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Abstract Clustering is an unsupervised classification
method in the field of data mining. Many population based
evolutionary and swarm intelligence optimization methods
are proposed to optimize clustering solutions globally based
on a single selected objective function which lead to pro-
duce a single best solution. In this sense, optimized solution
is biased towards a single objective, hence it is not equally
well to the data set having clusters of different geometri-
cal properties. Thus, clustering having multiple objectives
should be naturally optimized through multiobjective opti-
mization methods for capturing different properties of the
data set. To achieve this clustering goal, many multiobjec-
tive population based optimization methods, e.g., multiob-
jective genetic algorithm, mutiobjective particle swarm opti-
mization (MOPSO), are proposed to obtain diverse tradeoff
solutions in the pareto-front. As single directional diversity
mechanism in particle swarm optimization converges prema-
turely to local optima, this paper presents a two-stage diver-
sity mechanism in MOPSO to improve its exploratory capa-
bilities by incorporating crossover operator of the genetic
algorithm. External archive is used to store non-dominated
solutions, which is further utilized to find one best solution
having highest F-measure value at the end of the run. Two
conceptually orthogonal internal measures SSE and connect-
edness are used to estimate the clustering quality. Results
demonstrate effectiveness of the proposed method over its
competitors MOPSO, non-dominated sorting genetic algo-
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rithm, and multiobjective artificial bee colony on seven real
data sets from UCI machine learning repository.
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1 Introduction

Clustering, an important task in data mining, has been
approached by many disciplines because of its wide applica-
tions such as biology, information retrieval, business, medi-
cine, social science, earth science. In a clustering problem,
objects of the data set are partitioned into appropriate number
of clusters based on some similarity function. Consequently,
objects sharing same cluster are more similar in comparison
to the objects in the distinct clusters [31]. Clustering quality
is often measured by an internal validity criteria, which can
be based on different features of the clusters such as com-
pactness, isolation, and connectedness. Conventionally, clus-
tering algorithms are broadly classified as partitional, hierar-
chical, and density based algorithms [15]. The hierarchical
methods organize the objects as a hierarchical tree struc-
ture where each level represents partitions of the data set.
These methods do not require initialization of solutions and
prior knowledge about number of clusters. However, in these
methods, setting stopping criteria is very difficult as well as
objects assigned to a cluster can not move to another clus-
ter at later stage [29]. Density based clustering methods [12]
implement a key idea that each object in a cluster should not
contain number of objects in the neighborhood (in a defined
radius) less than a defined threshold value. Though these
methods are usually well suited to identify outliers, they find
it difficult to partition the data set with overlapping clusters.
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On the other hand, Partitional clustering methods directly
decompose the data set into number of clusters. Partitional
clustering can be fuzzy or hard [6]. Hard partitional cluster-
ing creates non-overlapping clusters by assigning each object
into one cluster. However, in case of fuzzy partitional clus-
tering [2], each object resides into every cluster with some
membership weight. It is more suited to the data sets having
overlapping clusters. Many traditional/conventional cluster-
ing algorithms, e.g., K-Means [18], K-medoids [26] have
been proposed to solve the hard partitional clustering prob-
lem.However, these algorithms suffer frommanydrawbacks,
e.g., they stuck into local optima, the quality of partitions is
dependent on initial solution [23]. Therefore, a large number
of nature-inspired population based global search optimiza-
tionmethods, e.g., evolutionarymethods, swarm intelligence
methods, have been proposed to overcome these deficiencies
and enhance the quality of clustering solutions [11,17].

However, most of the research proposals available in the
literature partition data sets on a single objective function.
In this sense, optimized solution based on a single objective
function is biased towards a particular criterion.As clustering
problems usually consist of multiple conflicting objectives,
various researchers [14,15,28] suggest that quality of clus-
tering solution should be evaluated by multiobjective opti-
mization methods to reduce dominance of a particular objec-
tive on the results of clustering and it should be treated as a
natural way to partition the data sets. Such methods obtain a
set of non-dominated solutions known as pareto-front, where
each solution is a trade-off of the conflicting objectives and
no solution in this front is inferior to the other solutions.
Finally, the decision maker picks a solution as the promising
solution based on his/her requirement.

The multiobjective optimization methods simultaneously
optimize a number of conflicting objectives. Over the years,
many classical (non nature-inspired computing) multiobjec-
tive methods, e.g., weighted sum methods [24], Benson’s
method [10], are proposed to solve many real-world prob-
lems involving multiple conflicting objectives. Though these
methods are easy to implement, they suffer from some inher-
ent drawbacks, e.g., optimal solutions depend on the cho-
sen initial solution, they tend to get stuck to a suboptimal
solution, they are not efficient in handling problems having
discrete search space, they can not be used efficiently on
parallel machines [7]. To overcome these drawbacks, many
multiobjective evolutionary algorithms [15,32] and multi-
objective swarm intelligence methods [1,4] are proposed
to obtain trade-off solutions in the pareto-front. In [4], the
authors propose mutiobjective particle swarm optimization
(MOPSO) to solve multiobjective problems using PSO [21]
and apply it on several benchmark test functions. They show
that it is highly competitive over its competitors NSGA II,
microGA, and PAES. However, we observe that there is no
information sharing mechanism among particles as a swarm

(in group); each particle is influenced by its own experi-
ence pbest, known as cognitive component, and the leader
of the swarm gbest, known as social component. Here, we
present a novel method TSMPSO to improve the diversity
mechanism (to build such an information sharing mecha-
nism among particles) in MOPSO by introducing crossover
operator of GA. Here, TSMPSO along with three competing
algorithms MOPSO, elitist non-dominated sorting genetic
Algorithm [9] (NSGA-II), and Multiobjective Artificial Bee
Colony [1] (MABC) are applied to clustering application.
Two conflicting clustering objectives SSE [30] and connect-
edness [16] are optimized to obtain non-dominated solutions
on variety of real data sets having different cluster character-
istics, e.g., size, shape, density. Here, external archive (which
is dynamic but limited in size) stores the non-dominated solu-
tions as the search progresses and is used to guide the par-
ticle’s flight in swarm during iteration and further to find a
best solution having highest F-measure value at the end of
the run. We experiment with seven real data sets from UCI
machine learning repository. The results show that TSMPSO
is superior over the competing methods on all the data sets.

Rest of the paper is organized as follows. Section 2
presents a brief literature review. Section 3 presents the algo-
rithmic background of competing methods. Our proposed
method TSMPSO is detailed in Sect. 4. Experimental set up,
results and discussion are included in Sect. 5. Finally, Sect.
6 concludes with future scopes in the field of data clustering.

2 Related work

A brief survey of the multiobjective evolutionary algorithms
and multiobjective particle swarm intelligence methods and
applications can be found in [33] and [27] respectively. As
mentioned above, clustering usually consists of conflicting
objectives; few researchers approach the problem in multi-
objective framework to find the best clustering solutions cor-
responding to trade-off of the objectives. In this context,
an evolutionary multiobjective optimization method [14]
attempts to improve the accuracy of clustering using two
conflicting objective functions overall deviation and con-
nectedness when the number of clusters in the data set is
known. It adopts PESA-II [5] for clustering by incorporat-
ing a specialized mutation and an initialization procedure. A
well-knownmultiobjective hard clusteringmethod,Multiob-
jective Clustering with automatic k-determination (MOCK)
[15] consists of two main phases. In the first phase, the initial
clustering phase, PESA-II [5] is used to optimize two con-
flicting objectives as mentioned in [14] to produce a set of
trade-off solutions. For encoding, it uses a locus-based adja-
cency representation. This representation encodes clustering
along with number of clusters. The initial population is filled
up using two clustering algorithms minimum spanning tree
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(MST) based algorithm and K-means. Half of the popula-
tion is filled up using the MST-based algorithm. Remaining
half is filled up by K-means algorithm for different num-
ber of clusters. It uses uniform crossover operator to provide
diversity in search space and neighborhood-biased mutation
operator to make the convergence faster. At the end, this
phase generates a set of non-dominated solutions. In sec-
ond phase, the model selection phase, the number of clusters
is determined based on selecting a particular solution from
the pareto-front. This particular solution is selected based
on the shape of the pareto-front (knee) by the Gap statistics.
In [16], four different pairs of clustering criteria are eval-
uated and analyzed in multiobjective framework with the
same encoding, variation operators, initialization and para-
meter setting as in [15]. It has been shown that pair of objec-
tives employed in MOCK acts as strongest combination. In
[13], the corrected Rand based selection strategies are used
to reduce a high number of partitions generated in multiob-
jective framework. These strategies significantly reduce the
number of solutions (partitions) by maintaining diversity in
search space and preserving quality solutions. We propose
a novel method TSMPSO which outperforms its competi-
tors for hard partitional clustering. Performance assessment
is carried out in terms of classification accuracy, distribu-
tion of solutions in the obtained pareto-front, convergence
of the obtained pareto-front with respect to the reference
pareto-front, and number of solutions in the obtained pareto-
front.

3 Algorithm background

In this section, we describe the MOPSO [4], NSGA II [9],
and MABC [1] in brief.

3.1 MOPSO

PSO is a population-based metaheuristic search algorithm
for single objective optimization where every particle in the
swarm is a potential solution. Particle’s flight is influenced
by its personal best position and the global best position in
the swarm [21]. The velocity (v) and position (x) of a particle
is updated based on Eqs. 1 and 2, respectively.

vbd(t + 1) = vbd(t) + c1.r1d(ybd(t) − xbd(t))

+c2.r2d(ŷd(t) − xbd(t)) (1)

xbd(t + 1) = xbd(t) + vbd(t + 1) (2)

where d is dth dimension of a particle; b is bth particle in the
swarm; y is local best of a particle ; ŷ is the global best in the
swarm; t is the iteration; r1 and r2 are random numbers in the
interval (0, 1), and c1 and c2 are positive acceleration con-

stants. It requires following changes to solve amultiobjective
optimization problem [27].

– Selection criteria of the personal best (pbest) for a particle
and the global best (gbest) in the swarm.

– Strategy to retain all non-dominated solutions found dur-
ing the run, e.g., external archive.

– Diversitymechanism in the search process to escape con-
vergence to a single solution or sub-optimal solutions.

Algorithm 1 demonstrates a step by step procedure of
MOPSO to solve amultiobjective problem.MOPSOchanges
PSO to deal with multiobjective optimization problems.
When particle’s pbest is dominated by particle’s current posi-
tion, it is replaced by particle’s current position. If neither
of them is dominated by each other, then we select one of
them randomly. MOPSO uses external repository to store
non-dominated solutions obtained in each iteration and later
leader selected from this repository guides the solutions
towards pareto-front by maintaining diversity. Concept of
this archive is similar to the adaptive grid of Pareto archive
evolutionary strategy (PAES) [22]. PSO is mainly suitable
for multiobjective optimization because of the high speed
of convergence as long as premature convergence does not
occur. Since single information sharing mechanism in PSO
among the particles may easily lead to convergence to the
local optimum (i.e., premature convergence) in multiobjec-
tive optimization, appropriate promotion of diversity is an
important issue.

Algorithm 1: procedure of MOPSO
1: Initialize a swarm;
2: Evaluate each particle in the swarm;
3: Store a copy of non-dominated solutions in the external archive;
4: Initialize particles pbest to its initial position.;
5: while stopping criteria is not satisfied do
6: Select leader (gbest) from external archive;
7: for each particle do
8: Update velocity and position as Eqs. (1) and (2);
9: Evaluate each of the particle in the swarm;

10: Update pbest of each particle;
11: end for
12: Update external archive by current non-dominated solutions;
13: end while
14: Generate result from external archive;

3.2 NSGA II

NSGA II [9] is a multiobjective optimization evolutionary
algorithm based on elitism and diversity preservation mech-
anism. Initially, parent population PPt (size N) is generated
randomly based on a particular criteria. Then offspring pop-
ulation OPt is generated by selecting parents from parents
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population PPt using crowded binary tournament selection
and other genetic operators. Further, the offspring population
OPt (size M) is combined with the parent population PPt
(size N) making the entire population EPt of size M + N .
Afterwards, non-dominated fronts and crowding distance (a
measure of density of solutions in the neighborhood) of solu-
tions are calculated on EPt . Later, N solutions out of M +N
are promoted to the next generation based on better rank or
higher crowding distance on the same rank. Consequently, at
the end of the run, we obtain a set of non-dominated solutions
on best pareto-front (solutions with the best rank) in the final
population. We outline NSGAII in Algorithm 2.

Algorithm 2: NSGA II algorithm
1: Initialize chromosomes in the population;
2: while Termination criteria is not satisfied do
3: Evaluate solutions in the population based on all objectives;
4: Rank the solutions as well as evaluate their crowding distance;
5: Generate offspring population OPt by selecting parents from

parent population PPt using genetic operators;
6: Evaluate solutions in the offspring population based on all

objectives;
7: Combine OPt and PPt to make EPt ;
8: Rank the solutions in EPt as well as evaluate their crowding

distance;
9: Select new population PPt+1 from top sorted solutions in EPt

based on better rank or higher crowding distance on same rank;
10: end while
11: Output: set of non-dominated solutions on the best pareto front

in the final population;

NSGA II uses explicit diversity preservation mecha-
nism crowding distance to diversify solutions on the non-
dominated front and elitism to preserve already obtained non-
dominated solutions to the next generation.

3.3 MABC

ABC algorithm is a swarm intelligence population based
optimization algorithm introduced by Karboga [19] where
potential solutions are food sources of honey bees. The algo-
rithm design is inspired by intelligent food foraging behavior
of real honey bees. The quality of solutions is evaluated based
on values (nectar amount) of food source in terms of two
objectives SSE and connectedness. In a natural bee swarm,
there are three types of honey bees: employed bees, onlooker
bees, and scout bees. The employed bees search new food
sources, which dominate the food sources in their memory.
The onlooker bees gather information from employed bees
to select food sources which dominate larger number of food
sources and further search for better quality food sources
in neighborhood of the selected food sources. The scout
bees discover food sources randomly for the exhausted food
sources. Here, MABC [1] changes ABC to deal with multi-

objective optimization problems. Three phases of MABC to
search new food sources are described as follows:

– Employed bees phase: In employed bees phase, an
employed bee searches for the food source in the neigh-
borhood, which dominates the food source in her mem-
ory. The position of new food source with respect to ith
food source is obtained by following Eq. 3.

x ′
i j = xi j + w1 � φi j (xi j − xpj ) (3)

where p is a food source randomly selected from the
archive ; N denotes number of food source; j ∈
{1, 2, . . . , d} is a randomly selected index; φi j is a ran-
dom number between [0,1]; the coefficient w1 controls
the importance of p in search of new food source. If the
new obtained food source in the neighborhood is better
than the food source in her memory, then the bee updates
her positionwith new one. Here, the number of employed
bees is equal to the number of food sources.

– Onlooker bees phase: In onlooker bees phase, all the
employed bees provide information about the quality of
new food sources to the onlooker bees. Then onlooker
bees choose their food sources based on probability probi
related tofitness of the obtained solutions in the employed
bees phase. InMABC, probi of food source i is evaluated
using Eq. 4.

probi = fiti
∑N

i=1 fiti
(4)

where fiti is the fitness value of food source i ; fiti =
dom(i)

N ; dom(i) is number of food sources dominated
by i ; N represents the number of food sources. Each
onlooker bee modifies the solution in her memory simi-
lar to the employed bee based on probi values. However,
an another coefficient parameter w2 controls the impor-
tance of neighbour p which is selected randomly from
the swarm. If the obtained solution dominates previous
one, bee memorizes non-dominated solution and forget
the previous one.

– Scout Bees Phase: In the previous two phases of ABC,
it is found that the position of some food sources is not
upgraded in predetermined number of trials. Such food
sources are called abandoned solutions. At this point,
scout bees search new solution xi randomly as shown in
Eq. 5 for each abandoned solution.

xi j = xmin,d + rand(0, 1)(xmax,d − xmin,d) (5)

where d is dimension of the data set.

Algorithm 3 demonstrates a step by step procedure of
MABC [1] to solve a multiobjective problem.
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Algorithm 3: procedure of MABC
1: Initialize food sources (solutions);
2: Evaluate each food source ;
3: Store a copy of non-dominated food sources in the external

archive;
4: while stopping criteria is not satisfied do
5: Employed Bees Phase for searching new food sources using

Eq. 3;
6: Calculate fitness probability of food sources using Eq. 4;
7: Onlooker Bees Phase for searching new food sources based on

fitness probability;
8: Scout Bees Phase for re-generating abandoned solution using

Eq. 5;
9: Update external archive by current non-dominated solutions;
10: end while
11: Generate result from external archive;

MABC uses grid based approach to maintain non-
dominated solutions in an external archive after performing
three phases Of MABC.

4 Proposed methods

In this section, we present a description of the proposed algo-
rithm TSMPSO.

4.1 Solution representation and initialization

We follow a centroid based representation to represent a par-
ticle (candidate solution) as described in [23]. Here, every
candidate solution contains k × nvar dimensions, where k
denotes the number of clusters, which is known a priori and
nvar indicates the number of dimensions in the data points.
Every dimension of a cluster is assigned a random number
between maximum (xmax) and minimum (xmin) value of the
corresponding dimension in the data set. The position(n, d)

represents dth dimension of the nth cluster, and rand() is
uniformly distributed random number in the range of [0,1].
Algorithm 4 describes steps of particle initialization.

Algorithm 4: particle initialization
1: k ← number of clusters;
2: nvar ← number of dimensions;
3: for n = 1 : k do
4: for d = 1 : nvar do
5: position(n, d) = xmin(d) + rand() ∗ (xmax(d) − xmin(d));
6: end for
7: end for

Note that initial velocities of particles in the PSO are
assigned to zero. When new solutions are generated, dimen-
sions of the new solutions must satisfy the dimensional
boundary condition of search space. It means that if the value

of a dimension of a new solution crosses the value of upper
bound of corresponding dimension in the search space then
that value is replaced by the value of the upper bound. Similar
condition is applied for the lower bound also. As the paper
deals with the clustering problem where k is known a priori,
a solutionmust contain k clusters. However, it is possible that
a newly generated solution does not contain valid k clusters.
Such solution is regarded as erroneous solution . Here, the
erroneous solution is replaced by a randomly generated new
solution as per the procedure described in Algorithm 4.

4.2 Fitness functions

Since single validity measure is not equally appropriate
for the data set of different characteristics, simultaneous
optimization of multiple objectives naturally improves the
results. Therefore, we select a pair of conflicting objectives
intra cluster variance (SSE) [30] and connectedness [15]
based on comparative study shown in [16]. First objective
SSE, shown in Eq. 6, is based on the idea that each object
should belong to a nearest cluster centre and quality of solu-
tion should be evaluated in context of compactness of clus-
ters. It is effective for the data set having well-separated and
spherical clusters.

SSE(S) =
k

∑

i=1

∑

∀xp∈ci
‖xp − mi‖2 (6)

Here S is a solution, xp indicates pth object of the data set,
mi implies centroid of the i th cluster, and ci denotes the i th
cluster. However, the second objective connectedness, shown
inEq. 7, is based on the idea that objects in the neighbourhood
should belong to the same cluster. It is more compatible to
identify clusters of arbitrary shapes [15].

Connectedness(S) =
N

∑

p=1

⎛

⎝

T
∑

j=1

xp,nn p( j)

⎞

⎠ (7)

where S denotes a solution, p indicates pth object in data set,
N indicates number of objects in the data set, nn p( j) indi-
cates j th nearest neighbor of object p, and xp,nn p( j) indicates
penalty received with value (1/j) when j th nearest neighbor
data point is not in the same cluster as p. Otherwise, penalty
value received for that nearest neighbor data point is zero. In
other words, for each data point p, amount of penalty is equal
to sum of penalty received with value (1/j) due to each near-
est neighbor j when p and j are not in the same cluster; T is a
parameter which indicates the number of nearest neighbours
to utilize; it can be seen that penalty value received gradually
decreases for distant neighbor.

Consequently, by these two objective functions, homo-
geneity of the clusters is measured by SSE and separation
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between the clusters is measured implicitly by connectivity
measure.

4.3 TSMPSO

TSMPSO algorithm is based on pareto based elitist approach
[7]. For initialization of swarm POP (size N P), particle
velocities are initialized to zero and personal best (pbest) of
each particle is initialized to its initial position.Obtained non-
dominated solutions in the swarm are preserved in external
archive. It serves two purposes; first, non-dominated solu-
tions are preserved as search progresses, and second, an
appropriate global best (leader) particle is selected from this
archive that guides the swarm during the search process. To
select the leader and maintain the external archive, hyper-
cubes [4] are created in the objective space where solutions
in external archive are maintained as coordinate system.
Location of these solutions in hypercubes are determined
according to values of their objective functions. Further, fit-
ness assignment of each hypercube containing more than
one solution is performed. The assigned fitness of hyper-
cube equals to the result of dividing any number x > 1
(Here, we selected x = 10 as recommended in [4]) by num-
ber of solutions in respective hypercube. This process lead
to decrease the fitness of hypercube having more number of
solutions. Roulette-wheel selection is performed to select the
hypercube based on associated fitness. A leader is selected
randomly from solutions residing in selected hypercube.

Infirst-stage of diversitymechanism inTSMPSO, changes
in particle’s velocity and position are performed on current
swarm as per Eqs. 1 and 2 respectively to create a tempo-
rary swarm, say POP1. Then particle pbest is updated to
its current position except if its pbest dominates its current
position in order to provide better diversity to solutions [3].
Since particles are influenced by their pbest and the leader
of swarm, no information sharing mechanism is available
among all particles in the swarm except that each particle
can obtain information from the leader. Therefore, in order
to build such an information sharing mechanism among par-
ticles to improve diversity in search process, in second-stage
a genetic crossover operator is applied on the swarm to build
such an information sharing mechanism among individuals.
A single point crossover is performed with some crossover
probability Pc by selecting two parents randomly from the
current swarm to generate offsprings population by exchang-
ing segments beyond crossover point. To perform crossover,
a random integer number is generated in the range of 1 to
k ∗ nvar − 1, where k denotes number of cluster centroids
and nvar indicates the number of dimensions in a centroid.
Here, we denote generated offsprings population as POP2.
This additional diversity mechanism is helpful to enhance
the exploration capability of MOPSO and leads to diversify
solutions in the search space.

Now, the POP1 and POP2 are combined to create tem-
porary population (T EMP_POP). For T EMP_POP ,
different pareto fronts are created based on dominance cri-
teria [7]. New population is filled by starting the best non-
dominated front followed by the second, and so on. When
last-allowed front is considered, the remaining slots in the
new population may be less than the solutions on this front.
The crowding distance (CD) is calculated on last-allowed
front. It is one of the niching method to calculate density of
solution around an individual solution on a non-dominated
front, which sums the normalized distance of two neigh-
bour solutions p − 1 and p + 1 of a solution p in objective
space along each of the objectives. The least crowded solu-
tion on the last-allowed front is given priority like NSGA II
[9]. Finally, external archive is updated with respect to the
non-dominated particles obtained in the new swarm. Existing
solution in the archive is removed if it is dominated by any
current non-dominate solution. Whenever external archive
becomes full, extra solutions are removed based on giving
priority to solutions residing in less populated regions [4].
Accordingly, places of solutions within hypercubes are rede-
termined. The pseudo code of theTSMPSO is shown inAlgo-
rithm 5 and the flowchart is presented in Fig. 1.

Algorithm 5: TSMPSO algorithm
1: Initialize the swarm (POP) of size N P;
2: for each particle in the swarm do
3: Evaluate fitness function;
4: Initialize particle’s pbest to its initial position;
5: end for
6: Update external archive with respect to the non-dominated

solution from POP;
7: while maxi t is not reached do
8: Select leader from external archive;
9: for each particle in the swarm do

10: update velocity and position;
11: Evaluate fitness function;
12: update pbest;
13: end for// The new swarm is termed as POP1 //

14: perform genetic crossover over POP to create offspring
population (POP2);

15: Evaluate each solution in POP2;
16: T EMP_POP ← POP1

⋃

POP2;
17: Create non-dominated pareto fronts for T EM_POP;
18: Find crowding distance (CD) of solutions on last-allowed

front;
19: Promote N P better solutions to new swarm (POP);
20: Update external archive with respect to the best non-dominated

front;
21: end while

5 Experimental results and discussions

We perform experiments on TSMPSO along with three well-
know multiobjective optimization methods MOPSO [4],
NSGA II [9], MABC [1] to optimize two conflicting crite-
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Fig. 1 Flow chart of proposed algorithm

ria intra cluster distance and connectedness simultaneously.
The obtained results demonstrate that the proposed algorithm
is highly competitive with competing algorithms over seven
real data sets from the UCI machine learning repository.1

5.1 Parameters setup

As results of the population based optimization methods
are influenced by parameters settings, these values should
be selected carefully based on empirical and/or theoretical
evidence. We choose population size 100 as higher value
increases the computational overhead. Based on the experi-
ments, the maximum number of fitness function evaluation
selected as stopping criteria is 40,000 as performance of algo-
rithms is not considerably improved afterwards. Parameter
settings of competing algorithms which are applied in clus-
tering domain are similar to their original research papers.
We select the value of T parameter based on recommended
range given in [15]. Further, the value of Number of hyper-
cubes (divisions for adaptive grid) and size of external archive
are chosen based on the recommended value in [4]. The value
of inertia weight w, cognitive learning factor c1 and social
learning factor c2 are chosen as 0.71, 1.49, 1.49 respectively
as this set produce the best results overall among different
sets of values. The Table 1 presents all parameter settings for
the proposed as well as the competing methods.

1 http://archive.ics.uci.edu/ml/.

Table 1 Control parameters for TSMPSO, MOPSO, and NSGA II

Name of parameters Value

Population size 100

Maximum number of fitness function evaluation 40,000

Number of independent runs 30

Size of external archive 100

T for connectedness 10

C1 1.49

C2 1.49

w 0.72

Number of hypercubes 30

Crossover rate of GA (Pc) 1

Table 2 Datasets descriptions

Name of data set Number of
clusters

Number of
dimensions

Number of
instances

Iris 3 4 150

Glass 6 9 214

Vowel 6 3 871

WBC 2 9 683

Wine 3 13 178

Zoo 7 16 101

Dermatology 6 34 358

5.2 Datasets

The datasets are in matrix of size n × nvar with real-valued
elements, where n is number of objects and nvar is number of
features. These objects are partitioned into k non-overlapping
clusters. In this work, we perform experiment on seven real
datasets Iris, Glass, Vowel, Wisconsin Breast cancer (WBC),
Wine, Zoo, andDermatology from theUCImachine learning
repository to validate performance of the TSMPSO. A brief
characteristic of these datasets is presented in Table 2. In
WBC,we use only 683 samples out of originally 699 samples
by removing 16 samples having some missing features.

5.3 F-measure

We use F-measure to judge accuracy of the obtained clusters.
F-measure [28] is a balanced measure, which is evaluated by
combining precision and recall as harmonic mean. Precision
is the fraction of retrieved objects that are relevant, while
recall is the fraction of relevant objects that are retrieved.
F-measure of a cluster with respect to known class can be
mathematically expressed as Eq. 8.

F − measure = 2 × precision × recall

precision + recall
(8)
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where, precision = mpq/mp, mpq is the number of objects
which belong to cluster p and class q both, and mp is the
total number of objects in cluster p; recall = mpq/mq , mq

is the total number of objects in class q. Optimum value of
F-measure is 1.

5.4 Performance assessment matrices

Generally, following issues are considered to assess algo-
rithms in order to perform quantitative assessment in the
multiobjective scenario [35].

1. Convergence of solutions: solutions should be as close as
possible towards optimal pareto front. It is assessed based
on minimized distance between obtained pareto-front of
an algorithm and optimal pareto-front.

2. Diversity of solutions: solutions in the pareto-front
should be distributed in such a way that they represent a
set of solutions covering the entire pareto-optimal region
uniformly.

3. Number of solutions: number of solutions should be as
maximum as possible on non-dominated pareto front.

Therefore, we assess performance of the algorithms using
following commonly used performance assessment matrices
as no single metric can judge performance of an algorithm
in complete sense [7].

– Coverage (C) [34]: this metric is used to compare relative
quality of two sets of solutions based on domination.
For two pareto-fronts S1 and S2, C(S1, S2) evaluates the
proportion of solutions in S2, which are dominated by
solutions in S1. It can bemathematically defined as shown
in equation 9.

C(S1, S2) = |{a2 ∈ S2; ∃a1 ∈ S1 : a1 	 a2}|
|S2| (9)

Value of C lies between 0 and 1. A higher value of C
indicates a better dominance. C(S1, S2) = 1 means each
solution of S2 is dominated by at least one solution of S1.
On the other hand, C(S1, S2) = 0 means no solution of
S2 is dominated by any solution of S1.

– Distribution (
) [9]: this metric provides useful infor-
mation about distribution (spread) on obtained non-
dominated front (S) of an algorithm. It is calculatedwith a
relative distance measure between consecutive solutions
in S. It is mathematically described as shown in Eq. 10.


(S) =
|S|−1
∑

i=1

|di − d̄|
|S| − 1

(10)

Here, for each solution i , di = ∑M
m=1 | fmi+1 − fmi | is

the sum of absolute difference in normalized objective
function values between consecutive solutions i th and
(i + 1)th in (S),which is sorted in order in each objective;
d is the mean of di . Smaller value of 
 indicates better
uniformly distributed solutions where ideal value of 
 is
zerowhich indicates that the solutions on S are uniformly
distributed.

– Convergence [8]: this matric assess convergence of the
non-dominated solution set of an algorithm with respect
to a reference set P∗. It is mathematically defined as
shown in Eq. 11.

Convergence(S) =
∑|S|

i=1 di
|S| (11)

where, di = minp∗
j=1

√

∑M
k=1

fk(i) − fk( j)

f max
k − f min

k

Here, f max
k and f min

k are the minimum and maximum
objective function values respectively for kth objective
function in P∗. Smaller value of this measure indicates
superiority of the solution set. Ideal value of this measure
is zero, which indicates all solution set lie on reference
(optimal) pareto front.

– ONVG [25]: overall Non-dominat Vector Generation
(ONVG) is the count of solutions on obtained non-
dominated pareto front. It is mathematically defined as
shown in Eq. 12.

ONVG(S) = |S| (12)

5.5 Comparison of results

We compare performance of proposed algorithm TSMPSO
with three well known algorithms MOPSO [4], NSGA II
[9], and MABC [1] for crisp clustering on all the experi-
mental data sets. Initially, performance of these algorithms
is measured based on the best solution in obtained solution
set which has the highest F-measure value. Table 3 shows the
mean and standard deviation (shown in bracket) of the high-
est F-measure values achieved by solution sets in different
runs. It is clearly visible that TSMPSO reveals its superi-
ority over competing algorithms in term of mean classifi-
cation accuracy of F-measure. Moreover, TSMPSO reports
the smallest standard deviation in term of Glass, WBC, and
Zoo data sets which demonstrates robustness of the algo-
rithm. In case of Wine data set, mean accuracy achieved by
these algorithms are close to each other. MOPSO demon-
strates better mean accuracy than NSGA II in term of Iris ,
WBC, and Zoo data sets. Moreover, it achieves smaller stan-
dard deviation of accuracy over all the data sets except Glass
data set. This indicates robustness ofMOPSOwith respect to
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Table 3 Performance of algorithms is based on F-measure on different data sets

Data Sets TSMPSO MOPSO NSGA II MABC

Iris 0.9265 (0.0182) 0.9089 (0.0142) 0.8903 (0.0354) 0.8604 (0.0546)

Glass 0.5584 (0.0144) 0.5441 (0.0265) 0.5549 (0.0161) 0.5017 (0.0494)

Vowel 0.6317 (0.0255) 0.6109 (0.0223) 0.6087 (0.0231) 0.6022 (0.0269)

WBC 0.9741 (0.0010) 0.9735 (0.0025) 0.9514 (0.0201) 0.9702 (0.0028)

Wine 0.7294 (0.0037) 0.7272 (0.0001) 0.7290 (0.0033) 0.7271 (0.0095)

Zoo 0.8131 (0.0162) 0.8011 (0.0184) 0.7852 (0.0220) 0.7904 (0.0245)

Dermatology 0.3656 (0.0163) 0.3580 (0.0133) 0.3584 (0.0194) 0.3618 (0.0071)

Average results with standard deviation are presented based on 30 run

Table 4 Coverage for obtained non-dominated solutions from combined pool of sets of solutions in all run

Datasets C(A, B) C(A, C) C(A, D) C(B, A) C(C, A) C(D, A)

Iris 1 1 1 0 0 0

Glass 1 1 1 0 0 0

Vowel 0.8 0.987 1 0.0576 0 0

WBC 1 1 1 0 0 0

Wine 1 1 0.8 0 0 0.1111

Zoo 1 0.8421 1 0 0.1875 0

Dermatology 1 0.58 1 0 0.6315 0

Table 5 Average results of Distribution with standard deviation of obtained solutions sets are presented based on all runs

Datasets TSMPSO MOPSO NSGA II MABC

Iris 0.1988 (0.0614) 0.2753 (0.1537) 0.3092 (0.1374) 0.3745 (0.2972)

Glass 0.0606 (0.020) 0.19 (0.3221) 0.0641 (0.021) 0.2083 (0.124)

Vowel 0.0712 (0.0225) 0.0308 (0.0093) 0.03107 (0.0089) 0.1548 (0.0578)

WBC 0.1598 (0.0692) 0.1468 (0.3488) 0.1223 (0.032) 0.3812 (0.2355)

Wine 0.2392 (0.0486) 0.4454 (0.1904) 0.547 (0.3347) 0.2602 (0.0915)

Zoo 0.1661 (0.1268) 0.4326 (0.4433) 0.1894 (0.1018) 0.3471 (0.3709)

Dermatology 0.0973 (0.0233) 0.0374 (0.0089) 0.0574 (0.016) 0.12 (0.0345)

NSGA II. Further, we selected different matrices to quantita-
tively assess performance of algorithms in terms of diversity
and convergence. Table 4 presents quantitative comparison
of coverage metric (C) obtained pareto-fronts of algorithms
from combined pool of sets of solutions in 30 independent
runs. Symbols A, B, C, and D indicate TSMPSO, MOPSO,
NSGA II, and MABC respectively. The values of C(A, B),
C(A,C), and C(A, D) are 1 in most of the data sets, which
clearly show that all solutions of competitive algorithms are
dominated by at least one solution of TSMPSO. On the other
hand, the values of C(B, A), C(C, A), and C(D, A) are 0
in most of the datasets which indicate that no solution of
TSMPSO is dominated by any solution of competitive algo-
rithms. Table 5 shows mean and standard deviation (shown
in bracket) of distribution (
) achieved by obtained sets of
solutions in different runs. TSMPSO reports the smallest

mean and standard deviation for Iris, Glass, Wine, and Zoo
data sets, which indicates that the solutions are closer to a
uniform distribution along the pareto-front and algorithm is
more robust. Furthermore, Table 6 presents distribution (
)
for obtained non-dominated solutions from combined pool
of sets of solutions in all runs. TSMPSO reports the smallest
value over all the data sets with single exception thatMOPSO
has the smallest value for Wine data set. This indicates that
T SMPSO is able to find a distribution of solutions closer to
a uniformdistribution along the pareto-front. Table 7 presents
quantitative comparison of convergence metric for obtained
pareto-fronts of algorithms from combined pool of sets of
solutions in all runs. TSMPSO reports the smallest value
over all the data sets along with zero value for Iris, Glass,
and WBC data sets. This indicates that TSMPSO produces
solutions that are more closer to the reference pareto-front
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Table 6 Distribution for obtained non-dominated solutions from com-
bined pool of sets of solutions in all runs

Datasets TSMPSO MOPSO NSGA II MABC

Iris 0.1426 0.3619 0.4088 0.3486

Glass 0.1063 0.1644 0.129 0.2188

Vowel 0.1371 0.1788 0.1375 0.1887

WBC 0.1346 0.0756 0.0679 0.1606

Wine 0.0937 0.0605 0.1035 0.3774

Zoo 0.112 0.1969 0.115 0.6923

Dermatology 0.1416 0.0942 0.2213 0.2292

Table 7 Convergence for obtained non-dominated solutions from com-
bined pool of sets of solutions in all runs

Datasets TSMPSO MOPSO NSGA II MABC

Iris 0 0.1007 0.1235 0.2728

Glass 0 0.2109 0.1506 1.2061

Vowel 0.0003 0.0387 0.0816 0.0865

WBC 0 0.0825 0.084 0.2921

Wine 0.0078 0.0239 0.0196 0.0009

Zoo 0.0236 0.1778 0.0411 0.0964

Dermatology 0.0165 0.0381 0.0277 0.049

Table 8 ONVG for obtained non-dominated solutions from combined
pool of sets of solutions in all runs

Datasets TSMPSO MOPSO NSGA II MABC

Iris 7 7 5 4

Glass 32 13 28 14

Vowel 52 55 77 21

WBC 26 19 21 7

Wine 9 7 7 5

Zoo 16 15 16 5

Dermatology 38 75 50 16

over all the data sets. However, other methods have diffi-
culties in convergence towards optimal pareto-front. Table 8
shows the values ofONVGof algorithms for the pareto-fronts
obtained from the combined pool of sets of solutions in all the
runs. TSMPSO reports the highest values of ONVG among
the competing algorithms over all the data sets with excep-
tion that MOPSO and NSGA II have the largest value for
Vowel and Dermatology data sets, respectively. This means
that TSMPSO has lager number of solutions on obtained
non-dominated pareto-front for most of the data sets.

Based on performance exhibited by MOPSO, it can be
analyzed that solution achieved by MOPSO does not prop-
erly approach to the optimal pareto-front. This indicates
that MOPSO does not properly diversify the solution in
global search space because PSO suffer from well known

Fig. 2 Bar chart shows the comparison of the best F-measure value
obtained in 30 runs

stability problem as well as information sharing mechanism
is single directional among particles. In NSGA II, genetic
crossover is a good way to provide diversity in search space
by establishing information sharing mechanism among solu-
tions. Therefore, performance of this algorithm is supposed
to be better. However, experimentally it has been shown that
NSGA II does not achieve better solutions over the pro-
posed algorithm. Such type of behavior demonstrates that
good solutions promoted in next generation are not suffi-
ciently explored in search space by only applying genetic
crossover operation. It concludes that it requires better bal-
ance of exploration and exploitation in the search space. It
can also be observed from empirical results that MABC does
not competewith the proposed algorithmover these data sets.
Because in the search procedure of ABC, bees exchange only
one dimension with a random neighbor, which slow the opti-
mization ability of algorithm when dimension of problem
increases [20]. It concludes that it requires sufficient explo-
ration in search space.

As TSMPSO incorporates exploration through GA and
exploitation through PSO, it performs better; experimen-
tal results also support its superiority over the competitors.
Figure 2 shows comparison of the best F-measure value
achieved by algorithms in 30 independent runs over all the
data sets. It also supports the superiority of the proposed
method over competing methods. Further, graphical repre-
sentation of pareto-fronts obtained by the competing algo-
rithms are shown in Fig. 3 for different data sets, which
clearly shows that solutions of TSMPSO on obtained pareto-
fronts are closer to uniform distribution with larger extent. In
addition, solutions are closer to the reference optimal pareto-
fronts. The above validates superiority of the TSMPSO over
the other competing algorithms in terms of distribution, con-
vergence, and number of solutions as reported quantitatively
by different metrics (refer Tables 4, 5, 6, 7 8). In case of Der-
matology data set, based on F-measure values, all four algo-
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Fig. 3 Pareto front for
non-dominated solutions from
combined pool of obtained
solutions in all independent
runs. a Iris; b glass; c vowel; d
WBC; e wine; f zoo; g
dermatology
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rithms perform highly unsatisfactory as it is a high dimen-
sional data set containing 34 dimensions. Even on this data
set, proposed method demonstrate better performance over
other three methods. Overall, TSMPSO is a good alterna-
tive to solve crisp clustering problems throughmultiobjective
approach to produce high quality trade-off solutions.

6 Conclusions

Multiobjective optimizationmethods are natural way to opti-
mize multiple criteria of clustering by reducing biases of a
particular single objective. In this paper, TSMPSO is pro-
posed to increase exploratory capability of the MOPSO by
introducing an additional diversitymechanism. Results show
that TSMPSO outperforms well-known competitive algo-
rithms in term of classification accuracy (F-measure) and
quality assessment metrics across the range of real data sets.
As the future work, the authors aim to extend this study for
data sets with unknown number of clusters.
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