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Abstract Online test paper generation (Online-TPG) gen-
erates a test paper automatically online according to user
specification based on multiple assessment criteria, and the
generated test paper can then be attempted online by user.
Online-TPG is challenging as it is a multi-objective optimiza-
tion problem that is NP-hard, and it is also required to satisfy
the online generation requirement. In this paper, we propose
an efficient multi-objective optimization approach based on
the divide-and-conquer memetic algorithm (DAC-MA) for
Online-TPG. Instead of solving the multi-objective con-
straints simultaneously, the set of constraints is divided into
two subsets of relevant constraints, which can then be solved
separately and effectively by evolutionary computation and
local search of DAC-MA. The empirical performance results
have shown that the proposed approach has outperformed
other TPG techniques in terms of runtime efficiency and
paper quality.
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1 Introduction

Test paper generation (TPG) generates test papers automati-
cally based on multiple assessment criteria. It aims to find an
optimal subset of questions from a question database to form
a test paper according to user specification on total time,
topic distribution, difficulty degree, discrimination degree,
etc. The generated test paper will then be used for test-
ing purpose as in traditional pen-and-pencil tests. Currently,
many techniques such as dynamic programming [15], tabu
search [16,18], biologically inspired algorithms [17,25,34]
and swarm optimization [13,14,38] have been proposed in
the research community for automatic TPG. However, these
techniques generally require long runtime for generating
good quality test papers.

Online test paper generation (Online-TPG) generates a
test paper automatically online according to user specifi-
cation, and the generated test paper can then be attempted
online by user. Online-TPG is a challenging problem. Firstly,
TPG is categorized as a multi-objective optimization problem
on constraint satisfaction, which is NP-hard [18]. Secondly,
Online-TPG is required to be solved online efficiently. How-
ever, the current TPG techniques have not taken the online
generation requirement into consideration as TPG is tradi-
tionally considered as an offline process similar to other
multi-objective optimization problems such as timetabling
[35] and job-shop scheduling [3]. One of the main issues
of Online-TPG is its exhaustive search in a very large search
space of possible candidates with multi-objective constraints.
This is often known as the curse of high dimensionality [37]
because the multi-objective optimization process of TPG,
using either weighting parameters or Pareto front, could eas-
ily get stuck in a local optimal solution and lose the conver-
gence [19]. Therefore, the TPG process is computationally
expensive.
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TIn [29], we have proposed an efficient optimization
approach based on the divide-and-conquer (DAC) frame-
work to reduce the high dimensionality of multi-objective
optimization for Online-TPG. Instead of solving the set
of constraints simultaneously, DAC solves its two decom-
posed subsets of constraints progressively. As such, we
can enhance the quality of the solution in multi-objec-
tive optimization, and eliminate the need of using a com-
plex objective function with its weighting parameters which
are generally not easy to determine. The main drawback
of DAC is its heuristic to generate deterministically a
unique initial solution, which could lead to a local opti-
mal because the search process focuses only on optimiz-
ing the unique initial solution among the several possible
ones.

This paper proposes an efficient approach, called divide-
and-conquer memetic algorithm (DAC-MA), for Online-
TPG. In the proposed approach, we incorporate a memetic
algorithm into the DAC framework to further enhance
the performance of Online-TPG. The set of constraints is
divided into two subsets of relevant constraints, namely
content constraints and assessment constraints, which can
then be solved separately and progressively by evolutionary
computation and local search of DAC-MA respectively.
Specifically, the evolutionary computation of DAC-MA
explores different initial solutions that satisfy the con-
tent constraints; whereas, the local search of DAC-MA
exploits these solutions to optimize on the assessment con-
straints.

Although DAC-MA tackles the same Online-TPG prob-
lem as DAC, it has three novel contributions. Firstly, dif-
ferent from the local optimal optimization approach of
DAC, DAC-MA can achieve global optimal solutions for
multi-objective optimization in Online-TPG by construct-
ing stochastically a diversified population of representa-
tive solutions with evolutionary computation. Secondly,
DAC-MA proposes an efficient approach for a practical
multi-objective optimization problem with the curse of
high dimensionality of constraints, for which classical MA
has not addressed. Thirdly, the performance of the local
search in DAC-MA is further improved by using the near-
est neighbor search. To show its efficiency, the compu-
tational complexity of DAC-MA is also analyzed in this
paper.

In this paper, we discuss the proposed DAC-MA approach
for online-TPG. The rest of the paper is organized as fol-
lows. Section 2 reviews the related work. Section 3 gives
the problem specification. The proposed DAC-MA approach
for Online-TPG is presented in Sect. 4. Section 5 dis-
cusses the Online-TPG. Section 6 gives the performance
results of the proposed approach and its comparison with
other TPG techniques. Finally, the conclusion is given in
Sect. 7.

2 Related work

2.1 Test paper generation

In [15], dynamic programming was proposed to construct
test papers by optimizing an objective function incremen-
tally based on the recursive optimal relation of the objective
function. In tabu search (TS) [18], an objective function is
also defined based on multi-criteria constraints and weight-
ing parameters for test paper quality. TS optimizes test paper
quality by the evaluation of the objective function. In [17],
a genetic algorithm (GA) was proposed to generate quality
test papers by optimizing a fitness ranking function based
on the principle of population evolution. In [34], differential
evolution (DE) was proposed for TPG. DE is similar to the
spirit of GA with some modifications on solution representa-
tion, fitness ranking function, and the crossover and mutation
operations to improve the performance. In [25], an artificial
immune system (AIS) was proposed to use the clonal selec-
tion principle to deal with the highly similar antibodies for
elitist selection in order to maintain the best test papers for
different generations.

In addition, swarm intelligence algorithms such as particle
swarm optimization and ant colony optimization have also
been investigated for TPG. In [13], particle swarm optimiza-
tion (PSO) was proposed to generate multiple test papers by
optimizing a fitness function which is defined based on multi-
criteria constraints. In [14], ant colony optimization (ACO)
was proposed to generate quality test papers by optimizing
an objective function which is based on the simulation of the
foraging behavior of real ants.

As observed from the above discussion, to generate good
test papers, the current TPG techniques generally define an
objective function based on multi-criteria constraints and
weighting parameters for test paper quality. Then, the objec-
tive function is improved iteratively to optimize simulta-
neously the multi-objective criteria of test paper quality. As
such, these techniques generally require weighting parame-
ters and some other parameters such as population size, tabu
length, etc. for each TPG that is not easy to determine. In
addition, these TPG techniques also generally take long run-
time for generating good quality test papers especially for
large datasets of questions.

2.2 Memetic algorithms

Memetic algorithms (MA) [12,20,30,31] represent one of
the recent growing research areas in evolutionary compu-
tation. Inspired by principles of natural selection, the term
“memetic algorithm” was first introduced by Moscato [28]
who viewed MA as a form of population-based hybrid genetic
algorithm (GA) coupled with an individual learning proce-
dure capable of performing local refinements. As a synergy
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of the diversification process in a population-based approach
with the intensification process in individual improvement
mechanism, MA is able to converge to high quality solu-
tions more efficiently than their conventional counterparts
such as evolutionary algorithms, simulated annealing, and
tabu search.

MAs have been widely used for solving various real-
world applications such as scheduling, planning, vehicle
routing, non-linear optimization, control system, and air-
craft design. In these applications, MAs are classified
into three categories: simple hybrid, adaptive hybrid, and
memetic automation [6]. Both simple hybrid and adap-
tive hybrid are commonly used as a hybridization of evo-
lutionary computation and local search. To enhance the
performance, simple hybrid incorporates domain-specific
knowledge whereas adaptive hybrid uses population diver-
sity management and adaptation strategies. Different from
simple and adaptive hybrids which focus more on the learn-
ing process of MA, memetic automation focuses more on the
evolutionary computation process, which is designed specif-
ically for problem-solving in a complex dynamic environ-
ment.

Recently, there have been increasing interest in inves-
tigating simple hybrid and adaptive hybrid for tackling
multi-objective optimization problems [12,22]. In simple
hybrid, special population-based methods [11,20,21] or indi-
vidual improvement methods [21] are designed to deal
with multi-objective optimization. In adaptive hybrid, some
adaptive coordinations of individual improvement methods
[4,5] are proposed for handling multi-objective optimiza-
tion. Traditionally, all of these approaches are proposed for
offline multi-objective optimization by using either weight-
ing parameters [27] or Pareto front [21] methods. However,
these approaches are computationally expensive especially
when there is a high number of multi-objective constraints
[10,19,21,37].

In this research, we propose a new memetic algorithm,
called DAC-MA that adopts a hybridization of simple hybrid
and adaptive hybrid, and the principle of dimensional-
ity reduction for Online-TPG. In addition, domain-specific
knowledge, Pareto front and population diversity manage-
ment strategy are also incorporated to enhance the perfor-
mance of Online-TPG.

3 Problem specification for Online-TPG

3.1 Question dataset

Let Q = {q1, q2, . . . , qn} be a dataset consisting of n ques-
tions, C = {c1, c2, . . . , cm} be a set of m different topics,
and Y = {y1, y2, . . . , yk} be a set of k different question

Table 1 An example math dataset

Q_ID o a e t d c y

(a) Question table

q1 . . . . . . 4 9 1 c1 y1

q2 . . . . . . 7 10 2 c1 y1

q3 . . . . . . 5 7 6 c1 y1

q4 . . . . . . 7 10 9 c1 y1

q5 . . . . . . 6 8 4 c1 y1

q6 . . . . . . 4 6 5 c2 y1

q7 . . . . . . 5 2 3 c2 y1

q8 . . . . . . 3 2 6 c2 y1

q9 . . . . . . 4 3 8 c1 y2

q10 . . . . . . 3 5 7 c1 y2

q11 . . . . . . 6 3 4 c1 y2

q12 . . . . . . 7 1 9 c2 y2

q13 . . . . . . 6 3 10 c2 y2

C Name

(b) Topic table

c1 Integration

c2 Differentiation

Y Name

(c) Question type table

y1 Multiple choice

y2 Fill-in-the-blank

types. Each question qi ∈ Q, where i ∈ {1, 2, . . . , n}, has 8
attributes A = {q, o, a, e, t, d, c, y} defined as follows:

– Question q: It is used to store the question identity.
– Content o: It is used to store the content of a question.
– Answer a: It is used to store the answer of a question.
– Discrimination degree e: It is used to indicate how good

the question is in order to distinguish user proficiency. It
is an integer value ranging from 1 to 7.

– Question time t : It is used to indicate the average time
needed to answer a question. It is an integer value in min-
utes.

– Difficulty degree d: It is used to indicate how difficult
the question is to be answered correctly. It is an integer
number ranging from 1 to 10.

– Related topic c: It is used to store a set of related topics
of a question.

– Question type y: It is used to indicate the type of a ques-
tion. There are mainly three question types, namely fill-
in-the-blank, multiple choice and long question.

Question attributes can be labeled semi-automatically [14]
or manually by human experts. Table 1 shows a sample Math
question dataset.

123



36 Memetic Comp. (2012) 4:33–47

3.2 Test paper specification

A test paper specification S = 〈N , T, D, C, Y 〉 is a tuple of
five attributes which are defined based on the attributes of
the selected questions as follows:

– Number of questions N : It is an optional input for the
number of questions specified for the test paper.

– Total time T : It is the total time specified for the test paper.
– Average difficulty degree D: It specifies the average dif-

ficulty degree for all the questions in the test paper.
– Topic distribution C = {(c1, pc1), (c2, pc2), . . . , (cM ,

pcM )}: It specifies the proportion of topics. The user can
enter either the proportion or the number of questions for
each topic. If the number of questions is entered, then it
will be converted into the corresponding proportion.

– Question type distribution Y ={(y1, py1), (y2, py2), . . . ,

(yK , pyK )}: It specifies the proportion of question types.
The user can enter either the proportion or the number of
questions for each question type. Similarly, if the number
of questions is entered, then it will be converted into the
corresponding proportion.

3.3 Problem specification

Given a test paper specification S = 〈N , T ,D, C,Y〉, the
TPG process aims to find a subset of questions from a ques-
tion dataset Q = {�∞,�∈, . . . ,�\} to form a test paper P
with specification SP that maximizes the average discrimi-
nation degree and satisfies the test paper specification such
that SP = S.

By rewriting the topic distribution pcl for each speci-
fied topic cl and the question type distribution py j for each
specified question type y j in terms of irreducible rational
numbers [36], we have pcl = al/Al , l = 1 . . . M , and
py j = b j/B j , j = 1 . . . K , where al , Al , b j and B j are
integer numbers. Based on the question attributes and test
paper specification S, the TPG problem can be formulated
as a standard 0–1 fractional integer linear programming (ILP)
problem [36] as shown in Fig. 1.

In Fig. 1, constraint (1) is the constraint on the number of
questions, where xi ∈ {0, 1} is a binary variable associated
with question qi , i = 1 . . . n, in the dataset. Constraint (2) is
the total time constraint. Constraint (3) is the average diffi-
culty degree constraint. Constraint (4) is the topic distribution
constraint. The relationship of a question qi , i = 1 . . . n, and
a topic cl , l = 1 . . . M , is represented as ril such that ril = 1
if question qi is related to topic cl and ril = 0 if otherwise.
Constraint (5) is the question type distribution constraint.
The relationship of a question qi , i = 1 . . . n, and a question
type y j , j = 1 . . . K , is represented as si j such that si j = 1
if question qi is related to question type y j and si j = 0 if
otherwise.

Fig. 1 Standard 0–1 fractional ILP problem for Online-TPG

It is important to note that the TPG process occurs online
where user expects to generate a test paper within an accept-
able response time. Hence, the Online-TPG problem has
another implicit constraint for the online requirement, i.e.,
the TPG process has to be completed within τ minutes.
We refer the Online-TPG problem as an online multi-objec-
tive optimization problem. Therefore, Online-TPG is as hard
as other optimization problems due to its computational
NP-hardness, and it is also required to be solved efficiently
in runtime.

4 The DAC-MA approach for Online-TPG

In this section, we propose the DAC-MA approach for
Online-TPG. As shown in Fig. 1, most of the constraints of
the TPG formulation are in the form of linear equality con-
straints. Each constraint is often considered as a dimension
in a search space of multi-objective constraints. As such, the
number of dimensions or objectives in Online-TPG could be
high especially when the test paper is specified with many
topics and question types. However, we observe that content
and question type constraints can be easily satisfied if we
can find an appropriate fixed number of questions in a test
paper. After satisfying the content constraints, the Online-
TPG becomes a simpler problem with just two remaining
constraints on total time and average difficulty degree. There-
fore, to reduce the curse of high dimensionality for multi-
objective optimization of Online-TPG, we can divide the set
of constraints into two subsets of relevant constraints, namely
content constraints and assessment constraints, which can
then be solved separately and effectively by evolutionary
computation and local search of DAC-MA respectively. In
the test paper specification S = 〈N , T ,D, C,Y〉 shown in
Fig. 1, the content constraints include constraint (4) on topic
distribution C and constraint (5) on question type distribu-
tion Y , whereas the assessment constraints include constraint
(2) on total time T and constraint (3) on average difficulty
degree D.
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Fig. 2 The proposed DAC-MA approach

The proposed DAC-MA approach is shown in Fig. 2 which
consists of the following two main processes:

– Offline Index Construction: It constructs an effective ind-
exing structure for supporting local search for improving
the quality of the generated paper.

– Online Test Paper Generation: It generates an optimal test
paper which satisfies the specified content constraints and
assessment constraints using the memetic algorithm.

In the Offline Index Construction process, we use an effec-
tive 2-dimensional data structure, called R-Tree [2,26], to
store questions based on the time and difficulty degree attri-
butes. R-Tree has been widely used for processing queries on
2-dimensional or 3-dimensional spatial databases. As there
is no specified rule on grouping of data into nodes in R-
Tree, different versions of R-Trees have been proposed. The
R-Tree used here is similar to the R-Tree version discussed in
[2], with some modifications on index construction in order to
enhance efficiency. Some of the modified operations include
insertion, subtree selection, overflow handling and node
splitting. Each leaf node in R-Tree is a minimum bound-
ing rectangle (MBR) which is the smallest rectangle in the
2-dimensional representation that tightly encloses all ques-
tion data based on the time and difficulty degree attributes.

5 Online test paper generation

In the Online-TPG process, it first generates an initial pop-
ulation of test papers by satisfying the content constraints.
Next, it performs local search to improve the quality of test
papers by minimizing the assessment constraint violations.
The test papers are then ranked based on a fitness func-
tion. Evolutionary computation is then performed based on

genetic operators to further diversify and improve the qual-
ity of the test papers. The improvement process is repeated
until an optimal test paper with high quality is generated.
As illustrated in Fig. 2, the Online-TPG process consists of
4 major steps: Initial Population Generation, Local Search,
Pareto Determination & Ranking and Evolutionary Compu-
tation. Algorithm 8 presents the overall DAC-MA approach
for Online-TPG.

5.1 Initial population generation

This step generates an initial population of test papers by
satisfying the content constraints. As previously mentioned,
the content constraints can be easily satisfied by maintain-
ing an appropriate fixed number of questions in a test paper.
However, a user may not need to specify the number of ques-
tions for the test paper during test paper specification. In
this case, the minimal number of questions for a test paper
needs to be estimated. It can be done by using the content
constraints on topic distribution and question type distribu-
tion specified by the user. From the problem formulation
given in Fig. 1, the lowest common denominator A for all
Al , l = 1 . . . M , and lowest common denominator B for all
B j , j = 1 . . . K , can be computed. Let N be the number
of questions for the test paper. By some simple arithmetic,
we can find that N = k ∗ Nb, k ∈ N, k ≥ 1, where Nb is
computed as:

Nb = A ∗ B

gcd(A, B)

where gcd(A, B) is the greatest common divisor of A and
B. To compute gcd(A, B), we use the well-known Euclid-
ean algorithm [36] which is based on the modular arithmetic
operator. To find an appropriate number of questions such
that N = k ∗ Nb, k ≥ 1, we try with k = 1, 2, . . . and check
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Algorithm 1: Divide_And_Conquer_Memetic_Algorithm
Input: S = (N , T , D, C, Y) - test paper specification; Q - question dataset; R - R-Tree
Output: P - test paper
begin

1 Initialize the Archive Ar ← ∅;
2 Generate initial population I ← {P1, P2, . . . , PK pop }; /* content constraint satisfaction */

3 while Termination condition is satisfied do
4 foreach Pi in I do /* assessment constraint optimization */
5 P ′i ← Local_Search(S, P〉, R);

Ar ← Ar
⋃

P ′i ; /* insert new test papers into Archive */

6 Update the Archive Ar by Pareto Optimal Determination and Ranking;
7 Generate new population I by Evolutionary Computation; /* content constraint exploration */

8 return P ← argmin
Pi∈Ar

f (Pi )

(N = 4)

( c1, y1) ( c1, y2) ( c2, y2)( c2, y1)
q2 q6 q10 q13

Question Gene 

y1 y2

Genotype

Chromosome

Fig. 3 Test paper chromosome and question gene

whether N is suitable for the test paper which satisfies the
total time constraint specified.

Next, we discuss how to represent a test paper for evolu-
tionary computation. It is natural to represent a test paper as
a chromosome in terms of a vector. The chromosome repre-
sentation of a test paper with N questions is a list of N genes.
Each question gene 〈q, (c, y)〉 consists of 3 components:
question, related topic and question type. The collection of
all topic-question type pairs (c, y) of the question genes in
a chromosome is called genotype of that chromosome. The
question genes in a chromosome are also organized firstly
according to the question type, and then the related topic.
Figure 3 illustrates an example of the test paper chromosome.

To generate an initial population of test papers, we need to
determine the population size. The population size K pop is
very important in evolutionary computation because it deter-
mines the diversification of the population in order to achieve
global optimal solution. For diversity, we try to keep as many
distinguishing genotypes as possible in the population. It is
important to enumerate the number of all possible genotypes
with respect to the content constraints in order to determine
the appropriate size of the initial population. Therefore, given
the number of N question genes and the content constraints,
we need to enumerate all possible topic-question type assign-
ments so that the content constraints are satisfied. This enu-
meration problem, in fact, is a variant of the Polya’s Theory of
Counting [9], which provides a solution to count the number
of all possible genotypes with duplications. By eliminating
the duplications, the number of all distinguishing genotypes

Table 2 Population size determination

N ≤ 4 5–8 9–15 16–30 31–40 >41

K pop 3 6 10 30 50 100

can be counted. As the number of genotypes increases when
N increases, it is more effective to allow a variable-size pop-
ulation according to the number of genotypes. Table 2 gives
the population size K pop according to the number of ques-
tions N based on [9].

To generate the initial population of K pop test papers in
which each test paper will have the same number of N ques-
tion genes, we use a randomization technique to ensure that
all the generated test papers will satisfy the content con-
straints and have as many different genotypes as possible.
Assume that we have already fixed the question types of
N questions, we use N randomizers which generate integer
numbers in uniform distribution to assign different topics
into each of the question genes in the test paper for generat-
ing the population. After that, N random questions are chosen
based on the genotypes. Figure 4 shows an example of the
initial population generated from the test paper specification
S = 〈4, 30, 5, {(c1, 0.5), (c2, 0.5)}, {(y1, 0.5), (y2, 0.5)}〉
based on the Math dataset.

5.2 Local search

After generating the initial population of test papers, we con-
duct local search by minimizing assessment constraint viola-
tions to improve the quality of the test papers. Before discuss-
ing the local search algorithm, we need to define assessment
constraint violation and the fitness function for the evaluation
of the quality of a test paper.

Definition 1 (Assessment constraint violation) Given a test
paper specification S = 〈N , T ,D, C,Y〉. Let P be a gener-
ated test paper with specificationSP=〈N , TP , DP , CP , YP 〉.
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Fig. 4 Initial population
generation
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Assessment constraint violation indicates the differences
between the test paper specification and the generated test
paper according to the total time constraint and the average
difficulty degree constraint. Therefore, assessment constraint
violation consists of total time constraint violation and aver-
age difficulty degree constraint violation which are defined
as follows:

Total time constraint violation:

� T (SP ,S) = TP − T

T
Average difficulty degree constraint violation:

� D(SP ,S) = DP − D

D

A generated test paper P with specification SP = 〈N , TP ,

DP , CP , YP 〉 is said to satisfy the assessment constraints in
S if | � T (SP ,S)| ≤ α and | � D(SP ,S)| ≤ β, where α

and β are two predefined thresholds which indicate accept-
able quality satisfaction on total time and average difficulty
degree respectively.

Typically, a fitness function can be defined to compare test
papers based on assessment constraint violation. Intuitively,
a good test paper should have small values of �T and �D.

Definition 2 (Fitness) Given a test paper specification S =
〈N , T ,D, C,Y〉. The fitness f (P)of a test paper P is defined
in terms of assessment constraint violation as follows:

f (P) = �T (SP ,S)2 +�D(SP ,S)2

Local search aims to find better questions to substitute
the existing questions in the test paper in order to minimize
assessment constraint violations. Algorithm 10 presents the
local search algorithm. It starts from an original test paper P0

and then iteratively moves to its neighboring solution P1 ∈
N (P0), where N (P0) is a neighborhood region. Here, the
neighborhood region of P0 is defined so that its genotype is
preserved. More specifically, the neighborhood region of P0

is any test paper that has the same genotype as P0. As such,
the neighborhood region of P0 could be very large. To form
a new test paper, each question qk in the original test paper
P0 is substituted by another better question qm which has
the same topic and question type such that the assessment
constraint violations are minimized. Specifically, the choice
of the neighboring solution is determined by minimizing the
fitness function f (P1), P1 ∈ N (P0). To achieve this effi-
ciently, we need to prune the search space and find the best
question for substitution. The termination conditions for the

local search are based on the criteria for quality satisfaction
and the number of iterations.

Algorithm 2: Local_Search
Input: S = (N , T, D, C, Y ) - test paper specification;

P0 ={q1, q2, .., qN } - original test paper;
R - R-Tree

Output: P1 - Improved test paper
begin

1 P ← {P0};
2 while Termination condition is not satisfied do
3 foreach qi in P0 do
4 Compute 2-dimensional region W ;
5 qm ← Best_First_Search(qi , W , R);
6 P1 ← {P0 − {qi }} ∪ {qm} ;
7 Compute fitness f (P1);
8 Insert new test paper P1 into P;

9 P ← {P0} ← argmin
P1∈P

f (P1) /* best move*/;

10 return P1 ← P0

5.2.1 Pruning search space

In the local search process, it needs to scan through the entire
question list several times to find the most suitable ques-
tion for improvement. Hence, exhaustive searching on a large
question list is computational expensive as it requires O(N )

time. To accelerate this step, we focus only on substitution
questions that help to improve both aspects of the assessment
constraint violation because it helps the search process con-
verge faster towards Pareto Optimal. To do that, we need to
prune the search space to find a 2-dimensional region W that
contains possible questions for substitution.

Let SP0 = 〈N , T0, D0, C0, Y0〉 be the specification of a
test paper P0 generated from a specification S=〈N , T ,D,

C,Y〉. Let P1 be the test paper created after substituting
a question qk of P0 by another question qm ∈ Q with
SP1 = 〈N , T1, D1, C1, Y1〉. The relations of total time and
average difficulty degree between P1 and P0 can be expressed
as follows:

T1 = T0 + tm − tk (7)

D1 = D0 + dm

N
− dk

N
(8)

where tk and tm are the question time of qk and qm respec-
tively, and dk and dm are the difficulty degree of qk and qm

respectively.
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Fig. 5 The 2-dimensional region W and best question selection

Let’s consider the total time violation of P0. If
|�T (SP0 ,S)| = |T′−T |

T ≥ α and T0 ≤ T , where α is the pre-
defined threshold for constraint satisfaction on total time, we
can select qm to improve the total time satisfaction by increas-
ing the total time from T0 to T1 such that |�T (SP1 ,S)| ≤ α.
There are two possibilities:

– T0 ≤ T1 ≤ T : By substituting the right hand side of equa-
tion (7) into the inequality | � T (SP1,S)| ≤ α. We can
derive tm ∈ [tk + T − T0 − αT, tk + T − T0].

– T0 ≤ T ≤ T1: Similarly, we can derive tm ∈ [tk+T−T0,

tk + T − T0 + αT ].

Therefore, we have tm ∈ [tl , tu], where tl = tk+T −T0−
αT, tu = tk + T − T0. If | � T (SP0 ,S)| = |T′−T |

T ≥ α and
T0 > T , we can derive the same result.

Similarly, we can also derive the result for the difficulty
degree of qm : dm ∈ [dl , du], where dl = dk + N (D− D0)−
βN D, du = dk + N (D − D0) + βN D, where D0, D and
β are the average difficulty degree of P0 and S, and the
predefined threshold for constraint satisfaction on average
difficulty degree respectively. Figure 5 shows the region W
of questions for substitution.

5.2.2 Finding best question for substitution

Among all the questions located in the 2-dimensional region
W , this step finds the best question that minimizes the fitness
function in order to enhance the test paper quality.

Consider question qm as a pair of variables on its question
time t and difficulty degree d. The fitness function f (P1) can
be expressed as a multivariate function f (t, d):

f (P1) = �T (SP1 ,S)2 +�D(SP1 ,S)2

f (t, d) =
(

T1 − T

T

)2

+
(

D1 − D

D

)2

From Eqs. (7) and (8), we have:

T1 − T0 = t − (T − T0 + tk) = t − t∗

D1 − D0 = d − (N D − N D0 + dk) = d − d∗

where t∗ = T−T0+tk and d∗ = N D−N D0+dk . Therefore,

f (t, d) = (t − t∗)2

T 2 + (d − d∗)2

D2

≥ (t − t∗)2 + (d − d∗)2

T 2 + D2

= distance2(qm, q∗)
T 2 + D2

where q∗ is a question having question time t∗ and difficulty
degree d∗.

As T and D are predefined constants and q∗ is a fixed
point in the 2-dimensional space, the best question qm to
replace question qk in P0 is the question point that is the
nearest neighbor to the point q∗ (i.e., the minimum value of
the function f (P1)) and located in the region W . Figure 5
shows an example in which q3 is the best question to replace
qk because it is the nearest neighbor to q∗ and located in the
region W .

To find the best question qm for substitution efficiently, we
perform the best first search (BFS) [33] with the R-Tree. BFS
recursively visits the nearest question whose MBR is close to
q∗. For efficiency, BFS uses a memory-resident min-heap H
[7] to manage all the questions in the R-Tree that have been
accessed. The search continues until a question de-heaped
from H is located in W . As the time complexity of BFS is
O(lg N ), we can improve the time complexity of the scan-
ning step to O(lg N ).

5.3 Pareto determination and ranking

After local search, we have the improved test papers in the
population. The next step is to determine Pareto optimal test
papers that satisfy the Pareto optimal property [11,39] based
on the assessment constraint violations. Pareto optimal deter-
mination is performed based on the improved test papers from
local search and also the current Pareto optimal test papers
in the shared memory Archive.

Definition 3 (Domination relationship) Given a test paper
specification S, a test paper Pi is said to dominate another
test paper Pj w.r.t S, denoted as Pi S Pj , if and only if:

– �T (Pi ,S) ≤ �T (Pj ,S); and
– �D(Pi ,S) ≤ �D(Pj ,S); and
– �T (Pi ,S) < �T (Pj ,S) or �D(Pi ,S) < �D(Pj ,S).

Definition 4 (Pareto optimal) Given a test paper specifica-
tion S, a test paper Pi is said to be a Pareto optimal solution
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w.r.t S if and only if there does not exist any test paper Pj �=
Pi such that Pj S Pi .

Pareto optimal determination has been studied for multi-
objective optimization for a long time. Although several met-
hods have been proposed, they are not efficiently scalable due
to high runtime complexity such as O(dn2) [11] and O(dn3)

[39], where n is the number of data points in a d-dimensional
space of attributes or objectives. However, we found that
Pareto optimal determination is in fact a maximum vector
problem [24], which has an efficient scalable divide-and-
conquer algorithm of O(n(log n)d−2 + n log n). For Pareto
optimal determination of test papers, we modify the algo-
rithm given in [24] with d = 2.

All Pareto optimal test papers will be ranked in ascend-
ing order according to the fitness value of f (P). Then, these
test papers are stored in the Archive that is a memory-resi-
dent table storing all test papers gathered so far in ascend-
ing order of the fitness value. For efficiency, the Archive is
implemented according to the following ways. Firstly, it is
implemented as a variable-sized Archive to avoid loosing
good test paper solutions of the stochastic optimization pro-
cess. The size of the Archive can be adjusted according to
the number of distinguishing genotypes of test paper solu-
tions. Secondly, if a candidate test paper solution is not dom-
inated by any solutions in the Archive, it will be added to the
Archive. Similarly, if any test paper solutions in the Archive
are dominated by the candidate solution, it will be removed
from the Archive. Thirdly, the Archive only keeps at most
one test paper for each distinguishing genotype to preserve
the diversification of the population. Hence, if there are two
test papers with the same genotype, they will be compared
according to the domination relationship, fitness value and
average discrimination degree before deciding which one is
added into the Archive. The best Pareto optimal test paper
has the minimum fitness function value.

5.4 Evolutionary computation

In evolutionary computation, it aims to diversify the test
papers stored in the Archive based on the content constraints.
There are two main steps in evolutionary computation: selec-
tion and reproduction.

5.4.1 Selection

Test paper chromosomes are selected from the Archive to
breed a new generation of population. Individual test paper
solutions in the Archive are selected based on the fitness val-
ues. The fitness function is designed stochastically so that
a small proportion of less fit test paper solutions are also
selected to keep the diversity of the new generation. Here, the
well-studied method, called roulette wheel selection [1], is

( c1, y1) ( c2, y2) ( c2, y2)( c1, y1) ( c1, y1) ( c1, y2) ( c2, y2)( c2, y1)

two points random selection

q2 q1 q12 q13 q2 q10q6 q13

new offspring

( c1, y1) ( c2, y2) ( c2, y1) ( c1, y2)

Fig. 6 Mutation operation

used for selecting potentially useful test paper solutions. The
roulette wheel selection procedure is repeated until there are
enough selected individuals of K pop in the population. The
probability for being selected is based on the fitness value
associated with each individual test paper chromosome. If
f (Pi ) is the fitness value of individual Pi in the population,
its probability of being selected is:

pi = 1/ f (Pi )

�
K pop
j=1 (1/ f (Pj ))

5.4.2 Reproduction

It aims to produce the next population of test paper solutions
with new genotypes from the selected test papers. In doing
so, the two genetic operators: mutation and crossover are
designed such that new genotypes are explored based on the
content constraint satisfaction.

Mutation is a genetic operator used to maintain genetic
diversity of a population of chromosomes towards global
optimization by preventing the population of chromosomes
from becoming too similar to each other. Here, the muta-
tion operation aims to explore different genotypes. We use a
typical mutation operator, called two-points gene exchange
of a chromosome [1], to select K pop/4 random individuals
from the parent population for mutation. In each mutation,
two random question genes with different topics and question
types of a chromosome are selected. For example, in the two
question genes, 〈q1, (c1, y1)〉 and 〈q12, (c2, y2)〉, shown in
Fig. 6, the corresponding topics are swapped to yield a chro-
mosome that has two new topic-question types at the same
positions of the two original question genes. Therefore, the
new chromosome will potentially have a new genotype while
content constraint satisfaction is preserved. As the questions
q1 and q12 are no longer valid for the two new topic-ques-
tion types (c2, y1) and (c1, y2), the questions q1 and q12 are
replaced by the questions q6 and q10.

Crossover is a genetic operator used to vary the chro-
mosomes from one generation to the next for reproduc-
tion. Here, the crossover operation aims to improve the
test paper quality towards assessment constraint satisfac-
tion while preserving content constraint satisfaction. We
use the gene exchange crossover operator [1] based on two
chromosomes. The crossover operator exchanges a pair of
question genes that have a common topic-question type of
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( c1, y1) ( c1, y2) ( c2, y2)( c2, y1)
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Fig. 7 Crossover operation

two parent chromosomes to render two child chromosomes.
Figure 7 shows an example of chromosome crossover. The
two chromosomes have two common topic-question type
pairs (c1, y1) and (c2, y2). The questions q2 and q4 are
exchanged. However, the questions q12 and q13 cannot be
exchanged because q13 has already existed in the test paper.

The crossover operation is conducted on a predefined
number of K pop/4 random pairs of genes. For effective cross-
over, we partition the population of test papers into 4 groups
according to the positive and negative values of assessment
constraint violations as follows:

1. �T (SP ,S) < 0 and �D(SP ,S) < 0
2. �T (SP ,S) < 0 and �D(SP ,S) > 0
3. �T (SP ,S) > 0 and �D(SP ,S) < 0
4. �T (SP ,S) > 0 and �D(SP ,S) > 0

The crossover operation is performed between 2 individu-
als from group (1) and group (4), or between individuals from
group (2) and group (3). It is possible that both individuals
are improved in terms of assessment constraint satisfaction
after gene exchange by the crossover operator.

5.5 Termination

After evolutionary computation, a new generation of test
paper population is generated. The TPG process is repeated
with the local search again until the termination conditions
are reached. As setting a hard termination condition based
on the online runtime requirement may affect badly the
algorithm’s performance, we use the following two typical
termination conditions in our experimental study:

– Quality satisfaction: The algorithm will terminate if a
high quality test paper is generated.

– Maximum number of iterations in which no better test
paper is found: This parameter is generally set to 500
iterations for the online runtime requirement.

In practice, we can set a suitable online runtime require-
ment (for example, 2 minutes) as a termination condition
by considering the tradeoff between practical experimental
results and the user’s expectation.

5.6 Computational complexity

In this section, we analyze the computational complexity of
the proposed DAC-MA approach for the Online-TPG pro-
cess.

5.6.1 Space complexity

It estimates the number of all possible candidate solutions
from a given test paper specification. There is at most O(2n)

candidates, where n is the number of questions in the data-
set. Recall that we can determinate the number of questions
N of a test paper based on the content constraints. Thus, the
search space in DAC-MA is reduced to at most

( n
N

) ≈ O(nN )

candidates. This is approximated by using the well-known
Binomial Bound Inequality [7]. The reduced search space
in DAC-MA is much smaller as compared with the entire
search space O(2n). In fact, as there are so many invalid test
papers in the O(nN ) candidates that violate the content con-
straints, the actual number of valid candidates considered in
DAC-MA is much smaller than O(nN ).

5.6.2 Time complexity

We summarize the time complexity involved in the various
steps of our proposed DAC-MA approach as follows:

1. Determining the number of questions N : O(log N )

2. Initial population generation: O(K pop × N )

3. Local search: O(K pop × N × log n × τeval)

4. Pareto determination and ranking: O(nN × log nN ) =
O(nN × N × log n)

5. Evolutionary computation: O(K pop × N )

where n is the number of questions in the dataset, N is the
estimated number of questions in a test paper from a given
user specification, O(log N ) is the time complexity of the
Euclidian algorithm, O(log n) is the time complexity of find-
ing the best question for substitution in the R-Tree. We also
define the time complexity of a fitness evaluation as τeval in
our analysis.

Let g be the number of generations needed for optimiza-
tion in the DAC-MA approach. Hence, the total time com-
plexity of the DAC-MA is in the order of:

O(log N + K pop × N + g × (K pop × N × log n × τeval +
nN × N × log n + K pop × N ))

≈ O(g × (K pop × N × log n × τeval + nN × N × log n))

≈ O(g × log n × N × (K pop × τeval + nN ))

5.6.3 Comparison

To show the computational advantages of the proposed DAC-
MA approach, we compare DAC-MA with a conventional
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Table 3 Comparison on computational complexity (N � n)

Space Time

MA O(2n) O(g × n2(K pop × τeval + (nc)d−42n))

DAC-MA O(nN ) O(g × log n × N (K pop × τeval + nN ))

Table 4 Test datasets

D1 D2 D3 D4

#Questions 20,000 30,000 40,000 50,000

#Topics 40 50 55 60

#Question types 3 3 3 3

memetic algorithm [21] with Pareto optimal determination
[24] for multi-objective optimization of Online-TPG. Simi-
lar to DAC-MA, we can analyze the conventional memetic
algorithm whose complexity is O(g× n2× (K pop× τeval +
(nc)d−42n)), where d is the number of specified constraints
in the test paper specification, and c is a constant.

Table 3 compares the computational complexity of the
proposed DAC-MA with the conventional memetic algo-
rithm. As can be seen, DAC-MA is capable of reducing time
complexity quite significantly. More importantly, its time
complexity is independent of the number of specified con-
straints as compared with that of the conventional memetic
algorithm. This shows that the proposed DAC-MA is an
effective multi-objective optimization approach for Online-
TPG.

6 Performance evaluation

In this section, we evaluate the performance of the proposed
DAC-MA approach for Online-TPG. The experiments are
conducted on a Windows XP environment, using an Intel
Core 2 Quad 2.66 GHz CPU with 3.37 GB of memory. The
performance of DAC-MA is measured and compared with
other techniques including genetic algorithm (GA) [15], par-
ticle swarm optimization (PSO) [13], differential evolution
(DE) [34], ant colony optimization (ACO) [14], tabu search
(TS) [18], and classical MA (MA) [21]. Here, we adapt the
classical memetic algorithm [21] with Pareto optimal deter-
mination [24] for multi-objective optimization of Online-
TPG.

6.1 Datasets

As there is no benchmark datasets available, we generate 4
large-sized synthetic datasets, namely D1, D2, D3 and D4

with number of questions of 20,000, 30,000, 40,000 and
50,000 respectively for performance evaluation. In these four
datasets, the values of each attribute are generated according

to a normal distribution. Table 4 shows the summary of the
four datasets.

6.2 Experiments

To evaluate the performance of the DAC-MA approach, we
have designed 12 test specifications in the experiments. We
vary the parameters in order to have different test criteria
in the test specifications. The number of topics is specified
between 2 and 40. The total time is set between 20 and 240
minutes, and it is also set proportional to the number of
selected topics for each specification. The average difficulty
degree is specified randomly between 3 and 9.

We perform the experiments according to the 12 test spec-
ifications for each of the following 7 algorithms: GA, PSO,
DE, ACO, TS, MA, and DAC-MA. We measure the runtime
and quality of the generated test papers for each experiment.

6.3 Quality measures

The performance of the proposed DAC-MA approach is eval-
uated based on paper quality and runtime. To evaluate the
quality, we define mean discrimination degree and mean con-
straint violation.

Definition 5 (Mean discrimination degree) Let P1, P2, . . . ,

Pk be the generated test papers on a question dataset D w.r.t
different test paper specifications Si , i = 1 . . . k. The mean
discrimination degree MD

d is defined as:

MD
d =

∑k
i=1 EPi

k
where EPi is the average discrimination degree of Pi .

The constraint violations of a generated test paper is com-
puted based on the differences between each of its attributes
in the generated paper and the corresponding attributes in
the test specification. As such, the mean constraint violation
consists of two components:

– Assessment constraint violation: It is defined in Defini-
tion 1 that consists of the total time constraint violation
and average difficulty degree constraint violation.

– Content constraint violation: Kullback–Leibler (KL) div-
ergence [23] is a commonly used measure for evaluat-
ing the statistical difference between two distributions. In
content constraint violation, the KL divergence is used to
measure the difference of the topic and question type dis-
tributions between the specification SP of the test paper
P and the test paper specification S.

Definition 6 (Content constraint violation) Given a test
paper specification S = 〈N , T ,D, C,Y〉. Let P be a gener-
ated test paper with specificationSP=〈N , TP , DP , CP , YP 〉.
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Content constraint violation consists of topic distribution vio-
lation �C(SP ,S) and question type distribution violation
�Y (SP ,S), which are the differences between the gener-
ated test paper and the test paper specification according to
the topic distribution and question type distribution respec-
tively. These violations are defined as follows:

Topic distribution Violation:

� C(SP ,S) = DK L(pcp||pc) =
M∑

i=1

pcpi log
pcpi

pci

Question type distribution violation:

� Y (SP ,S) = DK L(pyp||py) =
K∑

j=1

pypj log
pypj

py j

where pcp and pc are the topic distributions of P and the
test paper specification S respectively, and pyp and py are
the question type distributions of P and the test paper spec-
ification S respectively.

The constraint violation (CV) of a generated test paper P
with respect to S is defined as:

CV (P,S) = λ ∗ �T + λ ∗ �D + log�C + log�Y

4
As KL divergence may have very large value, the logarithm
scale of �C and �Y is used to scale the values to a range
between 0 and 100. λ is a constant which is set equal to 100.

Definition 7 (Mean constraint violation) The mean constra-
int violation MD

c of k generated test papers P1, P2, . . . , Pk

on a question dataset D w.r.t different test paper specifica-
tions Si , i = 1 . . . k, is defined as:

MD
c =

∑k
i=1 CV (Pi ,Si )

k
where CV (Pi ,Si ) is the Constraint Violation of Pi w.r.t. Si .

To determine the usefulness of a generated test paper, the
value of constraint violation should be in a certain range.
Specifically, we set the following 4 thresholds for a high
quality test paper: �T (SP ,S) ≤ 0.15,�D(SP ,S) ≤ 0.15,

log�C(SP ,S) ≤ 5 and log�Y (SP ,S) ≤ 5. These thresh-
old values are obtained experimentally according to the aver-
age of the best quality performance of all algorithms. Based
on these thresholds, we have MD

c ≤ 10 for high quality test
papers, 10 < MD

c ≤ 30 for medium quality test papers and
MD

c > 30 for low quality test papers.

6.4 Performance results

Figure 8 compares the runtime performance of the seven
algorithms based on the four datasets. The results have clearly
shown that DAC-MA consistently outperforms other tech-
niques in runtime for the different datasets. It generally

requires less than 2 min to complete the paper generation
process. Moreover, the proposed DAC-MA approach is scal-
able in runtime on different dataset sizes. In contrast, other
techniques are not efficient to satisfy the online runtime
requirement. Specifically, the runtime performance of other
techniques degrades quite badly as the dataset size or the
number of specified constraints gets larger.

Figure 9 shows the performance results based on the mean
discrimination degree MD

d and mean constraint violation
MD

c of the seven algorithms based on the four datasets.
As can be seen from Fig. 9a, DAC-MA has consistently
achieved higher mean discrimination degree MD

d than other
techniques for the generated test papers. In addition, we
also observe that DAC-MA has consistently outperformed
other techniques on mean constraint violation MD

c based
on the four datasets. The average constraint violations of
DAC-MA tends to decrease whereas the average constraint
violations of other approaches increase quite fast when the
dataset size or the number of specified constraints gets larger.
In particular, DAC-MA can generate high quality test papers
with MD

c ≤ 6 for all datasets. As such, DAC-MA tends
to generate higher quality test papers on larger datasets
while other techniques tend to generate lower quality test
papers.

The runtime of DAC-MA is more efficient for Online-TPG
due to three main reasons. Firstly, the number of constraints
is reducible into two subsets of relevant constraints which
can be solved effectively by appropriate techniques in DAC-
MA. Secondly, DAC-MA utilizes the content constraints to
generate initial solutions, thereby pruning the search space
significantly to O(nN ) as compared with O(2n) of other
approaches. Thirdly, DAC-MA uses a much simpler objec-
tive function without any weighting parameter and it only
takes O(log n) to find suitable questions to improve test
paper quality based on R-Tree whereas other approaches
need to take O(n). Thus, DAC-MA can improve the com-
putational time. Moreover, as there are more questions with
different attribute values on larger datasets and the R-Tree
is an effective data structure, DAC-MA is able to generate
higher quality test papers. In contrast, the quality perfor-
mance of other techniques drops quite considerably when
many constraints are specified or larger datasets are used. It
is because these techniques are easier to get stuck in local
optimal.

Table 5 gives the performance comparison between DAC
[29] and DAC-MA for each dataset based on the 12 test
specifications. As can be seen, the average performance of
DAC-MA is consistently better than DAC based on the four
datasets. However, the runtime performance of DAC and
DAC-MA depends on the test paper specification. If the spec-
ified test papers contain many topics or have high total time,
DAC-MA outperforms DAC in runtime. Otherwise, DAC
achieves better runtime performance. The main reason is that
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Fig. 9 Performance results based on quality

DAC optimizes a unique initial solution whereas DAC-MA
optimizes a diverse initial population of representative solu-
tions. When the number of specified topics or total time is
small, the number of distinguishing genotypes is small. There
may have enough relevant questions for DAC to optimize the
unique solution for generating good quality test paper. The
runtime of DAC outperforms DAC-MA in this situation as
it is a single-based approach while DAC-MA is a popula-

tion-based approach. However, when the number of specified
topics or total time is high, and the number of distinguishing
genotypes is also high. There may not have enough relevant
questions for DAC to optimize the unique initial solution.
Thus, the best solution achieved by DAC is not as good as
that of DAC-MA. In addition, DAC has to spend more time
to achieve its best solution than DAC-MA, eventhough it is
a single-based approach.
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Table 5 Performance comparison between DAC and DAC-MA

Algorithm D1 D2 D3 D4

Average runtime (s) DAC 38.4 48.0 59.4 72.6

DAC-MA 35.4 44.4 54.0 68.4

Average
discrimination
degree MD

d

DAC 5.50 5.80 6.25 6.40

DAC-MA 6.00 6.20 6.40 6.7

Mean constraint
violation MD

c

DAC 6.85 5.94 5.25 4.45

DAC-MA 5.35 4.68 4.24 3.05

7 Conclusion

In this paper, we have proposed an efficient DAC-MA
approach for online-TPG. The proposed DAC-MA approach
is based on constraint decomposition and memetic algorithm
for multi-objective optimization. The underlying idea is that
DAC-MA is able to divide the set of constraints into two
subsets of relevant constraints, which can then be optimized
effectively. In this paper, we have also evaluated the perfor-
mance of the proposed approach. The performance results
have shown that the proposed DAC-MA approach has not
only achieved good quality test papers, but also satisfied the
online runtime requirement as compared with other heuristic
techniques. As such, the proposed approach is effective for
Online-TPG in terms of runtime efficiency and paper quality.
It is particularly useful for generating test papers online for
Web-based testing and intelligent tutoring.

There are two possible directions for further enhancing
the performance of the proposed DAC-MA approach. First,
approximate local search [32] which has optimal and effi-
cient performance guarantee property can be investigated for
maximizing the average discrimination degree while satisfy-
ing the constraints during the online test paper optimization
process. Second, the online runtime performance of DAC-
MA can be improved by using a better population selection
method in the evolutionary computation. Instead of using the
fitness value, genotypes could be selected for local search
improvement based on the ranking of their potential in gen-
erating high quality test papers. As there are similar statisti-
cal ranking techniques [8] proposed in the machine learning
research community, these techniques could be investigated
for the population selection method.
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