
Memetic Comp. (2014) 6:49–59
DOI 10.1007/s12293-013-0116-4

REGULAR RESEARCH PAPER

Fuzzy optimization approach to component selection
of fault-tolerant software system

P. C. Jha · Shivani Bali · U. Dinesh Kumar ·
Hoang Pham

Received: 15 July 2012 / Accepted: 10 April 2013 / Published online: 26 April 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract In developing software systems, a manager’s
goal is to design software using limited resources and meet
the user requirements. One of the important user require-
ments concerns the reliability of the software. The decision
to choose the right software modules (components) becomes
extremely difficult because of the number of parameters to
be considered while making the decision. If suitable compo-
nents are not available, then the decision process is further
complicated with build versus buy decisions. In this paper, we
have formulated a fuzzy multi-objective approach to optimal
decision “build-or-buy” for component selection for a fault-
tolerant modular software system under the consensus recov-
ery block scheme. A joint optimization model is formulated
where the two objectives are maximization of system relia-
bility and minimization of the system cost with a constraint
on delivery time. An example of developing a retail system
for small-and-medium-size enterprises is used to illustrate
the proposed methodology.

Keywords Software reliability · Build-or-buy ·
Commercial off-the shelf (COTS) components ·
In-house-built components · Fuzzy optimization

P. C. Jha (B)
Department of Operational Research,
University of Delhi, Delhi, India
e-mail: jhapc@yahoo.com

S. Bali
Lal Bahadur Shastri Institute of Management, Delhi, India

U. D. Kumar
Indian Institute of Management, Bangalore, India

H. Pham
Department of Industrial and System Engineering,
Rutgers University, New Jersey, USA

List of symbols

R System quality measure
C Overall system cost
fl Frequency of use, of function l
sl Set of modules required for function l
Ri Reliability of module i
L Number of functions, the software is required to

perform
n Number of modules in the software
mi Number of alternatives available for module i
Vi j Number of versions available for alternative j

of module i
t1 Probability that next alternative is not invoked

upon failure of the current alternative
t2 Probability that the correct result is judged

wrong
t3 Probability that an incorrect result is accepted

as correct
Yi j Event that correct result of alternative j of mod-

ule i is accepted
Xi j Event that output of alternative j of module i is

rejected
ri j Reliability of alternative j of module i
Ci jk Cost of version k of alternative j of module i
si jk Reliability of version k of alternative j of mod-

ule i
di jk Delivery time of version k of alternative j of

module i
ci j Unitary development cost for alternative j of

module i
ti j Estimated development time for alternative j of

module i
τi j Average time required to perform a test case for

alternative j of module i

123

50 Memetic Comp. (2014) 6:49–59

πi j Probability that a single execution of software
fails on a test case chosen from a certain input
distribution

xi jk

⎧
⎨

⎩

1, if the kth version of j th COTS alternative
of the i th module is chosen

0, otherwise

yi j

⎧
⎨

⎩

1, if the j th alternative of i th module is
in-house developed

0, otherwise

zi j

{
1, if alternative j is present in module i
0, otherwise

1 Introduction

Computers and software have become a significant part of
modern society. It is virtually impossible to conduct many
day to day activities without the aid of computer systems con-
trolled by software. Software is involved in every aspect of
modern society. Government, transportation, manufacturing,
utilities, and almost every other sector that influences our way
of life is affected directly or indirectly by software systems.
As more dependence is placed on these software systems, it
is essential that they operate in a reliable manner. Failure to
do so can result in high monetary, property, or human loss.
In developing software systems, a manager’s goal is to pro-
duce a software system within the limited resources and in
accordance with the user requirements. One important user
requirement concerns the reliability of the software. Good
engineering practice is essential in the design of reliable soft-
ware. The process is inherently more difficult in dealing with
software than in the case of hardware. Software reliability
engineering (SRE) is the “quantitative study of the opera-
tional behavior of software-based systems”. With SRE, one
can deliver just enough reliability and avoid both excessive
costs and development time.

Software development processes and methods have been
studied for decades; despite that we still do not guaran-
tee error-free software. One way of handling unknown and
unpredictable software failures is through fault tolerance.
Software fault-tolerance techniques are employed during the
procurement, or development, of the software. They enable
a system to tolerate software faults remaining in the system
after its development. When a fault occurs, these techniques
provide mechanisms to the software system to prevent system
failure from occurring. There are two structural methodolo-
gies for a fault-tolerant system: Recovery Block Scheme and
N-Version Programming. The basic mechanism of both the
schemes is to provide redundant software to tolerate soft-
ware failures. There are two optimization models for recov-
ery block schemes, namely, independent recovery block and
consensus recovery block. In this paper, we will discuss opti-
mization models for the consensus recovery block. Fault tol-

erance improves system reliability, but incurs higher cost.
Therefore, it is necessary to carry a trade-off between cost
and reliability.

This paper discusses a framework that helps developers
to decide whether to buy or build components of software
architecture on the basis of cost and non-functional factors
for a fault-tolerant modular software system. While devel-
oping software, components can be both bought as commer-
cial off-the shelf (COTS) products, and probably adapted
to work in the software system, or they can be developed
in-house. This decision is known as “build-or-buy” decision.
This decision affects the overall cost and reliability of the
system. The growing availability of COTS components in
the software market has concretized the possibility of build-
ing whole systems based on components. In this multitude, a
recurrent problem is the selection of components that best fit
the requirements. The development of component-based sys-
tems largely depends on the success of the selection process.
COTS components have been growing rapidly as an emerging
paradigm in software development. By COTS components,
we mean commercial software packages with common pur-
poses that are ready to be used in software development and
application integration. If some COTS components are not
available economically in the market, then these are devel-
oped within the organization and are known as in-house-built
components.

Several optimization models of the COTS selection
process exist in literature to achieve the different attributes of
quality along with the objective of minimizing cost or keep-
ing cost to a specified budgetary level. Berman and Ashrafi
[2] formulated optimization model for reliability of modu-
lar software system. Cortellessa et al. [5] and [6] developed
optimization models that supports “build-or-buy” decisions
in selecting software components based on cost-reliability
trade-off. Neubauer and Stummer [14] developed a two-
phased decision support approach based on multi-objective
optimization model for COTS selection of modular software
system. Jha et al. [9] and [8] presented multi-objective opti-
mization models for fault tolerant modular software system
under consensus recovery block scheme. Kwong and Tang
Mu [12] presented optimization model for determining the
optimal selection of software components for component
based software system development. Gupta et al. [7] pre-
sented cost reliability models for COTS selection in Fuzzy
Environment.

In this paper, the joint optimization of reliability and cost is
considered while incorporating the build-or-buy approach for
selection of components in designing a fault-tolerant mod-
ular software system under the consensus recovery block
scheme. This paper discusses the issues related to reliability
of software systems and cost produced by integrating COTS
or in-house-built components. We have applied the fuzzy
multi-objective approach to optimal decision “build-or-buy”

123

Memetic Comp. (2014) 6:49–59 51

Fig. 1 Structure of software

for component selection for a fault-tolerant modular soft-
ware system. A large software system has a modular struc-
ture to perform a set of functions with different modules
having different alternatives for each module. For a COTS
product, different versions are available for each alternative.
A schematic representation of the software system is given
in Fig. 1.

A component is chosen for a module from a number of
alternatives available to the software developer. COTS or
in-house-built components may be selected. We are select-
ing the components for modules to maximize the system
reliability by simultaneously minimizing the cost. The fre-
quency with which the functions are used is not the same
for all of them and not all the modules that the software
has in its menu are called during the execution of a func-
tion. We assume that for all the alternatives available for a
module, cost increases if higher reliability is desired. This
is a realistic assumption, as COTS suppliers are ready to
supply more reliable versions of the same component at a
higher price. Purchase of high-quality COTS products can
be justified by frequent use of the module. Hence, more
than one version is available for alternatives of a module.
Further, the best of testing efforts are required to improve
the reliability of the in-house-built component. This leads to
an increase in cost. The first optimization model (optimiza-
tion model-I) of this paper maximizes the system reliability
with simultaneously minimizing the overall system cost. The
second optimization model (optimization model-II) consid-
ers the issue of compatibility between different alternatives
of modules as it is observed that some COTS components
cannot integrate with all the alternatives of another module.
The models discussed are illustrated with a case study. The
paper is organized as follows: Notations of the optimiza-
tion models are discussed in “List of symbols”. Fuzzy Opti-
mization models for the consensus recovery block scheme
are discussed in Sect. 2. Solution of Fuzzy multi-objective
optimization model is discussed in Sect. 3, a case study
is illustrated in Sect. 4, and in Sect. 5, are the concluding
remarks.

2 Optimization models

Consider software systems that are developed using modular
techniques and are required to perform a set of functions.
Each function is performed by different modules having dif-
ferent alternatives for each module. If a COTS component is
selected, then different versions are available for each alterna-
tive and only one version will be selected for each alternative
of a module. If a component is an in-house-built component,
then the alternative of a module is selected. We assume that
functionally equivalent and independently developed alterna-
tives (i.e. in-house or COTS) for each module are available
with an estimated reliability, cost and delivery time.

The first optimization model is developed for the fol-
lowing situations, which also holds good for the second
model, but with additional assumptions related to compati-
bility among alternatives of a module. The following assump-
tions are common for the optimization models.

1. Software system consists of a finite number of modules.
2. Software system is required to perform a known number

of functions. The program written for a function can call
a series of modules (≤ n). A failure occurs if a module
fails to carry out an intended operation.

3. Codes written for integration of modules do not contain
any bug.

4. Several alternatives are available for each module. Fault-
tolerant architecture is desired in the modules (it has to
be within the specified budget). Independently developed
alternatives (primarily COTS/-in-House components) are
attached in the modules and work similar to the consensus
recovery block scheme discussed in [11] and [3].

5. The cost of an alternative is the development cost, if
developed in-house; otherwise it is the buying price for
the COTS product.

6. Different in-house alternatives with respect to unitary
development cost, estimated development time, average
time to perform a test case and testability of a component
are available.

7. Cost, reliability and development time of an in-house
component can be estimated by using basic parameters
of the development process, e.g., a component cost may
depend on a measure of developer skills, or the compo-
nent reliability depends on the amount of testing.

8. Different versions (COTS products) with respect to cost,
reliability and delivery time of alternatives of a module
are available.

9. Other than the available cost-reliability-delivery time
versions of an alternative (only in case of COTS com-
ponents), we assume the existence of a virtual ver-
sion, which has a negligible reliability of 0.001 and
zero cost and delivery time. These COTS components

123

52 Memetic Comp. (2014) 6:49–59

are denoted by index one in the third subscript of
xi jk, ci jk, di jk and si jk for example, si j1 denotes the reli-
ability of the first version of alternative j for module i .

2.1 Model formulation

Let S be a software architecture made of n modules, with
a maximum number of mi alternatives available for each
module and each COTS alternative has different versions.
The following are the constraints for optimization models.

2.1.1 Build versus buy decision

For each module i , if an alternative is bought (i.e., some
xi jk = 1), then there is no in-house development (i.e.,
yi j = 0) and vice versa.

yi j +
Vi j∑

k=1

xi jk = 1; i = 1, 2, . . . , n; j = 1, 2, . . . , mi

2.1.2 Redundancy constraint

The equation stated below guarantees that redundancy is
allowed for both the build-and-buy components (i.e., in-
house and COTS components).

yi j +
Vi j∑

k=2

xi jk = zi j

xi j1 + zi j = 1; j = 1, 2, . . . , mi
mi∑

j=1

zi j ≥ 1; i = 1, 2, . . . , n

2.1.3 Probability of failure-free in-house-developed
component

The possibility of reducing the probability that the j th alter-
native of i th module fails by means of a certain amount
of test cases (represented by the variable N tot

i j). Cortellessa
et al. [6] defined the probability of failure on demand of an
in-house-developed j th alternative of i th module, under the
assumption that the on-field users’ operational profile is the
same as the one adopted for testing ([4]).

Basing on the testability definition, we can assume that the
number N suc

i j of successful (i.e. failure-free) tests performed
on j th alternative of same module.

N suc
i j = (

1 − πi j
)

N tot
i j ; i = 1, 2, . . . , n and

j = 1, 2, . . . , mi

Let A be the event “N suc
i j failure-free test cases have been

performed” and B be the event “the alternative is failure-free
during a single run”. If ρi j is the probability that the in-house

developed alternative is failure-free during a single run given
that N suc

i j test cases have been successfully performed, from
the Bayes theorem, we get

ρi j = P(B/A) = P(A/B)P(B)

P(A/B)P(B) + P(A/B)P(B)
.

The following equalities come straightforwardly:

• P(A/B) = 1 • P(B) = 1 − πi j

• P(A/B) = (1 − πi j)
N suc

i j • P(B) = πi j

Therefore, we have

ρi j = 1−πi j
(
1−πi j

)+πi j
(
1 − πi j

)N suc
i j

; i = 1, 2, . . . , n and

j = 1, 2, . . . , mi

2.1.4 Reliability equation of both in-house and COTS
components

As already mentioned, the reliability of COTS component
(si j) is given by the vendor. Therefore, reliability (ri j) of
j th alternative of i th module of the software is given by

ri j = ρi j yi j + si j ; i = 1, 2, . . . , n; j = 1, 2, . . . , mi ,

where

si j =
Vi j∑

k=1

si jk xi jk; i = 1, 2, . . . , n; j = 1, 2, . . . , mi .

2.1.5 Delivery time constraint

The delivery time (di jk) of the COTS components is given by
the vendor and the development time of in-house component(

ti j + τi j N tot
i j

)
is estimated by the software development

team. To know their value precisely in a real world situa-
tion is a difficult task due to many factors involved in either
developing or purchasing of the components. The deliv-
ery time (TDT) for acquiring all the components (COTS or
in-house) for the development of modular software system
can be estimated using the following equation

T̃DT = T̃SD − T̃I T − T̃ST

where ∼ on top of the notations above represents that they are
fuzzy numbers. (TSD) is the system development time, which
is a function of integration testing time denoted by (TI T),
system testing time (TST) and delivery time of acquiring the
components (TDT). The development team estimates these
values in the early stage of software development. (TSD)

depend upon various factors such as testing strategies, testing
environment, team constitution, market completion, vendors’
credentials, etc. The information and data needed to compute

123

Memetic Comp. (2014) 6:49–59 53

these either not available or partially available. This problem
can be resolved by taking these values as fuzzy numbers.

It becomes arduous for the managers to determine the
exact delivery time of acquiring the components for the devel-
opment of modular software system. Therefore, the manager
has to allow some level of tolerance to the delivery time con-
straint and the equation can be written as

T̃DT ≤ Tu

The crisp form of the above delivery time constraint can then
be written as following

yi j

(
ti j + τi j N tot

i j

)
+

Vi j∑

k=1

di jk xi jk ≤ Tu;

i = 1, 2, . . . , n; j = 1, 2, . . . , mi

where Tu is the tolerance level for the delivery time constraint
and is decided by the manager.

2.2 Objective function

2.2.1 Reliability objective function

Reliability objective function maximizes the system qual-
ity (in terms of reliability) through a weighted function of
module reliabilities. Reliability of modules that are invoked
more frequently during use is given higher weights. Analytic
Hierarchy Process can be effectively used to calculate these
weights.

Maximize R̃ =
L∑

l=1

fl
∏

i∈sl

R̃i

where Ri is the reliability of module i of the system under the
consensus recovery block scheme which is stated as follows:

R̃i = 1 +
⎡

⎣
mi∑

j=1

1
(1−ri j)

zi j

[mi∏

k=1

(1 − rik)
zik

]
[
1 − (

1 − ri j
)zi j

]

+
mi∏

j=1

(
1 − ri j

)zi j

⎤

⎦

⎡

⎣
mi∑

j=1

zi j

⎡

⎣
j−1∏

k=1

P (Xik)
zik

⎤

⎦P
(
Yi j

) − 1

⎤

⎦ ;

i = 1, 2, . . . , n

P
(
Xi j

) = (1 − t1)
[(

1 − ri j
)
(1 − t3) + ri j t2

]

P
(
Yi j

) = ri j (1 − t2) .

2.2.2 Cost objective function

Cost objective function minimizes the overall cost of the
system. The sum of the cost of all the modules is selected
from the “build-or-buy” strategy. The in-house development

cost of the alternative j of module i can be expressed as

ci j

(
ti j + τi j N tot

i j

)

Minimize C̃ =
n∑

i=1

mi∑

j=1

⎛

⎝c̃i j

(
ti j + τi j N tot

i j

)
yi j +

Vi j∑

k=1

C̃i jk xi jk

⎞

⎠

∼ on the coefficients of objective functions represents that
they are fuzzy numbers. The problem with reliability maxi-
mization and cost minimization objectives subject to delivery
time and component selection constraints can be considered
as a multiple objective problem of reliability and cost while
solving with the fuzzy optimization.

2.3 Optimization model-I

Consensus Recovery Block achieving fault tolerance is used
to run all the attached independent alternatives simultane-
ously and selecting the output by the voting mechanism. It
requires independent development of independent alterna-
tives of a program which the COTS components satisfy and
a voting procedure. Upon invocation of the consensus recov-
ery block, all alternatives are executed and their output is
submitted by a voting procedure. Since it is assumed that
there is no common fault, if two or more alternatives agree
on one output then that alternative is designated as correct,
otherwise, the next stage is entered. At this stage, the best
alternative is examined by the acceptance test. If the output
is accepted, it is treated as the correct one. However, if the
output is not accepted, the next best alternative is subjected
to testing. This process continues until an acceptable output
is found or all outputs are exhausted.

The fuzzy multi-objective optimization model for compo-
nent selection can be written as follows.

Maximize R̃ =
L∑

l=1

fl

∏

i∈sl

R̃i

Minimize C̃ =
n∑

i=1

mi∑

j=1

⎛

⎝c̃i j

(
ti j + τi j N tot

i j

)
yi j +

Vi j∑

k=1

C̃i jk xi jk

⎞

⎠

(P1)

subject to

X ∈ S = {xi jk and yi j are binary variable/

R̃i = 1 +
⎡

⎣
mi∑

j=1

1

(1 − ri j)
zi j

[mi∏

k=1

(1 − rik)
zik

]

× [
1 − (

1 − ri j
)zi j

] +
mi∏

j=1

(
1 − ri j

)zi j

⎤

⎦

×
⎡

⎣
mi∑

j=1

zi j

⎡

⎣
j−1∏

k=1

P (Xik)
zik

⎤

⎦P
(
Yi j

) − 1

⎤

⎦ ;

123

54 Memetic Comp. (2014) 6:49–59

i = 1, 2, . . . , n (1)

P
(
Xi j

) = (1 − t1)
[(

1 − ri j
)
(1−t3) +ri j t2

]
(2)

P
(
Yi j

) = ri j (1 − t2) (3)

N suc
i j = (

1 − πi j
)

N tot
i j , i = 1, 2, . . . , n and

j = 1, 2, . . . , mi (4)

ρi j = 1 − πi j
(
1 − πi j

) + πi j
(
1 − πi j

)N suc
i j

;

i = 1, 2, . . . , n and j = 1, 2, . . . , mi (5)

ri j = ρi j yi j + si j ; i = 1, 2, . . . , n and

j = 1, 2, . . . , mi (6)

yi j +
Vi j∑

k=1

xi jk = 1; i = 1, 2, . . . , n and

j = 1, 2, . . . , mi (7)

yi j +
Vi j∑

k=2

xi jk = zi j ; i = 1, 2, . . . , n and

j = 1, 2, . . . , mi (8)

xi j1 + zi j = 1 j = 1, 2, . . . , mi (9)
mi∑

j=1

zi j ≥ 1; i = 1, 2, . . . , n (10)

yi j

(
ti j + τi j N tot

i j

)
+

Vi j∑

k=1

di jk xi jk ≤ Tu} (11)

where X is a vector of components xi jk, yi j , and zi j , i =
1, . . . , n; j = 1, . . . , mi ; k = 1, . . . , Vi j .

2.4 Optimization model-II

In a structured software design, functionality and data are
arranged in software modules. Each module has a set of pro-
cedures, or methods, for accessing the encapsulated data.
Modules can be treated as components, for example, taken
from libraries, or implemented by different vendors. This
raises the question of when two modules are compati-
ble. Optimization model-II is an extension of optimization
model-I. In optimization model-I, we assumed that all alter-
native COTS products of one module are compatible with
the alternative COTS products of other modules. However,
sometimes it is observed that some alternatives of a mod-
ule may not be compatible with alternatives of other mod-
ules due to problems such as implementation, interfaces, and
licensing [10]. Optimization model-II addresses this prob-
lem. It is done by incorporating additional constraints in the
optimization models. This constraint can be represented as
xgsq ≤ xhut c, which means that if alternative s for module g
is chosen, then alternative ut , t = 1, . . . , z has to be chosen
for module h. We also assume that if two alternatives are

compatible, then their versions are also compatible.

xgsq − xhut c ≤ Myt , q = 2, . . . , Vgs,

c = 2, . . . , Vhut , s = 1, . . . , mg (12)
∑

yt = z
(
Vhut − 2

)
(13)

Constraints (1) to (11) are same for problem (P2). Constraints
(12) and (13) make use of binary variable yt to choose one
pair of alternatives from among different alternative pairs of
modules. If more than one alternative compatible component
is to be chosen for redundancy, constraint (13) can be relaxed
as follows.
∑

yt ≤ z
(
Vhut − 2

)
(14)

Problem (P1) can be transformed to another optimization
problem using compatibility constraint as follows. Therefore,
optimization model-II can be written as follows:

Maximize R̃ =
L∑

l=1

fl

∏

i∈sl

R̃i

Minimize C̃ =
n∑

i=1

mi∑

j=1

⎛

⎝c̃i j

(
ti j + τi j N tot

i j

)
yi j +

Vi j∑

k=1

C̃i jk xi jk

⎞

⎠

(P2)

subject to

X ∈ S

xgsq − xhut c ≤ Myt , q = 2, . . . , Vgs,

c = 2, . . . , Vhut , s = 1, . . . , mg
∑

yt = z
(
Vhut − 2

)
.

Crisp optimization techniques cannot be applied directly to
solve the problems (P1) and (P2) since these methods pro-
vide no well defined mechanism to handle the uncertainties
quantitatively. Hence we use fuzzy optimization approach to
solve the problem.

3 Solution algorithm for fuzzy multi-objective
optimization model

Most of our traditional tools of modelling are crisp, determin-
istic, and precise in character. However, for many practical
problems, the input information is incomplete and unreliable.
This results in the use of fuzzy multi-objective optimiza-
tion method with fuzzy parameters. In the existing research
related the software reliability, it is assumed that all the para-
meters of the problem are known precisely. Various objec-
tives and restrictions set by the management and cost coeffi-
cients involved in the cost function are determined based on
past experience and available database. This makes it difficult
for the management to provide precise values of the various

123

Memetic Comp. (2014) 6:49–59 55

cost coefficients and objectives to be met. Moreover, chang-
ing customer specifications, lack of experience of the testing
team or novelty, changing testing environment, complexity
in the project involved, and emerging factors unknowable
at the start of the project add imprecision and ambiguity to
the above-mentioned definitions. It may also be possible that
the management itself does not set precise values in order to
provide some tolerance on these parameters due to compet-
itive considerations. All this leads to uncertainty (fuzziness)
in the problem formulation. Crisp mathematical program-
ming approaches provide no such mechanism to quantify
these uncertainties. Fuzzy optimization is a flexible approach
that permits more adequate solutions of real problems in the
presence of vague information, providing the well-defined
mechanisms to quantify the uncertainties directly. The idea
of fuzzy programming was first given by Bellman and Zadeh
[1] and then developed by Tanaka et al. [15], Zimmermann
[17].

The following algorithm specifies the sequential steps to
solve fuzzy mathematical programming problems.

Step 1. Compute the crisp equivalent of the fuzzy
parameters using a defuzzification function. Same
defuzzification function is to be used for each of the para-
meters. Here, we use the defuzzification function of the
type F2(A) = (al+2am+au)

4 , where al , am, au are the Tri-
angular Fuzzy Numbers (TFN).
Step 2. Incorporate the objective function of the fuzzifier
min (max) as a fuzzy constraint with a restriction (aspi-
ration) level. The above problem (P1) can be rewritten
as

Find X (P3)
subject to

R (X) =
L∑

l=1

fl

∏

i∈sl

Ri ≥
∼ R0

C (X)=
n∑

i=1

mi∑

j=1

⎛

⎝ci j

(
ti j +τi j N tot

i j

)
yi j +

Vi j∑

k=1

Ci jk xi jk

⎞

⎠≤
∼ C0

X ∈ S.

where R0 and C0 are defuzzified aspiration levels of sys-
tem reliability and cost.
Step 3. Define appropriate membership functions for
each fuzzy inequality as well as constraint correspond-
ing to the objective function. The membership function
for the fuzzy parameters less than or equal to and greater
than or equal to type are given as

μR(X) =

⎧
⎪⎨

⎪⎩

1; R(X) ≥ R0
R(X)−R∗

0
R0−R∗

0
; R∗

0 ≤ R(X) < R0

0; R(X) < R∗
0

,

where R0 is the aspiration level and R∗
0 is the toler-

ance levels to the fuzzy reliability objective function con-
straint.

μC (X) =

⎧
⎪⎨

⎪⎩

1; C(X) ≤ C0
C∗

0 −C(X)

C∗
0 −C0

; C0 ≤ C(X) < C∗
0

0; C(X) > C∗
0

,

where C0 is the restriction and C∗
0 is the tolerance level

to the fuzzy budget constraint.
Step 4. Employ extension principle to identify the fuzzy
decision, which results in a crisp mathematical program-
ming problem given by

Maximize α (P4)

subject to

μR(x) ≥ α,

μC (x) ≥ α,

X ∈ S,

where α represents the degree up to which the aspiration
of the decision-maker is met. The above problem can be
solved by the standard crisp mathematical programming
algorithms.
Step 5. While solving the problem following steps 1-
4, the objective of the problem is also treated as a con-
straint. Each constraint is considered to be an objective
for the decision-maker and the problem can be looked
as a fuzzy multiple objective mathematical programming
problem. Further, each objective can have a different level
of importance and can be assigned weight to measure the
relative importance. The resulting problem can be solved
by the weighted min max approach. The crisp formula-
tion of the weighted problem is given as

Maximize α (P5)

subject to

μR(x) ≥ w1α,

μC (x) ≥ w2α,

w1, w2 ≥ 0, w1 + w2 = 1.

If the constraints are fuzzy as well as crisp, then in the
equivalent crisp mathematical programming problem, the
original crisp constraints will not show any change as
their tolerances are zero. The problem (P5) can be solved
using the standard mathematical programming approach.
Step 6. On substituting the values for μR(x)andμC (x)

the problem becomes

123

56 Memetic Comp. (2014) 6:49–59

Maximize α (P6)

subject to

R(x) ≥ R0 − (1 − w1α)(R0 − R∗
0)

C(x) ≤ C0 + (1 − w2α)(C∗
0 − C0)

α ∈ [0, 1]

X ∈ S

w1,w2 ≥ 0, w1 + w2 = 1.

Step 7. If a feasible solution is not obtained for the prob-
lem (P5) or (P6), then we can use the fuzzy goal program-
ming approach to obtain a compromised solution given
by Mohamed [13]. The method is discussed in detail in
the case study.

4 Case study

In this section, a case study of component-based development
is presented to illustrate the proposed methodology of opti-
mizing the selection of software components for a modular
software system. A local software system supplier planned
to develop a software system for small and medium size
retail organizers. Nine functional requirements of the system
were identified, namely, sales, payment collection and autho-
rization, shift-wise reporting and statistics, inventory con-
trol and movements, e-commerce, automatic updates, secu-
rity and administration, business rules, financials and report-
ing. The software system development team of the company
has defined three software modules, front office (m1), back
office/ store (m2) and finance/ accounts (m3), that the retail
software system needs to contain.

The front office (m1) module mainly provides the func-
tions of sales, payment collection and authorization, shift-
wise reporting and statistics. The back office/ store (m2)

module mainly provides the functions of inventory control
and movements, e-commerce, automatic updates, security
and administration, while the finance/ accounts (m3) module
provides business rules, financials and reporting.

A total of 18 COTS components available in markets were
considered. Further the cost of building these components
were also estimated as the software supplier can also build
these components. The decision is to choose the right compo-
nents for each software module so as to get a reliable software
system at a minimum cost in the desired delivery time.

4.1 Data sets

The system consists of three modules; front office (m1), back
office/store (m2) and finance/ accounts (m3). Each mod-
ule provides different functional requirements mentioned
in Table 1. A system is to be developed by integrating

Table 1 Functional requirements of a software system

Module Functional requirements

Front office Sales

Payment collection and authorization

Shift-wise reporting and statistics

Back office/stores Inventory control and movements

E-commerce

Automatic updates

Security and administration

Finance/accounts Business rules/ protocols

Financials and reporting

components/ alternatives which can be either COTS or the
in-house-built components. The objective of this study is to
select the optimal set of alternatives for each module so as to
get a highly reliable retail software system. For each mod-
ule, various alternatives are available, various COTS versions
are available for each alternative of a module and an in-
house alternative for each module can be built. The data set
for COTS and in-house-developed components are given in
Tables 2 and 3, respectively. Let L = 3, s1 = {1, 2, 3} , s2 =
{1, 3} , s3 = {2} , f1 = 0.5, f2 = 0.3 and f3 = 0.2. It is also
assumed that t1 = 0.01, t2 = 0.05 and t3 = 0.01.

Table 2 gives cost, reliability, and delivery time for the
COTS components. The first column of Table 2 lists the three
modules of the software system. The second column pro-
vides various alternatives for each module. Each alternative
of a module has three versions. The third column provides
the parameters of cost (in Kilo Euros, KE), reliability and
delivery time (in weeks) for each version. Note that the cost
of first version, i.e., the virtual versions for all COTS alter-
natives is zero and reliability is 0.001. This is done because
“if in the optimal solution, for some module xi j1 = 1, it
implies corresponding alternative is not to be attached in the
module”.

Table 3 shows the parameters that we have collected for
in-house development of components. For each component,
the average development time ti j (in weeks) is given in the
third column and the average time required to perform a sin-
gle test τi j (in weeks) is given in the fourth column, the unitary
development cost ci j (KE per week) is given in the fifth col-
umn, finally the component testability πi j is given in the last
column.

4.1.1 Assignment of weights

The assignment of weights is based on the expert’s judgment
for the reliability and cost. Weights assigned for reliability
and cost are 0.6 and 0.4, respectively.

123

Memetic Comp. (2014) 6:49–59 57

Table 2 Data set for COTS components

Modules Alternatives Versions

1 2 3

Cost Reliability Delivery time Cost Reliability Delivery time Cost Reliability Delivery time

Front office 1 0 0.001 0 19 0.77 4 16 0.78 5

2 0 0.001 0 17.5 0.79 5 23 0.79 3

3 0 0.001 0 22 0.80 3 20 0.81 4

Back office/store 1 0 0.001 0 18 0.81 5 22.5 0.83 3

2 0 0.001 0 16 0.83 6 17 0.87 5

3 0 0.001 0 23 0.89 3 20 0.88 4

4 0 0.001 0 18 0.88 5 19 0.90 4

Finance/accounts 1 0 0.001 0 21 0.92 4 23 0.92 3

2 0 0.001 0 21 0.97 4 22 0.98 3

Table 3 Data set for in-house
components Modules Alternatives Development

time, ti j

Testing
time, τi j

Unitary
development
cost, ci j

Probability of
testability,
πi j

Front office 1 9 0.005 4 0.002

2 7 0.005 3 0.002

3 8 0.005 3 0.002

Back office/store 1 8 0.005 4 0.002

2 5 0.005 1 0.002

3 6 0.005 3 0.002

4 6 0.005 2 0.002

Finance/accounts 1 6 0.005 3 0.002

2 5 0.005 2 0.002

Table 4 Aspiration and
tolerance levels Delivery time Triangular fuzzy numbers Aspiration level Tolerance level

3 R = (0.72, 0.74, 0.80) R0 = 0.75 R∗
0 = 0.71

C = (105, 108, 115) C0 = 109 C∗
0 = 117

5 R = (0.992, 0.995, 0.999) R0 = 0.995 R∗
0 = 0.94

C = (83, 91, 95) C0 = 90 C∗
0 = 95

4.1.2 Minimum and maximum levels of reliability and cost

Firstly, the triangular fuzzy reliability, and cost values are
computed using fuzzy values of these parameters and then
defuzzified using Heilpern’s defuzzifier (Table 4). If the
available reliability and cost are specified as TFN, then the
aspiration level and tolerance level can be given as follows:

4.2 Fuzzy goal programming approach

On solving the problem, we found that the problem (P6)
is not feasible; hence the management goal cannot be

achieved for a feasible value of α ∈ [0, 1]. Then, we
use the fuzzy goal programming technique to obtain a
compromised solution. The approach is based on the goal
programming technique for solving the crisp goal pro-
gramming problem given by Mohamed [13]. The max-
imum value of any membership function can be 1;
maximization of α ∈ [0, 1] is equivalent to making it
as close to 1 as best as possible. This can be achieved
by minimizing the negative deviational variables of goal
programming (i.e., η) from 1. The fuzzy goal program-
ming formulation for the given problem (P6) introducing
the negative and positive deviational variables η j andρ j is
given as

123

58 Memetic Comp. (2014) 6:49–59

Minimize u (P7)

subject to

μR(X) + η1 − ρ1 = 1

μC (X) + η2 − ρ2 = 1

u ≥ w j ∗ η j ;
η j ∗ ρ j = 0; η j , ρ j ≥ 0 j = 1, 2

X ∈ S; α ∈ [0, 1]; w1, w2 ≥ 0;w1+w2 =1;α = 1 − u

Therefore, solution of optimization model-I is obtained
by solving problem (P7). And also solution of optimization
model-II is obtained by solving problem (P7) with compati-
bility constraints.

4.3 Model solution

The model is solved using a software package called LINGO
([16]).

4.3.1 Optimization model-I

The optimal solution set so obtained for (P7) is optimal for
optimization model-I. The solution to the model gives the
optimal components selection for the software system along
with the corresponding cost and reliability of the overall sys-
tem under fuzzy environment.

Case 1: delivery time is assumed to be 3 weeks

At delivery time of 3 weeks, all COTS components are
selected (Fig. 2). For the front office module, third version of
the second alternative and second version of the third alterna-
tive are selected. For the back office module, third version of
the first alternative and second version of the third alternative
are selected. For the finance/accounts module, third version
of the second alternative is selected. Since more than one
alternative is selected for front office (m1) and back office
(m2) modules, redundancy is allowed in these two modules.
The overall system cost is 112.5 and system reliability is
0.742.

Case 2: delivery time is assumed to be 5 weeks

As delivery time increases to 5 weeks along with COTS com-
ponents, in-house-built component is also selected (Fig. 3).
Redundancy is allowed for the first and second modules. For
the back office module, two COTS components and an in-
house-built component are selected. The overall system cost
is reduced to 93 and system reliability is also improved and
is 0.976.

As we can see from the solution given here, when delivery
time increases from 3 to 5 weeks, there is a significant reduc-
tion in the overall cost and also there is a significant improve-
ment in the reliability of the system. Also, the selected com-
ponents are a combination of both COTS and in-house-built
components. So, it is advisable to keep delivery time at 5
weeks and its corresponding solutions.

4.3.2 Optimization model-II

To check compatibility amongst the alternatives of the mod-
ules, we have considered case no 2 of optimization model-I.

Case no 2: delivery time is assumed to be 5 weeks

We assume that the second alternative of third module is com-
patible with second and third alternatives of the first module
as manager is interested in keeping the solution when delivery
time is 5 weeks which according to him is the best decision
Figs. 2, 3, 4.

It is observed that due to the compatibility condition, third
alternative of first module is chosen as it is compatible with
second alternative of third module. The overall system cost
is 94 and system reliability is 0.96 (Fig. 4).

5 Conclusion

In this paper, we have developed a fuzzy multi-objective
model that helps developers to decide whether to buy or build
components for a fault-tolerant modular software system.
This paper presented an optimization model for a consen-
sus recovery block scheme. The component selection prob-
lem is formulated as a multi-objective programming problem
and fuzzy goal programming technique is used to provide a

Fig. 2 Solution to optimization
model-I (case 1)

123

Memetic Comp. (2014) 6:49–59 59

Fig. 3 Solution to optimization
model-I (case 2)

Fig. 4 Solution to optimization
model-II

feasible solution. Two optimization models for optimal selec-
tion of components were proposed. The first model was a
bi-criteria optimization model based on decision variables
indicating the set of structural components to buy or to build
in order to maximize the software reliability with simultane-
ous minimization of the overall cost of the system. The sec-
ond optimization model deals with the issue of compatibility
amongst different COTS alternatives. The sensitivity analy-
sis was performed on the delivery time constraint. A case
study of retail system design was used to illustrate the pro-
posed methodology in this paper. In the numerical example,
it was observed that when delivery time was short, then all
COTS components were selected and the overall reliability of
the system was low. However, as the delivery time increased
along with the COTS components, the in-house components
were also selected, and there is a significant increase in the
reliability of the system.

References

1. Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy envi-
ronment. Manag Sci 17(B):141–164

2. Berman O, Ashrafi N (1993) Optimization models for reliability of
modular software systems. IEEE Trans Softw Eng 19(11):1119–
1123

3. Berman O, Kumar UD (1999) Optimization models for recovery
block schemes. Eur J Oper Res 115:368–379

4. Bertolino A, Strigini L (1996) On the use of testability measures for
dependability assessment. IEEE Trans Softw Eng 22(2):97–108

5. Cortellessa V, Marinelli F, Potena P (2006) Automated selection
of software components based on cost/reliability trade-off. Lecture
notes in Computer Science 4344, pp 66–81

6. Cortellessa V, Marinelli F, Potena P (2008) An optimization frame-
work for “build-or-buy” decisions in software architecture. J Com-
put Oper Res 35:3090–3106

7. Gupta P, Verma S, Mehlawat MK (2011) A membership function
approach for cost-reliability trade-off of COTS selection in fuzzy
environment. Int J Reliab Qual Saf Eng 18(6):573–595

8. Jha PC, Bali S, Kapur PK (2011) Fuzzy approach for selecting
optimal COTS based software products under consensus recovery
block scheme. BVICAM’s Int J Inform Technol (BIJIT) 3(1) (ISSN
0973-5658)

9. Jha PC, Kapur PK, Bali S, Kumar UD (2010) Optimal component
selection of COTS based software system under consensus recov-
ery block scheme incorporating execution time. Int J Reliab Qual
Saf Eng 17(3):209–222

10. Jung HW, Choi B (1999) Optimization models for quality and cost
of modular software system. Eur J Oper Res 112:613–619

11. Kumar UD (1998) Reliability analysis of fault tolerant recovery
block. OPSEARCH 35(2):281–294

12. Kwong CK, Tang Mu JF (2010) Optimization of software com-
ponents selection for component-based software system develop-
ment. Comput Ind Eng 58:618–624

13. Mohamed RH (1997) The relationship between goal programming
and fuzzy programming. Fuzzy Sets Syst 89:215–222

14. Neubauer T, Stummer C (2007) Interactive decision support for
multiobjective COTS selection. In: IEEE Proceedings 40th annual
Hawaii international conference on system sciences (HICSS’ 07)

15. Tanaka H, Okuda T, Asai K (1974) On fuzzy mathematical pro-
gramming. J Cybernet 3:37–46

16. Thiriez H (2000) OR software LINGO. Eur J Opl Res 124:655–656
17. Zimmermann HJ (1976) Description and optimization of fuzzy

systems. Int J Gen Syst 2:209–215

123

	Fuzzy optimization approach to component selection of fault-tolerant software system
	Abstract
	List of symbols
	1 Introduction
	2 Optimization models
	2.1 Model formulation
	2.1.1 Build versus buy decision
	2.1.2 Redundancy constraint
	2.1.3 Probability of failure-free in-house-developed component
	2.1.4 Reliability equation of both in-house and COTS components
	2.1.5 Delivery time constraint

	2.2 Objective function
	2.2.1 Reliability objective function
	2.2.2 Cost objective function

	2.3 Optimization model-I
	2.4 Optimization model-II

	3 Solution algorithm for fuzzy multi-objective optimization model
	4 Case study
	4.1 Data sets
	4.1.1 Assignment of weights
	4.1.2 Minimum and maximum levels of reliability and cost

	4.2 Fuzzy goal programming approach
	4.3 Model solution
	4.3.1 Optimization model-I
	4.3.2 Optimization model-II

	5 Conclusion
	References

