any strict top-down
control. Robustness means the ability of the swarms to sus-
tain their tasks even if some individuals fail to fulfill their
tasks. Flexibility means the adaptation of individuals in the
changing environment [30]. These properties make SI algo-
rithms relatively better approach for solving complex prob-
lems.Out fromall the SI based approaches, PSOhas achieved
the most notable popularity. Present work proposes an effi-
cient PSO based approach that addresses the complex MSA
problem.

3 Problem description

3.1 Particle swarm optimization

Particle swarm optimization (PSO) started to hold the
grip amongst researchers soon after getting introduced and
became the most popular SI technique, due to its simple con-
cept, easily implementable algorithm, enough robustness to
control parameters and better computational efficiency over
many other mathematical algorithms and heuristic optimiza-
tion techniques [31]. PSO is applicable to nonlinear and
non-continuous optimization problems as well. PSO is a
derivative-free class of global optimization algorithm hence
it neither requires the derivative of the objective function nor

the bounds such as Lipschitz constant, which makes PSO
very useful for complex and noisy objectives [32]. The objec-
tive function to be minimized is formulated as:

min f (x) s.t. x ∈ S ⊆ RD (1)

where x is a matrix containing decision variables, com-
posed of m vectors defined as x = [−→x 1,

−→x 2 . . .
−→x m]

with dimension D. S is the feasible solution space of the
problem.

For the i th particle (i = 1, 2, . . . ,m), the position can
be presented by −→x i (

−→x i
1,

−→x i
2 . . .

−→x i
D), where each com-

ponent of this vector denotes a decision variable of the
problem. The velocity of i th particle can be presented by−→v i (−→v i

1,
−→v i

2 . . . −→v i
D), where each component of this vector

presents an increment of the current position. Each particle
has its own best performance in the swarm defined by per-
sonal best i.e. pbest i (pbest i1, pbest

i
2, . . . , pbest

i
D) [33]. At

t th iteration the previous velocity vi (t) and position xi (t) are
updated by:

vi (t + 1) = wvi (t) + c1r1[pbest i (t) − xi (t)]
+c2r2[gbest (t) − xi (t)] (2)

xi (t + 1) = xi (t) + vi (t + 1) with xi (0)∼ U(xmin, xmax )

(3)

The velocity vi is monitored by employing velocity
clamping over a range between lower and upper bound
i.e. [vmin, vmax ], where vmin = −vmax . Inertia weight w

(0 < w < 1) is the scaling factor over the previous velocity
which results in either acceleration or deceleration on trajec-
tory of particle. A study on impact of dynamically changing
inertia weights performed in [34] depicts the effect of the
inertia weight over the convergence of particles. The coeffi-
cients c1 as cognitive acceleration coefficient and c2 as social
acceleration coefficient represent their confidence in their
own experience and neighborhood experience respectively,
generally with the constraint c1 + c2 ≤ 4. r1 and r2 are uni-
form random numbers in range [0 1]. The initial approximate
xi (0) for i th particle in Eq. (3) is randomly generated within
the predetermined search domain [xmin, xmax ]. pbest at iter-
ation (t + 1) is updated using the following equation [35]:

pbest i (t+1)=
{
pbest i (t) if f (xi (t+1))≥ f (pbest i (t))

xi (t + 1) if f (xi (t+1))< f (pbest i (t))

(4)

The initial approximation of pbest i is generally set equal
to the initial position vector. The best of the positions i.e.
gbest is found among all particles from the entire swarm, is
updated as follows:
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gbest(t) = xk ∈
{
pbest1(t), pbest2(t), . . . , pbestm(t)

}
where f (xk) = min

{
f (pbest1(t)),

f (pbest2(t)), . . . , f (pbestm(t))
}

(5)

The social interaction between the particles follows cer-
tain structures, named as neighborhood topologies. The par-
ticle in the neighborhood can communicate and share their
information; hence their neighborhood can be formed in sev-
eral ways so as to depict several ways of exchanging informa-
tion. The major neighborhood topologies are ring topology,
fully connected topology, star topology and von neumann
topology [36,37].

3.2 Multiple sequence alignment

Multiple sequence alignment (MSA) is an extremely power-
ful tool for revealing the constraints imposed by structure and
function on the evolution of a sequence family. MSA is cru-
cial for phylogenetic analysis so as to determine evolutionary
relationships that exist among various organisms. MSAs are
key method to identify conserved motifs and domains which
are preserved by evolution that play vital role in the struc-
ture and functioning of organisms. MSA are imperative in
secondary and tertiary structure prediction, that envisage the
role of a residue in a structure.

Sequence alignment means identifying the regions of sim-
ilarity between biological sequences. Formally, MSA is a
scheme of arranging two or more sequences which substi-
tutes alike characters in the same column and places gaps
in such a way that it may result in maximum number of
character matches. If non-alike characters are placed in the
same column then it is considered as a mismatch, whereas
alike characters in same column is considered as a match.
These characters are nucleotide symbols {A, C, G, T} for
DNA, {A, C, G, U} for RNA and 20-letter amino acid
symbols {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P,
S, T, W, Y, V} for the protein sequence. The alignment of
two sequences is known as pairwise alignment, whereas,
the alignment of more than two sequences is MSA. The
computational approaches measure the sequence similar-
ity by employing a scoring function that assigns similar-
ity and penalty score with the aim to maximize number
of matches and minimize the number of gaps in the align-
ment.

3.2.1 Similarity score

A general approach to perform MSA is to perform pairwise
alignment first and then construct the phylogenetic tree so as
to combine those sequences first that have maximum evolu-
tionary relationship [38]. One of the most popular method

based on this scheme is similarity score (SS) method, which
can be formulated as:

SS =
s−1∑
i=1

s∑
j=i+1

score(Si , S j ) (6)

subject to:

score(Si , S j )=

⎧⎪⎨
⎪⎩
a, if Si = S j

b, if Si �= S j and Si �=‘-’ & S j �=‘-’

c, if Si �= S j and Si =‘-’ or S j =‘-’

(7)

where, s is the number of sequences; a, b and c are the scores
assigned to match, mismatch and gaps respectively. Scores
a and b are determined with the score schemes whereas c is
obtained by the gap penaltymodel as discussed in Sect. 3.2.3.
The most popular score schemes for match and mismatch
score for protein sequence alignment are PAMandBLOSUM
series.

3.2.2 Match score

Match score is the less complex score scheme which calcu-
lates the columns wise alignment score, hence the number
of sequences is not a concern while employing this method
[39]. The match score (MS) scheme is formulated as:

MS =
ss∑
i=1

Mi

{
1 + Mi

s

}
(8)

here Mi is the number of matches in the i th column and ss is
the length of the aligned sequence.

3.2.3 Gap penalty

The sequences are aligned by introducing some gaps at spe-
cific positions so as to obtain maximum number of matches
and maximum similarity score. For each introduced and
extended gap, some gap penalty is deducted from the score.
The gap penalty obtained by affine gap penalty model is:

ηk = α + (tg − 1) ∗ β (9)

here, ηk stands for the gap penalty for the kth series of gaps
with gap length tg ,α for gap openpenalty andβ for gap exten-
sion penalty. An alignment can contain several gap openings,
hence can contain several gap extensions. All these penalties
are added to obtain the total gap penalty γ i.e.

γ =
gp∑
k=1

ηk (10)

here, gp is the total number of gap openings.
The implementation of PSO for MSA could be done in

several ways, as is found in literature review [28]. PSO vari-
ants or hybridization of PSO with other evolutionary strate-
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gies could be employed for: training the hidden Markov
model; obtaining the suitable gap positions that may pro-
duce optimal alignment score. The details of implemen-
tation of proposed algorithm for MSA are provided in
Sect. 5.

4 Two-level particle swarm optimization algorithm

Proposed algorithm TL-PSO is based on the approach of
iteratively improving the solution in two different levels con-
taining two different objective functions. It employs PSO in
both the levels to improve the parameters so as to optimize
respective objectives. Although proposed TL-PSO algorithm
employs the same velocity and position updates as in stan-
dard PSO (SPSO) (explained in Sect. 3.1), there are sev-
eral differences between SPSO and TL-PSO as described
below.

– SPSO contains only one swarm, whereas TL-PSO is a
multi-swarm approach.

– SPSO carrries same dimension for particles throughout
the algorithm, whereas TL-PSO has two different dimen-
sions for two levels of the algorithm.

– SPSO works with all its particles at a time, whereas TL-
PSO uses all its particles and swarms in level one fol-
lowed by the gbest of each swarm in level 2.

– SPSO contains a single objective function, whereas TL-
PSO contains two different objectives of different com-
plexities.

– Difference also exists in the parameter settings of SPSO
and TL-PSO i.e. SPSO uses constant inertia weight,
whereas TL-PSO uses exponentially decreasing inertia
weight.

Proposed variant shows efficient performance for the
problems that have complex parameters in the objective func-
tion requiring good amount of computational efforts. The
objective may contain two levels with different complexi-
ties or it could be subdivided in two parts: one less complex
objective and other as the original one. As evident from Fig.
1, level one is defined on the entire population sized n×d for
each swarm i = 1, 2, . . . ,m, whereas level two is defined on
the xgbest of the each swarm. The algorithm is designed to
prevent premature convergence as well as to improve solu-

tion quality. The objectives for the two levels could be defined
as:

min f1(x1) s.t. x1 ∈ S ⊆ RD1 (11)

min f2(x2) s.t. x2 ∈ S ⊆ RD2 (12)

where x1 and x2 are the matrices containing decision vari-
ables for first and second objective functions respectively.
Here, D2 > D1 because second level objective is more
complex and contains more number of variables. Algo-
rithm 1 presents the outline of the pseudocode for TL-
PSO.

The procedure followed for TL-PSO is defined as:
Step 1: Parameter determination
Set number of particles, number of swarms, number of

iterations, TL-PSO parameters (w, c1, c2)
Step 2: Initialization

(1) Generate initial positions for n particles for each swarm.
The d dimensioned j th particle’s position from the i th
swarm can be expressed as:

xij =
{
xij1, x

i
j2, . . . , x

i
jd

}
∀i = 1, 2, . . . ,m;

∀ j = 1, 2, . . . , n (13)

(2) Determine initial personal best position of j th particle
of i th swarm as:

xipbest ( j) = xij ∀i = 1, 2, . . . ,m; ∀ j = 1, 2, . . . , n

(14)

Fig. 1 The structure of
proposed TL-PSO
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(3) Determine global best position of the i th swarm for level
one as:

xgbest (i)1l = arg minnj=1 f1
(
xipbest ( j)

)
∀i = 1, 2, . . . ,m

(15)

Here f1 is taken from Eq. (11) and each xgbest (i)1l presents
the best solution with minimum f1 for i th swarm so far.

Level 2

(4) Determine initial positions of particles in the level two
with one swarm and i particles as:

xi2l = xgbest (i)1l ∀i = 1, 2, . . . ,m (16)

The number of swarms of level one becomes number of
particles in level two and the number of swarm in second
level is one.

(5) Determine initial personal best position of i th particle for
level two as:

x pbest (i)
2l = xi2l ∀i = 1, 2, . . . ,m (17)

Determine global best position of the entire swarm as:

xgbest2l = arg minmi=1 f2
(
x pbest (i)
2l

)
(18)

xgbest2l is the best solution obtained at minimum value of
f2. Objective f2 is determined by Eq. (12).
Step 3: Set t = 1
Step 4: Update the velocity and position of the j th particle

of i th swarm for level one by:

vij (t + 1) = wvij (t) + c1r1[xipbest ( j) − xij (t)]
+c2r2[xgbest (i)1l (t) − xij (t)]

∀i = 1, 2, . . . ,m; ∀ j = 1, 2, . . . , n (19)

In earlier study the exponentially decreasing weight strat-
egywas found to bemore promising and provided best results
in terms of time and convergence criteria as compared to
other six inertia weight strategies [34]. Hence exponentially
decreasing weight strategy is employed here, as formulated
below:

w = θ − (θ − φ)

{−exp(t/tt )} (20)

here, θ = 0.9; φ = 0.4; t = iteration number and tt is the
total number of iterations with the condition 0.4 ≤ w ≤ 0.9.
Update the position by:

xij (t + 1) = xij (t) + vij (t + 1) ∀i = 1, 2, . . . ,m;
∀ j = 1, 2, . . . , n (21)

Step 5: Update the personal best and global best position
for j th particle of i th swarm and i th swarm respectively, for
the objective function f1 for level one [Eq. (11)] as:

xipbest ( j)(t + 1)

=
{
xipbest ( j)(t) if f1(xij (t + 1)) ≥ f1(xipbest ( j)(t))

xij (t + 1) if f1(xij (t + 1)) < f1(xipbest ( j)(t))

∀i = 1, 2, . . . ,m; ∀ j = 1, 2, . . . , n (22)

xlgbest (i)1l (t)

∈
{
xipbest (1)(t), x

i
pbest (2)(t), . . . , x

i
pbest (n)(t)

}
where f1[xlgbest (i)1l (t)]

= min
{
f1[xipbest (1)(t)], f1[xipbest (2)(t)], . . . ,

f1[xipbest (n)(t)]
}

∀i = 1, 2, . . . ,m (23)

Here xlgbest (i)1l (t) is the local gbest of level 1. The global

gbest of level 1, xgbest (i)1l (t) is obtained by:

xgbest (i)1l (t)

=
{
x pbest (i)
2l (t) if f1(xl

gbest (i)
1l (t)) ≥ f1(x

pbest (i)
2l (t))

xlgbest (i)1l (t) if f1(xl
gbest (i)
1l (t)) < f1(x

pbest (i)
2l (t))

∀i = 1, 2, . . . ,m; ∀ j = 1, 2, . . . , n (24)

Move to level two
Step 6: Update the velocity and position for the i th particle

by:

vi2l(t + 1) = wvi2l(t) + c1r1[x pbest (i)
2l − xgbest (i)1l (t)]

+c2r2[xgbest2l (t) − xgbest (i)1l (t)]
∀i = 1, 2, . . . ,m (25)

xi2l(t + 1) = xgbest (i)1l (t) + vi2l(t + 1) ∀i = 1, 2, . . . ,m

(26)

Step 7: Update the personal best and global best position
for the i th particle by:

x pbest (i)
2l (t + 1)

=
{
x pbest (i)
2l (t) if f2(x

gbest (i)
1l (t)) ≥ f2(x

pbest (i)
2l (t))

xgbest (i)1l (t) if f2(x
gbest (i)
1l (t)) < f2(x

pbest (i)
2l (t))

∀i = 1, 2, . . . ,m (27)

xgbest2l (t)

∈
{
x pbest (1)
2l (t), x pbest (2)

2l (t), . . . , x pbest (m)
2l (t)

}
where f2[xgbest2l (t)]

= min
{
f2[x pbest (1)

2l (t)], f2[x pbest (2)
2l (t)], . . . ,

f2[x pbest (m)
2l (t)]

}
(28)

here f2 is determined from Eq. (12).
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Step 8: t = t + 1 until the stopping criteria is met.
Step 9: The best solution is the final xgbest2l (t) obtained by

Eq. (28).
Since the algorithm employs exponentially decreasing

inertia weight strategy, the algorithm has a good ability to
explore a new area at the initial stage. At the later stages, the
algorithm exploits the local area more than the beginning of
the search. Hence, it balances the exploration and exploita-
tion ability of the algorithm. The global best solution of each
swarm from level one moves towards second level and then
a separate PSO runs for level two, whereas the personal best
from level twomoves towards level one in next iteration. This
process slows down the speed of convergence and increases
exploitation ability of the algorithm. Due to the exploration
and exploitation ability of the algorithm, TL-PSO efficiently
prevents premature convergence. The algorithm gets more
diversity during implementation for MSA as explained in
next section.

5 Multiple sequence alignment by two-level PSO

Proposed TL-PSO variant is employed to address two
challenging issues of MSA, that are: aligning sequences
with very small APSI score; increased complexity when a

large number of sequences are to be aligned. The struc-
ture of proposed algorithm helps in reducing the prob-
lem complexity and finding optimum number of matches
enhancing maximum alignment score. The sequence length
gets randomly changed (within the allowed limit) at each
iteration, it increases the exploration ability of the algo-
rithm. Protein sequences with different complexities are
taken so as to check the suitability of the proposed algo-
rithm for specific kind of sequence sets. Figure 2 presents
the procedure flow of proposed algorithm employed for
MSA.

It is evident from Eqs. (6) and (8) that MS method is less
complex than SS method because SS aligns two sequences
at a time and calculates the alignment score for all mC2 pairs
and then adds them, whereas MS method takes all the m
sequences at a time to calculate the column-wise alignment
score. The maximization objectives are converted to mini-
mization objective by strategy max( f )=min(− f ).

The objectives of proposed TL-PSO are:

Max( f1) = MS − γ (29)

Max( f2) = SS − γ (30)

For length determination of gapped sequence for each
swarm, the concept explained in [34] is adapted, which is

Fig. 2 Procedure flow of TLPSO-MSA
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depicted by:

xi = ξ ∗{1 + int (0.3 ∗ rand ∗ ρ)} ∀i = 1, 2, . . . ,m (31)

here ξ is length of the longest sequence, int stands for output
in round off form to the nearest integer value, rand stands
for a random number in range [0 1] and ρ is determined by:

ρ = (100 − χ)

100
(32)

hereχ is theAPSI of that specific sequence set being aligned.
The procedure of implementing TL-PSO remains same as

explained in Sect. 4. The position and velocity initialization
phase for MSA is as explained below:

1. Determine sequence length for all particles of the i th
swarm by:

xi (0) = ξ ∗{1 + int (0.3 ∗ rand ∗ ρ)} ∀i = 1, 2, . . . ,m

(33)

2. Generate initial gap positions for the j th particle of i th
swarm by:

xij (0) = int (rand ∗ xi (0)) ∀i = 1, 2, . . . ,m;
∀ j = 1, 2, . . . , n (34)

3. Generate initial velocity for gap positions for the j th par-
ticle of i th swarm by:

vij (0) = int (rand ∗ (u p − l p)) ∀i = 1, 2, . . . ,m;
∀ j = 1, 2, . . . , n (35)

Here u p is the upper limit of gap position which is equal
to xi (0) and l p is the lower limit of gap position which is
equal to 1. For gap position, velocity upper bound vmax is
(u p − l p) and lower bound vmin is −(u p − l p).

The gap position matrix represents the position matrix
[Eq. (21)] of Sect. (4). The steps for incorporating the gap
positions in the sequence are: first create a square matrix G
of size xi (0) for each swarm i = 1, 2, . . . ,m; Place 0 in G
for all gaps in the gap position matrix and place 1 in G at
all the other places; Now insert gaps in sequence wherever
G contains 0 and amino acids wherever G contains 1; Now
calculate the alignment score [by Eqs. (29) and (30)] for the
obtained sequence set.

6 Experimental setup

This section presents the details of the benchmark dataset and
all the experimental parameters of PSO and MSA. The per-

Table 1 Benchmark dataset from BAliBASE database

Directory #
Sequence
sets

Conservation Details

RV11 38 Equi-distant
sequences with
<20 % identity

BB11001–BB11038

RV12 44 Equi-distant
sequences with
20–40 % identity

BB12001–BB11044

RV20 41 Families aligned
with a highly
divergent “orphan”
sequence

BB20001–BB20041

formance of TL-PSO algorithm is tested on protein families
extracted from the BAliBASE 3.0 database [40]. All the pro-
gramming part is performed inMATLABprogramming envi-
ronment. OnewayANOVA followed byBonferroni post-hoc
analysis is employed for determining the significance of the
results. The statistical tests one way ANOVA and Bonferroni
post-hoc analysis are performed in SPSS v 16.0.

6.1 Benchmark dataset

Table 1 presents the different sets of short proteins with dif-
ferent complexities and different APSI score used for test-
ing. Set RV11 contains 38 sequence sets that have APSI less
than 20 %, RV12 contains 44 sequence sets that have APSI
between 20–40 %, whereas, RV20 contains 41 sequence sets
with APSI more than 40 % containing one orphan sequence,
which has less than 20 % similarity with the other sequences
of the family. The details of each sequence set from each
directory along with the number of sequences andminimum-
maximum sequence length are provided in supplementary
material as Appendix A (tables A.1, A.3, A.5).

6.2 Parameter settings

This subsection elucidates the details of all the parameter
settings of TL-PSO and MSA. In general, all the parameter
settings represent the parameter combination that has pro-
duced the best results. All the settings have been determined
after testing all the possible combinations by trial and error.

6.2.1 Parameter setting for TL-PSO

The parameter setting for TL-PSO has remained same
throughout the experiment for both the score schemes. The
star neighbourhood topology is applied as the social inter-
action topology among the particles. Parameters values of
c1 and c2 are adopted from [35], since they have produced
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commonlybetter results for all sequence sets in current exper-
iment. Further, TL-PSO parameter setting is as follows:

• Number of particles in a swarm (n) = 20.
• Number of swarms (m) = 10.
• Number of iterations (tt ) = 1500.
• Cognitive coefficient (c1) = 1.49618.
• Social coefficient (c2) = 1.49618.

For each sequence set the simulation is run 30 times. The
stopping criteria is: either the maximum number of iterations
has reached or the solution has not improved till 30 consec-
utive runs.

6.2.2 Parameter setting for MSA

The alignment score for SS method [Eqs. (6) and (7)] is
obtained by BLOSUM62 matrix [41]. MS method [Eq. (8)]
counts the number of matches in each column in reference
to total number of sequences and sequence length, hence
doesn’t need any parameters settings. The alignment quality
of TLPSO-MSA is evaluated by sum-of-pairs score (SPS)
and column score (CS) with respect to reference alignment
[42]. Employed gap penalty values are obtained by trial and
error with the aim to obtain best combination that produces
maximum matches. The gap penalty score by the employed
affine gap penalty model fromEq. (9) and gap-gap alignment
score from Eq. (7) have following parameter values:

• Gap opening penalty (α) = −2.
• Gap extension penalty (β) = −1.
• Gap-Gap alignment score (c) = −1.

For a test alignment of s sequences consisting of ss
columns the SPS is defined as:

SPS =
∑ss

i=1 Si∑q
r=1 Sr

(36)

where q is the number of columns in the reference alignment,
Sr is the score for the r th column in the reference alignment.
Si is the score for the i th column of tested alignment defined
as:

Si =
s∑

j=1, j �=k

s∑
k=1

pi jk (37)

The i th column in the alignment is represented by
Si1, Si2, . . . , Sin with the condition:

pi jk =

⎧⎪⎨
⎪⎩
1, if residues Si j and Sik are aligned with

each other in the reference alignment

0, otherwise

(38)

The column score (CS) method is formulated as:

CS =
ss∑
r=1

Nr

q
(39)

subject to:

Nr =

⎧⎪⎨
⎪⎩
1, if all the residues in the r th column are

aligned in the reference alignment

0, otherwise

(40)

7 Simulation results

Performance of proposed algorithm TLPSO-MSA is com-
pared with competitive algorithms ALIGNER [43], MUS-
CLE [44], T-Coffee [17], MAFFT [45], ClustalW [46],
DIALIGN-TX [47], ProbAlign [48] and SPSO for CS and
SPS. All the algorithms are compared for RV11, RV12 and
RV20 dataset presented by Table 1. The results of compared
algorithms i.e. ALIGNER, MUSCLE, T-Coffee, MAFFT,
ClustalW, DIALIGN-TX and ProbAlign are adopted from
[43], whereas simulating the experiment for SPSO is part
of present work. Tables 2, 3 and 4 summarize the results
obtained from TLPSO-MSA compared with state-of-art
algorithms, competitive algorithms and SPSO for CS and
SPS. Figures 3, 4, 5, 6, 7 and 8 show the sequence wise
comparison between all the algorithm for CS and SPS. The

Table 2 Averge column score (CS) of MSA produced by different
algorithms

Sequence set AL MU TC MA CL DI PR SP TL

RV11 0.31 0.25 0.30 0.30 0.17 0.19 0.32 0.29 0.71

RV12 0.73 0.68 0.73 0.71 0.61 0.63 0.74 0.65 0.80

RV20 0.58 0.25 0.28 0.31 0.18 0.23 0.31 0.28 0.64

Overall average 0.54 0.39 0.44 0.44 0.32 0.35 0.45 0.41 0.72

AL ALIGNER, MU MUSCLE, TC T-Coffee, MA MAFFT, CL
ClustalW, DI DIALIGN-TX, PR ProbAlign, SP SPSO, TL TLPSO-
MSA

Table 3 Average sum-of-pairs score (SPS) of MSA produced by dif-
ferent algorithms

Sequence set AL MU TC MA CL DI PR SP TL

RV11 0.66 0.48 0.55 0.54 0.41 0.42 0.57 0.55 0.80

RV12 0.85 0.85 0.87 0.86 0.80 0.82 0.88 0.74 0.92

RV20 0.86 0.81 0.84 0.85 0.77 0.80 0.85 0.66 0.91

Overall average 0.79 0.71 0.75 0.75 0.66 0.68 0.77 0.65 0.87

AL ALIGNER, MU MUSCLE, TC T-Coffee, MA MAFFT, CL
ClustalW, DI DIALIGN-TX, PR ProbAlign, SP SPSO, TL TLPSO-
MSA
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Table 4 Results of one way ANOVA followed by Bonferroni post-hoc analysis for column-score (CS) and sum-of-pairs score (SPS)

Sequence set Method AL MU TC MA CL DI PR SP TL

CS SPS CS SPS CS SPS CS SPS CS SPS CS SPS CS SPS CS SPS CS SPS

RV11 AL – – # & # # # # # $ # $ # # # # $ *

MU – – # # # # # # # # # # # # $ $

TC – – # # # # # # # # # # $ $

MA – – # # # # # # # # $ $

CL – – # # # * # # $ $

DI – – # * # # $ $

PR – – # # $ $

SP – – $ $

TL – –

RV12 AL – – # # # # # # * # # # # # # $ # *

MU – – # # # # # # # # # # # $ * *

TC – – # # * & # # # # # $ # #

MA – – # # # # # # # $ # #

CL – – & # # & # # $ $

DI – – * # # & $ $

PR – – # $ # #

SP – – & $

TL – –

RV20 AL – – $ # $ # $ # $ # $ # $ # $ $ # #

MU – – # # # # # # # # # # # $ $ *

TC – – # # # # # # # # # $ $ #

MA – – # # # # # # # $ $ #

CL – – # # # # # * $ $

DI – – # # # $ $ *

PR – – # $ $ #

SP – – $ $

TL – –

#: Not significant; *: significant; &: very significant; $: extremely significant.
AL ALIGNER, MU MUSCLE, TC T-Coffee, MAMAFFT, CL ClustalW, DI DIALIGN-TX, PR ProbAlign, SP SPSO, TL TLPSO-MSA

detailed analysis along with numerical values of CS and SPS
for each alignment by each algorithm could be found in sup-
plementary material, Appendix A. Simulation on SPSO are
performed at the objective from Eq. (8) with the same para-
meter settings. One way ANOVA followed by Bonferroni
post-hoc analysis is applied so as to verify whether TLPSO-
MSAperforms significantly better than the competitive algo-
rithms. The detailed analysis is shown in supplementary
material, Appendix B. The hypothesis testing results for all
datasets that presents the comparison between all algorithms
are depicted by Table 4.

7.1 Results for column score (CS)

Table 2 presents the comparison of TLPSO-MSAwith all the
competitive algorithms for all the three datasets RV11, RV12
and RV20 at average CS. It is evident from this table that

proposed algorithm produces better CS over all the compared
algorithms. Figures 3, 4 and 5 present the sequence wise
comparison of CS among all algorithms for datasets RV11,
RV12 and RV20 respectively. It is evident by the figures that
TLPSO-MSA has remarkable performance over compared
algorithms that can be clearly observed for RV11 and RV20
datasets.

The claim is supported by the hypothesis testing results in
Table 4 that for RV11 dataset, the difference of TLPSO-MSA
with ALIGNER, MUSCLE, T-Coffee, MAFFT, ClustalW,
DIALIGN-TX, ProbAlign and SPSO is extremely significant
(p < 0.001). For RV12 dataset the difference is extremely
significant (p < 0.001) with ClustalW and DIALIGN-TX,
very significant (p < 0.01) with SPSO and significant (p
< 0.05) with MUSCLE. TLPSO-MSA contains extremely
significant difference (p < 0.001) with all compared algo-
rithms exceptALIGNER for RV20 datset. The detailed quan-

123



Memetic Comp. (2015) 7:119–133 129

Fig. 3 Column score
comparison for RV11 dataset
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Fig. 4 Column score
comparison for RV12 dataset
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titative analysis can be observed in supplementary material,
Appendix B.

This concludes that TLPSO-MSA remains efficient
enough to produces better results, evenwhen theAPSI is very
small and also when the number of sequences gets increased
including more complex sequences.

7.2 Results for sum-of-pairs score (SPS)

Table 3 depicts average SPS by all algorithms for datasets
RV11, RV12 andRV20.Detailed result is provided in supple-
mentarymaterial, AppendixA.As shownbyTable 3TLPSO-
MSA outperforms all the competitive algorithms for SPS.
Figures 6, 7 and 8 present the sequence set wise comparison
for RV11, RV12 and RV20 dataset. The figures depict the
remarkable performance of TLPSO-MSA over other com-

petitive algorithms. It can be clearly observed that for RV11
dataset, TLPSO-MSA performs far better than other com-
petitive algorithms and performs better for RV12 and RV20
dataset.

The hypothesis testing by one way ANOVA followed by
post hoc analysis results are presented inTable 4. Thedetailed
results are provided in supplementary material, Appendix
B. The results show that for RV11 dataset, the difference is
extremely significant (p < 0.001) fromMUSCLE, T-Coffee,
MAFFT, ClustalW, DIALIGN-TX, ProbAlign and SPSO,
whereas significant (p < 0.05) from ALIGNER. For RV12
dataset it is extremely significant for ClustalW, DIALIGN-
TX and SPSO, whereas significant for ALIGNER andMUS-
CLE. The difference is extremely significant for ClustalW
and SPSO for RV20 dataset, whereas significant for MUS-
CLE and DIALIGN-TX. Hence, TLPSO-MSA outperforms
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Fig. 5 Column score
comparison for RV20 dataset
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Fig. 6 Sum-of-pairs score
comparison for RV11 dataset
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Fig. 7 Sum-of-pairs score
comparison for RV12 dataset
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Fig. 8 Sum-of-pairs score
comparison for RV20 dataset
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to all the competitive algorithms for RV11 dataset, more than
50% of the algorithms for RV12 dataset and 50% algorithms
for RV20 dataset. The detailed quantitative analysis is pro-
vided in supplementary material, Appendix B.

It proves TLPSO-MSA an efficient performer for SPS at
complex and lesser APSI score sequences also.

8 Concluding remarks and future work

Proposed work presents a novel two-level particle swarm
optimization (TL-PSO) algorithmwhich is designed to solve
complex nature problems that contain multiple decision fac-
tors i.e. complex objective with several variables. Proposed
TL-PSO is employed to address an intricate and challeng-
ing area of bioinformatics i.e. multiple sequence alignment
(MSA) of protein sequences. Sequence alignment is a sub-
stantial technique to discover functional, structural and evo-
lutionary information in biological sequences. MSA plays
cogent role in secondary and tertiary structure prediction,
phylogenetic tree construction and conserved domain iden-
tification.

The structure of TL-PSO forMSA (TLPSO-MSA) in level
one contains the aim to maximize the column-wise match
score firstly and then move the gbest of first level towards
second level. Second level is structured with the aim to per-
form pairwise alignment so as to maximize similarity score
for all pairs of sequences. The quality of alignment is evalu-
ated at the basis of column score (CS) and sum-of-pair score
(SPS). The algorithm’s efficiency is tested on three kind of
protein datasets i.e. RV11, RV12 and RV20 that contain 123
sequence sets of different complexities.

Proposed approach scores better at CS and SPS than com-
pared state-of-art and competitive algorithms i.e. ALIGNER,

MUSCLE, T-Coffee, MAFFT, ClustalW, DIALIGN-TX,
ProbAlign and standardPSOalgorithm.TLPSO-MSAshows
remarkable performance for complex sequence sets from
RV11 and RV20 datasets. The significance testing of the
TL-PSO based results over compared approaches at the
basis of CS and SPS is performed by one way ANOVA
followed by Bonferroni post-hoc analysis. The statistical
analysis shows that TLPSO-MSA performs significantly
better than the compared approaches specially at lesser
APSI score. Also it is perceived that TLPSO-MSA is capa-
ble to produce best results when all the competitive algo-
rithm cannot i.e. when the APSI score is very small and
also when the number of sequences is large with com-
plex sequences included. It is found that the algorithm
loses its efficiency when the sequence length becomes about
1000.

Although scope of proposed work is limited towards pro-
ducing better alignment, in future the comparison between
computational complexities between competitive algorithms
could be an interesting area. Improvement in algorithm
efficiency for lengthy sequences could also be a future
scope for current work. Proposed TL-PSO algorithm could
be employed to many problems that contain two objec-
tives at different complexities. The two level strategy could
be converted to multi-level strategy for suitable prob-
lems.
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