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Abstract In this paper, a new approach has been presented
to design sub-optimal state feedback regulators over net-
worked control systems with random packet losses. The
optimal regulator gains, producing guaranteed stability are
designed with the nominal discrete time model of a plant
using Lyapunov technique which produces a few set of
bilinear matrix inequalities (BMIs). In order to reduce the
computational complexity of the BMIs, a genetic algorithm
(GA) based approach coupled with the standard interior point
methods for LMIs has been adopted. A regrouping particle
swarm optimization based method is then employed to opti-
mally choose the weighting matrices for the state feedback
regulator design that gets passed through the GA based stabil-
ity checking criteria i.e. the BMIs. This hybrid optimization
methodology put forward in this paper not only reduces the
computational difficulty of the feasibility checking condition
for optimum stabilizing gain selection but also minimizes
other time domain performance criteria like expected value
of the set-point tracking error with optimum weight selection
based LQR design for the nominal system.
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1 Introduction

Networked control systems deals with the enforcement of
control policies over an unreliable real time network and
has been the subject of active research in the recent past.
This increasing trend of implementing control systems over
a communication network is partly attributed to the cheap
availability of off-the-shelf communication hardware and
the various advantages of using a shared communication
medium, viz. reduced wiring, modularity, etc. [1]. Thus NCS
is advantageous both from the economic as well as implemen-
tation point of view and has been adopted in diverse fields
ranging from industry automation to space applications.

However NCS is not a panacea and has a few pressing
issues which need to be addressed before actual implemen-
tation on a real plant. Due to the unreliable nature of the
communication network, the packets may get delayed due
to queuing at the buffers and suffer stochastic delays at each
sampling instant. In some cases due to buffer overflows or
bit errors the packets are lost which is referred to as packet
dropout. These packet losses severely hamper the control sys-
tem performance and thus must be accounted for at the design
stage itself. It is not unnatural for a plant to become unsta-
ble in the presence of packet dropouts and thus exponential
stability of such systems must be guaranteed.

In [2], the control system with the network is modeled
as an asynchronous dynamical system (ADS) and stability
conditions for the system with packet dropouts is ensured
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through the formulation of a set of bilinear matrix inequal-
ities. However the BMI problem is non-convex and is com-
putationally difficult to solve. This makes the computation
of the stabilizing state feedback gains difficult and the con-
ventional approach is to resort to random search methods as
in [2]. However in process control applications, other con-
straints like faster rise time and settling time, zero steady
state error etc. need to be incorporated in the design phase
itself while simultaneously ensuring stability of the system in
the presence of packet losses. Thus a more tractable solution
scheme is required which honors the stability constraints of
the BMIs and at the same time give acceptable time domain
performance in the presence of packet losses. In this paper
a hybrid Regrouping PSO–GA based design methodology
has been adopted to achieve this objective. In [3,4] global
optimization techniques like GA and PSO have been used
for NCS problems as well. However, the stochastic algo-
rithms are used to address the issues of scheduling in NCS. In
the present paper, the hybridization of PSO–GA algorithms
along with standard LMI solver has been used for ensuring
stability of the closed loop control system under arbitrary
packet losses. In this paper, the proposed hybrid algorithm
also minimizes the expected global minima of the random
set-point tracking error which occurs due to the stochastic
nature of packet loss in NCS for fixed state feedback con-
troller, while also satisfying analytical Lyapunov stability
theorem i.e. the BMI criterion using hybridization of stan-
dard LMI solver and GA optimizer.

To the best of authors’ knowledge such hybrid algo-
rithm has not been previously applied for solving BMI
problems often encountered in NCS stabilization. Along
with ensuring guaranteed Lyapunov stability in the pres-
ence of random packet losses, we optimized for perfor-
mance (using time domain performance criterion for state
feedback control law) with near optimal deviation of the
state variables and control signal due introduction of the
discrete time LQR formulation. This new design method-
ology incorporates a two stage global optimizer for efficient
solution of the problem which opens a wide range of pos-
sibilities to include other performance criteria in the con-
trol design process. This makes the problem to be applied
in a more practical setting than a theoretical framework as
a real control system design must be designed for a wide
variety of performance objectives and not just Lyapunov
stability for stabilization problem over communication net-
work.

The rest of the paper is organized as follows. Section 2 dis-
cusses the theoretical formulation for handling packet losses
in NCS. Section 3 discusses the hybrid PSO–GA based sub-
optimal state-feedback regulator design methodology and
Sect. 4 gives an illustrative example to show the validity
of the proposed method. The paper ends in Sect. 5 with the
conclusions followed by the references.

2 Theoretical formulation for handling packet losses
in NCS

2.1 Formulation of the stability criterion as a BMI problem

The NCS with random packet losses can be considered as an
asynchronous dynamical system with the following structure
[2] as shown in Fig. 1. ADSs like hybrid systems incorporates
continuous modes (like differential or difference equation)
and discrete modes (discrete event driven finite automata) as
well. The derivation and formulation of the BMI problem as
in [2], is discussed next.

Let us take the plant is governed by the following differ-
ence equation

x (k + 1) = Gx (k) + Hu (k) (1)

where, G and H are discrete-time system matrices. The
system is controlled by the state feedback law over NCS.

u (k) = −K x̄ (k) (2)

Here,x (k) and x̄ (k) are the states of the system before and
after the switch respectively in Fig. 1. Now if r1, r2, . . . , rN

be the rates representing the fraction of time of occurrence
of each discrete state, then

∑N
i=1 ri = 1. If there exist a

Lyapunov function V (x (k)) and scalars a1, a2, . . . , aN

corresponding to each rate such that

ar1
1 , ar2

2 , . . . , arN
N > a > 1 (3)

and

V (x (k + 1)) − V (x (k)) ≤
(

a−2
s − 1

)
V (x (k)) ,

s = 1, 2, . . . , N . (4)

then the ADS remains exponentially stable with decay rate
greater than a. Now, if the discrete state dynamics is given
by x ((k + 1) h) = �̃s x (kh), s = 1, 2, . . . , N , the search
for the quadratic Lyapunov function of type V (x (kh)) =
xT (kh) P̃x (kh) and the scalars a1, a2, . . . , aN can be cast
into a bilinear matrix inequality or BMI problem. Thus
Eqs. (3) and (4) reduces to

Fig. 1 Schematic diagram showing the plant and the state feedback
controller with the network represented by a switch on one side
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ar
1a1−r

2 > 1, (5)

�̃T
1 P̃�̃1 ≤ a−2

1 P̃, (6)

�̃T
2 P̃�̃2 ≤ a−2

2 P̃ (7)

for s = 1, 2.
When the switch is in position S1.

�̃1 =
[

G −H K
G −H K

]

; (8)

and when the switch is in position S2,

�̃2 =
[

G −H K
0 I

]

. (9)

In (5)–(7), for a specified gain matrix K , �̃1 and �̃2 become
constant. Thus, the solution to these equations reduces to
the finding of the scalars a1, a2 and a positive semi-definite
matrix P̃ .

2.2 Computational complexity of the BMI problem

Linear matrix inequalities or LMIs are convex in nature and
efficient interior point methods [5] exist to solve these easily.
The set of Eqs. (6)–(7) are BMI in nature due to the multi-
plication term of the solution variables a1, a2 with P̃ which
is also another solution variable itself. This makes the sys-
tem non-convex in nature. Also BMI problems are known
to be NP hard [6]. The class P refers to problems which are
solvable in polynomial time. A lot of research is going on in
the theory of computational complexity regarding the solu-
tion techniques of a NP-hard problem and it is still an open
question. It is generally assumed that an NP-hard problem
cannot have a polynomial time solution in the worst case.
NP-hard is a not a characteristic of any particular algorithm
but of the problem itself and practical algorithms for solving
these type of problems typically involve approximations or
heuristics [7]. Branch and bound algorithm as in [7] is one of
the ways of solving BMIs but requires tight upper and lower
bounds for the objective function which is difficult to obtain
in many cases.

There exist a variety of methods to solve BMI problems,
commonly encountered in various control related problems.
Although there are no efficient interior point methods for
BMI unlike those of the LMI, there are many instances where
depending on the specific structure of the formulated control
problem a mathematical simplification may be made. The
problem can then be solved by seeking the solution to an
equivalent set of LMIs. However these techniques are not
universal (i.e. they cannot be applied to all BMI problems),
and often such analytical mathematical transformations are
difficult to obtain and are not trivial. For example, in [8], the
authors note that the problem is non-convex and NP hard.

Their control problem is such that it can be cast into the form
of parameterized linear matrix inequality (PLMI) technique
as proposed in [9]. Therefore in spite of the problem being
a BMI one, it is possible to solve their particular problem of
robust control for fuzzy systems using their proposed two-
step method using the PLMI to obtain relaxation criterion
and then using standard LMI solvers. There are many other
instances where such problem specific simplifications may
be made and the BMI problem can be reduced to a set of more
computationally tractable set of LMIs. In [10] for example,
the stability conditions are derived in terms of BMIs. To solve
this set of BMIs an iterative LMI approach (ILMI) is pro-
posed and additional mathematical manipulations are done
to relax the constraints and solve it using standard solvers.
It is however to be noted that this is a kind of local search
algorithm within a multimodal solution space and therefore
it might converge to local minima depending on the initial
conditions. This aspect is highlighted further in [11], where it
is stated that most of the existing local search approaches are
computationally fast but depending on the initial conditions,
these might not converge to a global solution. The D–K itera-
tion for µ-synthesis [12], alternating semi-definite programs
(SDP) method [13], dual iteration method [14], are not guar-
anteed to converge to local solutions as shown in [13,15,16].
Hence in [11] a local BMI optimization is proposed using an
iterative technique for finding out the globally optimal robust
output feedback controller. It is to be noted that though this
paper overcomes the problem of global optimization, it is lim-
ited to a class of BMI problems (robust controllers for linear
systems) and hence cannot be directly incorporated for our
case. Other global optimization algorithms are variations of
the branch and bound technique [7,17].

In our case the control problem is more complicated as the
system is not a linear system as described in all the previous
literatures. Since the problem at hand is a switched system,
there are two ways to approach it in the light of the previously
published works. The first is to try to mathematically pro-
pose some transformation and try to frame the present BMI
problem in such a way so that it can be solved by standard
LMI solvers. This would give guaranteed convergence and
an upper bound on the runtime convergence of the algorithm.
The second approach is to use hybrid optimization involving
evolutionary or swarm based techniques coupled with stan-
dard LMI solvers as has been done in the present case. This
does not give any upper bound on the runtime of the algo-
rithm or guaranteed convergence, unlike that of the first case
but this method is generic and is not limited to the present
problem at hand. Thus it can be easily extended to other con-
trol design problems without necessitating any complicated
mathematical manipulations as required in the other cases.
Application of hybrid swarm, evolutionary and LMI based
techniques can be found in other control applications as well,
for example in active suspension system [18].
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A comparison with respect to the previously published
methods has not been done here, as mathematical transforms
for converting a BMI to an equivalent set of LMIs have not
yet been investigated for the case of switched systems with
LQR formulation and robust set-point tracking requirement.
Formulating this mathematically would be another investi-
gation in its own right and would be a digression from the
main theme of the present study. Therefore the comparison
is restricted to the same class of hybrid evolutionary and
swarm algorithms using different variants, namely PSO–GA
and GA–GA in order to efficiently solve the BMI problem
for the present NCS problem.

3 Discrete optimal control for NCS

3.1 GA based BMI solving technique

In the present approach, genetic algorithm is used to solve
the BMIs to find out the stability of the system in the pres-
ence of random packet losses. GA has been used to solve
matrix inequalities as in [19] where each element of the
solution matrix is considered as a decision variable. This
technique has been shown to outperform the standard deter-
ministic V–K iteration method in [20]. However as the dimen-
sion of the solution matrix increases the number of variables
of GA would increase and it is difficult to find solutions for
multimodal functions in this multidimensional search space.
Hence an alternative method is adopted in the present paper
as described below.

It is well known that GA is a stochastic optimization algo-
rithm inspired from Darwin’s theory of evolution. The GA
starts with an initial population of randomly chosen solution
variables (represented as chromosomes). A fitness function
evaluates the fitness of each individual in each generation.
These individuals undergo reproduction, crossover and muta-
tion to give rise to newer individuals in the next generation.
The solution is thus iteratively refined until the desired fitness
value is reached or the maximum number of generations is
exceeded. The individuals are ranked according to their fit-
ness value and the higher ranked individuals have a greater
probability of going into the next generation by the process
of reproduction. Crossover refers to information exchange
in a probabilistic fashion among two parent individuals to
give rise to a child. In mutation a small part of the solution
vector is randomly altered and the new vector goes to the
next generation. There is also a parameter called elite count
which dictates the number of fittest individuals in the present
generation that is definitely copied over to the next gener-
ation. Generally the elite count is taken as a small fraction
of the total population as otherwise the solution converges
prematurely due to dominance of the initially found fitter
individuals and the exploration of the solution space at later

generations is hindered. In our case, the population is com-
prised of 20 individuals and the elite count is taken as 2.
The remaining individuals undergo crossover and mutation
depending on the crossover ratio (CR) and the mutation ratio
(MR) respectively. The CR is chosen to be 0.8 and the MR
is chosen to be 0.2.

The flowchart for the solution of the GA based BMI prob-
lem is shown in Fig. 2. The network is chosen to have 70 %
packet transmission (r = 0.7) similar to Zhang et al. [2].
The scalars a1, a2 are chosen to be solution variables of GA.
Thus in the fitness function evaluation phase, (6) and (7)
are solved using standard interior point method [7], since for
specified values of a1, a2 the problem reduces to a LMI equa-
tion instead of a BMI one. If a feasible solution is found, (5)
is then tested to evaluate feasibility. If not found feasible, the
fitness function assigns a value to the solution vector depend-
ing on the degree of infeasibility. Equation (5) is modified to
form the fitness function as given by the following.

f = 1 − ar
1a1−r

2 (10)

If the value of this fitness function becomes negative, then a
feasible solution is found. Thus the solution is iterated until
a feasible solution is found or the maximum number of gen-
erations is exceeded. It is to be noted that the algorithm stops
on the first occurrence of a feasible solution. Thus all the
intermediate solutions are infeasible.

3.2 Optimal stabilizing gain selection with regrouping PSO

In this subsection the basic philosophy of discrete optimal
control is first introduced [21]. For the discrete system gov-
erned by (1), the task is to design an optimal state feedback
regulator which minimizes the infinite horizon quadratic
optimal cost

J̃ = 1

2

∞∑

k=0

[
xT (k) Qx (k) + uT (x) Ru (x)

]
(11)

Minimization of the quadratic cost given in (11) leads to the
solution of the discrete algebraic Riccati equation (DARE)
given by (12)

P = Q + GT PG − GT P H
(

R + H T P H
)−1

H T PG

(12)

In (12), Q, R are the weighting matrices and P is the posi-
tive definite solution of the Riccati equation (12). Matrix P
produces the optimal state-feedback gain matrix K which
minimizes the quadratic cost function (11) using the follow-
ing relation

K =
(

R + H T P H
)−1

H T PG (13)
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Fig. 2 Flowchart for solution of BMI problem with genetic algorithm

Thus the optimal control law is given by

u (k) = −K x (k)

= −
(

R + H T P H
)−1

H T PGx (k) (14)

But in the presence of the packet losses due to the switch in
Fig. 1, optimality can not be preserved as reported in Eq. (2).

Thus a discrete time linear quadratic regulator (LQR) based
state feedback controller can neither guarantee the stabil-
ity nor optimal time domain performance for random packet
drop-outs in the NCS. In order to guarantee the stability with a
nominally chosen optimal regulator the GA based BMI solu-
tion technique is first reckoned. If the state feedback regula-
tor stabilizes the system with a certain probability of packet
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losses in all combinations, then the weighting matrices of the
discrete Riccati equation is chosen optimally with respect to
another performance criterion which affects the output of the
process as

J =
∞∑

k=1

[k · |e (k)|] =
∞∑

k=1

[k · |r (k) − y (k)|] (15)

Here, {e, r, y} denotes the tracking error, reference input and
system response, respectively. It is clear that the performance
index J in (15) is equivalent to the integral of time multiplied
absolute error (ITAE) criterion in continuous time controller
design. The inclusion of the absolute error term reduces the
peak overshoot and the steady state error. The multiplication
of the time term penalizes the error more at the later stages
and hence ensures faster rise and settling times. Also, for a
guess value of the state feedback controller gains within the
optimization algorithm, due to the stochastic nature of the
packet-drop phenomena, the system output y(t) becomes a
random variable. Therefore, the objective function (15) sig-
nifies expected or average tracking performance for various
possible realizations of the packet loss. The calculation of the
objective function thus involves multiple-time simulation of
the same NCS with the same state feedback controller gains
and taking their expected value for minimization.

The average of the cost function (15) for multiple runs of
the same NCS controller is minimized with Regrouping PSO
algorithm while optimally choosing the weighting matrices
for the discrete LQR problem for the nominal system with-
out packet losses thus producing sub-optimal controller gains
that guarantees the stability using the BMI condition and
also gives satisfactory closed loop time response. The over-
all solution technique for the hybrid regrouping PSO–GA
based sub-optimal controller design has been shown in Fig. 3.
A heavy penalty is incorporated to discourage search with
unstable solutions over the iterations for similar optimiza-
tion based controller design like in [22]. The output from the
interior point based LMI solver is just a yes or no for sta-
bility, i.e. the LMI solver incorporated in the inner GA loop
can only say whether it is stable or not (a binary value) and
does not give a continuous value for the degree of stability
(like that provided by magnitude of the unstable eigen-values
for LTI systems). Hence it is not possible to incorporate a
penalty function due to the nature of the problem, though it
is well known that the penalty function approach might have
been a more expedient method. The Regrouping PSO has
certain advantages over the deterministic optimization tech-
niques and even the genetic algorithm which are discussed
next along with its working philosophy.

The classical gbest PSO is a swarm based stochastic
optimization algorithm which does not need any gradient
based information for the minimization of an objective func-
tion [23]. In gbest PSO the particles are initially randomly

Fig. 3 Flowchart of the hybrid regrouping PSO–GA based optimiza-
tion algorithm for stabilizing gain selection

distributed over the search space (�). The particles move
towards a global minima in each iteration and the direction
of movement is given by the vector addition of the best value
found so far (global best or gbest) among all the particles
and the individual particle best position (pbest). The objec-
tive function which is essentially the minimization criteria is
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used to evaluate the fitness of the particle at a specific posi-
tion in each iteration. For each particle (i) the velocity in each
dimension in the next iteration is updated by the following
velocity and position update equation, given by

vi (t + 1) = ωvi (t) + c1φ1(pi (t)

−xi (t)) + c2φ2(pg(t) − xi (t)) (16)

xi (t + 1) = xi (t) + vi (t + 1)

Each particle’s position (xi ) in the consequent iteration
depends on its velocity (vi ) in the present iteration multi-
plied by an inertia factor (ω) which is generally chosen large
so as to prevent random erratic movement of the particles in
the search space and to deviate the velocity of the particles
by a smaller amount in each iteration. The other two positive
constants c1, c2 denote the cognitive learning rate and the
social learning rate respectively. The weights c1, c2 indicate
the relative importance of the learning of the particles from
its own best position (pi ) and the global best position (pg)

and both have been chosen as 1.4962 for the present study
[24]. In (16), {φ1, φ2} ∈ [0, 1] are two uniformly distrib-
uted random numbers. The inertia factor (ω) is chosen to be
0.71633. A velocity clamping method is also incorporated in
the algorithm and the maximum value of the velocity is set
to 15 % of the range in each dimension. This ensures that
the velocity does not explode to bigger values and helps in
controlling the global exploration of the swarm. The range
here refers to the difference between the upper and the lower
bounds of the search space (�) on each dimension.

vmax
j = λ · range j (�)

range j (�) = xU
j − x L

j , j = 1, 2, . . . , n. (17)

Here, range j (�) represents range of search space along
dimension j and λ represents the velocity clamping percent-
age. In the present case, the number of particles Np is chosen
to be 20.

However the classical gbest PSO might get trapped in local
minima resulting in premature convergence. This gives rise
to stagnation where the particles continue to converge within
a small region resulting in the fact that the global best and
the personal bests are all within a very small radius in the
search space. Thus the particles stagnate as the momentum
from their previous velocities die out.

Regrouping PSO is a stochastic optimization algorithm
which is an improvisation over the classical gbest PSO to pre-
vent the problem of premature convergence and stagnation
[24]. This is done by an automatic triggering of the regroup-
ing mechanism when premature convergence is detected.
This method liberates the particles from these local min-
ima and ensures convergence of the solution towards the true
global minima. The swarm radius δ(t) at each iteration t
is taken as an indicator for premature convergence and gives
the maximum Euclidean distance in the n-dimensional search

space of any particle from the global best (g(t)). It is given
by the following expression:

δ(t) = max∀i
‖xi (t) − g(t)‖ (18)

where, ‖·‖ denotes the Euclidean norm.
The regrouping mechanism is triggered when the normal-

ized swarm radius (δnorm) is less than a pre-specified stag-
nation threshold (ε)

i.e. δnorm = δ(t)

‖range(�)‖ (19)

As in [24] ε is chosen as 1.1×10−4 which is seen to work well
with the regrouping mechanism for the optimization of wide
range of problems. On detection of stagnation the swarm is
regrouped in an area centered about the global best so that
it is small enough for efficient search and at the same time
ensures that the solution can go out of the local minima. The
regrouping factor (ρ) is given by

ρ = 6

5ε
(20)

which works well for all benchmark problems as indicated
in [24].

When premature convergence is detected, the range in
which particles are to be regrouped, around the global best is
calculated for each dimension as the minimum of the original
range of the search space on that dimension and the product
of the regrouping factor with the maximum distance along
that dimension of any particle from global best. i.e.

range j

(
�r )

= max

(

range j

(
�0

)
, ρ max

i∈{1,...,s}

∣
∣
∣xr−1

i, j − gr−1
j

∣
∣
∣

)

(21)

After re-initializing the particles’ positions the swarm is now
regrouped as

xi = pr−1
g + r ′ ◦ range

(
�r ) − 1

2
range

(
�r )

range
(
�r ) = [

range1
(
�r ) , . . . , rangen

(
�r )]

(22)

utilizing a random vector r ′ within the implicitly defined
search space

�r =
[
x L ,r

1 , xU,r
1

]
×

[
x L ,r

2 , xU,r
2

]
× · · · ×

[
x L ,r

n , xU,r
n

]

(23)

Having respective lower and upper bounds as

x L ,r
j = pg jr−1 − 1

2
range j

(
�r )

xU,r
j = pr−1

g j + 1

2
range j

(
�r )

(24)

Here, the operator “◦” denotes Hadamard element wise
vector product, r denotes swarm regrouping index, pr−1

g and

xr−1
i denotes the global best and position of the ith particle
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at the last iteration of prior regrouping. For further details
of regrouping PSO algorithm please refer to Evers and Ben
Ghalia [24].

It is to be noted that the GA is utilized here in the inner
loop and the PSO in the outer loop and not the other way
round. It is well known that the PSO algorithm is a much bet-
ter global optimizer than GA [25,26], for similar controller
parameter searching purpose using time domain performance
index [27]. Hence even if the GA is not able to find whether
a particular solution is stable or not, the global search for
the best solution still continues due to the regrouping nature
of the PSO algorithm. A RegPSO–RegPSO algorithm could
also have been used for both the stages, but it would have
made the complexity of the problem unnecessarily higher
while marginally affecting the outcome of the optimal solu-
tions. This is because, the inner RegPSO would spend more
time and computational resources on trying to find whether
a particular solution is stable or not. Even if some solutions
are not found to be stable, the outer loop would rely on the
obtained stable solutions to direct the search towards finding
optimal solutions which have good closed loop performance.
The time spent refining solutions for just stability is not really
as important as exploring other solutions affecting the per-
formance of the NCS by the outer RegPSO loop. For a fair
comparison, the convergence characteristics of the proposed
RegPSO–GA hybrid method have been compared with the
GA–GA based one as a part of the simulation example.

4 Illustrative example

A MATLAB/Simulink model has been developed to solve
the problem and it has been run several times for each sta-
ble guess value of the state feedback controller within the
optimization algorithm. Then the average of these is taken
so that the expectation of global minima for the stochastic
fitness function can be found out numerically.

A continuous time system (25) has been discretized with
sampling time h = 0.3 for case study as reported in [2]. The
packet drop-out probability has been considered as 30 % for
the present simulation study.
[

ẋ1

ẋ2

]

=
[

0 1
0 −0.1

] [
x1

x2

]

+
[

0
0.1

]

u,

y = [
1 0

]
[

x1

x2

]

.

(25)

For the discrete system (25 as reported in [2], the proposed
methodology is applied using the GA–GA hybrid optimiza-
tion technique and the optimum values for the weighting

matrices are reported below: Q =
[

0.29495 0
0 1.37137

]

,

R = 0.25781 with minimized cost of Jmin = 111.4242.

These weighting matrices produce the sub-optimal stabiliz-
ing state-feedback gains asK = [

1.00337 4.09011
]
. The

numerical values of the GA based BMI solver which gives
the stability condition in the presence of packet losses are
a1 = 1.0604, a2 = 0.8772. The P̃ matrix of the quadratic
Lyapunov function has been computed as:

P̃ =

⎡

⎢
⎢
⎣

27.779 39.8478 −17.1649 −14.5208
39.8478 188.0877 −13.848 −83.083

−17.1649 −13.848 17.5084 15.2433
−14.5208 −83.083 15.2433 87.2639

⎤

⎥
⎥
⎦

The eigen-values of the P̃ matrix is given as eig
(

P̃
)

=
⎡

⎢
⎢
⎣

1.9366
30.6368
42.8462
245.2193

⎤

⎥
⎥
⎦

Since the eigen-values of P̃ matrix are all greater than
zero, the condition of positive semi-definiteness is satisfied.
Equation (5) is also satisfied with these values of a1, a2 since
the left hand side evaluates to ar

1a1−r
2 = 1.0017 which is

greater than unity.
The hybrid RegPSO–GA algorithm gives the optimized

LQR weights as Q =
[

11.87689 0
0 14.33702

]

, R =
10.58286, with a minimized expected cost of Jmin = 62.155.
It can be seen that the RegPSO–GA based algorithm gives a
lower value of the expected objective function than the GA–
GA based algorithm shown above. These weighting matrices
produce the sub-optimal stabilizing state-feedback gains as
K = [

0.99994 3.73058
]
. The numerical values of the GA

based BMI solver which gives the stability condition in the
presence of packet losses are a1 = 1.0655, a2 = 0.86331.
The P̃matrix of the quadratic Lyapunov function has been
computed as:

P̃ =

⎡

⎢
⎢
⎣

11.7672 15.0175 −7.7426 −4.1701
15.0175 72.6810 −5.1676 −27.2520
−7.7426 −5.1676 7.6440 4.2129
−4.1701 −27.2520 4.2129 25.2804

⎤

⎥
⎥
⎦

The eigen-values of the P̃ matrix is given as eig
(

P̃
)

=
⎡

⎢
⎢
⎣

0.7439
13.1253
14.5415
88.9619

⎤

⎥
⎥
⎦ Since the eigen-values of P̃ matrix are all

greater than zero, the condition of positive semi-definiteness
is satisfied. Equation (5) is also satisfied with these values of
a1, a2 since the left hand side evaluates to ar

1a1−r
2 = 1.0004

which is greater than unity.
The convergence curves for the hybrid PSO–GA and

hybrid GA–GA have been compared in Fig. 4. The con-
vergence curves clearly show that the proposed method is
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Fig. 4 Comparison of the convergence characteristics for hybrid RegPSO–GA and GA–GA algorithms

capable of finding the global minima in much lesser number
of generations. The comparative improvements are shown
in Fig. 5, as the state trajectories and output of the system
with packet losses with the GA–GA and RegPSO–GA hybrid
algorithms which shows the later produces much faster set-
point tracking performance even in the presence of random
packet losses. In Fig. 4, the set-point tracking performances
are compared for one single realization of the random vari-
able representing the packet loss in the network, for the sake
of simplicity, although the hybrid RegPSO–GA algorithm
ensures minimization of the expected or average value of the
set-point tracking error. Since, the performance comparison
for such a stochastic process cannot be done from a single
run, the proposed hybrid algorithms have been run multiple
times and the convergence characteristics of corresponding
to the lowest minima have been shown in Fig. 4.

In [2], the scaled output response is shown but in the
actual output there is a steady state DC offset with the state
feedback controller which is not desirable, especially in net-
worked process control applications. Figure 5 shows that in
the present method the steady state error is removed by the
state feedback gains itself due to the inclusion of the addi-
tional performance criteria in the optimization algorithm. The
GA has been used to find a feasible solution to the BMI prob-
lem. This is less susceptible to be trapped in local minima
as finding only one feasible solution suffices. The RegPSO
is a more robust solution searching scheme than the GA and
has been used in the outer loop so that the optimal controller
gains can be found which minimizes the objective function
as stated in (15). It is to be noted that the output or the first
state variable always tracks the input step excitation even in

the presence of random packet loss as a stochastic phenom-
enon in the networked control loop. Also, since packet drop
is a stochastic phenomenon in NCS, sudden jumps may be
there in the state trajectories. For example see in [28] where
the state variables show sharp changes to compensate for the
packet loss and to guarantee closed loop stability. The pro-
posed technique ensures good set-point tracking performance
which is evident from the simulation results.

The mechanism of simulating the packet drop has been
incorporated using a MATLAB/Simulink based environ-
ment. The packet drop phenomenon in the feedback path
as in Fig. 1 has a normal distribution. To illustrate further
on the stochastic nature of the NCS, time domain simula-
tion results for different realization of the random packet
loss in the feedback path has been shown in Figs. 6 and 7
for the hybrid GA–GA and RegPSO–GA based state feed-
back controllers respectively. The corresponding values of
the Jmin are also shown in the figures, which justifies that
the proposed technique efficiently minimizes the expected
value of the time domain performance index with guaranteed
Lyapunov stability.

At a first glance, the time response curves for the PSO–
GA (Fig. 7) and GA–GA (Fig. 6) cases seems to be closer
but confusion may arise since the corresponding minima
of the objective function is quite different. To illustrate
this point more clearly a more detailed attention towards
Fig. 5 is needed. It can be seen that the output state x1 has
slightly faster rise time for the RegPSO–GA algorithm than
the GA–GA algorithm. Also, in Eq. (15) small variation in
the state trajectories is continuously weighted by the time
index (k). This basically translates to the fact that even small
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Fig. 5 State trajectories with the designed stabilizing sub-optimal controller with hybrid GA–GA and RegPSO–GA algorithm

Fig. 6 State trajectories with the GA–GA hybrid algorithm based controller for different realization of the random packet loss phenomena

deviations from the best solution are given heavy penalty
due to the time multiplication term (i.e. as time increases the
penalty at the later stages for the system trajectory deviation
is much higher). Thus even though Fig. 5 shows a small

improvement in performance visually, the time weighted
penalty term assigns a lot of penalty to even slightly worse
solutions. It is to be noted that the formulation could have
been done without the time dependent term using an IAE
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Fig. 7 State trajectories with the RegPSO–GA hybrid algorithm based controller for different realization of the random packet loss phenomena

(integral of absolute error) criterion instead of the ITAE.
This would have made the Jmin values nearly of the same
magnitude with the PSO-GA being slightly better than the
GA–GA. However this is not good from the control system
design viewpoint as it is desirable for a system to reach steady
state quickly and not have persistent oscillations at later time
instants. Since, the IAE criteria would equally weigh the
deviations from the set-point at all instants of time, the solu-
tions which have a small oscillatory response at the later
time instants can also be given lower fitness values if they
have a fast rise time. From the perspective of the evolution-
ary/swarm computation, this ITAE criterion gives a higher
selection pressure so that better solutions may be found.

The convergence curves shown in Fig. 4 correspond to
the best found minima for the two algorithms among multi-
ple runs. It is well known that comparison of statistical mea-
sures of two optimization algorithms are generally done to
find out which algorithm has better consistency in finding the
global minima. Thus the mean, standard-deviation, best and
worst value of the expected objective function (Jmin) for 30
independent runs have been shown in Table 1 which shows
that each of the statistical measures are better for RegPSO–
GA algorithm compared to the GA–GA algorithm. It is to be
noted that the motivation of applying GA/PSO to the current

Table 1 Comparison of statistical performances of two hybrid algo-
rithms for 30 independent runs

Hybrid
algorithm

Mean
of Jmin

Standard
deviation
of Jmin

Best
Jmin

Worst
Jmin

GA–GA 112.5867 0.7771 111.4 115

PSO–GA 63.1563 0.6573 62.15 64.54

problem is different compared to the conventional optimiza-
tion based controller design related literatures. The GA is
applied to convert the BMI problem to be solvable using
standard LMI solvers, though other complicated algorithms
could have also been used which takes more computational
resources. The PSO is applied to locate the global minima of
the time domain tracking performance index. It is shown in
[27] that PSO has higher capability of finding the expected
minima of tracking error in similar NCS design problems
than that with GA. Apart from good set-point tracking with
the consideration of the randomness of NCS, the algorithm
also ensures Lyapunov stability by satisfying the BMI crite-
rion using hybridization of standard LMI and GA solvers.

The specific improvisations of the present work over state
of the art literatures are summarized as follows.
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• In [2] the state feedback gains are pre-specified and the
BMI problem is solved by a random search method. In
the present paper optimization is done to get the state
feedback controller gains to minimize the discrete time
ITAE like criterion while simultaneously ensuring stabil-
ity of the system by solution of the BMI problem. The
GA based BMI solver which involves solution through
both GA and interior point method simultaneously is an
improvisation over [19] which becomes cumbersome
when the number of problem dimensions of the GA
increases due to increase in size of the solution matrix.
The interior point methods can efficiently handle LMIs of
large dimension and hence makes our solution method-
ology capable of handling solution variables of more
dimensions.

• Unlike [2], the choice of gains is obtained from the solu-
tion of the discrete algebraic Riccati equation and hence
deviation in the state variable trajectories and the control
signal is minimized in an optimal fashion for the case
without packet drops. In the presence of packet drops the
solution becomes slightly suboptimal as the LQR con-
troller is not optimal in the presence of packet losses in
the network.

• In [2], steady state offset is not eliminated, but in our case,
the additional performance criteria (15) ensures that the
steady state error is minimized along with a faster rise
time, faster settling time and a lower peak overshoot.

• The weighting matrices of discrete time LQR (i.e. Q and
R) are optimally chosen with the RegPSO algorithm, as
these are difficult to pre-specify at the beginning of the
solution to ensure set-point tracking even in the presence
of packet losses. In classical LQR, the weights are cho-
sen a priori and also LQR formulation can’t guarantee
closed loop stability in the presence of packet losses in
the network. Here optimum choice of weighting matrices
of LQR is done while also ensuring good set-point track-
ing performance. Guaranteed Lyapunov stability comes
from the BMI formulation itself for arbitrary packet
drops in the network. Traditional LQR neither can guar-
antee stability for random packet losses nor is capable
of tracking step reference input for arbitrary weighting
matrices. Herein lies the motivation of the present paper,
with RegPSO based design of optimum LQR weights
while solving the BMI problem by GA and standard LMI
solvers.

• In this method only discrete time ITAE like performance
index has been used as an additional control system per-
formance criterion, but the fitness function can also be
designed to handle other performance criteria like higher
moments of time and tracking error along with the total
variation of the control signal etc. [27] with user specified
weights attached to each criterion.

• In [27] GA/PSO based optimization framework has been
proposed to design fuzzy PID controllers for NCS appli-
cations. Though such an optimization minimizes the
expected cost function involving the tracking perfor-
mance of the system’s output, the analytical stability cri-
terion for fuzzy controllers over NCS is difficult to derive.
In the present paper, with a relatively simpler state feed-
back controller, the NCS is modeled as a switched sys-
tem and the analytical Lyapunov stability conditions are
ensured which leads to the BMI problem. The BMI prob-
lem is then solved using the hybridization of LMI and
GA, while the RegPSO minimizes the expectation of the
performance index relating the tracking error. Thus the
current paper improvises the concept of stochastic opti-
mization based networked controller design with guaran-
teed analytical Lyapunov stability condition incorporated
as a BMI problem within the optimization for closed loop
performance.

It is an obvious fact that such hybrid algorithms are often
questioned for the probable increase in computational com-
plexity. Here, the computational complexity increases due to
hybrid PSO-GA algorithms, along with the LQR with opti-
mum weight selection. The achievable goal of Zhang et al.
[2] was only stabilization of NCS and those of the present
paper are optimum weight based LQR for set-point track-
ing in presence of packet losses in NCS. It is true that so
many complex algorithms for performance improvement of
a robust tracking problem in NCS would increase the com-
plexity. But since the computation of the controller gains is
offline, hence the additional complexity to increase the per-
formance does not pose a significant problem.

5 Conclusion

A practical solution for controller designing in NCS appli-
cations in the presence of packet losses has been proposed in
this paper using a hybrid Regrouping PSO-GA based algo-
rithm. The stability of the closed loop system is guaranteed
by Lyapunov based BMIs which is incorporated in the hybrid
optimization algorithm itself. The consequent optimally cho-
sen weighting matrices based discrete time LQR controller
designing methodology with additional design constraints as
the guaranteed stabilizing sub-optimal state feedback gain
selection are shown by means of an illustrative example.
Further work can be directed towards similar NCS design
involving multi-loop systems.
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