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Abstract Adaptive group formation in dynamic environ-
ments performed by heterogeneous swarms of simple agents
is an interesting research topic. In this paper we consider an
unsupervised scenario where the individuals of the swarm
have limited information about their environment as well
as limited communication capabilities. The particular case
of a multi-agent model with self-organized reconfigurable
agents where the agents are confronted with a resource col-
lection task, differentmovement, and group formation tactics
are analyzed experimentally. It is shown that cooperation in
groups is profitable for the group members and the optimal
group size depends on environmental parameters. Moreover,
a simple strategy based on the agents ability to measure their
own workload results in an adaptive behavior that influences
the size of the groups and increases the performance of the
overall system.

Keywords Agent simulation · Group formation ·
Reconfigurable agents · Dynamic environments

1 Introduction

The organization of self organized decentralized multi-agent
systems pose several interesting problems. One problem is
the unsupervised group formation within a set of hetero-
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geneous agents. This paper studies a dynamic version of
the problem, where the agents have different, reconfigurable
capabilities with respect to a resource collection task. To
solve this task, the agents can dynamically form groups such
that the capabilities of the agents within a group complement
each other and the groups become not too large. Here we
investigate simple and decentralized strategies for the group
formation process of the agents.

The problem to find a partition of a set of agents into
groups such that some utility function ismaximized is known
to be NP-hard with respect to different utility functions (see
[1] or [2] for an overview). Therefore, several heuristics have
been proposed for this problem. Interesting aspects of the
group formation problem are, whether the decisions to form
groups can be made decentralized or not and the amount and
type of communication required to do so (e.g., [3,4]). To
make group decisions, the agents within a group might have
to communicate, in particular, when a group contains agents
with different capabilities. Hence, the benefit of cooperation
within a group usually depends on the cost of communication
and the compromises the agents have to make.

Different from other works on group formation of agents
or on reconfigurable agents (or robots) we consider a combi-
nation of the following two aspects: (i) decentralized group
formation of simple moving agents and (ii) agents which can
adapt their capabilities by reconfiguration. For the resource
collection task it is assumed that different types of resources,
e.g. food, construction material, or pollution, are distrib-
uted throughout an arena and have to be collected by the
agents. The collection of the different types of resources
requires different skills from the agents. The agents can
move within the arena and are able to form groups with
agents they meet. By forming a group the agents bene-
fit from the diversity of their skills when they coopera-
tively collect the resources. By reconfiguration an agent can
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change its skills and therefore can influence its value to the
group.

A restricted and static version of our agent system has
been investigated before in [5]. That system had a fixed
constant number of resource types and the agents were not
reconfigurable. In contrast, we study here an agent system
with a dynamic environment where the number of available
resources changes over time. Moreover, the agents are able
to change their capabilities by reconfiguring themselves. The
reconfiguration process is based on a simple mutation strat-
egy motivated by naturally occurring mutation processes. It
is shown that the agent system can adapt its group formation
behavior to the changing environment through the simple
reconfiguration process of the agents.

Note, that this paper is an extension of our preliminary
paper [6]. In the preliminary version the agentmodel had only
one movement strategy and only one strategy for the recruit-
ment of new agents. In order to investigate the influence of
both aspects we consider alternative versions for both strate-
gies here. It is shown that with the alternative recruitment
strategy the agents can adapt their group formation behavior
to the environment.

InSect. 2wedescribe relatedwork.Themulti-agentmodel
is introduced in Sect. 3. Section 4 describes the performed
experiments. The results are presented in Sect. 5. A conclu-
sion and an outlook are given in Sect. 6.

2 Related work

Group formation (also called coalition formation) between
agents and cooperative learning within groups of agents
has been studied extensively in the literature under vari-
ous aspects. Group formation is particularly relevant when
agents have different capabilities and/or different roles. Here,
we review studies on multi-agent systems which have some
of the following properties in common with our agent sys-
tem: (i) group formation is a self-organized and decentral-
ized process within the agents, (ii) the agents have only sim-
ple local sensing and communication capabilities (e.g., they
do not use (complex) negotiation protocols, auction mecha-
nisms, or game playing methods), (iii) the agents only have
local knowledge of their environment, (iv) the agents do not
use complex strategies to decide how to adapt, learn, or recon-
figure (i.e., they do not use strategies based on extensive
information evaluation), iv) the agents neither follow differ-
ent individual interests nor do they cheat, (v) the agents do
not form a society with a complex structure (e.g., no hierar-
chical organization is used), (vi) the agents can move within
the environment.

For simple agentswith rudimentary abilities to detect envi-
ronmental signals and no memory of past encounters with
other agents it was shown that tag-based collaboration (a tag

is a marking, display, or any other observable trait) can lead
to the emergence of cooperative strategies among agents [7].
Therefore, several studies have investigated tag-based coop-
eration between agents. For example, in [8] agents are placed
into groups that are identified by tags. In [8], the performance
of the multi-agent system with tags was compared to multi-
agent systems that use alternative mechanisms for coordi-
nated learning. The systemwith tags proved to be suitable for
coordination tasks, e.g., for cooperation building in competi-
tive scenarios. Another, very recent study, is [9] where it was
investigated how agents that are newcomers to a stable host
society of agents can adapt both their tag and their strategy to
decide which agents to cooperate with (matching strategy).
Different payoffs for thematching strategy of the newcomers
have been investigated with various combinations of evolu-
tionary and classical learning approaches. It was shown in
[9] that the newcomer agents can evolve tag based cooper-
ation strategies that successfully integrates them (measured
by a high payoff) into the host agent society. Different from
our work, all these works in the literature use some evolution
mechanism. The evolutionary mechanism is used to identify
the tags and, typically, it is based on the outcome of games
that the agents play against each other.

Decentralized strategies for the cooperation of agents that
share resources to execute tasks have been investigated in
[10]. The resources of an agent have been described, simi-
larly as done in our model for the capabilities (see Sect. 3.1),
by a vector (a1, . . . , ak) where ar , r ∈ [1 : k], describes
the amount of resources of type i of the agent. The agents
are connected by a social network and each agent has a set of
tasks, each of which has a value and certain resource require-
ments. The social task allocation problem is to assign to each
task the resources of neighbored agents such that the total
value of all tasks that could successfully be assigned is max-
imized. The focus in [10] was to find local auction strategies
where each agent uses only local information. The influence
of different network structures where the number of agents
was between 10 and 120 has been investigated. A similar
model that enables agents to form groups for task allocation
in a distributed manner, but where not only direct neighbors
in the underlying social graph can form a groups, has been
studied in [11]. Different from our work, the agents in these
works have a fixed graph neighborhood structure on which
the group formation is based and the agents are not reconfig-
urable/adaptable.

There are some studies on multi-agent systems with
adaptable agents. A recent survey on adaptation approaches
for multi-agent societies has been given in [12] (see also
[13,14]). The focus of [12] is on strategies that make agents
adaptable so that they can always satisfy the dynamically
changing requirements of the system. All the described
approaches consider relatively complex systems where the
adaptation process is structured into the following four
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phases: monitoring, design, selection, and evaluation. One of
the more simpler approaches that has been proposed in [15]
assumes that there exists a (static) social interaction network
between the agents. Each agent has a single, fixed skill (out of
a set of possible skills). In order to execute a task the agents
have to form a team that corresponds to an induced connected
subgraph of the given social interaction network. Each task
is characterized by a vector that describes for each skill how
many agents are required in the team with the corresponding
skill. It is assumed that tasks are arriving dynamically. Dif-
ferent decentralized team forming strategies for systemswith
25–100 agents have been investigated experimentally in [15].
Similar to our work, in [16], several strategies (centralized,
random, and token based strategies) have been investigated
for the adaptation of the relations between agents that can
cooperate. A difference to our work is that [16] assumes the
existence of a specific adaptable relation network between
the agents. It is assumed in [16] that every pair of agents can
calculate the utility of the possible relations between both
agents and can also decide when to initiate such a calcula-
tion and to decide about changing the relation.

Distributed strategies for the group formation problem for
a set of heterogeneous agents have been investigated by sev-
eral authors. In [17], the computational effort of a distrib-
uted group formation algorithm was investigated in relation
to the quality of the resulting groups. The capabilities of an
agent have been described similarly to our model by a vector
(a1, . . . , ak)where ar , r ∈ [1 : k], describes the agents talent
or capability to perform an action of type r . The capability of
a whole group has been defined as the sum of the capabilities
of all member agents. Improved algorithms for this problem
have been presented in [18]. In [19], an auction process was
used for coalition formation. The aimwas tomake local deci-
sions within the coalition to schedule the execution of tasks
in order to reduce or avoid global communication between
agents.

Coalition formation for moving agents has been studied
in [20]. In that system the agents can use global informa-
tion about all other existing agents, e.g., information about
their capabilities. The agents have to execute a hierarchy of
differently located tasks, and a task requires several agents
with different capabilities for its execution. Therefore, a sub-
set of the agents, which are located closely to a task and
together have the required capabilities, can form a coalition,
then move to the task, and execute it. A self-organized coali-
tion formation scheme for agents located within an arena has
been investigated in [21]. In this work, neighbored agents
can form a coalition when it is profitable with respect to a
payoff function. It was assumed in this model that a coali-
tion has to pay coordination costs. The influence of different
payoff functions and different coordination costs on the size
of the coalitions was studied. In [22], a system with agents
moving within a 2-dimensional arena in order to form clus-

ters of cooperating agents has been studied. Trial and error
is used by the agents to infer which agents to cooperate with
and to solve the conflict between achieving a social optimum
in the long term or an individual optimum in the short term.
Different from our work, the papers cited in this paragraph
focus on different payoff functions and decision functions for
the agents. A specific application where the agents can form
coalitions in order to traverse unsafe areas after a disaster
was studied in [23].

3 Design of the model

The design of our model is supposed to be as simple as pos-
sible, reducing the number of parameters to a minimum to
enable a clear and coherent analysis of the few parameters
of interest. The abilities and knowledge of an agent are very
limited in order to investigate a general scenario that does
not depend on assumptions from specific applications.

The model has an arena F that is a two-dimensional torus
of d × d fields (i.e., the last field in every row and column is
adjacent to the correspondingfirst field in its row, respectively
column). A = {a1, . . . , an} is a set of agents where each
agent is located on one field of the arena. Each agent can
move by stepping to one of the eight fields that are adjacent
to its current field. There exists a set R = {r1, . . . , rk} of
resources of different types. The amount of a resource of
type ri on a field f ∈ F is given by fi ∈ [0, 1]. Every agent
has the task to collect as many resources as possible.

Before the details of the different parts of the agent model
are described in the next subsections, a sketch of the model
is given in the following. An agent has different skills to
collect the different resources, and two agents can differ in
these resource collecting skills. However, the agents can form
groups in order to collaborate in collecting resources. The
collaboration of two agents would be especially beneficial
if one agent is barely able or unable to collect resources of
type r ∈ R, whereas the other agent is very skilled in the
collection of resource type r . Agents are also able to adapt
their skills to the need of their group by reconfiguration. All
agents of a group are always located on the same field of the
arena.

At each time step at most one group of agents or one
single agent can be located on one field. In the following,
we consider single agents as groups of size one. Dynamic
scenarios are studied in the experiments where the number
of available resource types can change.

3.1 Agents

The agents capabilities are described by a simple slot model
providing the means of reconfiguration in a rather intuitive
way. Such slot models are used by researchers in the area
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r1 r1 r2 r2 r2 r2 r2 r3 → (ai1 ,ai2 ,ai3) = (2, 5, 1)

Fig. 1 Configuration of an agent ai with s = 8 slots, the brightness
indicates the state (1 = light, 2 = medium, 3 = dark), ri with i ∈ {1, 2, 3}
in a slot denotes the resource type whose collection this slot enhances,
vector (ai1, ai2, ai3) describes the skills of ai , i.e., ai j denotes the num-
ber of slots in state j

1 2 3
4
567

8

Fig. 2 Orientation and location of an agent (gray dot) within a part of
the arena, the agent is oriented to the field above it (indicated by the
black dot), numbers show the eight neighbored fields

of reconfigurable hardware (examples are [24,25]). In these
models, a slot (also called slice or frame) is the smallest
relevant unit of reconfiguration.

In the following, the system parameters are introduced.
Each agent has s slots, and each slot is in one of k possi-
ble states. The configuration of an agent assigns a state to
every slot that can change during a reconfiguration opera-
tion. Initially, every slot of an agent is in a state that is cho-
sen randomly with a uniform distribution. Each slot in state
i ∈ {1, . . . , k} increases the agents capability in the collec-
tion of resources of type ri . Figure 1 shows an exemplary
configuration for an agent with eight slots in a model with
three different types of resources.

Let agent ai ∈ A have ai j of its s slots in state j . If
agent ai is located on field f ∈ F then it can collect an
amount (ai j · f j )/s of resource type r j per simulation turn.
The performance P(ai ) of agent ai is defined as the total
amount of resources the agent can collect in one simulation
turn.

P(ai ) = 1

s

k∑

j=1

ai j · f j (1)

Note, that with fi ∈ [0, 1], i ∈ {1, . . . , k}, and∑k
j=1 ai j = s

the value of P(ai ) is in [0 : 1].
Each agent has an orientation, i.e., it faces one of the eight

fields neighbored to its current location (see Fig. 2). Also,
each agent has a battery to store the energy that is needed by
the agent to perform its actions.Once the battery is exhausted,
the agent is not active any more for a certain time to reload
its battery. Thus, an agent a is reloading in a simulation turn,
if its battery contains zero energy units (i.e., a.batter y = 0)
or if the agent was reloading in the previous simulation turn
(i.e., a.reload = 1) and the energy in the battery has not yet
been reached the capacity (i.e., a.batter y < capacity):

a.reload := (a.batter y = 0) ∨ (a.reload ∧ a.batter y

< capacity)

An agent that is reloading adds capacity/reload time
many energy units per simulation turn to its battery. While
an agent reloads the battery it cannot be member of a group
and it can neither move nor collect resources. An active agent
removes one energy unit from its battery during each simu-
lation turn.

3.2 Groups

To increase its performance, a single agent can join a group or
recruit another agent to its own group. The synergistic effect
of forming a group ismodeled in such away that small groups
potentially benefit more from the recruitment of a new agent
than larger groups. A group can access the capabilities of
its most skilled agent for the corresponding resource type.
Hence, unless the capability of a recruited agent is superior
to all other members of the group for at least one resource
type, there is no immediate benefit for the group. However,
an agent might reconfigure some of its slots to become a
profitable member of the group. This is (in principle) always
possible when the group has at most k members, where k is
the number of resource types. An agent is called specialized
for resource type i ∈ {1, . . . , k} when all its slots are in state
i . When there are k agents in a group and each of them is
specialized for a different resource type, additional agents
cannot not provide any benefit for the group. Equation (2)
gives the formal definition of the performance P(G) of a
group G.

P(G) = 1

s

k∑

j=1

max
ai∈G

ai j · f j , P(G) ∈ [0, k] (2)

All members of a group share their location such that the
group takes just as much space—one field—in the arena as a
single agent. Thus, one field is the area where the group can
collect resources during one simulation turn. Accordingly,
all agents of the same group move together and are oriented
in the same direction. Note, that the physical size of an agent
is considered here to be small compared to the size of a field.
Therefore, the agent size is considered to be negligible. The
assumption that at most one group of agents is located on a
field is motivated by the fact that several groups on a field
would hinder each other in their work or at least would have
to coordinate their work.

When the battery of an agent becomes empty, the agent
leaves its group (unless it is already a single agent). Then,
the agent starts reloading its battery and stays on its location.
Its former group is temporarily allowed to stay on the same
field until the group decides to move onto another field. No
other agents are allowed to step onto the field of the reloading
agent. However, if a new agent has been recruited by a group
(from a neighbored field as explained later), the recruited
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agent immediately changes its position to the field of the
group and adopts the orientation of the group.

3.3 Reconfiguration

An agent has the possibility to change the state of its slots
by a reconfiguration operation. Since we assume very simple
agents here, the reconfiguration strategy is based on a simple
random process calledmutation. This is motivated by similar
mutation processes occurring in nature, e.g., the changes of
a DNA sequences. A mutation can occur when an agent has
idle slots. A slot in state i of an agent a1 in group G is called
idle if one of the following conditions holds: (1) fi = 0, (2)
there is another agent a2 ∈ G with a1i < a2i , or (3) there
exists another agent a3 ∈ G with a1i = a3i and a3 joined G
before a1.

A slot that becomes idle has probability μ ∈ [0, 1] to
mutate during that simulation turn where parameter μ is
called the mutation strength. With each following simula-
tion turn that this slot remains idle its mutation probability
increases byμ. Hence, after x idle simulation turns, themuta-
tion probability of the slot is x · μ. The mutation probability
of a slot is reset to zero if (1) the slot becomes active (i.e. it
is not idle) or (2) the slot mutates.

In case of a mutation, a slot changes its state randomly by
choosing the new state from {1, . . . k}with a uniform distrib-
ution. In our model we assume that a mutation is not for free
but has a fixed cost creconf ∈ [0, 1], where parameter creconf
is called reconfiguration cost. The reason for this assump-
tion is that in real applications the reconfiguration operations
(e.g., in hardware) take some time and the agent might not
able to work normally during this time. Therefore, parameter
creconf reduces the overall amount of collected resources of
the agent during the simulation turn at which the mutation
took place. The higher the reconfiguration costs are, the lower
is the total amount of collected resources. Thus, the perfor-
mance of an agent a during a simulation turn with mutation
is reduced by the factor (1 − creconf), i.e., its performance
is only (1 − creconf) · P(a). Note, that the reconfiguration
costs are independent of the number of mutated slots during
a simulation turn.

3.4 Simulation phases

An experimental simulation run consists of several simula-
tion turns. During each simulation turn three phases occur. At
first, during the recruitment phase, the groups have the possi-
bility to recruit newmembers. Afterwards, theworking phase
is scheduled. The final phase is the battery phase. The agents
are synchronized into these three phases and can only enter
the next phase after all agents have completed the previous
phase. To avoid inconsistencies, the simulation steps are per-
formed sequentially and the agents perform their operations

Fig. 3 Flow diagram of the three phases making up a simulation turn

one after another separately in each phase. For each simu-
lation turn the agents are called in a newly chosen random
order. Figure 3 gives an overview of one simulation turn.

Recruitment Phase. Algorithms 1 and 2 describe the
course of action taking place during the recruitment phase. A
group can only recruit an agent when (i) the agent belongs to
a single agent group, (ii) the agent is located on the field the
group is facing, and (iii) the agent is not reloading. Observe,
that these rules imply that a group can grow at most linearly
in time.

Algorithm1: Recruitment Phase of the static recruitment ver-
sion.
for each group G do

f ′ is the adjacent field in the current orientation
if there is a group of size one containing only agent a on f ′ then

draw a random number φ

if φ ≤recruitment rate then
recruit a to G

1

Algorithm 2: Recruitment Phase of the dynamic recruit-
ment version.
for each group G do1

f ′ is the adjacent field in the current orientation2
if there is a group of size one containing only agent ai on f ′3
then

if there are no idle slots then4
recruit ai to G5

There exist two strategies for recruitment: static recruit-
ment and dynamic recruitment. Assume in the following that
a group G faces a field with a single agent a ∈ A that is not
reloading.

The static recruitment strategy depends on a fixed para-
meter called recruitment rate ∈ [0, 1]. The group G choses a
random number φ ∈ [0, 1] and recruits a if φ < recruitment
rate.

The dynamic recruitment strategy, on the other hand, takes
current information about the group into account. The agent

123



82 Memetic Comp. (2015) 7:77–91

a is recruited if, and only if, none of the slots of the agents in
the group G is idle. Note, that this strategy is based solely on
information which the agents of G have already gathered for
their reconfiguration processes. If the agents would base their
choice on additional information they would require more
intelligence, opposing our aim to keep the agents simple. The
agents neither count the number of agents in their group nor
the number of resource types that are available. However they
do get a rough approximation of the relation between both of
those values, as larger groups contain agents with idle slots
during times of few available resource types, whereas smaller
groups typically contain no such agents if many resource
types are available.

Working phase. During the working phase (see Algo-
rithms 3, 4) the agents perform several tasks. All reloading
agents refill their battery by adding capacity/reload time units
of energy to it. All active agents suffer a loss of energy (by
subtracting one unit of energy from their battery) and perform
the tasks as described in the following.

Algorithm 3: Working Phase for the random walk ver-
sion.
for each agent a do1

if a is reloading then2
reload battery3

else4
remove one energy unit from battery;5
if group G with a ∈ G did not move yet then6

determine next field f ′;7
draw a random number φ8
if φ < velocity and f ′ is empty then9

move G on f ′10
else11

if G turned in previous simulation turn then12
turn G in previous direction13

else14
turn G in random direction15

collect resources and reconfigure idle slots16

Thefirst step during theworking phase is the groupsmove-
ment. In this paper we analyze two different modes of group
movement: random walk and gradient walk.

Randomwalking groupsmake a random decision to either
step on the field in their orientation or to remain on their
current field to change their orientation by 45◦. In the latter
case, the group rotates randomly to the left or right, if it
has moved in the previous simulation turn, or, otherwise,
rotates in the same direction as in the previous simulation
turn. Note, that the latter is done to avoid inefficient back and
forth rotation. The probability to move forward is defined by
the velocity parameter. If the velocity is low, a group performs

Algorithm 4: Working Phase for the gradient walk ver-
sion.
for each agent a do1

if a is reloading then2
reload battery3

else4
remove one energy unit from battery;5
if group G with a ∈ G did not move yet then6

determine next field f ′;7
if P(G) on f ≤ P(G) on f ′ and f ′ is empty then8

move G on f ′9
else10

if G turned in previous simulation turn then11
turn G in previous direction12

else13
turn G in random direction14

collect resources and reconfigure idle slots15

more rotations and remains longer on the same field. If the
velocity is high, a group rotates less and moves forward more
often. Thus, the higher the velocity is the higher is the average
expected number of visited fields per simulation turn.

The gradient walk provides a group with the possibility to
intentionally leave undesirable locations and move towards
more beneficial areas of the arena, i.e., areas with higher
amounts of resources. For this, a group measures its perfor-
mance on its current field and compares it to the performance
it would have on the neighbored field the group faces. If
the performance on the neighbored field is higher, the group
moves there. Otherwise, the group rotates according to the
same rule as introduced for the random movement.

After the group has finished its movement procedure the
agents reconfigure and collect resources.

Battery phase. During the battery phase each agent checks
the amount of energy in its battery and changes its state
(active or reloading) in the following two cases: (i) if the
battery is full, i.e., the number of energy units in the battery
equals capacity), the agent switches into active state, and (ii)
if the battery is empty the agent switches into reloading state.
See Algorithm 5 as a formal description of this final phase
of a simulation turn.

Algorithm 5: Battery Phase: Agents are able to switch
their state of activity from reloading to active or vice
versa.
for each agent a do1

a.reload := (a.battery = 0) ∨ (a.reload ∧ a.battery <2
capacity)
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Fig. 4 Exemplary situation of a
meeting between a single agent
(white) and group of more than
one agent (gray) with
recruitment of the single agent
and the loss of one agent that
starts reloading its battery

Figure 4 depicts an exemplary sequence of simulation
turns during which a group recruits one agent and also loses
one agent that switched to reloading.

3.5 Resources

To provide the dynamic agents with a dynamic environment
and give them an incentive to move during the simulation,
the resources are mobile. Here we assume that the resources
have a randommovement (with respect to velocity and direc-
tion) as described in the following. It is assumed that each
resource type has exactly one source—the place of highest
concentration—that is located within the arena. The location
of a source does not always lie in the center of a field and
is thus not bound by the otherwise discrete properties of the
arena. The location of the source of resource ri at simula-
tion turn t is denoted by (ri .x, ri .y)(t) = (ri .x(t), ri .y(t))
with ri .x(t), ri .y(t) ∈ [0, 1], i.e., normalized coordinates are
used. The initial location (ri .x, ri .y)(0) of each resource is
a randomly chosen location within the arena. To realize a
random movement, in simulation turn t + 1 the location of
the source of resource type ri , i ∈ {1, . . . , k} is relocated to

(ri .x)(t+1) =

⎧
⎪⎨

⎪⎩

ri .x(t) + ρx , if ri .x(t) + ρx ∈ [0, 1]
ri .x(t) + ρx − 1, if ri .x(t) + ρx > 1

ri .x(t) + ρx + 1, if ri .x .(t) + ρx < 0

(3)

where ρx ∈ [−vmax , vmax ] is the change of the sources
location along thex-axis that is in each simulation turn chosen
at random. Themaximum velocity of resources vmax ∈ [0, 1]
is a fixed parameter. The coordinate ri .y is changed analo-
gously to ri .x with an independently chosen value ρy .

Each resource has an availability radius rsource that is iden-
tical for all resource types. The farther away a field f ∈ F is
from the source of a resource type ri the smaller is the avail-
able amount fi of resource type ri on field f . Let ( f.x, f.y)
be the center point of f in normalized coordinates then

fi = max

(
0, 1 − Δ( f, ri )

rsource

)
(4a)

Δ( f, ri ) =
√(

1

2
−

∣∣∣∣| f.x − ri .x | − 1

2

∣∣∣∣

)2
+

(
1

2
−

∣∣∣∣| f.y − ri .y| − 1

2

∣∣∣∣

)2

(4b)

Note, that the torus arena gives four euclidean distances
between two points and that Eq. (4b) determines the min-
imum euclidean distance between f and the source of ri .
By dividing that distance in Eq. (4a) we either get a value
< 1 when the minimum distance is smaller than the radius
rsource or a value ≥ 1 when the minimum distance is equal
to or larger than the radius rsource. In the latter case fi = 0,
because f ’s center lies outside of ri ’s availability.

4 Experimental settings

To analyze the impact of the different behaviors of the agents,
we performed extensive experiments measuring different
aspects of the system to infer a good comparison.

4.1 Parameters

Table 1 shows for all model parameters the different values
used for the test runs. For the experiments we set standard
values for all parameters. A special parameter are the recon-
figuration costs for which all three parameter values are con-
sidered standard (i.e., each system variant was tested with all
three reconfiguration parameter values). Note, that the recon-
figuration costs only influence the systems efficiency, but not
on the walking or group formation behavior of the agents.

To analyze the robustness of the systemwith gradientwalk
anddynamic recruitmentwevaried the values of several para-
meters (the system parameters, n, agent velocity, recruitment
rate, μ, resource velocity) in additional experiments. Thus,
all combinations of parameter values from Table 1 have been
tested where all except at most one parameter have standard
values. In addition we tested also a system that has random
walk and static recruitment with a recruitment rate of 0.25
and a velocity of 0.6 were used together with standard values
for all other parameters.
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Table 1 Model parameters
applied in experiments

The reconfiguration cost is the
only parameter with multiple
standard values because each
system variant has been tested
with all three values of
reconfiguration costs. If an extra
value is used for one parameter
in a system, all other parameters
have standard values. The only
exception is the test of a system
with static recruitment and
random walk (recruitment rate
= 0.25, velocity = 0.6, all other
parameters had standard values)

Parameter Definition Standard Extra

System parameter

– Movement behavior Gradient Random

– Velocity of agents (only for random) 0.6 0.1, 0.9

– Recruitment strategy Dynamic Static

– Recruitment rate of agents (only for static) 0.25 0.1, 0.9

Other parameter

d Size of arena in fields 50 × 50

n Number of agents 100 50, 500

s Number of slots 10

– Number of simulation turns 4,000

k Number of resource types/slot states 10

– Capacity of agent batteries in simulation turns 500

– Reload time of empty battery in simulation turns 50

μ Mutation strength 0.1 0, 0.5

creconf Reconfiguration cost 1, 0.5, 0

vmax Maximal velocity of resources 0.25 0, 1

rsource Radius of resources 1

Thus, altogether, 3× 14 (1 standard values + 2 variations
of vmax + 2 variations of μ + 2 variations of n + 3 varia-
tions of the recruitment rate + 3 variations of the velocity +
1 with random movement and static recruitment rate) exper-
iments have been done, where an experiment corresponds to
one combination of parameter values. For each experiment
50 simulation runs have been done. To increase the com-
parability of the test runs for the different experiments the
same random resource movement is repeated in each corre-
sponding run of the different experiments. Thus, all 50 runs
of one experiment have different resource movements, but
the movement of a run i ∈ {1, 2, . . . , 50} is identical in all
experiments. This ensures that in all experiments the agent
system is confronted with the same environmental changes.
The only exception are the experiments with different maxi-
mal velocities of the sources. Their corresponding test runs,
obviously, have a different movement of the resources.

The velocity 0.6 of the random walk agents is chosen
such that the mean number of movements per simulation
turn is close to that of the gradient walk agents. Similarly,
the relation between positive and negative recruitment deci-
sions in static recruitment and dynamic recruitment systems
are nearly identical with a recruitment rate of 0.25.

For the radius of the resource types sources the value
rsource = 1 was chosen. Therefore each source is available
on every field to some extent. However, in order to study
dynamic scenarios not all resource types are available at all
times. A source can become inactive for several simulation
turns. If the source of resource type ri , i ∈ {1, . . . , k}, is
inactive each field f ∈ F has an amount of zero of resource

ri , i.e., fi = 0. During the first 1,500 and final 1,000 of the
4,000 simulation turns only two sources of the ten resource
types are active. From simulation turn 1,501 until simulation
turn 3,000 all ten sources are active.

The mutation strength of μ = 0.1 ensures that an idle slot
mutates within ten simulation turns. It also follows that with
a probability of approximately 94 % the idle slot mutates
within six simulation turns. Moreover, a slot has an expected
number of 3.66 = ∑10

x=1((1−0.9x ) ·x) idle simulation turns
before it mutates.

The slots of the agents are initialized randomly such that
each slot is set to a random state drawn from a uniform dis-
tribution. The batteries are initialized, such that all possi-
ble active and inactive states are evenly distributed to avoid
periodical fluctuations in the number of active and inactive
agents. With respect to the number of energy units in the bat-
tery there exist 500 active and 50 inactive states. A random
number from a uniform distribution is initially chosen for
each agent to set it randomly into one of the 550 possible
states.

4.2 Measurements

For each variant of the system 50 runs have been performed
to infer the special characteristics and differences between
the system variants. Several measures—as described in the
following—have been recorded and averaged over all runs to
infer the general behavior and characteristics of the different
systems.
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Movement decisions It is measured how often a group
rotates either because the target field is occupied, or due to
their movement strategy (i.e., because they randomly decide
to rotate or measure a negative gradient). This value gives
insight into themobility of the agents in the different systems.

Group size In each simulation turn an agent is eithermem-
ber of a group or reloading its batteries. The size of the group
of each agent is measured to infer the impact of different
numbers of available resource types on the group formation
behavior.

Idle slots The number of idle slots of each agent during a
simulation turn shows how beneficial the agents are for their
group at that time during the simulation.

Collected resources The average total amount of collected
resources per run per agent gives a qualitative measurement
of the different systems.

5 Results

The first part of this section gives an analysis of the agent
behavior. This includes their movement decisions, their
recruiting decisions, and their reconfiguration incentives. In
the second part of this section the focus is set to the per-
formance of the system variants considering different recon-
figuration costs. In the third part we analyze the impact of
different parameters and the robustness of the system against
changes in them.

5.1 Behavioral analysis

Four system variants have been investigated. The first two
have agents performing a random walk and the latter two
have agents that move according to the gradient walk. The
first and third variant use the static recruitment, whereas the
second and fourth variant use dynamic recruitment.

Movement analysis To analyze the impact of the two
different modes of movement—random walk and gradient
walk—the frequency of the different movement decisions of
all groups were measured. Figure 5 shows the average val-
ues over the performed runs for each simulation turn. These
values include the current battery state, the presence of a
group on the target field, the amount of positive decisions
in the random case, and the measured gradient in the gradi-
ent walk case. Figure 5 only shows the results for the sys-
tems with static recruitment. The respective results for the
dynamic recruitment are too similar to see any influence of
the recruitment mode on the movement decisions. Agents

with the random walk strategy move 0.53 fields per simula-
tion turn on average. This is slightly less then the value 0.6
of their velocity parameter because in some cases the agents
are reloading or the groups movement is blocked. The aver-
age speed of agents using the gradient walk strategy is 0.51
fields per simulation turn on average and significantly slower
(Mann-Whitney test with p-value < 0.01) than with random
walk. Recall, that the velocity parameter has been set for a
better comparison such that agents in both system variants
have a similar average speed. About 10 % of the agents are
reloading during a simulation turn and it can be seen that it
rarely happens (less than 5 %) that the agents movement is
blocked by the presence of other agents on the target field. It
can also be seen that for both system variants the increase or
decrease in the number of resource types does barely influ-
ence the average movement speed. There are no significant
changeswith randomwalk and a slight, but significant, differ-
ence with gradient walk (increase from 0.506 to 0.514 from
simulation turn 1,001 to 1,500 and 2,501 to 3,000 respec-
tively).

Hence, the results show that the 100 agents can move
relatively free inside the arena without blocking each other
often. This ensures that the movement of the agents is barely
affected by congestion.

Group formation In the following we analyze the agents
group formation behavior. To this end, the distribution of
agents between groups of different sizes is depicted in Fig. 6
for the different methods of movement and recruitment.

The topmost plot shows the total average number of agents
in the groups of different sizes in a systemwith randomwalk-
ing and static recruitment. Initially, all agents are placed indi-
vidually on random locations into the arena with a random
battery state. It can be seen that after about 500 simulation
turns the group size distribution went into an equilibrium.
About one tenth of the agents are reloading, about one quarter
of the agents stay alone (group of size one), over one quarter
of the agents stay in groups of size two, and the remaining
agents—approximately one third—are in groups that have
between three and seven members. The average group size
for this system—once in equilibrium—is 1.9 independently
of the number of available resource types.

Thegradientwalking agentswith static recruitment showa
similar group formation behavior in the second plot of Fig. 6.
The average group size of 2.0 is slightly, but significantly
(Mann-Whitney test with p-value < 0.01) above the one of
the random walking agents. Potentially, this is because the
agents in the first system are slightly slower. Slower move-
ment results in a higher chance of meeting other agents in
the arena, as slower groups rotate more often and are thus
more aware of their surroundings. This increases the number
of sights of other groups and situations where a group meets
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Fig. 5 Movement behavior of a
system with static recruitment:
random walking groups (top),
gradient walking groups
(bottom). Negative numbers
indicate a decision to stay and
rotate, positive numbers indicate
a movement of the group. The
lower plot gives margins of the
measured gradients. Groups
oriented towards fields
containing other agents are
listed as blocked. Reloading
agents are listed as such

a single active agent with the possibility of recruiting that
agent (number of blocked fields in Fig. 5).

In contrast, the dynamic recruitment shows a clear adap-
tation of the group size to the changing number of avail-
able resource types. Once the number of available resource
types increased to ten, the average groups size rises from
2.0 (simulation turns 1,001 to 1,500) to 2.6 (simulation
turns 2,001 to 2,500), which is a significant increase (Mann-
Whitney test with p-value < 0.01). The dynamic recruit-
ing system has smaller groups on average than the static
recruitment systems during simulation turns with only two
available resource types. However, the average group size in
the dynamic recruitment system is higher than in the static
recruitment systems with ten resource types available. In the
dynamic recruitment systemmost agents are in groups of size
two or three when there are two resources types to collect.
Once the average group size has adapted to the increase of
available resource types, over half of the agents are in groups
of size 3 or larger. This adaptation takes approximately 250
simulation turns.

Beginningwith simulation turn 3,001 the number of active
resources is reduced to two again. The dynamic recruiting
agents stop recruitment immediately, and the system shows
a fast decrease in group size. This reaction overshoots and
reduces the group size to a point below the systems steady
state. The number of groups with less than three agents
decreases in favor of a slightly increasing average group size
before the system returns to a steady state.

Idle slots Figure 7 shows the fluctuation in the number
of idle slots over the experimental runs with gradient walk-
ing agents. During the first 500 simulation turns the system
slowly adapts to the two available resources with the random
reconfiguration processes. About every tenth agent reloads
and has ten idle slots during that time. Another 15 % of
the agents have more than seven idle slots, because they are
in groups with two other agents that already specialized on
the available resource types. Once the number of available
resource types is increased to ten, barely any agents have any
idle slot (not counting reloading agents).
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Fig. 6 The total average
number of agents in groups of
different sizes: random walking
groups with static recruitment
(top), gradient walking groups
with static recruitment (middle),
gradient walking groups with
dynamic recruitment (bottom).
Reloading agents are listed as
agents in a group of size zero

Dynamically recruiting agents have an average of 2.5 idle
slots when two resource types are available (measured from
simulation turn 1,001 to simulation turn 1,500). In the sys-
tem with static recruitment this number is 2.8, which is sig-
nificantly higher than for the dynamic recruitment system
(p-value < 0.01, Mann-Whitney test). With ten available
resource types, the average number of idle slots per agent is as
low as 0.99 in the dynamic and 0.97 in the static recruitment
system (measured from simulation turn 2,501 to simulation
turn 3,000). Though the difference between the averages is

small, the number of idle slots is significantly higher (Mann-
Whitney test with p-value < 0.01) in the dynamic system
than in the static recruitment system. When the number of
resource types is switched from ten to two the groups have
a large average number of idle slots immediately after the
change. However, the agents adapt the group sizes to the
number of available resource types and reduce the number
of idle slots once again to a lower state than that in the static
recruitment system. The static recruitment system is slightly
faster in doing so, because the dynamic recruitment system
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Fig. 7 Average number of
agents with the specified
number of idle slots: gradient
walking agents with static
recruitment (top), gradient
walking agents with dynamic
recruitment (bottom). Reloading
agents are listed as agents with
ten idle slots

has a higher average group size at the time of the switch. The
larger groups have a higher number of idle slots. To adapt to
the change, the agents in the static recruitment system only
mutate their configuration into a more fitting state, but the
average groups sizes do not change. The dynamic recruit-
ing system simultaneously reduces the size of the groups. As
the groups can only decrease their size if a member agent
becomes inactive, this process can take a few hundred simu-
lation turns.

5.2 Performance analysis

The performance of a group is determined by the capabilities
of its members and the resource availability at their current
location. All performance results are significantly different
from each other (Friedman test using a Nemenyi post-hoc
test with p-value< 0.01), unless stated otherwise. The actual
amount of collected resources can decrease if agents have to
pay for their reconfiguration. Figure 8 demonstrates how the
different systems behave in case of high or no reconfiguration
costs. The dynamic recruitment systems (d) and the gradient
walk systems (g) perform better than their respective coun-

terpart with static recruitment (s) and random walk (r). Irre-
spective of the reconfiguration cost, the system with gradient
walk paired with dynamic recruitment performs best. How-
ever, the improvement achieved by gradient walk is small
compared to the positive impact of dynamic recruitment.

5.3 Robustness

The model has several parameters with considerate influence
on the agents behavior and performance. In the following
we analyze this influence. All performance results are sig-
nificantly different from each other (Friedman test using a
Nemenyi post-hoc test with p-value < 0.01), unless stated
otherwise.

5.3.1 Number of agents

Varying the number of agents (n) is similar to changing the
size of the arena, as it sets the density of agents per field. A
higher density of agents leads to significantly larger groups
(pairwise Mann-Whitney tests with p-values < 0.01). The
reason is that a higher density of agents leads to a higher
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Fig. 8 Performance of the
different systems, r random
walk, g gradient walk, s static
recruitment, d dynamic
recruitment; average over all
simulation turns and agents in
one run

Fig. 9 Average performance of
agents in the standard model
with 50, 100, and 500 agents.
Average over all simulation
turns and agents in one run;
boxplot for the 50 runs

Fig. 10 Average performance
of agents in the standard random
walk model with different
velocity values in comparison to
the gradient walk system.
Average over all simulation
turns and agents in one run;
boxplot for the 50 runs

number of collisions between them. This increases the num-
ber of possibilities to recruit agents and thus increases the
average size of groups in the system. Note, however, that the
group size never exceeds three whenever there are only two
resource types available.

Figure 9 shows the influenceof the number of agents on the
systems average performance. The different reconfiguration
costs reduce the average performance, but do not change the
fact that systems with large populations perform better than
systems with smaller populations.

5.3.2 Velocity of the agents

If the agents are unable to measure the gradient between
their current and next field, i.e. in static systems, they decide
at random whether to move forward or rotate on their cur-
rent field. How many fields per simulation turn they visit
on average is denoted as their velocity. Figure 10 shows the
influence of different agent velocities on the systems perfor-
mance. While higher velocities seem to improve the system,
the performance of the gradient walk system has a higher
performance then any of the systems with random walk. The

performance of systems with a velocity of 0.6 and 0.9 are not
significantly different.

5.3.3 Recruitment rate

Higher recruitment rates increase the average size of the
groups. In a large group, with at least one specialized agent
for each type of resource, every agent can collect the maxi-
mum amount of resources. Agents that are not better than all
other agents for at least one resource type, constantly recon-
figure their slots. However, this is not a problemwhen recon-
figuration is for free. Therefore static recruitment systems
with high recruitment rates have a better performance than
static systems in case of no reconfiguration costs, because
they form large groups.

Large groups are less beneficial with high reconfiguration
costs. However, Fig. 11 shows that even with reconfiguration
costs of one simulation turn the systemwith static recruitment
still shows a performance increase with increasing recruit-
ment rates. However, systems with dynamic recruitment are
the best performing systems in case of high reconfiguration
cost. They benefit from their agents ability to adapt their
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Fig. 11 Average performance
of agents in the standard static
recruitment model with different
recruitment rates in comparison
with the dynamic recruitment
system. Average over all
simulation turns and agents in
one run; boxplot for the 50 runs

Fig. 12 Average performance
of agents in the standard model
with different values for the
mutation strength. Average over
all simulation turns and agents in
one run; boxplot for the 50 runs

Fig. 13 Average performance
of agents in the standard model
with different values for the
resources maximal velocity.
Average over all simulation
turns and agents in one run;
boxplot for the 50 runs

group size. They form large groups, when many different
resources are available and smaller groups, otherwise. With
medium reconfiguration cost of 0.5 the performance of the
best static recruitment system is not significantly different
from the dynamic system.

5.3.4 Mutation strength

Ahigher mutation strength decreases the time an agent needs
to adapt. It also increases the number of reconfiguration
events for agents, that can be considered superfluous in their
groups, as all other group members already cover all avail-
able resource types with their capabilities. Figure 12 shows
the influence of themutation strength on the standard system.
The benefit of the fast adaption of the agents is, even with
the highest reconfiguration costs, higher than the loss of per-
formance by the superfluous agents in the groups. Increasing
reconfiguration costs of several simulation turns will at some
point change this phenomenon. Here, the dynamic recruit-
ment increases its performance, if the agents reconfigure and
adapt fast.

5.3.5 Maximal velocity of the resources

The velocity of the sources of the resource types influences
the performance of the gradient walking system. A slow
movement, or even lack thereof, makes it easier for the agents
to detect profitable fields and follow the sources. The higher
the fluctuation in the environment by faster moving sources,
the lower is the performance of the system (see Fig. 13).

6 Conclusion and outlook

If the benefit of cooperation is bound to some environmental
and dynamic influence, a dynamic decision tactic to join into
a cooperation can be very profitable. In the presentedmodel a
set of simple agentswas confrontedwith such a situation. The
varying and reconfigurable set of capabilities of the agents
provides a very heterogeneous and adaptive swarm of agents.
By cooperation through group formation agents benefit from
each others capabilities. It is every agents goal to become
member of a group that, ideally, consists of one specialist
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for each capability that is currently asked for by the dynamic
environment.

Our simulations showed that, when agents base their deci-
sions on their current workload, the group formation of the
agents is adaptive and increases the overall performance of
the system. In a considerably small amount of time the swarm
of agents adapts to larger changes in their environment. The
impact of a different moving behavior—in this case a gradi-
ent walk—has considerably less impact on the performance
in such dynamic systems compared to randomly walking
agents. However, the gradient walk is more beneficial for the
agents than the randomwalk. Thus, the systemwith dynamic
recruitment and gradient walk performs best, especially if
there are reconfiguration costs.

Variations of the values of the model parameters showed
that the system with gradient walk and dynamic recruitment
is robust and behaves expectedly.

It is left to future work, to investigate whether other sim-
ple tactics of the agents can regulate the group formation
adaptively. Agents which are rotating oftenwithout changing
their location gather in larger groups than agents that move
faster. This could be an interesting aspect for designing new
adaptive group formation systems in the future. Other move-
ment strategies—not based on random decisions or a simple
weighted gradient of the multi-objective environment—are
also subject of further investigations. It will also be interest-
ing to extent the model by additional spatial aspects, e.g., let
agents and groups have specific sizes.
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