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Abstract Break scheduling problems arise in working
areas where breaks are indispensable, e.g., in air traffic con-
trol, supervision, or assembly lines. We regard such a prob-
lem from the area of supervision personnel. The objective is
to find a break assignment for an existing shiftplan such that
various constraints reflecting legal demands or ergonomic
criteria are satisfied and such that staffing requirement viola-
tions are minimised. We prove the NP-completeness of this
problem when all possible break patterns for each shift are
given explicitly as part of the input. To solve our problem we
propose two variations of a memetic algorithm. We define
genetic operators, a local search based on three neighbour-
hoods, and a penalty system that helps to avoid local optima.
Parameters influencing the algorithms are experimentally
evaluated and assessed with statistical methods. We compare
our algorithms, each with the best parameter setting accord-
ing to the evaluation, with the state-of-the-art algorithm on a
set of 30 real-life and randomly generated instances that are
publicly available. One of our algorithms returns improved
results on 28 out of the 30 benchmark instances. To the
best of our knowledge, our improved results for the real-life
instances constitute new upper bounds for this problem
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1 Introduction

Many working areas require staff members to maintain high
concentration while performing their tasks. These include air
traffic control, security checking, supervision, or assembly
line workers, where loss of concentration can result in dan-
gerous situations. It is therefore required that staff take breaks
after given periods of time. Additionally, staffing require-
ments, which define the number of staff required to be work-
ing during a given period, should be fullfilled.

Our particular problem origins from a real-life scenario
in the area of supervision personnel. As input we are given
a shiftplan consisting of consecutive timeslots and of sched-
uled shifts, the total breaktime required for each shift, a set
of temporal constraints concerning the locations and lengths
of breaks and of working periods, and staffing requirements
for each timeslot. The breaktime for each shift is to be sched-
uled such that the temporal constraints are satisfied and viola-
tions of staffing requirements are minimised. We denote our
formulation as break scheduling problem (BSP). Figure 1
depicts a small shiftplan with a possible solution.

Previously, the task of scheduling of breaks has been
addressed mainly as part of the so-called shift scheduling
problem. Several approaches have been proposed for prob-
lem formulations that include a small number of breaks.
These approaches schedule the breaks within a shift schedul-
ing process. In particular, Dantzig developed the original set-
covering formulation [11] for the shift scheduling problem,
in which feasible shifts are enumerated based on possible
shift starts, shift durations, breaks, and time windows for
breaks. Examples of integer programming formulations for
shift scheduling include [1,3,29]. A comparison of differ-
ent modeling approaches was given by Aykin [2]. Rekik et
al. [25] developed two other implicit models and improved
upon previous approaches, among them Aykin’s original
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Fig. 1 A shiftplan with different shifts and breaktimes. Breaks are
scheduled such that long shifts contain four breaks, short shifts contain
three breaks, no break is longer than two timeslots, and no working
period is longer than six timeslots. The staffing requirements are indi-

cated as a demand curve and as numbers of staff in the bottom line. They
are not satisfied in all timeslots, i.e., there is undercover in timeslot 22
and overcover in timeslots 16 and 24

model. Tellier and White [28] developed a tabu search algo-
rithm to solve a shift scheduling problem originating in con-
tact centers. This algorithm has been integrated into the work-
force scheduling system Contact Center Scheduling 5.5. An
approach [15] to shift scheduling with breaks suggests to
first schedule the shiftplan without breaks (see [13,21]) and
then generate three to four breaks per shift with a greedy
approach. The formulation of a shift scheduling problem
with a planning period of 1 day and at most three breaks
(two 15 min breaks and a lunch break of 1 h) has been con-
sidered recently in [8,24]. In [8], the authors make use of
automata and context-free grammars to formulate constraints
on sequences of decision variables. The approach suggested
in [24] is based on modeling the regulations of the shift
scheduling problem by using regular and context-free lan-
guages. Then a large neighborhood search is applied to find
solutions for the whole problem of scheduling both shifts and
breaks. In addition to the previous model, the authors apply
their methods for single and multiple activity shift schedul-
ing problems. A new implicit formulation for multi-activity
shift scheduling problems using context-free grammars has
been proposed by Côté et al. [9].

Some important break scheduling problems arising in call
centers, airports, and other areas include a much higher num-
ber of breaks compared to the problem formulations in pre-
vious works on shift scheduling. Also, additional require-
ments like time windows for lunchbreaks or restrictions on
the length of breaks and worktime can emerge. These new
constraints significantly enlarge the search space. Therefore,
researchers recently started to consider a new approach which
regards shift scheduling and break scheduling as two differ-
ent problems and tries to solve them in separate phases.

The problem tackled in this paper (BSP) consists of
scheduling breaks to a given shiftplan. It has first been intro-

duced by Beer et al. [6]. In addition to an arbitrary number of
breaks per shift, the problem formulation allows to impose
several specific temporal constraints on the assignment of
breaks. A similar break scheduling problem, which origins
in call centers and also includes meetings and some slightly
different constraints, has been described in [5,26]. Beer et
al. [6] also introduced real-life benchmark instances contain-
ing shifts that include more than ten breaks. To solve BSP,
local search techniques based on min-conflicts have been
proposed in [4,6]. A simple memetic algorithm for this prob-
lem has been proposed in [22]. An algorithm based on con-
straint programming and local search for BSP in combination
with shift design has been investigated in [16]. Although ini-
tial solutions of this hybrid solver are promising, the results
obtained by solving the break scheduling problem separately
(after generation of shifts) could not be improved.

These approaches to BSP have been used successfully for
solving large real-life instances and have also been deployed
in practice. However, the best solutions for these instances
are not yet known, and the question is whether the solutions
can be improved. Further, the computational complexity of
this problem has not been investigated so far.

This paper presents new complexity results for this prob-
lem. In particular, we prove that the decision variant of BSP
is NP-complete when all possible break patterns for each
shift are defined explicitly as part of the input. To obtain
improved upper bounds for the BSP, we propose two new
memetic algorithms. Both algorithms are based on the same
initialisation process and the same memetic representation,
and apply a local search based on the same set of three
neighbourhoods. The local search contributes through hill-
climbing rather than diversification. The first algorithm is
based on a classic memetic approach with crossover, muta-
tion, and selection. The second algorithm contains new ideas
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that avoid the weaknesses of the first approach. These new
ideas include a penalty system and a new crossover operator.

Both algorithms depend on a set of parameters for which
we experimentally evaluate different values. The impact of
each parameter is statistically verified. We finally compare
the outcomes of our algorithms with the best existing results
for a set of benchmarks from the literature. One of our algo-
rithms returns improved results on 28 out of 30 instances. To
the best of our knowledge, these results represent new upper
bounds for the available BSP real-life instances.

The problem definition, the second algorithm, and the
evaluation of this algorithm have been presented at the 7th
International Workshop on Hybrid Metaheuristics [31]. This
paper extends [31] by a complexity analysis that justifies the
application of metaheuristics, a detailed explanation of a fast
method to generate break patterns, an additional algorithm
with a parameter evaluation and a discussion of its weak-
nesses, and a comparison of the two algorithms to methods
presented in the literature.

The remaining parts of this work are organised as fol-
lows: we first give a formal definition of BSP and present our
complexity results. Solving BSP with memetic algorithms is
presented in Sects. 4, 5 and 6, where Sect. 4 describes ele-
ments the two algorithms have in common, and Sects. 5 and 6
describe each algorithm with its parameter evaluation. Sec-
tion 7 describes the set of real-life and random instances, the
experimental setup, and a comparison with the literature. We
draw our conclusions and describe the future work in Sect. 8.

2 Problem statement

BSP deals with scheduling of breaks in a shiftplan that con-
sists of consecutive timeslots and of shifts starting and end-
ing in defined timeslots. One shift represents exactly one
employee on duty within a sequence of timeslots. Two or
more shifts may overlap in time, i.e., have timeslots in com-
mon. A timeslot in a particular shift is referred to as slot. To
each slot, either a break, worktime, or time used for familiari-
sation with a new working situation has to be assigned. The
latter stems from the real-life nature of BSP. After a break,
the working situation may have changed, and therefore the
employee is given some time to get familiar with the new
circumstances (for example, in air traffic control). We are
further given staffing requirements which indicate the num-
ber of employees required to be working in each timeslot.

The objective is to find an assignment for each slot such
that breaks are distributed within each shift according to
some temporal constraints and such that violations of staffing
requirements are minimised. These violations can occur as
over- or undercover violation. Since we are dealing with a
real-life problem, different measures are taken for the two

types, as in the particular domain, undercover is a more seri-
ous problem than overcover.

In the following, we provide a set of formal definitions
necessary to provide a precise problem statement.

Definition 1 (Shiftplan P) A pair (T,S) where T =
{1, 2, . . . , k} is a set of consecutive timeslots and S =
{S1, . . . , Sn} is a set of shifts.

Definition 2 (Timeslot t) An element of T representing a
time period of fixed length. In our real-life instances, each
timeslot corresponds to a period of 5 min.

Definition 3 (Shift S) A set S = {ti , ti+1, . . . , ti+m}, S ⊆ T ,
of consecutive timeslots, i.e., t j+1−t j = 1 for i ≤ j < i+m.
The shift start is denoted Ss = ti and the shift end Se = ti+m .
Each shift represents exactly one employee on duty. Two or
more shifts can have timeslots in common.

Definition 4 (Slot) A timeslot in a particular shift. A slot
can be assigned one of three values: 1 (1-slot) for a work-
ing employee, 0 (0-slot) for an employee on break or 0̄ (0̄-
slot). 0̄-slots are assigned to those and only those slots that
directly follow a sequence of 0-slots. A 0̄-slot stands for an
employee who is getting familiar with an altered working
situation after a break. During a 0̄-slot, the employee is not
consuming breaktime but neither counted as working staff
regarding staffing requirements.

Definition 5 (Breaktime τ(|S|)) A function τ : {|S1| , . . . ,
|Sn|} → N that maps each shift length to a number of 0-slots
that have to be assigned to a shift Si with length |Si |.
Definition 6 (Staffing requirements ρ(t)) Function ρ : T →
N assigning a number of required 1-slots to each timeslot.

Definition 7 (Work period W ) A set of consecutive 1- and
0̄-slots in a particular shift.

Definition 8 (Break B) A set of consecutive 0-slots in a par-
ticular shift.

Definition 9 (Temporal constraints C) A setC={C1, . . ., C5}
of global restrictions regarding lengths and locations of
breaks and work periods inside shifts.

C1 Break positions (d1, d2). In each shift, each timeslot in
{ti , ti+1, . . . , ti+d1−1} and {ti+m−d2+1, . . . , ti+m} must
be assigned a 1-slot, i.e., a break may start earliest d1

timeslots after the start and end latest d2 timeslots before
the end of its associated shift.

C2 Lunch breaks (h, g, l1, l2). Each shift S with |S| > h
must contain a break BL with BL ≥ g, i.e., with a mini-
mum length of g timeslots, starting at least l1 and ending
at most l2 timeslots after the start of its shift.
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C3 Work periods (w1, w2). For each work period W , w1 ≤
|W | ≤ w2.

C4 Minimum break duration (w, b). A work period W with
|W | ≥ w must be followed by a break B with |B| ≥ b.

C5 Break lengths (b1, b2). For each break B, b1 ≤ |B| ≤ b2.

Definition 10 (Break pattern D) A set D ⊂ S of timeslots
representing a set of breaks (0-slots) for a shift S such that
|D| = τ(|S|) and and all constraints in C are satisfied.

Definition 11 (Possible break patterns DS for a shift S) A
set DS ⊂ 2S of break patterns for shift S. Sect. 4.2 explains
how a set of break patterns can be generated.

Definition 12 (Solution B) A total map B : S → 2T with
B(S) ∈ DS for each S ∈ S. A solution assigns a break pattern
to each shift.

Based on these definitions we define BSP as follows:

Definition 13 (Break scheduling problem BSP) Instance A
tuple (P, τ, ρ, C) with each element as described above.
Objective Let Q = (P, τ, ρ, C) be an instance of BSP. The
objective is to find a solution B such that the following objec-
tive function is minimised:

F(B, T, ρ) = wo · O(B, T, ρ)+ wu ·U (B, T, ρ)

where

• wo and wu are weights for over- and undercover violations
respectively, and
• for ω(B, t) the number of 1-slots in timeslot t ∈ T accord-

ing to B,
• U (B, T, ρ) = ∑

t∈T max(0, ρ(t) − ω(B, t)), i.e., the
undercover violations, and
• O(B, T, ρ) = ∑

t∈T max(0, ω(B, t) − ρ(t)), i.e., the
overcover violations.

Figure 2 depicts a solution for a small instance of BSP.

3 Computational complexity

We present a proof of NP-completeness for BSP under the
condition that break patterns are given explicitly as part of
the input.

BSP can be re-formulated as decision problem with the
same input (P, τ, ρ, C). The question is whether for an
instanceQ there exists a solutionB such that F(B, T, ρ) = 0.

Lemma 1 The problem BSP is in NP.

Proof Given an instance Q = (P, τ, ρ, C) of BSP and a set
B containing an arbitrary break pattern for each S ∈ S, it can

be checked in time O(|T | · |S|) whether ρ(t) is satisfied for
each timeslot t . �	
We define BSP’ as modification of BSP as follows:

Definition 14 (BSP’) Without loss of generality, we elim-
inate the 0̄-slots from BSP so that break patterns in BSP’
contain only 0- and 1-slots. An instance of BSP is a tuple
Q′ = (P, τ, ρ, γ ) where the definitions of P, τ, ρ equal
those in BSP and γ is a function that maps each shift S to a set
D′S ⊂ 2S of break patterns such that for each D′ ∈ D′S it holds
that

∣
∣D′

∣
∣ = τ(S). The question is whether for an instance Q′

there exists a solution B′ such that F(B′, T, ρ) = 0.

The difference between BSP and BSP’ is that BSP is given
the set of possible break patterns implicitly by τ(S) and C
whereas for BSP’ this set is given explicitly by γ .

We show that BSP’ is NP-complete by reduction from the
well-known NP-complete problem Exact Cover by 3-Sets
(X3C) [14].

Definition 15 (X3C) An instance of X3C is a pair X =
(U,F) where U is a set with |U | = 3m, m > 1, and F
is a collection of three-element subsets of U , i.e., |F | = 3
and F ⊂ U for each F ∈ F . The question is whether F
contains an exact cover for U , i.e., a subcollection F ′ ⊆ F ,
such that each element of U occurs in exactly one member
of F ′.
Theorem 1 The problem BSP’ is NP-complete.

Proof The NP-membership of BSP’ follows from the NP-
membership of BSP. To show that BSP’ is NP-hard, we
present a reduction from X3C. Given an arbitrary instance
X = (U,F) of X3C, we construct an instance Q′ =
(P, τ, ρ, γ ) of BSP’ in polynomial time as follows.

• P = (T,S) where T = {1, 2, . . . , 3m}, S = {S1, S2,

. . . , Sm}, and S = T for each S ∈ S.
• τ(|S|) = 3 for each S ∈ S.
• ρ(t) = |S| − 1 for each t ∈ T , i.e., in each timeslot

exactly one break is required.
• γ (S) = {{σ(u) | u ∈ F} | F ∈ F} where σ : U → N

is a bijective function enumerating all elements in U :
σ(u1) = 1, σ (u2) = 2, . . . , σ (u3m) = 3m.

The following observations can be made from the construc-
tion of the instance of Q′. The number of timeslots equals the
number of elements in U . All shifts are of the same length
and contain all timeslots. The number of 0-slots for each shift
is 3, which is the size of each F ∈ F . The number of shifts
is m, which in X is the number of sets needed to cover U .

For each timeslot ρ requires one 0-slot. All shifts S ∈ S
share the same set γ (S) of break patterns, which equals the
elements of F mapped by σ .
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Fig. 2 An instance of BSP with a solution. A solution for instance:
(P, τ, ρ, C) with P = (S, T ), T = {1, . . . , 30}, S = {S1, S2, . . . , S7},
τ(|S|) = 3 if |S| ≤ 15; τ(|S|) = 4 otherwise, ρ as stated in the sec-

ond line, C1 = (3, 3), C2 = (25, 4, 7, 7), C3 = (3, 6), C4 = (5, 2),
C5 = (1, 3). The solution depicted for this instance is the mapping
B(S1) = {11, 12, 17, 18}, B(S2) = {4, 5, 10, 11}, etc

We now show that X is a positive instance of X3C if and
only if Q′ is a posivite instance of BS P ′.
⇒ If X is a positive instance of X3C, then there exists a

collection of sets F ′ such that each element u ∈ U occurs
in one F ∈ F ′. By applying σ to all elements in each set
F ∈ F ′ we obtain a set of sets that represent break patterns
for the shifts in the instance Q′. These break patterns cover
exactly the timeslots in T because F ′ covers exactly the ele-
ments in U and because of the definition of T . Further, the
staffing requirement function ρ is defined to return 3m − 1
for any timeslot, therefore, by exactly covering T , the break
patterns also fullfill the staffing requirements. Therefore, Q′
is a positive instance of the reduced BSP’ problem.
⇐ If Q′ is a positive instance of BSP’, then there exists

a set of break patterns such that each timeslot in T occurs
in exactly one break pattern because by the definition of ρ,
each timeslot must contain exactly one 0-slot. By applying
σ−1 to each element of each break pattern, we thus obtain a
set of sets that cover exactly the elements in U . Therefore,
X is a positive instance of the original X3C problem. �	

In the following, we present an example for the reduction
from an X3C problem to BSP’.

Let X = (U,F) with U = {A, B, C, D, E, F, G, H, I }
and F = ({A, C, F}, {C, D, E}, {F, G, H}, {A, D, G},
{B, G, I }, {D, E, H}). Then an instance Q′ = (P, τ, ρ, γ )

of BSP’ is constructed as follows:

• T = {1, 2, 3, 4, 5, 6, 7, 8, 9}
• S = {S1, S2, S3}with S1 = S2 = S3 = {1, 2, 3, 4, 5, 6, 7,

8, 9}
• t 1 2 3 4 5 6 7 8 9

ρ(t) 2 2 2 2 2 2 2 2 2

Fig. 3 Solution for BSP’ instance reduced from X3C instance

• σ
U A B C D E F G H I
T 1 2 3 4 5 6 7 8 9

• γ (S1) = γ (S2) = γ (S3) = ({1, 3, 6}, {3, 4, 5}, {6, 7, 8},
{1, 4, 7}, {2, 7, 9}, {4, 5, 8})

A solution for Q′ is the mapping S1 → {1, 3, 6}, S2 →
{2, 7, 9}, S3 → {4, 5, 8}. Figure 3 depicts this solution. It
is easy to construct the solution for the X3C instance X by
looking up the values in the σ function.

4 New memetic algorithms for BSP

Motivated by the complexity results of the previous section,
we propose two different memetic algorithms to solve the
BSP. Memetic algorithms were first described in [20]. An
overview on memetic algorithms for scheduling problems,
among others, is given in [10]. An example of a memetic
approach to nurse scheduling is given by [7].

A memetic algorithm consists of genetic operators and
local improvements executed on a set of solutions. The initial
set of solutions is usually created randomly or by a fast heuris-
tic. Our algorithms both use the same memetic representa-
tion, initialisation heuristic, and neighbourhoods for a local
search. They differ in their genetic operators, the application
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of the local search, and one of them additionally applies a
penalty system.

We earlier proposed a simple memetic algorithm for this
problem [22]. The two algorithms in this work are a signif-
icant improvement regarding several aspects. In particular,
a new memetic representation based on time periods rather
than on single shifts contributes to the improvements. This
new representation also requires different genetic operators.
The previous algorithm is clearly outperformed by the cur-
rent algorithms on all benchmark instances from the liter-
ature and therefore it is not described here. The algorithm
presented in Sect. 6 of this work has appeared previously
in conference proceedings of the International Workshop on
Hybrid Metaheuristics [31].

In this section we present the components the two algo-
rithms have in common, i.e., the memetic representation, the
initialisation of sets of break patterns and of an initial popu-
lation, the neighbourhoods, and the local search procedure.
Sections 5 and 6 describe the two algorithms, their parame-
ters, and the evaluation of the parameters.

4.1 Representation

Definition 16 (Memetic representation) The memetic repre-
sentation of an instance of BSP is a set M̄ = {M̄1, . . . , M̄q}
of memes. The memetic representation of a solution of an
instance of BSP is a set M = {M1, . . . , Mq} of instances of
memes, or alleles in genetic terms.

Definition 17 (Meme M̄ and meme instance M) A meme
M̄ ∈ M̄ is a triple (ts, te,SM ) where

• ts, te ∈ T , ts < te
• SM ⊆ S, and

• SM contains a shift S if and only if ts ≤ �(Ss+Se)/2� < te
with Ss and Se denoting the first, respectively last, timeslot
of the shift.

An instance M of a meme M̄ carries parts of a solution with
respect to the time period between ts and te. It is represented
by a tuple (ts, te,SM ,BM , FM ) where

• ts ,te, and SM are defined as in M̄ ,
• BM is a function BM : SM → 2T with B(S) ∈ DS for each

S ∈ SM . It assigns a break pattern to each shift involved
in M , and
• FM = F(BM , TM , ρ) is a fitness value with F as in Def-

inition 13 and TM = ⋃
S∈SM

S contains the timeslots
involved in M .

Figure 4 depicts the memetic representation of a solution
for an instance of BSP.

We retrieve the set M̄ of memes for an instance Q =
(P, τ, ρ, C) of BSP heuristically as follows.

For each t ∈ T let set St = {S ∈ S | t ∈ S}, i.e., the set
of shifts taking place during t . Further let p : T → N be a
function assigning a value to each timeslot such that

p(t) =
∑

S∈St

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if t < Ss + d1

0 if t > Se − d2

1 if Ss + d1 < t < Ss + d1 + b1 + w1

1 if Se − d2 > t > Se − d2 − b1 − w1

100 otherwise

As described in Sect. 2, d1 and d2 denote the number of
timeslots after Ss and before Se respectively, to which no

Fig. 4 Memetic representation. The memetic representation of a shift-
plan with solution by a set of meme instances M = {M1, M2, M3}
where M1 = (1, 12, {S1, S2, S3}, 〈S1 → {4, 11}, S2 → {4, 8}, S3 →
{5, 11}〉, 48), M2 = (13, 23, {S4, S5, S6, S7}, 〈S4 → {14, 19}, S5 →
{15, 16}, S6 → {17, 23}, S7 → {17, 23}), 60), and M3 =

(24, 35, {S8, S9, S10}, 〈S8 → {26, 32}, S9 → {28, 29}, S10 →
{26, 31}), 48). The values for FM are calculated according to Defin-
itions 13 and 17 with weights wo = 2 and wu = 10. Lines u and o
show the number of undercover and overcover violations per timeslot
respectively
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breaks can be assigned, b1 stands for the minimal length of
a break, and w1 for the minimal length of a work period.

The lower p(t) for a timeslot t , the less breaks can be
assigned to t . p(t) is defined and the constants 0, 1, and 100
are chosen in a way such that timeslots with many break
assignment possibilities are well distinguished. In an alter-
native setting, the constants could be replaced by variables
depending on the number of possible break patterns of St .

The objective is to find a set T̄ of timeslots which have a
low number of possible breaks and whose pairwise distance
is above a certain threshold. These timeslots serve as “bor-
ders” between memes. In between these borders, we will
find timeslots with a high value for p. Shifts sharing such
timeslots will be assigned to the same meme.

To this end, we determine an ordered set of timeslots T̄ ⊂
T such that

• ∑
t∈T̄ p(t) is minimised

• For each ti , t j ∈ T̄ :
∣
∣ti − t j

∣
∣ > d with d = �(min

S∈S
|S|)/2�,

i.e., the distance between each pair of timeslots is at least
half of the smallest shift length

To retrieve this set, we start by adding timeslot t0 to T̄ such
that p(t0) returns the smallest value among the elements in
T , ties broken randomly. We continue by adding timeslots ti
for i > 0 to T̄ such that ti ∈ T \ T̄ , p(ti ) is smaller than
the value for any other t ∈ T \ T̄ , and

∣
∣tl − t j

∣
∣ > d for all

tl , t j ∈ T̄ ∪{ti } until no more timeslots exist which fullfill the
last requirement. For k = ∣

∣T̄
∣
∣ − 1 we retrieve the set M̄ =

{M̄1, M̄2, . . . , M̄k} of memes with M̄i = (ti , ti+1,SM ) for
0 ≤ i < k and SM as described in Definition 17.

Definition 18 (Individual I ) A pair I = (B, FI ) where B is
a solution for an instance of BSP and FI the fitness value of
the solution as described in Definition 13.

Definition 19 (Population I) A set I of individuals.

Definition 20 (Generation) State of a population during an
iteration of the algorithm.

Definition 21 (Memepool M̂) The set M̂ of all meme
instances in a generation.

Definition 22 (Elitist E) The individual E ∈ I with the
lowest fitness value among a generation.

4.2 Initialisation of break patterns

Both presented algorithms rely on a set of break patterns that
is computed at the beginning. The problem of finding a single
break pattern D ∈ DS for a shift S can be modeled as a simple
temporal problem [12] and consequently be solved in cubic

time with respect to |S| using Floyd–Warshall’s shortest path
algorithm [23], but the number of break patterns |DS| usually
grows exponentially with respect to |S|. However, with some
restrictions on the break patterns and by exploiting some of
their common characteristics, we can generate big sets of
break patterns using a reasonable amount of computing time
and space.

We precalculate a subset D̂S of DS for each shift length
with the following restrictions on the break patterns in D̂S .

• For C5, which denotes the minimal and maximal allowed
length of breaks, we replace b2 by b̂2 = min(b2, b1 + 1),
except for lunchbreaks, where we replace b1 and b2 by
b̂1 = b̂2 = g, i.e., their minimal value according to C2.
• Break patterns can include breaks of different sizes. For

example, if τ(|S|) = 10 without lunchbreak, then this
breaktime can be constructed out of two breaks with length
2 and two breaks with length 3, or five breaks with length
2. Thus, possible break patterns in DS for a shift S include
all possible combinations of break lengths that sum up
to τ(|S|) as well as their permutations. In the example
with τ(|S|) = 10, the following are all possible permuta-
tions of break lengths: (3, 3, 2, 2), (2, 3, 2, 3), (3, 2, 3, 2),
(2, 2, 3, 3), (2, 3, 3, 2), (3, 2, 2, 3) and (2, 2, 2, 2, 2). We
select only one permutation from each combination at ran-
dom. For τ(|S|) = 10, we compute all possible patterns
with break combination (2, 2, 2, 2, 2) and all possible pat-
terns for one permutation selected randomly from all per-
mutations of the combination (3, 3, 2, 2).

To save computation time and space, we exploit the fact that
shifts and periods within shifts of the same length share the
same set of break patterns. Such common sub-patterns have
to be calculated and stored only once and can then be applied
to different shifts.

We compute D̂S for each shift as follows: If, according to
constraint C2 (see Sect. 2), the shift contains a lunch break,
we consider each timeslot the lunch break may be assigned
to according to C2 and divide the shift into periods before
and periods after each lunch break position. A set of break
patterns for any of these periods depends on the length p of
the period, the breaktime b it must contain, and C. Since C
is defined globally, a set of break patterns can be identified
by (p, b). That means that any period of length p, in which
b timeslots have to be assigned 0-slots, has the same set of
valid break patterns. We compute a set of sub-patterns for
each possible period before and after lunch breaks and for
each period covering the shifts that do not contain a lunch
break. Since periods with the same length and breaktime
share the same set of patterns, we only have to compute a
subset of patterns for each pair (p, b). For each shift length
we store only references to the sets of sub-patterns.
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Fig. 5 Computation of break patterns

An example for this method is depicted in Fig. 5. The
first shift, S1, is divided into two parts by its lunch break.
The first part consists of 25 timeslots and the second part of
32 timeslots. Note that a different location of the lunch break
could be possible, but is not depicted here. We want to assign
three 0-slots to the first part and four 0-slots to the second
part. Again, a different assignment may be possible, such as
assigning four 0-slots to the first part, and three to the second
part, as long as none of the constraints in C is violated and the
number of 0-slots amounts to τ(|S1|). For the second shift,
S2 two possibilities for placing the lunchbreak are shown.

In shift S3 no lunch break is required. In all shifts a period
with attributes (p = 25, b = 3) occurs. These periods share
the same set of break patterns.

Whenever a fresh random break pattern is needed during
the algorithm, we can just take one from the respective table
and do not depend on the cubic time algorithm needed to
generate a break pattern on-the-fly. These precalculated sets
of break patterns are used in the initialisation of the algorithm
and by the local search and mutation operators.

Table 1 shows the sizes of D̂S according to the constraints
for different shift lengths in the publicly available problem

Table 1 Sizes of D̂S for different shift lengths from our real-life bench-
marks

|S| ∣
∣D̂S

∣
∣ |S| ∣

∣D̂S
∣
∣

60 2,514 126 56,150,948

92 14,149 138 374,959,311

102 131,698 144 1,133,795,593

instances. Specific information on these instances is given in
Sect. 7.

4.3 Generating the initial population

Each individual I in the population is initialised in two steps:
First, for each shift S ∈ S a valid break pattern D is selected
randomly from D̂S . This provides us with a first solution sat-
isfying the temporal constraints C. Second, a simple local
search using neighbourhood N1, as described below, is exe-
cuted on the solution.

4.4 Neighbourhoods

A neighbour of a solution B of the BSP is another solution
B′ which can be reached from B by applying a move. A move
is a small change on the solution resulting in another, better
or worse, solution.

A neighbourhood consists of all possible solutions that
can be obtained by a certain type of move. All our move
types depend on a break B. We define three different neigh-
bourhoods of very different size.

Definition 23 (Single assignment neighbourhood N1) The
set of all solutions that are reached by moving a break B
to a different set of timeslots under consideration of C. This
includes appending B to its predecessor or successor, which
results in one longer break. Examples are depicted in Fig. 6.
For the problem instances used in this work (for details see
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Fig. 6 Two possible single
assignment moves of a break
within a shift

Fig. 7 Two possible double
assignment moves of a break
within a shift

Fig. 8 Four possible shift
assignment moves exchanging
the whole break pattern

Sect. 7), the size of this neighbourhood averages three to four
neighbours.

Definition 24 (Double assignment neighbourhood N2) The
set of all solutions that are reached by moving a break B
and its predecessor or successor to different sets of timeslots
under consideration of C. Like in N1, two breaks can be
joined to form a longer break. Two breaks of different length
can be swapped. This neighbourhood is significantly larger
than N1. For the instances tested, its size amounts to up to
100 neighbours. This neighbourhood is illustrated in Fig. 7.

Definition 25 (Shift assignment neighbourhood N3) The set
of solutions that are reached by changing the whole break
pattern of the shift that contains B. The possible patterns are
retrieved from the pre-calculated set of break patterns D̂S

described in Sect. 4.2. For performance reasons, we do not
consider the complete D̂S , but only a randomly selected sub-
set. The size of this subset determines the size of the neighour-
hood. Figure 8 depicts this neighbourhood. This neighbour-
hood is likely to contribute to diversification rather than inten-
sification. This behaviour is also reflected in the evaluations
described in Sects. 5.4 and 6.4.

4.5 Local search

At each iteration of the local search the following steps are
performed on an individual I . First, a break B is selected
at random out of a set B̂ of breaks. B̂ may comprise all

breaks that are currently included in the individual’s solu-
tion, or a subset thereof. Second, a neighbourhood out of the
three neighbourhoods {N1,N2,N3} is chosen according to
the parameter η = (η1, η2, η3) which represents the proba-
bility for each neighbourhood to be selected. Then the set N
of all neighbours according to the chosen neighbourhood is
computed.

Next, for N ∈ N let δ(N , I ) = F(N ) − F(I ), i.e., the
difference between the fitness value of an individual and its
neighbours, and let N ′ = {N ∈ N | δ(N , I ) ≤ 0}. If∣
∣N ′∣∣ > 0 then I is assigned the N ∈ N ′ for which δ(N , I )
is minimal, ties broken randomly. Thus, I is assigned its
best neighbour. Otherwise nothing happens. The local search
terminates when for μ subsequent iterations

∣
∣N ′∣∣ = 0, i.e.,

no neighbours with better or equal fitness could be found.
This procedure is influenced by three parameters: the size

of B, the search intensity determined by μ, and the probabili-
ties η of the different neighbourhoods. Tests on different val-
ues for these parameters are described in Sects. 5.4 and 6.4.
Algorithm 1 outlines the local search procedure.

5 MABS: memetic algorithm for break scheduling

This algorithm creates each offspring either by mutation or
by crossover from the previous generation. A k-tournament
selector [18] decides which individuals survive in each itera-
tion. The local search is applied in each iteration on a subset
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Algorithm 1 LocalSearch (Individual I , Breaks B)
1: c← 0
2: repeat
3: B ← select break B ∈ B̂ randomly
4: N ← select and compute one of {N1, N2, N3}
5: N ′ ← {N ∈ N | δ(N , I ) ≤ 0}
6: if

∣
∣N ′

∣
∣ > 0 then

7: I ← N ∈ N ′ with minimal δ(N , I )
8: c← 0
9: else
10: c← c + 1
11: end if
12: until c == μ

13: return I

of the population. Algorithm 2 outlines this method. We also
experimented with the application of a tabu list in the local
search procedure.

Algorithm 2 MABS - Memetic Algorithm for Break
Scheduling
1: buildBreakPatterns
2: I ← Initialisation
3: repeat
4: E ← fittest I ∈ I
5: for all individuals I ∈ I \ {E} do
6: x ← select random float uniformly distributed in [0..1]
7: if x ≤ α then
8: J ← select random individual J �= I
9: I ← crossover(I, J )
10: else
11: I ← mutate(I )
12: end if
13: end for
14: I ← select(I \ {E}) ∪{E}
15: IF ← |I| · λ fittest individuals in I
16: for all I ∈ IF do
17: B̂ ← all breaks contained in I
18: I ← localsearch(I ,B̂)
19: end for
20: until timeout
21: return fittest I ∈ I

5.1 Crossover and mutation

Each individual I ∈ I \ {E} is replaced by an offspring cre-
ated either by mutation or by crossover. Crossover takes place
with probability α and mutation with 1 − α. The crossover
operator selects a partner J ∈ I with J �= I randomly out of
the generation and creates an offspring inheriting each meme
from either of the parents. The decision on which meme to
inherit from which parent can be taken randomly or with a
probability γ to inherit the meme M with better fitness. Val-
ues for the parameters α and γ are evaluated in Sect. 5.4. The
mutation operator performs one random move on the given
individual using the shift assignment neighbourhood.

5.2 Selection

The selection operator selects a set of individuals that survive
the current iteration. The elitist is excluded from the selec-
tion process; it survives without passing a selection. Among
the other individuals, a k-tournament selector [18] is applied.
This operator randomly takes k individuals, k ≤ |I|, out of
the generation to perform a tournament. Out of these k indi-
viduals, the one with the best fitness value survives. This pro-
cedure is repeated |I|−1 times. The population then consists
of the elitist and the individuals selected by the tournament.

5.3 Local search with tabu list

MABS performs the local search as described earlier on a
subset of individuals. The set B̂ of breaks, on which the local
search is conducted, contains all breaks of the solution of the
individual. In case the tabu list is used, the following modi-
fication applies to the search: the computed neighbourhood
N is reduced by those neighours that currently reside in the
tabu list. A tabu list [17] L is maintained for each break B.
L contains the timeslots the first slot of B has previously
been assigned to. Whenever a move is performed by B, L is
updated by deleting the oldest value in L and adding the cur-
rent first slot of B. The length of the tabu list thus determines
for how long a value is kept. If any of the tabu moves leads to
a globally improved neighbour, however, it is allowed any-
way. The tabu list intends to prevent the local search from
re-visiting previously computed solutions.

5.4 Parameter evaluation

We evaluated a set of parameters that influence the quality of
solutions. For the parameter evaluation we selected a set of
six different instances among 30 problems presented by Beer
et al. [6], which are publicly available in [27]. The timeout
was set to 3,046 s according to a benchmark on the machine
used by Beer et al. [6] and our machine. The algorithm was
run ten times for each instance and parameter value. The
impact of each parameter was assessed using the Kruskal–
Wallis test [19]. Detailed results of this evaluation can be
found in Sect. 5.2.6 of [30], where this algorithm is found
under the name “MAR2”.

The following parameters were evaluated for this algo-
rithm:

|I| Population size. Values tested: 1, 4, 10,
20, 40, 70, best |I| = 4.

γ Crossover: Probability to select the fitter
meme. Values tested: 0.0, 0.6, 0.9, no sig-
nificance.

α Crossover vs Mutation: Probability to cre-
ate offspring by crossover, 1−α probabil-
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ity to create offspring by mutation. Values
tested: 0.5, 0.7, 0.9, no significance.

κ Selection pressure: Number of individ-
uals performing a tournament. Values
tested: 1, 2, 3, best κ = 1.

λ Search rate, percentage of population the
local search is applied on. Values tested:
0.1, 0.2, 0.5, 0.8, best λ = 0.8.

|L| Length of tabu list. Values tested: 0, 1, 2,
4, best |L| = 0.

μ Search intensity: Number of iterations
the local search continues without finding
improvements. This value is multiplied by
the number of breaks |̂B| available to the
local search. Values tested: 2, 6, 8, 10, 15,
best μ = 10.

η = (η1, η2, η3) Probability for each neighbourhood to be
selected in each local search iteration.
Values tested: (1, 0, 0), (0, 1, 0), (0, 0, 1),
(.6, .3, .1), (.3, .6, .1), (.3, .1, .6), best
η = (.3, .6, .1).

The population size made a significant difference in most of
the instances, with the value performing best being |I| = 4.
This value being larger than 1 means that the genetic opera-
tors indeed have an impact the solution quality. At the same
time, the values for two out of three parameters that influence
the genetic operators gave no significant difference. The para-
meter κ defining the selection pressure did have an impact
on the solution qualities, but the best value was κ = 1, i.e.,
the algorithm performed best when no selection pressure was
applied at all. Other than the parameters for the genetic oper-
ators, most of the parameters for the local search, i.e., λ, |L|,
μ and η significantly influenced the solution qualities. An
interesting outcome is that the use of the tabu list actually
worsened the solution qualities, as for most of the instances
tested, the best results were obtained with a tabu list of 0
length.

A possible interpretation of these results is that the genetic
operators mainly diversify solutions and the local search does
most of the improvements.

The high value for λ supports this interpretation. A tabu
list is usually applied to guide the algorithm away from local
optima. A possible reason why the tabu list did not improve
our results is that it is too restrictive and its combination with
the genetic operators results in too much diversification.

5.5 Weaknesses of the algorithm

In addition to the parameter evaluation discussed above, an
analysis of the log files of the evaluation runs allowed us to
identify the following weaknesses of the algorithm.

1. The contribution of the genetic operators consisted
mainly in diversification, but at least the crossover opera-
tor should be expected to contribute to an improvement of
the solutions. Often good and diverse memes, i.e., memes
with a good distribution of breaks, were deleted by the
random selection of memes inside the crossover operator.

2. The local search was performed on whole solutions, i.e.,
on all memes of a solution, even though some memes had
more potential to be improved than others.

3. The tabu list contained positions of breaks. It is possible
that due to the very high number of combinations of break
patterns in shifts containing the same timeslots, the tabu
list blocked the way to new optima at a too early stage.

6 MAPBS: memetic algorithm with penalties for break
scheduling

The unusual results of the parameter evaluation of MABS
along with some intuition on possible weaknesses of this
algorithm led us to a complete re-design, resulting in the
new algorithm MABPS.

To avoid discarding too many good memes, as had been
observed in MABS, we designed the crossover operator to
work on memes of the whole generation rather than on two
selected parents. This means that an offspring can have more
than two parents and each individual is more likely to become
a parent. In each iteration the best memes of the current
meme-pool are put together into one individual to make sure
they survive. We further included the selection mechanism
into the crossover operator. The selection is now performed
on memes rather than on individuals. This way, good memes,
which may be part of a bad individual, are also less likely to
be discarded.

The local search was changed to focus on memes that
have more potential to be improved. To assess this potential,
memes keep a memory to track their improvement history.
We call this memory a penalty system. A high penalty value
indicates a local optimum. Memes with a high penalty value
are less likely to be searched further and more likely to be
discarded by the crossover operator.

The mutation now acts as a diversification on single
memes rather than on whole individuals.

Algorithm 3 outlines the procedure. In the following we
describe the penalty system, the new crossover and selec-
tion mechanism, and the application of the local search and
mutation in MAPBS.

6.1 Penalty system

For each meme instance M we additionally store the follow-
ing values:
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Algorithm 3 MAPBS - Memetic Algorithm with Penalties
for Break Scheduling
1: buildBreakPatterns
2: I ← Initialisation
3: repeat
4: I ← crossover- select(I)
5: E ← fittest I ∈ I
6: for all individuals I ∈ I \ {E} do
7: M′ ← elements of M with lowest penalty value PM
8: I ← mutate(I, M′)
9: B̂ ← all breaks contained in M′
10: I ← localsearch(I, B̂)
11: I ← penalty- update(I, B̂)
12: end for
13: until timeout
14: return fittest I ∈ I

• Best fitness value F̄M : The best value for FM the meme
ever reached
• Penalty value PM : Number of iterations since last update

of F̄M

The higher PM , the longer the meme was not able to improve.
This means it is more likely to be stuck in a local optimum. We
use this value in two parts of the algorithm: The crossover
operator prefers memes with a low value for PM to elimi-
nate memes stuck in local optima, disregarding their fitness
value FM . Second, the subset of memes which is used for
the mutation and local search also prefers memes with low
PM and thereby focuses on areas where improvements are
more likely to be found. After each iteration, the values for
F̄M and PM are updated for each M ∈M as follows.
{

F̄M = FM , PM = 0, if F̄M < FM

PM = PM + 1 otherwise

6.2 Crossover and selection

First, an individual is created by selecting for each meme
M̄ its instance M with the best current fitness value FM out
of the current meme-pool. This individual is likely to be the
elitist in the current population. Second, each of |I|−1 indi-
viduals is created as follows. For each meme M̄ we perform
a k-tournament selection [18] on the set of its instances in
the current meme-pool. We select k instances at random out
of the current meme-pool and inherit the instance M with
the lowest penalty value PM to the offspring. The first part
assures to survive the best meme instances of the current
meme-pool. The second part forms the actual crossover pro-
cedure. By using PM as the selection criterion, we get rid of
meme instances that have been stuck in local optima for too
long. If a local optimum constitutes a global optimum, then
it survives through the first step of the crossover operator.
Figure 9 depicts the crossover operator.

6.3 Mutation and local search

On each individual I ∈ I \ {E} the following steps are per-
formed: A set M′ ∈M of meme instances is selected such
that M′ contains the meme instances with the lowest penalty
values (ties are broken randomly). Each M ′ ∈M′ is mutated
as follows. A set of shifts S ′ ∈ SM ′ is chosen at random. Then
for each shift S′ ∈ S ′ its current break pattern is replaced by a
pattern selected randomly out of the set D̂S′ of break patterns
computed in the beginning as described in Sect. 4.2. The size
of S ′ is a parameter value. Different values for this parame-
ter are evaluated in Sect. 6.4. The local search is executed as
described earlier with set B̂ containing only the set of breaks
contained in M′.

6.4 Parameter evaluation

As for MABS, we also evaluated parameters for MAPBS.
The environment for this parameter evaluation was the same
as for MABS in Sect. 5.4. Detailed results of this evaluation
can be found in Sect. 5.2.7 of [30].

The following parameters were evaluated for this algo-
rithm:

|I| Population size. Values tested: 1, 4, 6, 10, 20,
best |I| = 4.

λ Percentage of meme instances in M being
mutated and locally improved for each indi-
vidual (size of

∣
∣M′∣∣). Values tested: 0.05, 0.1,

0.2, 0.3, 0.5, best λ = 0.05.
σ Mutation weight, percentage of shifts being

mutated. Values tested: 0.01, 0.05, 0.1, 0.3,
0.5, best σ = 0.05.

κ Selection, number of memes performing a
tournament in the crossover operator. Values
tested: 1, 2, best κ = 1.

μ Search intensity, number of iterations the local
search continues without finding improve-
ments. This value is multiplied by the num-
ber of breaks |̂B| available to the local search.
Values tested: 10, 20, 30, 40, best μ = 20.

(η1, η2, η3) Probability for each neighbourhood to be
selected in each local search iteration. Val-
ues tested: (0, .5, .5), (.5, 0, .5), (.5, .5, 0),
(.2, .8, 0), (.8, .2, 0), (.3, .3, .3), (1, 0, 0),
(0, 1, 0), best η = (.8, .2, 0).

This algorithm also performed best with a small population
size. As for MABS, we also tested a population size of |I| =
1 to make sure that the population based approach is indeed
necessary to obtain good solutions.
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Fig. 9 Crossover operator. The first offspring is created by choosing
only the fittest instance of each meme, i.e., M̄1 from I2 and M̄2 from
I1. The remaining offsprings are created by applying a k-tournament
selection on each meme’s instances. The values for FM are calculated

according to Definitions 13 and 17 with weights wo = 2 and wu = 10.
Different values for FM after the crossover may occur from shifts over-
lapping into different memes

Since mutation may worsen a solution during the progress
of the algorithm, for |I| = 1 the best obtained solution was
kept in memory.

The mutation and search rate λ determining
∣
∣M′∣∣ led to

the best results when kept low. On many problem instances,
λ = 0.05 leads to only one meme instance being mutated
and searched. The mutation weight σ also worked well with
a low value. σ determines the percentage of shifts which
are assigned a new break pattern during a mutation. Sim-
ilar to the other algorithm, the value of κ did not have an
impact.

As in MABS, the local search intensity μ was set rela-
tive to the number of breaks |̂B| taking part in the search.
For this algorithm, larger values for μ probably perform bet-
ter than for MABS because |̂B| is much smaller. In MABS,
B̂ contains the complete set of breaks in the solution, but
MAPBS considers only a subset of all breaks, namely those
contained in M′, which, according to the low value for λ

were only a small subset. We tested some more neighbour-
hood combinations than for MABS. All runs where N3 par-
ticipated gave worse results than those where we used only

N1 and N2. The best performing combination was η1 = 0.8
and η2 = 0.2. A possible reason for this result is that
the shift assignment neighbourhood diversifies rather than
intensifies the search. However, the algorithm is designed to
diversify by the genetic operators rather than by the local
search.

7 Comparison of results

For the parameter evaluation we selected a set of six different
instances among 30 problems presented by Beer et al. [6],
which are publicly available in [27]. 20 of them were retrieved
from a real-life application and ten of them were generated
randomly. The set of instances is the same as the one used by
the authors of [6]. Details regarding the random generation
are provided by the same authors in [27].

The input data C (constraints) and k (number of timeslots)
is the same for all random and real-life instances with k =
2, 016 and C defined as follows:
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Table 2 Comparison of results returned by the state-of-the-art algo-
rithm [6], MABS, and MAPBS for real-life instances and random
instances. The columns represent the best and average values,and the

standard deviation. The best results for the best and average values are
highlighted in bold font

Instances Beer et al. [6] MABS MAPBS

Best Avg σ Best Avg σ Best Avg σ

2fc04a 3,094 3,224 84 3,244 3,326 50 2,816 2,961 71

2fc04a03 3,100 3,200 61 3,220 3,328 57 2,834 2,934 54

2fc04a04 3,232 3,342 68 3,226 3,297 44 2,884 2,954 60

2fc04b 1,822 2,043 92 2,266 2,387 68 1,884 1,948 49

3fc04a 1,644 1,767 102 1,810 1,909 59 1,430 1,533 67

3fc04a03 1,632 1,759 87 1,846 1,944 55 1,440 1,514 40

3fc04a04 1,932 1,980 40 1,930 2,056 87 1,614 1,718 48

3si2ji2 3,626 3,667 35 3,344 3,398 27 3,177 3,206 17

4fc04a 1,694 1,817 126 1,814 1,972 139 1,478 1,540 29

4fc04a03 1,666 1,795 87 1,742 1,870 59 1,430 1,502 42

4fc04a04 1,918 2,017 95 1,850 1,980 60 1,606 1,674 48

4fc04b 1,410 1,489 49 1,628 1,772 154 1,162 1,233 48

50fc04a 1,672 1,827 81 2,018 2,090 32 1,548 1,603 36

50fc04a03 1,686 1,813 84 1,822 1,951 87 1,402 1,514 67

50fc04a04 1,790 1,917 64 1,914 2,009 48 1,480 1,623 89

50fc04b 1,822 2,012 91 2,322 2,464 98 1,818 1,900 56

51fc04a 2,048 2,166 89 2,490 2,836 687 1,886 2,074 87

51fc04a03 1,950 2,050 86 2,318 2,377 37 1,886 1,949 46

51fc04a04 2,058 2,191 64 2,370 2,728 678 1,958 2,039 52

51fc04b 2,244 2,389 94 2,796 2,950 88 2,306 2,367 43

random1-1 728 972 177 544 592 41 346 440 48

random1-2 1,654 1,994 172 712 817 92 370 476 65

random1-5 1,284 1,477 99 696 742 47 378 418 29

random1-7 860 1,077 154 824 940 73 496 583 42

random1-9 1,358 1,658 213 672 734 38 318 423 51

random1-13 1,264 1,535 245 570 699 68 370 445 55

random1-24 1,586 1,713 74 884 934 46 542 611 43

random1-28 1,710 2,020 233 626 726 71 222 318 71

random2-1 1,686 1,855 142 914 1,058 91 724 889 75

random2-4 1,712 2,053 242 794 889 56 476 535 45

C1 Break positions: d1 = d2 = 6.
C2 Lunch breaks: h = 72, g = 6, l1 = 42, l2 = 72.
C3 Duration of work periods: w1 = 6, w2 = 20.
C4 Minimum break times: w = 10, b = 4.
C5 Break durations: b1 = 2, b2 = 12.

All values are given in timeslots with one timeslot corre-
sponding to 5 min. k thus represents one calendar
week.

The real-life instances were drawn from a real-life prob-
lem in the area of supervision personnel. They are charac-
terised by two main factors: Different staffing requirements
and different forecast methods. Staffing requirements vary
according to calendar weeks. A forecast method is a spe-
cific way of planning a future shiftplan, influencing the num-

ber of shifts and the shift lengths. As shown in Sect. 4.2,
the domain size DS grows exponentially with respect to the
shift length |S|. Therefore, instances with short shifts have a
smaller search space.

As for the parameter evaluation, the timeout per run was
normalised to 3,046 s according to a benchmark of the
machine of [6] and ours. This allows us a more reliable com-
parison of our results to the best existing upper bounds for the
BSP presented in [6]. We ran the algorithm ten times for each
instance and parameter value. Each run was performed on
one core with 2.33 GHz of a QuadCore Intel Xeon 5345 with
three runs being executed simultaneously, i.e., three cores
being fully loaded. The machine provides 48 GB of mem-
ory. A more detailled description of the empirical parameter
evaluation can be found in [30].
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For the final runs we used the following settings for
MABS: |I| = 4, γ = 0.9, κ = 1, α = 0.9, λ = 0.8, |L| = 0,
μ = 10 and η = (0.3, 0.6, 0.1), and for MAPBS: |I| = 4,
λ = 0.05, σ = 0.05, μ = 20, κ = 1 and η = (0.8, 0.2, 0.0).
Table 2 compares the results of MABS and MAPBS to state-
of-the-art results from [6]. The numbers in columns Best and
Avg represent the best and average values of the objective
function from Definition 13 over ten runs.

The algorithm presented in [6] has shown to be very good
in practice and has been used in real-life applications. Based
on Table 2 we can conclude that our MABS algorithm man-
ages to improve state-of-the-art results for random instances,
but it is outperformed by [6] in most real-life instances. Our
second algorithm (MAPBS) returns improved results on all
random instances and 18 out of 20 real-life instances com-
pared to both results from literature and results returned by
MABS. Another feature of MAPBS is the low standard devi-
ation σ which makes the algorithm more reliable.

8 Conclusions and future work

We proposed two different memetic approaches to optimise
BSP. In both algorithms we applied a local search heuristic
for which we proposed three different neighbourhoods. Fur-
ther, we introduced a method to avoid local optima based
on penalties for parts of solutions which are not improved
during a number of iterations.

We justified the choice of a metaheuristic to optimise BSP
by presenting an NP-completeness proof for BSP under the
condition that the input contains break patterns explicitly.

For each algorithm we conducted a set of experiments
with different parameter settings and then compared the algo-
rithms with their best settings. The following conclusions can
be drawn from the parameter evaluation:

• Using genetic operators combined with a local search
returns better results than using only a local search.
• Applying the local search either only on some individ-

uals or only on small parts of each individual’s solution
significantly improves the qualities of the solutions com-
pared to applying the local search on all individuals and
entire solutions.
• Using the two smaller neighbourhoods in the local search

returns better solutions than using only one neighbour-
hood. The largest of the proposed neighbourhoods per-
forms worst.
• The use of a penalty system to guide the local search

towards meme instances that are not likely to be in local
optima significantly improves the quality of the solutions.

We compared our results to the best existing results in liter-
ature for 30 publicly available benchmarks. Our algorithm

returned improved results for 28 out of 30 instances. To the
best of our knowledge, our solutions represent the new upper
bounds for the available real-life problems.

For future work, it would be interesting to see how the
MAPBS algorithm performs on long runs. The small pop-
ulation resulting from the parameter evaluation in Sect. 6.4
could be due to a short runtime.

Another interesting question is how to solve the two prob-
lems of shift scheduling and break scheduling in a single
phase by a memetic approach. Dealing with the entire prob-
lem when the number of breaks for each shift is large is a
challenging task due to a much larger search space.
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