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Abstract This paper treats of the finite-time stochastic
synchronization problem of chaotic dynamic neural net-
works with mixed time-varying delays and stochastic distur-
bance. State feedback controller and adaptive controller are
designed such that the response system can be finite-timely
synchronized with corresponding drive system. Some novel
and useful finite-time synchronization criteria are derived
based on finite-time stability theory. A numerical example
presents the effectiveness of our proposed methods.

Keywords Neural networks · Finite-time synchronization ·
Feedback and adaptive controller · Mixed time-varying
delays · Stochastic disturbance

1 Introduction

In recent years, a great number of efforts have been devoted
to neural networks (see [1–4]), and have been successfully
applied to a variety of fields such as image and signal process-
ing, parallel computing, optimization, pattern recognition,
associative memory, automatic control, etc. Both Hopfield
neural networks and cellular neural networks have become
important fields of active research over the past two decades
for their potential applications in modeling complex dynam-
ics. Both of them have been successfully applied in solv-
ing various linear and nonlinear programming problems,
as well as in the applications of image processing. How-
ever, stability analysis in this kind of neural networks is
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a very important issue, and several stability criteria have
been developed in the literature [3,4] and references cited
therein.

Ever since the pioneering work of Pecora and Carroll
[5], the issue of synchronization and chaos control has
been extensively studied due to its potential engineering
applications such as secure communication, biological sys-
tems, information processing [6–14]. In addition, it is well
known that chaotic systems have complex dynamical behav-
iors which possess some special features, such as being
extremely sensitive to tiny variations of initial conditions,
having bounded trajectories in phase space, etc. Synchroniza-
tion is a typical collective behavior of chaotic neural networks
which has caused increasing concern because of its ubiquity
in lots of neural network models. To the best of knowledge,
most of the existing papers are concerned with asymptotic or
exponential synchronization of networks. However, in fact,
the networks might always be expected to achieve synchro-
nization as quickly as possible, particularly in engineering
fields. To obtain faster convergence rate in neural networks,
it is necessary to use effective finite-time synchronization
control techniques [15–18].

On the other hand, due to the network traffic congestion
and the finite speed of signal transmission, time delays occur
commonly in neural networks, which may lead to oscilla-
tions or instability of the networks. Hence, the study on the
dynamical behavior of the delayed neural networks is an
active research topic and has received considerable attention
during the past few years. However, in these recent works,
most papers on delayed neural networks have been restricted
to simple cases of discrete delays. In general, because of
the existence of a lot of parallel pathways of all kinds of
axon sizes and lengths, a neural network usually has a spa-
tial nature, which makes us model them by introducing the
distributed delays. Then, both discrete and distributed time-
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varying delays should be taken into account when modeling
some realistic neural networks [19–21].

In real world, due to random uncertainties such as stochas-
tic forces on the physical systems and noisy measurements
caused by environmental uncertainties, a system with sto-
chastic perturbations should be produced instead of a deter-
ministic form. There have been someworks in the field of sto-
chastic chaos synchronization of master-slave type [22–26].
In [22], exponential synchronization of stochastic perturbed
chaotic delayed neural networks is considered. In [23,24],
adaptive synchronization for delayed neural networks with
stochastic perturbation is investigated. In [25], the author
investigates the finite-time stochastic synchronization prob-
lem for complex networks with stochastic noise perturba-
tions, and a new kind of complex network model has been
introduced, which includes not only the diffusive linear cou-
plings, but also the unknown diffusive couplings andWiener
processes. In [26], works with non-delayed and delayed cou-
pling has been proposed by utilizing the impulsive control
and the periodically intermittent control. Hence, the novel
models in [25,26] are more practical in real world. How-
ever, there is no any kind of time delays in the model of
[25] and there only has discrete time delays in the model of
[26].

Motivated by the discussion above, this paper aims to treat
of the stochastic finite-time synchronization of neural net-
works with mixed time-varying delays and stochastic distur-
bance via designing different controllers: feedback controller
and adaptive controller.

Notations: The superscript “T” stands for matrix trans-
position; R denotes the real space; R

n denotes the n-
dimensional Euclidean space; the notation P > 0 means
that P is real symmetric and positive definite; I and 0 repre-
sent identity matrix and zero matrix, respectively; E{·} rep-
resents the mathematical expectation; L represents the dif-
fusion operator; and matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations; For r > 0, C([−r, 0];Rn) denotes the family
of continuous function ϕ from [−r, 0] to R

n with the norm
‖ϕ‖ = sup−r≤s≤0 |ϕ(s)|; ẋ(t) denotes the derivative of x(t);
The Euclidean norm in R

n is denoted as ‖ · ‖2, accordingly,
for vector x ∈ R

n , ‖x‖2 = √
xT x ; A denotes a matrix of n-

dimension, |A| = (|ai j |)n×n , ‖A‖ = √
λmax (AT A), where

λmax denotes the maximum eigenvalue of A.
The rest of this paper is organized as follows. In Sect. 2, the

model formulation and some preliminaries are given. Finite-
time synchronization of neural networks with mixed time-
vary delays and stochastic disturbance can be achieved by
designing two different controllers in Sect. 3. In Sect. 4,
A numerical example is presented to demonstrate the valid-
ity of the proposed results, and in Sect. 5, this paper also
demonstrates the effectiveness of application in secure com-
munication. Some conclusions are drawn in Sect. 6.

2 Model description and preliminaries

In this paper, the manifold network is that

ż(t) = −Cz(t) + Ag(z(t)) + Bg(z(t − α(t)))

+ E
∫ t

t−θ(t)
g(z(s))ds + J (t), (1)

where z(t) ∈ R is the state vector; C = diag(c1, c2, . . . , cn),
where ci (.) denotes self-inhibition of i th neuron; A =
(ai j )n×n , B = (bi j )n×n and E = (ei j )n×n are n × n real
matrices representing, respectively, the neuron, the delayed
neuron interconnectionmatrices and distributed neuron inter-
connection matrices; g(x(t)) = (g1(x1(t)), g2(x2(t)), . . . ,
gn(xn(t)))T is a diagonal mapping, with gi (·), i = 1, . . . , n
modeling the non-linear input-output activation of i th neu-
ron; J (t) = (J1(t), J2(t), . . . , Jn(t))T is a constant external
input; α(t) and θ(t) represent the discrete time delay and
distribute time-delay, respectively, in the network; z(t) =
φ0(t) ∈ C([−τ, 0];Rn) is the initial condition.

Consider the following stochastic neural network

dx(t) =
[

− Cx(t) + Ag(x(t)) + Bg(x(t − α(t)))

+E
∫ t

t−θ(t)
g(x(s))ds + J (t) + u(t)

]
dt

+ σ(t, e(t), e(t − α(t)))dw(t), (2)

where x(t) = (x1(t), x2(t), . . . , xn(t))T is the vector of
neuron states at time t and the system parameters C, A, B
and g, α(t), θ(t), J (t) have the same definitions as those in
(1); e(t) = (e1(t), e2(t), . . . , en(t)) = x(t) − z(t) denotes
the error between the state variable x(t) and the desired
state vector z(t); w(t) ∈ R is a Brownian motion and
defined on a complete probability space (	,F ,P) satisfying
E{dw(t)} = 0 and E{dw2(t)} = dt, σ : R+×R

n×R
n is the

noise intensity function; x(t) = φ(t) ∈ L2
F0

([−τ, 0],Rn) is

the initial condition with L2
F0

([−τ, 0],Rn) denoting the set
of F0-measurable C([−τ, 0];Rn)-valued stochastic process
ξ = {ξ(s)|−τ ≤ s ≤ 0} such that sup−τ≤s≤0 E{‖ξ(s)‖2} <

∞, τ = maxt∈R{α(t), θ(t)}. This type of stochastic pertur-
bation can be regarded as a result from the occurrence of
random uncertainties which affect the dynamic behavior of
the controlled networks.

In this paper, we use the feedback controller and adap-
tive controller to achieve the synchronization of the different
systems.
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Then, the error system can be obtained from (1) and (2) is
that

de(t) =
[

− Ce(t) + Ag̃(t) + Bg̃(t − α(t))

+E
∫ t

t−θ(t)
g̃(s)ds + u(t)

]
dt

+ σ(t, e(t), e(t − α(t)))dw(t), (3)

where g̃(t) = g(x(t)) − g(z(t)). The initial condition of the
error system (3) on [−τ, 0] can be given by

e(t) = ϕ(t), t ∈ [−τ, 0],

where ϕ(t) = φ(t) − φ0(t). It is obvious that ϕ(t) ∈
L2
F0

([−τ, 0],Rn).

Remark 1 In this paper, the model not only has the discrete
time-varying delays, but also has the distributed time-varying
delays, which means that the results of the work will be more
general, better and more practical.

Throughout this paper, we make the following assumptions:
(A1) Assume that there exists a positive definite diagonal

matrix L = diag(L1, L2, ..., Ln) > 0 such that the neuron
activation function g(·) satisfies the following condition

|(g(y) − g(x)| ≤ |L(y − x)|, ∀x, y ∈ R
n .

(A2) In this paper, we assume σ(·) is locally Lipschitz
continuous and satisfies the linear growth condition. More-
over, there exist positive definite matricesU and V such that

trace
{
σ T (t, e(t), e(t − α(t)))σ (t, e(t), e(t − α(t)))

}

≤ eT (t)Ue(t) + eT (t − α(t))Ve(t − α(t)).

(A3) Time-varying delays α(t) and θ(t) satisfy 0 <

α(t) < α, 0 < θ(t) < θ and α̇(t) < γ < +∞ for all
t > 0, where α and θ are positive constants.

Definition 1 The network (1) and (2) is said to be stochas-
tically synchronized in finite-time, if for a suitable designed
controller, there exists a constant t

′
> 0, such that

lim
t→t ′

E‖x(t) − z(t)‖2 = 0,

and E‖x(t) − z(t)‖2 ≡ 0, for t > t
′
.

To obtain the main results of this paper, the following
lemmas will be needed.

Lemma 1 ([27]) Let x ∈ R
n, y ∈ R

n and a scalar ε > 0.
Then we have

xT y + yT x ≤ εxT x + ε−1yT y.

Lemma 2 ([28]) If m1,m2, . . . ,mn are positive number and
r > 1, then

n∑

i=1

mi ≥
(

n∑

i=1

mr
i

) 1
r

.

Lemma 3 ([29]) For any positive definite matrix M > 0,
scalars γ2 > γ1 > 0 and vector function ω : [γ1, γ2] such
that the integrations concerned are well defined, then the
following inequality holds:

(∫ γ2

γ1

ω(s)ds

)T

M

(∫ γ2

γ1

ω(s)ds

)

≤ (γ2 − γ1)

∫ γ2

γ1

ωT (s)Mω(s)ds.

Lemma 4 ([30]) Assume that a continuous positive-definite
function V (t) satisfies the following differential inequality:

V̇ (t) ≤ −αV η(t), ∀ t ≥ t0, V (t0) ≥ 0,

where α > 0, 0 < η < 1 are two constants. Then, for any
given t0, V (t) satisfies the following inequality:

V 1−η(t) ≤ V 1−η(t0) − α(1 − η)(t − t0), t0 ≤ t ≤ t1,

and

V (t) ≡ 0, ∀t ≥ t1,

with t1 given by

t1 = t0 + V 1−η(t0)

α(1 − η)
.

3 Main results

Theorem 1 Suppose the assumptions (A1)–(A3) are sat-
isfied, then the neural networks (1) and (2) can achieve
finite-time synchronization under the following feedback con-
troller:

u(t) = − �e(t) − ηsign(e(t))

− η

(∫ t

t−α(t)
eT (s)Pe(s)ds

) 1
2 e(t)

‖e(t)‖2

− η

(∫ 0

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

) 1
2 e(t)

‖e(t)‖2 , (4)

where� = diag(�1,�2, . . . , �n) > 0 is constant diagonal
matrix to be determined, P > 0, Q > 0,� > −C+‖ Ā‖I +
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1
2 |E ||E |T + P

2 + θ
2 L

T QL + U
2 + 1

2 I , Ā = |A|L, P =
1

1−γ
(LT |B|T |B|L + V ), and η > 0 is a tunable constant.

Proof Define the following Lyapunov functions candidate:

V (et , t) = 1

2
eT (t)e(t) + 1

2

∫ t

t−α(t)
eT (s)Pe(s)ds

+ 1

2

∫ 0

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds,

where {et = e(t + θ)|t ≥ 0,−τ ≤ θ ≤ 0} is a stochastic
process. By Itô formula, the stochastic differential dV (et , t)
can be obtained as

dV (et , t)=LV (et , t) + eT (t)σ (t, e(t), e(t − α(t)))dw(t),

where

LV (et , t) ≤ eT (t)

[
− Ce(t) + Ag̃(t) + Bg̃(t − α(t))

+E
∫ t

t−θ(t)
g̃(s)ds + u(t)

]

+ 1

2
eT (t)Pe(t)

− 1

2
(1 − α̇(t))eT (t − α(t))Pe(t − α(t))

+ θ(t)

2
g̃T (t)Qg̃(t) − 1

2

∫ t

t−θ(t)
g̃T (s)Qg̃(s)ds

+ 1

2
trace

{
σ T (t, e(t), e(t − α(t)))

σ (t, e(t), e(t − α(t)))
}

≤−eT (t)Ce(t)+eT (t)Ag̃(t)+eT (t)Bg̃(t−α(t))

+ eT (t)E
∫ t

t−θ(t)
g̃(s)ds

− eT (t)�e(t) − ηeT (t)sign(e(t))

− eT (t)η

(∫ t

t−α(t)
eT (s)e(s)ds

) 1
2 e(t)

‖e(t)‖2

− eT (t)η

(∫ t

−θ(t)

∫ t

t+s
g̃T (r)g̃(r)drds

) 1
2 e(t)

‖e(t)‖2

− 1

2
(1 − α̇(t))eT (t − α(t))Pe(t − α(t))

+ θ(t)

2
g̃T (t)Qg̃(t) − 1

2

∫ t

t−θ(t)
g̃T (s)Qg̃(s)ds

+ 1

2
eT (t)Pe(t) + 1

2
trace

{
σ T (t, e(t),

×e(t − α(t)))σ (t, e(t), e(t − α(t)))
}

≤ −eT (t)Ce(t) + eT (t)|A|Le(t)
+ eT (t)|B|Le(t − α(t))

+ |eT (t)E
∫ t

t−θ(t)
g̃(s)ds| − eT (t)�e(t)

− ηeT (t)sign(e(t))

− eT (t)η

(∫ t

t−α(t)
eT (s)e(s)ds

) 1
2 e(t)

‖e(t)‖2

− eT (t)η

(∫ t

−θ(t)

∫ t

t+s
g̃T (r)g̃(r)drds

) 1
2 e(t)

‖e(t)‖2

− 1

2
(1 − γ )eT (t − α(t))Pe(t − α(t))

+ 1

2
eT (t)Pe(t) + θ

2
g̃T (t)Qg̃(t)

− 1

2

∫ t

t−θ(t)
g̃T (s)Qg̃(s)ds

+ 1

2
eT (t)Ue(t) + 1

2
eT (t − α(t))Ve(t − α(t)).

On the other hand, by means of Lemma 3,

|eT (t)E
∫ t

t−θ(t)
g̃(s)ds| ≤ 1

2
eT (t)|E ||E |T e(t)

+ 1

2

(∫ t

t−θ(t)
g̃(s)ds

)T (∫ t

t−θ(t)
g̃(s)ds

)

≤1

2
eT (t)|E ||E |T e(t)

+ θ

2

(∫ t

t−θ(t)
g̃T (s)g̃(s)ds

)
,

eT (t)|B|Le(t − α(t)) ≤ 1

2
eT (t)e(t)

+ 1

2
eT (t − α(t))LT |B|T |B|Le(t − α(t)),

θ

2
g̃T (t)Qg̃(t) ≤ θ

2
eT (t)LT QLe(t),

then

LV (et , t) ≤ eT (t)

{
− C + ‖ Ā‖I

+ 1

2
|E ||E |T + P

2
+ θ

2
LT QL

+U

2
+ 1

2
I − �

}
e(t) − ηeT (t)sign(e(t))

+ eT (t − α(t))

{
1

2
LT |B|T |B|L + V

2

−1 − γ

2
P

}
e(t − α(t))

− η

(∫ t

t−α(t)
eT (s)Pe(s)ds

) 1
2

− η

(∫ t

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

) 1
2

. (5)
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By virtue of� > −C+‖ Ā‖I + 1
2 |E ||E |T + P

2 + θ
2 L

T QL+
U
2 + 1

2 I and P = 1
1−γ

(LT |B|T |B|L + V ), one can get

LV (et , t) ≤ −ηeT (t)sign(e(t))

− η

(∫ t

t−α(t)
eT P(s)e(s)ds

) 1
2

− η

(∫ t

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

) 1
2

.

Base on Lemma 2, one has

LV (et , t) ≤ −η

{
n∑

i=1

|ei (t)|2 +
∫ t

t−α(t)
eT (s)Pe(s)ds

+
∫ t

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

} 1
2

=−√
2η

{
1

2
eT (t)e(t)+ 1

2

∫ t

t−α(t)
eT (s)Pe(s)ds

+1

2

∫ 0

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

} 1
2

= −√
2ηV

1
2 (t, e(t)).

Hence,

E[dV (et , t)] = E[LV (et , t)dt]

≤ E
⎧
⎨

⎩
− √

2η

{
1

2
eT (t)e(t)

+ 1

2

∫ t

t−α(t)
eT (s)Pe(s)ds

+1

2

∫ 0

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

} 1
2

dt

⎫
⎬

⎭
,

therefore,

E[V̇ (et , t))] ≤ −√
2η (E[V (et , t)]) 1

2 .

By Lemma 4, E[V (et , t)] converges to zero in a finite time,
and the finite time is estimated by

t1 =
√
2v(0)

η
. (6)

Hence, the error vector e(t) will stochastically converge
to zero within t1. This completes the proof. �

Theorem 2 Suppose the assumptions (A1)–(A3) hold, then
the neural networks (2) can finite-timely synchronize with (1)
under the following adaptive controller:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui (t) = −ki (t)ei (t),

k̇i (t) = εi

⎡

⎣e2i (t) − �i
ki (t)

e2i (t)

− ei (t)
ki (t)

ηsign(ei (t)) − η√
εi
sign(ki (t))

− η
ki (t)

√
λmax (P)

(∫ t

t−α(t)
e2i (s)ds

) 1
2

− η
ki (t)

√
λmax (Q)

(∫ 0

−θ(t)

∫ t

t+s
g̃2i (r)drds

) 1
2

⎤

⎦ ,

i = 1, 2, . . . , n,

(7)

where � = diag(�1,�2, ..., �n) > 0 is constant diagonal
matrix to be determined, P > 0, Q > 0,� > −C+‖ Ā‖I +
1
2 |E ||E |T + P

2 + θ
2 L

T QL + U
2 + 1

2 I , Ā = |A|L, P =
1

1−γ
(LT |B|T |B|L + V ), and η > 0 is a tunable constant.

Proof Define the following Lyapunov function candidate:

V (et , t) = 1

2
eT (t)e(t) +

∫ t

t−α(t)
eT (s)Pe(s)ds

+ 1

2

∫ 0

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

+ 1

2

n∑

i=1

1

εi
k2i (t),

where {et = e(t + θ)|t ≥ 0,−τ ≤ θ ≤ 0} is a stochastic
process. By Itô formula, the stochastic differential dV (et , t)
can be obtained as

dV (et , t)=LV (et , t)+eT (t)σ (t, e(t), e(t − α(t)))dw(t),

where

LV (et , t) ≤eT (t)

[
− Ce(t) + Ag̃(t) + Bg̃(t − α(t))

+ E
∫ t

t−θ(t)
g̃(s)ds + u(t)

]

+ 1

2
eT (t)Pe(t)

− 1

2
(1 − α̇(t))eT (t − α(t))Pe(t − α(t))

+ θ(t)

2
g̃T (t)Qg̃(t) − 1

2

∫ t

t−θ(t)
g̃T (s)Qg̃(s)ds

+ 1

2
trace

{
σ T (t, e(t), e(t − α(t)))

σ (t, e(t), e(t − α(t)))
}
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≤− eT (t)Ce(t)+eT (t)Ag̃(t)+eT (t)Bg̃(t−α(t))

+ eT (t)E
∫ t

t−θ(t)
g̃(s)ds

− eT (t)�e(t) − ηeT (t)sign(e(t))

− eT (t)η
( ∫ t

t−α(t)
eT (s)e(s)ds

) 1
2 e(t)

‖e(t)‖2

− eT (t)η
( ∫ t

−θ(t)

∫ t

t+s
g̃T (r)g̃(r)drds

) 1
2 e(t)

‖e(t)‖2

− 1

2
(1 − α̇(t))eT (t − α(t))Pe(t − α(t))

+ θ(t)

2
g̃T (t)Qg̃(t) − 1

2

∫ t

t−θ(t)
g̃T (s)Qg̃(s)ds

+ 1

2
eT (t)Pe(t)+ 1

2
trace

{
σ T (t, e(t), e(t − α(t)))

× σ(t, e(t), e(t − α(t)))
}

≤ −eT (t)Ce(t) + eT (t)|A|Le(t)
+ eT (t)|B|Le(t − α(t))

+ |eT (t)E
∫ t

t−θ(t)
g̃(s)ds| − eT (t)�e(t)

− ηeT (t)sign(e(t))

− eT (t)η
( ∫ t

t−α(t)
eT (s)e(s)ds

) 1
2 e(t)

‖e(t)‖2

− eT (t)η
( ∫ t

−θ(t)

∫ t

t+s
g̃T (r)g̃(r)drds

) 1
2 e(t)

‖e(t)‖2

− 1

2
(1 − γ )eT (t − α(t))Pe(t − α(t))

+ 1

2
eT (t)Pe(t) + θ

2
g̃T (t)Qg̃(t)

− 1

2

∫ t

t−θ(t)
g̃T (s)Qg̃(s)ds

+ 1

2
eT (t)Ue(t) + 1

2
eT (t − α(t))Ve(t − α(t)).

≤ −eT (t)Ce(t) + eT (t)|A|Le(t)
+ eT (t)|B|Le(t − α(t))

+ |eT (t)E
∫ t

t−θ(t)
g̃(s)ds| − eT (t)K (t)e(t)

+ 1

2
eT (t)Pe(t)

− 1

2
(1 − γ )eT (t − α(t))Pe(t − α(t))

+ θ

2
g̃T (t)Qg̃(t)

− 1

2

∫ t

t−θ(t)
g̃T (s)Qg̃(s)ds

+ eT (t)K (t)e(t) − eT (t)�e(t)

+ 1

2
eT (t)Ue(t)

+ 1

2
eT (t − α(t))Ve(t − α(t))

− η

n∑

i=1

|ei (t)|

− η

n∑

i=1

1√
εi

|ki (t)| − η

(∫ t

t−α(t)
eT (s)Pe(s)ds

) 1
2

−η

(∫ 0

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

) 1
2

⎤

⎦

≤ eT (t)

{
−C + ‖ Ā‖I + 1

2
|E ||E |T + P

2

+θ

2
LT QL + U

2
+ 1

2
I − �

}
e(t)

+ eT (t − α(t))

{
1

2
LT |B|T |B|L

+V

2
− 1 − γ

2
P

}
e(t − α(t))

− η

(∫ t

t−α(t)
eT (s)Pe(s)ds

) 1
2

− η

(∫ t

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

) 1
2

− ηeT (t)sign(e(t)) − η

n∑

i=1

1√
εi

|ki (t)|. (8)

By virtue of � > −C + ‖ Ā‖I + 1
2 |E ||E |T + P

2 +
θ
2 L

T QL + U
2 + 1

2 I , P = 1
1−γ

(LT |B|T |B|L + V ) and
Lemma 2, one gets

LV (et , t) ≤ −η

{
n∑

i=1

|ei (t)|2 +
∫ t

t−α(t)
eT (s)Pe(s)ds

+
∫ t

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

+
n∑

i=1

1

εi
|ki (t)|2

} 1
2

= −√
2η

{
1

2
eT (t)e(t)+ 1

2

∫ t

t−α(t)
eT (s)Pe(s)ds

+ 1

2

∫ 0

−θ(t)

∫ t

t+s
g̃T (r)Qg̃(r)drds

+1

2

n∑

i=1

1

εi
k2i (t)

} 1
2

= −√
2ηV

1
2 (t, e(t)).
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Therefore,

E[V̇ (et , t)] ≤ −√
2η (E[V (et , t)]) 1

2 .

By Lemma 4, E[V (et , t)] converges to zero in a finite time,
and the finite time is estimated by

t2 =
√
2v(0)

η
. (9)

Hence, the error vector e(t) will stochastically converge to
zero within t2. This completes the proof. �
Remark 2 In this paper, one adopts feedback control and
adaptive control techniques to guarantee the stochastic finite-
time synchronization of chaotic neural networks with mixed
time-varying delays. As far as we are concerned, although
there are many papers focusing on the finite-time synchro-
nization or stability [25,26,31–34], few works concerning
finite-time synchronization with mixed time-varying delays
and stochastic perturbation have been published. Therefore,
the results have better robustness and disturbance rejection
properties, which shows that they are more practical than
those in [25,26,31–34].

Remark 3 From the proof of Theorems 1 and 2, we can
see the important roles that parameters � = diag(�1,�2,

. . . , �n) and the tunable constant η played in the feedback
controller (4) and adaptive controllers (7). The inequalities
(5) and (8) indicate that the synchronization rate increases
when � = diag(�1,�2, . . . , �n) and the tunable con-
stant η increase. On the other hand, whether the network
(1) and (2) can be synchronized or not relies on the value
of � = diag(�1,�2, . . . , �n) and η, whereas the synchro-
nization time depends on the value of η, and has nothing to do
with the value of � = diag(�1,�2, . . . , �n). If the value
of � = diag(�1,�2, . . . , �n) is less than some value, then
stochastic chaotic networks (2) cannot synchronize with the
manifold system (1).

4 Illustrative examples

In this section, a numerical example has been given to show
that our theoretical results obtained above are effective.

Example 1 Consider the two-node delayed stochastic neural
network mode (2) with the following parameters: x(t) =
(x1(t), x2(t))T , z(t) = (z1(t), z2(t))T , J (t) = (0, 0), α(t)
= θ(t) = 0.6(et )/(1 + et ), and

A =
(

1.7 −0.12
−5.2 3.5

)
, B =

( −1.7 −0.12
−0.25 −2.4

)
,

C =
(
1 0
0 0.5

)
, E =

(
0.12 0
0 −0.12

)
,

−1.5 −1 −0.5 0 0.5 1 1.5
−8

−6

−4

−2

0

2

4

6

x
1
(t)

x 2
(t
)

Fig. 1 Chaotic-like trajectory of system (2)

g1(t) = g2(t) = tanh(t). Figure 1 shows the chaotic-like
trajectory (2) with initial condition x(t) = (−0.2,−0.3)T ,

t ∈ [−1, 0]. The noise intensity function matrix is taken
as

σ(t, e(t), e(t−α(t))) =
(
0.2 0 0.01 0
0 0.2 0 0.01

)

×
(

e(t)
e(t−α(t))

)
.

Here, It is straightforward to check that all the conditions
in Theorem 1 hold. Obviously, neural networks (2) satisfies
(A1)− (A3) with Li = 1, i = 1, 2, α = θ = 0.6, γ = 0.15,
letting η = 0.15,

Q =
(
1 0
0 1

)
, U =

(
0.2 0
0 0.2

)
, V =

(
0.01 0
0 0.01

)
.

Consider the followingmanifold (1)with the initial condition
z(t) = (0.3, 0.5)T , t ∈ [−1, 0].

According to the conditions in Theorem 1, we get that

P =
(
3.48 0.95
0.95 6.8

)
, � =

(
10 0
0 12

)
.

It follows fromTheorem1 that system (2) canfinite-timely
synchronize with the desired system (1) under the feedback
controller (4) and adaptive controllers (7). We get the simu-
lations shown in Figs. 2, 3, 4, 5 and 6. The Figs. 2, 3 show
the x1(t) and z1(t), x2(t) and z2(t) can not achieve syn-
chronization without any controller. Figures 4, 5 present that
the system (2) and manifold system (1) can realize finite-
time synchronization under feedback controller and adap-
tive controller, respectively. Figure 6 shows the trajectories
of control parameters ki (t), i = 1, 2 of adaptive controllers
(7).
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Fig. 2 Time-domain behavior of the state variables x1(t) and z1(t)
without controller
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Fig. 3 Time-domain behavior of the state variables x2(t) and z2(t)
without controller

5 Application in secure communication

In this section, the adaptive synchronization scheme pro-
posed in Theorem 2 is applied to chaotic secure communi-
cations. An information signal p(t) carrying the message to
be transmitted can be masked by the chaotic signal x(t). The
finite-time chaotic synchronization discussed above can be
used to extract the message at the receiver. Different strate-
gies can be used to make the actual transmitted signal v(t)
as broadband as possible, so that make its detection through
spectral techniques difficult. In general, three strategies are
proposed in secure communicationswith chaos [35–37]. One
is signal masking, where v(t) = x(t) + δp(t); another is
modulation, v(t) = x(t)p(t); the third is a combination of
masking and modulation, such as v(t) = x(t)[1 + δp(t)].
We only focus on the first chaotic masking in this paper. Fig-
ure 7 shows the proposed communication system consisting
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e
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Fig. 4 Time response of synchronization error between system (1) and
(2) under the feedback controller (4)
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Fig. 5 Time response of synchronization error between system (1) and
(2) under the adaptive controllers (7)

0 10 20 30 40 50 60 70 80
−5

0

5

10

15

20

25

30

35

40

45

t

k 1
(t
);
k 2
(t
)

k
1
(t)

k
2
(t)

Fig. 6 Trajectories of control parameters ki (t), i = 1, 2 of adaptive
controllers (7)
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Fig. 7 Secure communication system based on adaptive synchroniza-
tion

of a transmitter and receiver. The transmitted signal is v(t) =
x(t)+δp(t). In addition, it is also injected into the transmitter
and, simultaneously, transmitted to the receiver. By the pro-
posed adaptive synchronization scheme, a chaotic receiver is
derived to recover themessage signal at the receiving end.We
propose the following masking technique. The transmitter is
designed as

dx1(t) =
⎡

⎣−0.9x1(t) +
2∑

j=1

a1 j g j (x j (t))

+
2∑

j=1

b1 j g j (x j (t − α(t)))

+
2∑

j=1

e1 j

∫ t

t−θ(t)
g j (x j (s))ds + u1(t)

⎤

⎦ dt

+ σ1(t, e1(t), e1(t − α(t)))dw(t) + p1(t),

dx2(t) =
⎡

⎣−0.5x2(t) +
2∑

j=1

a2 j g j (x j (t))

+
2∑

j=1

b2 j g j (x j (t − α(t)))

+
2∑

j=1

e2 j

∫ t

t−θ(t)
g j (x j (s))ds + u2(t)

⎤

⎦ dt

+ σ2(t, e2(t), e2(t − α(t)))dw(t),

where p1(t) = δp(t) is the informationmessage. It should be
noted that the message signal must possess low power, i.e.,
be small in comparison to the chaotic carrier in general [37].

0 10 20 30 40 50 60
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−1.5
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−0.5

0

0.5
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1.5

2

t

p(
t)
−
r(
t)

Fig. 8 Error between the transmitted signal p(t) and the recovered
signal r(t)

To assure this, we take δ = 0.1. The receiver is designed
as

dy1(t) =
⎡

⎣−0.9y1(t) +
2∑

j=1

a1 j g j (y j (t))

+
2∑

j=1

b1 j g j (y j (t − α(t)))

+
2∑

j=1

e1 j

∫ t

t−θ(t)
g j (y j (s))ds − y1(t) + l1(t)

⎤

⎦ dt,

dy2(t) =
⎡

⎣−0.5y2(t) +
2∑

j=1

a2 j g j (y j (t))

+
2∑

j=1

b2 j g j (y j (t − α(t)))

+
2∑

j=1

e2 j

∫ t

t−θ(t)
g j (y j (s))ds − y2(t) + l2(t)

⎤

⎦ dt,

where l1(t) = v(t) = x1(t)+ δp(t) is the transmitted signal,
l2(t) = x2(t). The information message can be recovered
by r(t) = δ−1[v(t) − y1(t)]. In the simulations, we take the
same parameters and functions as Example 4.1 in Sect. 4, and
choose the initial information message as p(t) = 0.2. Since
the eigenfrequency of the message signal p(t) is much less
than the oscillating frequency of the chaotic system in prac-
tice, we can get ṗ(t) ≈ 0. Figure 8 depicts the error between
the transmitted signal p(t) and the recovered signal r(t).

From the simulations, one can get that the signal can be
exactly recovered under the adaptive controller. The devel-
oped results check the simulations perfectly.
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6 Conclusion

In this paper, the finite-time synchronization between the
drive-response systems in the mean square sense has been
investigated for neural networks with mixed-time delays.
Compared to the results in [25,26], there have mixed time-
varying delays in the model of this paper, which are more
applicable in practice. Since finite-time synchronization has
better robustness and disturbance rejection properties, the
results of this work are of great importance. A numerical
example has been given to illustrate the effectiveness of
the present results. Furthermore, an application scheme for
secure communication is presented in theory, and numerical
simulation illustrates the effectiveness.
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