
Memetic Comp. (2011) 3:149–162
DOI 10.1007/s12293-011-0065-8

REGULAR RESEARCH PAPER

Performance evaluation of artificial bee colony optimization
and new selection schemes

Konrad Diwold · Andrej Aderhold ·
Alexander Scheidler · Martin Middendorf

Received: 22 November 2010 / Accepted: 7 July 2011 / Published online: 24 July 2011
© Springer-Verlag 2011

Abstract The artificial bee colony optimization (ABC) is
a population-based algorithm for function optimization that
is inspired by the foraging behavior of bees. The population
consists of two types of artificial bees: employed bees (EBs)
which scout for new, good solutions and onlooker bees (OBs)
that search in the neighborhood of solutions found by the
EBs. In this paper we study in detail the influence of ABC’s
parameters on its optimization behavior. It is also investigated
whether the use of OBs is always advantageous. Moreover,
we propose two new variants of ABC which use new meth-
ods for the position update of the artificial bees. Extensive
empirical tests were performed to compare the new variants
with the standard ABC and several other metaheuristics on a
set of benchmark functions. Our findings show that the ideal
parameter values depend on the hardness of the optimization
goal and that the standard values suggested in the literature
should be applied with care. Moreover, it is shown that in
some situations it is advantageous to use OBs but in others it
is not. In addition, a potential problem of the ABC is identi-
fied, namely that it performs worse on many functions when
the optimum is not located at the center of the search space.

K. Diwold (B) · M. Middendorf
Department of Computer Science,
University of Leipzig, Leipzig, Germany
e-mail: kdiwold@informatik.uni-leipzig.de

M. Middendorf
e-mail: middendorf@informatik.uni-leipzig.de

A. Aderhold
School of Biology, University of St. Andrews,
St. Andrews, Fife, UK
e-mail: aa796@st-andrews.ac.uk

A. Scheidler
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
e-mail: ascheidler@iridia.ulb.ac.be

Finally it is shown that the new ABC variants improve the
algorithm’s performance and achieve very good performance
in comparison to other metaheuristics under standard as well
as hard optimization goals.

Keywords Swarm intelligence · Artificial bee colony
optimization · Function optimization

1 Introduction

Bio-inspired computation, i.e., the application of biological
principles in the context of computation, is as old as com-
puter science itself. Based on biological principles, several
prominent computational frameworks such as evolutionary
computation and neural networks have been developed (for
an extensive review of bio-inspired computation the inter-
ested reader should refer to [13]).

A prominent subfield of bio-inspired computation is
swarm intelligence [8]. It applies concepts found in the col-
lective behavior of swarms such as fish shoals, bird flocks or
social insects to problems in various domains such as robot-
ics or optimization [7]. In optimization, swarm intelligence is
probably best known for ant colony optimization [11], which
utilizes the concept underlying the pheromone laying behav-
ior of ants; and particle swarm optimization (PSO), which
uses group flight guidance for optimization purpose [27].

In recent years bee-inspired algorithms have emerged
in the field of swarm intelligence. These algorithms are
based on mechanisms underlying the behavior of honey-
bees and have been successfully applied to various prob-
lem domains such as optimization [4], robotics [38], network
routing [44], multi-agent systems [31], and protein structure
prediction [3].

123

150 Memetic Comp. (2011) 3:149–162

Bee-inspired algorithms do not have a unified foun-
dation, but are based on different behavioral concepts
(see [21] or [10] for an in-depth review on bee-inspired opti-
mization approaches). In general one can distinguish between
two classes of algorithms: algorithms based on the mating
behavior of honeybees, and algorithms based on their forag-
ing behavior. Furthermore, a recent study [9] suggests that the
nest-site selection behavior of honeybees involves principles
that are interesting from an optimization point of view.

Mating-inspired algorithms draw their inspiration from
the genetic diversity underlying a bee colony. Genetic diver-
sity has been shown to be a driving factor in the ecological
success of bees [33] and is due to the polyandrous behavior
of a young queen on her maiden flight. Mating inspired algo-
rithms are closely related to evolutionary computation and
either introduce new bee-inspired mutation/crossover oper-
ators in that context (e.g., [26,37]) or evolve populations by
imitating a queen’s maiden flight (e.g., [1,32]).

The second kind of algorithms are inspired by forag-
ing behavior. Foraging behavior of honeybees constitutes a
decentralized process that works on the basis of decisions of
individual bees. It enables a colony to maintain a good ratio of
exploitation and exploration of food sources. In addition, for-
aging is adaptive, meaning that a colony’s foraging effort can
adapt toward changing needs for resources if necessary [6].
Scouts that successfully locate a resource will return to the
hive and promote that resource by means of a waggle dance in
order to recruit other bees to forage on that resource [39]. As
well as the site’s distance and direction, the bee’s dance can
also encode its quality. Using this mechanism foragers can
distribute themselves over the available resources in terms of
profitability. A recent study [12] has shown that the recruit-
ment strategies used by honeybees are especially beneficial if
resources are of poor quality, few in number, and of variable
quality. A number of optimization algorithms have been pro-
posed on the basis of foraging, such as the bees’ algorithm
(BA) [35], the bee colony optimization algorithm (BCO)
[42] and the artificial bee colony optimization algorithm
(ABC) [17].

In this paper (which is an extended version of our
paper “Artificial Bee Colony Optimization: A New Selec-
tion Scheme and Its Performance” at NICSO 2010) the arti-
ficial bee colony optimization algorithm (ABC) is studied.
ABC was introduced by Karaboga in 2005 [17] and consti-
tutes one of the most prominent approaches in the field of
bee-inspired algorithms. The algorithm has been applied to
various problem domains including the training of artificial
neural networks [19,25], the design of a digital filters [18],
solving constrained optimization problems [22], and the pre-
diction of the tertiary structures of proteins [3]. Its optimiza-
tion performance has been tested and compared to other opti-
mization methods such as Genetic Algorithms (GA), PSO,
Particle Swarm Inspired Evolutionary Algorithm (PS–EA),

Differential Evolution (DE), and different evolutionary strat-
egies [23,24,20,2].

The ABC algorithm works with a population of artificial
bees. The bees are divided into two groups—employed bees
(EBs) are responsible for finding and maintaining promis-
ing solutions, and onlooker bees (OBs) for performing local
search at these solutions. The exploration (via the EBs) and
exploitation (via the OBs) is influenced by the qualities of
the solutions currently maintained by the EBs. If an EB’s
solution does not improve over a certain number of steps it
will abandon it’s current solution and choose a new random
solution in the search space (EBs choosing a new random
solution are referred to as scouts).

ABC is clearly one of the most applied bee inspired algo-
rithms but several interesting properties have not been stud-
ied so far. Therefore, one aim of this paper is to fill this gap
and to examine in detail the influence of several ABC key
parameters (i.e., size of the bee population, the ratio between
the number of employed bees and onlooker bees, and the
solution-abandon limit) on the optimization behavior. Some
of these parameters have been considered before [2,17,24]
and suggestions have been made regarding their parameteri-
zation. However, our study shows that is necessary to recon-
sider these settings because good parameter values depend
strongly on the optimization context (e.g., hardness of goal).
Moreover, the ratio between onlooker and employed bees is
studied, which has not been investigated in detail before. We
also test the ABC’s optimization performance in scenarios
where the global optimum is not located in the center of the
search space (which is the typical for applications).

The second aim of this paper is to propose two variants
of the standard ABC algorithm that use new methods for the
selection of new positions. To show the quality of the new
variants of ABC their performance is tested against the stan-
dard ABC and several other population-based optimization
heuristics on several benchmark functions.

This paper is structured as follows. In Sect. 2 the ABC is
described. The new variants of ABC are introduced in Sect. 3.
The experimental setup is described in Sect. 4 and the exper-
imental results are presented in Sect. 5. Concluding remarks
and an outlook are given in Sect. 6.

2 Artificial bee colony optimization

The ABC algorithm [17] is a population based algorithm for
function optimization that can be seen as a minimal honeybee
foraging model. The artificial bee population consists of two
types of bees: employed bees (EBs) and onlooker bees (OBs).
In ABC the search space represents the environment and
each point in the search space corresponds to a food source
(solution) that the artificial bees can exploit. The quality of
a food source is given by the value of the function to be

123

Memetic Comp. (2011) 3:149–162 151

optimized at the corresponding position. Initially the EBs
scout and each EB decides to exploit a food source it has
found. The number of EBs thus corresponds to the number
of food sources that are currently exploited in the system.
EBs communicate their food sources to the OBs. Based on
the quality of a food source the OBs decide whether or not
to visit it. Good food sources will attract more OBs. Once an
OB has chosen a food source it tries to find a better position
in its neighborhood by using a local search strategy. If the
quality of a new position found by the OB is better than the
quality of the position originally communicated by the corre-
sponding EB, the EB will change its position and promote the
new food source. Otherwise, the EB remains on its current
food source. If the solution of an EB has not been improved
for a certain number of steps the EB will abandon the food
source and scout for a new one (i.e., it decides for a new food
source in search space).

More formally: Given a D dimensional function F and a
population of n virtual bees consisting of neb employed bees
and nob onlooker bees (i.e., n = neb + nob). Initially and
when scouting EB i (i ∈ [1 . . . neb]) is placed on a randomly
chosen position pi = (xi

1, . . . , xi
D) in the search space. At the

beginning of an iteration each EB i tries to improve its cur-
rent position by creating a new candidate position p∗

i using
the following local search rule

p∗
i = (xi

1, . . . , xi
j + rand(−1, 1)(xk

j − xi
j), . . . , xi

D) (1)

where j ≤ D is a randomly chosen dimension, k �= i
denotes a randomly chosen EB (called reference EB), and
rand(−1, 1) is a real valued random number drawn from
a uniform distribution between −1 and 1. Note, that only
one dimension is changed via Eq. 1. Based on the follow-
ing greedy selection mechanism, each EB decides whether
to discard pi in favor of p∗

i

pi =
{

pi if f (pi) > f (p∗
i)

p∗
i else

(2)

where f (p)denotes the fitness at position p such that f (p) =
F(p) for maximization problems and f (p) = U − F(p) for
minimization problems with a given upper bound U .

After each EB has updated its position, every OB chooses
one of the current EB positions by using a standard roulette
wheel selection so that the probability Pi of choosing the
position pi of EB i is

Pi = f (pi)∑neb
k=1 f (pk)

. (3)

After an OB has chosen the position of an EB i it tries
to find a better position using Eq. 1. In response, the corre-
sponding EB updates its position as described before in case
the OB has found a better position. The algorithm monitors
the number of times the position of an EB is not improved

by local search (either by EB or OB). When this number
reaches a limit l ≥ 1 the EB abandons its position and scouts
for a new one. The algorithm stops when a certain stop crite-
rion (e.g., maximum number of iterations, or a good function
value has been found) is met. An outline of ABC is given in
Algorithm 1.

Algorithm 1 Artificial Bee Colony
1: place each employed bee on a random position in the search space
2: while stop criterion not met do
3: for all employed bees do
4: if # steps on same position = l then
5: choose random position in search space
6: else
7: try to find better position (according to equations 1 and 2)
8: if better position found then
9: move from current position to found position
10: end if
11: end if
12: end for
13: for all onlooker bees do
14: choose an employed bee and move to its position (according to

Equation 3)
15: try improve position (according to equations 1 and 2)
16: end for
17: end while

For the standard ABC algorithm it was defined that the
number of employer bees equals the number of onlooker
bees, i.e., neb = nob = n/2. The algorithm thus depends
only on the parameters n and l. In [24] experiments with dif-
ferent population sizes n were performed with the conclusion
that, a population size of 50–100 bees can provide reasonable
convergence behavior. The parameter l determines how fast
solutions are abandoned. In [24] it is argued that l = ne · D
shows better performance than very high or low values of l.
In a recent study on ABC parameter tuning [2] it was con-
cluded that for small colony sizes l = ne · D might not be
sufficient, as the algorithm is not able to explore EB solutions
enough before they are abandoned. Hence, it is suggested to
use higher values of l for small colonies.

3 ABC variants

The variants of ABC that are proposed in this section con-
cern the selection of reference EBs that is done when OBs
and EBs generate candidate solutions according to Eq. 1.
In the standard ABC algorithm a reference EB is selected
randomly with uniform distribution. A potential disadvan-
tage is that the position of the chosen reference EB might not
fit well to the current position of the bee. The two modifica-
tions of the reference selection rule that are proposed in the
following aim to overcome this problem.

123

152 Memetic Comp. (2011) 3:149–162

ABCgBest. In the ABCgBest the global best solution found
so far is used in addition to the randomly chosen reference
EB in order to generate new candidate solutions. Note, that
this has some similarity to the functioning of a PSO algo-
rithm where the global best particles influences the position
update of the particles [27]. To incorporate the global best
solution Eq. 1 is altered as follows

p∗
i = (xi

1, . . . , xi
j + rand(−1, 1)(xk

j − xi
j)

+ rand(0, 1)(xbest
j − xi

j), . . . , xi
D) (4)

where k refers to the randomly chosen reference EB pk, best
refers to the best position pbest found so far, and j ≤ D
denotes a random dimension. To make sure that the global
best term in Eq. 4 always points towards the global best ref-
erence rand(0, 1) was used (instead of rand(−1, 1)).

ABCgBestDist. Besides including the global best reference
in the generation of candidate solutions, in this modification
the distance between the current position and a potential ref-
erence EB influences the selection probability. Therefore,
instead of using the same probability for all reference EBs,
an EB (or OB) at position pi chooses the reference EB
k ∈ {1, . . . , neb} with k �= i according to the following
probability

Pk =
1

dist (pi ,pk)∑neb
j=1, j �=i

(
1

dist (pi ,p j)

) (5)

where dist (x, y) is the euclidean distance between positions
x and y.

After a reference EB has been chosen the new candidate
solution is created using Eq. 4. As can be seen, the farther
away a potential reference EB is located from the current
location, the smaller is the probability to be selected as a

reference. The idea of this modification is to prefer near ref-
erences because for many types of optimization functions it
is more reasonable to search between good positions that are
close to each other. To give an example: Assume a solution is
located close to an optimum. In order to increase the chance
to step into the optimum it would be an advantage to select
among solutions that are located in the close vicinity. These
solutions could provide short step vectors to the optimum.
However, this certainly would lead to a decrease in diversity
of possible search directions. Furthermore, the distribution
of solutions will most likely tend to cluster to areas of inter-
est with solutions stuck to these areas. The results below will
elucidate the actual performance of this modification.

4 Experimental setup

The performance of ABC, the two newly proposed ABC
modifications, and other reference algorithms has been tested
on several standard benchmark problems (see Table 1 for
details). The following five algorithms were used as refer-
ence algorithms: the PSO algorithm from [43], two forms
of the hierarchical PSO (H-PSO and

∨
H-PSO) from [16],

the differential evolution (DE) algorithm from [41] and [30],
and the Ant Colony Optimization algorithm for continuous
functions (ACOR) from [40]. The parameter values that were
used for these algorithms have been adopted from the given
references (see Table 2).

Unless stated otherwise all test runs were repeated 100
times. The number of function evaluations that each algo-
rithm required to reach the specified goal—the standard opti-
mization goal (Gstd) and the hard optimization goal (Ghrd)

as given in Table 1—was recorded for each run. To evaluate

Table 1 Test function names and equations (F), domain space range (R), a standard optimization goal (Gstd) that is often used in the literature and
a harder optimization goal (Ghrd)

F R Gstd Ghrd

Schaffer’s F6 fsc(x) = 0.5 +
sin2

(√
x2

1 +x2
2

)
−0.5

(1+0.001(x2
1 +x2

2))2 [−100; 100]D 10−5 10−25

Sphere fsp(x) =
D∑

i=1
x2

i [−100; 100]D 0.01 10−10

Griewank fgr (x) = 1
4000

(
D∑

i=1
x2

i

)
−

D∏
i=1

cos
(

xi√
i

)
+ 1 [−600; 600]D 0.1 10−9

Rastrigin frg(x) =
D∑

i=1
(x2

i − 10cos(2πxi) + 10) [−5.12; 5.12]D 100 10−7

Rosenbrock frn(x) =
D−1∑
i=1

(100(xi+1 − x2
i)2 + (xi − 1)2) [−30; 30]D 100 1

Ackley fac(x) = −20exp

(
−0.2

√
1
D

D∑
i=1

x2
i

)
− exp

(
1
D

D∑
i=1

cos(2πxi)

)
+ 20 + e [−32; 32]D 0.1 10−7

The hard goals were chosen in such a way that a standard ABC (with n = 100) will need approximately 105 function evaluations to reach them. A
dimension of D = 30 was used for five of the six the test functions. Schaffer’s F6 function constitutes an exception regarding its dimensionality as
it is limited to D = 2 dimensions

123

Memetic Comp. (2011) 3:149–162 153

Table 2 Setting of control parameters used in the final experiment

ABC PSO H-PSO
∨

H-PSO DE ACOR

n = 30 n = 40 n = 31 n = 31 n = 50 n = 2

neb = 15 ω = 0.6 ω = 0.6 ω = [0.729; 0.4] C R = 0.8 k = 50

nob = 15 c1 = 1.7 c1 = 1.7 c1 = 1.7 F = 0.5 q = 0.1

l = D ∗ ne c2 = 1.7 c2 = 1.7 c2 = 1.7 ε = 0.85

n is the population size, swarm size, or colony size respectively; neb is the number of employed bees; nob is the number of onlooker bees; l is the
abandon limit; D is the dimension of problem function; ω is the inertia weight; c(∗) is the constriction factors; CR is the crossover rate; F is the
scaling factor; k is the archive size; q is the locality of search; ε is the convergence speed

the significance of the observed performance differences the
algorithms were pairwise tested against each other using a
one-sided Wilcoxon Rank Sum Test with a significance level
of α = 0.05. In the case of multiple comparisons, p-values
from the Wilcoxon Rank Sum Test were corrected using the
Bonferroni Step-down (Holm) correction [14]. In addition a
Kruskal–Wallis test (factor: Algorithm, α = 0.05) was used
to test whether the use of different algorithms had an effect
on the observed optimization in the given test functions.

5 Results

5.1 Population size

As pointed out in Sect. 2, population size is one of ABC’s
two control parameters. In recent studies [2,24] the influence
of this parameter on the performance of the ABC was inves-
tigated. Based on a comparison of the fitness improvement
per algorithm step Karaboga and Basturk [24] argue, that an
increase of population size up to a certain value increases the
algorithm’s performance. Their suggestion is to use a popu-
lation size of 50–100 as it provides acceptable convergence
speed and good solutions.

However, there is a problem in using the number of algo-
rithmic steps as a basis for evaluating performance, namely
that larger population sizes require more function evaluations
per step. For example, an ABC with a population size of 100
needs 10 times as many function evaluations per step as one
with a population of 10.

For this reason, we compared different population sizes
with respect to the total number of function evaluations. Fig. 1
depicts the median quality of the best found solutions so
far over the first 3 · 105 function evaluations for different
population sizes n ∈ {10, 30, 60, 100, 120, 140} and all six
test functions (Note that the scale on the Schaffer function
(x-axis) differs from the rest of the figures as the the global
maximum was always reached before 3 ·105 function evalua-
tions). As can be seen, the relative quality differs in different
stages of the optimization process. For most test functions
(i.e., Griewank, Rosenbrock, Rastrigin, Ackley) very small
populations (i.e., n = 10) showed fast convergence at the

beginning of the optimization process (i.e., in the first 20, 000
evaluation steps). However, larger populations performed
better in later stages. Only in the case of the Sphere func-
tion did we find that very small populations performed best
throughout the whole optimization process, but this is a very
simple optimization function. For the more complex func-
tions such as Schaffer, Griewank, Rastrigin, and Ackley,
population size 30–60 performed best. Only for the Ackley
function a population size of 100 was best for a higher num-
ber of function evaluations. Thus, in contrast to [2,24], our
results suggest that the best size of an ABC population is
problem-dependent and should be tuned accordingly.

5.2 Number of onlooker bees

Concerning the influence of the number of onlooker bees,
Table 3 presents the number of function evaluations that were
necessary to reach the optimization goals for populations
containing 15 and 50 EBs. For each number of EBs, the
ABC with a standard number of onlooker bees (i.e., the num-
ber of OBs equals the number of EBs) was compared to a
modified ABC in which no OBs were used. Each version
was tested on the standard and hard optimization goals (see
Table 1).

As can be seen, the number of OBs had an influence on
performance. Using OBs increased the performance of the
algorithm significantly for the standard optimization goal
Gstd in five of six test functions for both numbers of EBs.
This was not the case for the hard optimization goal Ghrd .
For the case of 15 EBs the algorithm containing no OBs
performed significantly better for three of the six test func-
tions. Only for the Rastrigin function was the algorithm with
OBs able to perform significantly better. For two test func-
tions no significant difference was found. When 50 EBs were
used, the algorithm with no OBs performed significantly bet-
ter in three of the six test cases, whereas the algorithm with
OBs performed significantly better for only two test func-
tion (Rastrigin and Rosenbrock). For the Schaffer function
no statistic difference can be constituted.

Another feature that can be observed is that for small
population sizes (i.e., n = {15, 30}) the standard deviation
of the number of function evaluations needed to reach the

123

154 Memetic Comp. (2011) 3:149–162

1e
-1

6
1e

-1
3

1e
-0

9
1e

-0
5

1e
-0

1

5.0e+04 1.0e+05

M
ed

ia
n

B
es

t S
ol

ut
io

n
V

al
ue

Schaffer
n=10
n=30
n=60

n=100
n=120
n=140

1e
-2

70
1e

-1
80

1e
-9

0
1e

+
02

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

Sphere

n=10
n=30
n=60

n=100
n=120
n=140

1e
-1

4
1e

-0
9

1e
-0

4
1e

+
01

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

M
ed

ia
n

B
es

t S
ol

ut
io

n
V

al
ue

Griewank
n=10
n=30
n=60

n=100
n=120
n=140

1e
-1

7
1e

-1
2

1e
-0

7
1e

-0
2

1e
+

03

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

Rastrigin
n=10
n=30
n=60

n=100
n=120
n=140

1e
-0

1
1e

+
02

1e
+

05
1e

+
08

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

M
ed

ia
n

B
es

t S
ol

ut
io

n
V

al
ue

Function Evaluations

Rosenbrock
n=10
n=30
n=60

n=100
n=120
n=140

1e
-1

5
1e

-1
1

1e
-0

7
1e

-0
3

1e
+

01

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

Function Evaluations

Ackley
n=10
n=30
n=60

n=100
n=120
n=140

Fig. 1 ABC population size test: comparing improvement of median
best solution (y-axis) per iteration (x-axis) for different population sizes
n over 3 · 105 function evaluations; Standard ABC settings are used

except for l. To avoid very small limit values with small population
sizes l = 100 if ne D < 100

goal seems to depend on the hardness of the goal and the
problem domain. While small populations exhibit a small
standard deviation in Griewank and Rosenbrock given the
standard optimization goal Gstd , the deviation increases dras-
tically under the hard optimization goal Ghrd . This increase
is caused by several outliers which exhibit very bad perfor-
mance by getting stuck in local optima and thus impact mean
and standard deviation. That this is not a general trend is
reflected by the median which is unaffected by such outliers.
Larger populations on the other hand (i.e., n = {50, 100})
seem to be more resilient in this respect and are able to
maintain a low standard deviation, thus not as many outli-
ers, which is also reflected by the fact that median and mean
are quite similar. However, their convergence speed is higher
than those of small populations. This effect is interesting as
it could be interpreted as some sort of size-dependent speed-
accuracy trade-off.

These results suggest that the advantage of using OBs in
the ABC algorithm is not clear for the hard optimization goal
Ghrd , while OBs are advantageous for most cases when the
standard optimization goal Gstd is given. This questions the
standard rule to set the ratio between the number of OB and
EBs to 50:50.

5.3 Limit parameter

As the ABC uses a greedy selection scheme it needs a means
to prevent premature convergence to local optima. One fea-
ture of the ABC that counteracts premature convergence
is its reference selection scheme, as it chooses a reference
at random and without taking its fitness or location in the
search space into account. Another characteristic that pre-
vents premature convergence is the fact that solutions that
did not improve over a certain amount of time-steps will be

123

Memetic Comp. (2011) 3:149–162 155

Table 3 ABC with different number of employed bees neb and with or without onlooker bees nob for the standard optimization goal Gstd and the
hard optimization goal Ghrd

(neb, nob) Standard goal Gstd Hard goal Ghrd

Median Mean Stdv Sig Median Mean Stdv Sig

Schaffer

(15, 0) 13,370 17,525 13, 942 – 27, 201 31, 419 19, 568 –

(15, 15) 11,145 14,820 11, 113 – 24, 050 31, 412 20, 872 –

(50, 0) 18,865 21,644 11, 318 X 61, 368 68, 079 31, 557 –

(50, 50) 20,898 23,599 10, 896 – 66, 451 74, 350 36, 830 –

Sphere

(15, 0) 13,897 13,915 667 – 28, 387 28, 318 735 X

(15, 15) 7,695 7,810 787 X 32, 977 32, 970 1, 364 –

(50, 0) 43,225 43,345 1, 637 – 89, 650 89, 694 2, 034 X

(50, 50) 15,550 15,632 1, 426 X 104, 750 104, 216 3, 307 –

Griewank

(15, 0) 14,017 14,085 1, 083 – 36, 810 53, 337 38, 192 X

(15, 15) 10,087 10,404 2, 559 X 39, 952 60, 383 42, 292 –

(50, 0) 42,575 42,739 2, 194 – 100, 950 102, 639 7, 536 X

(50, 50) 21,675 22,326 5, 647 X 105, 800 107, 023 9, 345 –

Rastrigin

(15, 0) 3,562 3,578 389 – 44, 385 45, 041 4, 599 –

(15, 15) 3,135 3,162 493 X 36, 405 38, 361 8, 145 X

(50, 0) 10,600 10,580 1, 058 – 126, 025 127, 124 8, 583 –

(50, 50) 8,975 8,909 1, 000 X 93, 275 93, 845 9, 329 X

Rosenbrock

(15, 0) 16,102 16,073 1, 269 – 39, 757 68, 847 84, 683 –

(15, 15) 8,497 10,017 4, 632 X 41, 152 82, 921 136, 730 –

(50, 0) 48,875 48,751 2, 797 – 113, 900 118, 932 25, 340 –

(50, 50) 14,850 18,055 8, 581 X 93, 200 92, 714 29, 518 X

Ackley

(15, 0) 18,067 18,162 1, 020 – 39, 315 39, 292 1, 198 X

(15, 15) 15,937 15,969 1, 336 X 39, 952 39, 947 1, 153 –

(50, 0) 54,675 54,750 2, 090 – 124, 275 124, 140 2, 087 X

(50, 50) 45,825 45,794 3, 538 X 124, 750 125, 344 2, 409 –

Median, mean and standard deviation (Stdv) of the number of function evaluations needed to reach the goal for the six test functions. The per-
formance of ABC with and without onlooker bees was compared by pairwise testing of populations containing nob = neb with those containing
nob = 0. In column Sig ‘X ’ denotes a significantly better performance; ‘–’ denotes not significant difference

abandoned in exchange for new random solutions. As out-
lined in Sect. 2, this behavior is governed by the abandonment
limit parameter, l.

The limit parameter has been investigated in previous
studies of the ABC (e.g., [2,24]) and it is suggested to make
l dependent on the number of EBs neb and the number of
dimensions D of the corresponding problem. The setting of
l = 0.5 · neb · D was suggested (l = neb · D in the case of
multi-modal functions).

We tested the impact of the limit parameter l on the ABC’s
performance for population sizes n ∈ [10, 30, 60, 100, 140]
using the standard optimization goals GStd and standard

ABC settings (see Sect. 4). The values of the limits were in
the interval l ∈ [10 . . . 50,000] with a resolution of �l = 50
(please note that up to a limit of l = 100 a higher resolu-
tion of �l = 10 was used). The rather high upper bound of
l = 50,000 was selected to simulate an unlimited solution
lifetime (the benchmark functions require on average less
than 50,000 function evaluations to reach the optimization
goal).

The results depicted in Fig. 2 show that convergence speed
decreases drastically for small values of l on all functions.
A low value eventually leads to a short solution lifetime.
Consequently, new solutions are abandoned after a short

123

156 Memetic Comp. (2011) 3:149–162

1e
+

04
1e

+
05

1e
+

06

 10 100 1000 10000

M
ed

ia
n

F
un

ct
io

n
E

va
lu

at
io

ns

Schaffer
n=10
n=30
n=60

n=100
n=120
n=140

1e
+

04
1e

+
05

1e
+

06

 10 100 1000 10000

Sphere
n=10
n=30
n=60

n=100
n=120
n=140

1e
+

03
1e

+
04

1e
+

05
1e

+
06

 10 100 1000 10000

M
ed

ia
n

F
un

ct
io

n
E

va
lu

at
io

ns

Griewank
n=10
n=30
n=60

n=100
n=120
n=140

1e
+

03
1e

+
04

1e
+

05
 10 100 1000 10000

Rastrigin
n=10
n=30
n=60

n=100
n=120
n=140

1e
+

04
1e

+
05

1e
+

06

 10 100 1000 10000

M
ed

ia
n

F
un

ct
io

n
E

va
lu

at
io

ns

Abandonment Limit

Rosenbrock
n=10
n=30
n=60

n=100
n=120
n=140

1e
+

04
1e

+
05

1e
+

06

 10 100 1000 10000

Abandonment Limit

Ackley
n=10
n=30
n=60

n=100
n=120
n=140

Fig. 2 Test of the ABC with different population sizes n and abandonment limits l. The median number of function evaluations needed to reach
the standard optimization goal GStd are shown on the y-axis. Both axes are in logarithmic scale

time period leaving a low chance of improvement. The sec-
ond observation is that for all functions, except Schaffer, an
increased value of the limit does not appear to change con-
vergence speed with this test setting. This does not hold for
a very low population size of n = 10, which seems to be less
robust given very high limit values.

From these results it can be concluded that for the major-
ity of functions and colony sizes, the limit value imposes
little influence if it exceeds a certain threshold. The best set-
ting for l observed in this experiment was not in agreement
with the standard setting as recommended in [24]. For two
functions the default setting was much higher than the best
(rather low) found setting. This indicates that the setting of l
is likely to depend on the problem domain. The appropriate-
ness of a limit setting derived from the population size and
dimension size of the problem function (as defined in [24]) is
open to argument. This is especially evident for the Schaffer

function with D = 2. In this case, a decrease of the total
population size would lead to l values below 100 and thus to
weak performance (see Fig. 2).

5.4 Non-centered global optimum

It is known that the initial location of candidate solutions and
the location of the global optimum relative to the borders
of the search space can influence the convergence behav-
ior of an optimization method (see, e.g., [15]). A centered
global optimum can provide idealized conditions for optimi-
zation, as candidate solutions are often initially distributed
uniformly around the center. For this reason it is important
to investigate how a method’s performance changes if the
global optimum is moved away from the center. If conver-
gence speed decreases, this may indicate a problem with the
robustness of the method.

123

Memetic Comp. (2011) 3:149–162 157

Table 4 Shifted test functions, their respective ranges, and the location
of their shifted global optima

Function Range Function shift

Schaffer’s F6 [−100; 100]D (80)D

Sphere [−100; 100]D (80)D

Griewank [−600; 600]D (480)D

Rastrigin [−5.12; 5.12]D (4.09)D

Rosenbrock [−30; 30]D (24)D

Ackley [−32; 32]D (25.6)D

In order to test the effect of an uncentered global opti-
mum on the performance of the ABC, each of the used
benchmark functions was shifted to the corner of the search
space. The distance of the shift was chosen to be 80% of the
domain range of the respective function. Hence, a function
with domain [x; y] was moved with distance 0.8(x − y).
The search-space positions of the resulting global optima
are listed in Table 4. The function dimensions remained as
defined in Table 1 and the standard optimization goal Gstd

was used.
As can be seen in Table 5, the ABC method does not per-

form as well on functions with moved global optimum as on
the same functions with standard (centered) global optimum.
These observations indicate that ABC is indeed dependent
on the location of the global optimum. Convergence speed
is worse if the optimum moves away from the center of the
domain space. A possible explanation is the manner in which
the algorithm updates positions. As the ABC uses other solu-
tions as references in the location update, it depends on the
positions of other solutions to reach certain areas of inter-
est. For a centered global optimum the average location fit-
ness tends to improve towards the center from all directions.
Relative to the center, an updating solution can select a ref-
erence from the same or the other side of the domain space,
allowing for search vectors that have reasonable distance and
directions to potentially better positions. In the case that the
global optimum is located at a corner of domain space, as
in the setting used here, the situation is different. Only one

quarter of the function topology around the global optimum
is fully calculated in most cases from reference solutions
that are located at the same side as the global optimum. This
implies a less diverse set of potentially good search directions
and distances.

5.5 Comparison of ABC and other algorithms

In this section the performance of the standard ABC and the
two proposed variants ABCgBest Dist and ABCgBest Dist are
compared with other optimization algorithms.

For each test function, we assessed whether the different
algorithms had an effect on optimization performance using a
Kruskal–Wallis test. In all cases choice of the algorithm had a
significant effect on the observed optimization performance
in the respective test domain.

Table 6 shows that the proposed variants of ABC—
ABCgBest Dist and ABCgBest Dist —significantly improve the
performance of ABC on all benchmark functions.
ABCgBest Dist is able to enhance the performance of
ABCgBest on one test function (i.e., Sphere). In the other
cases no significant difference between the two ABC variants
could be observed.

The standard ABC algorithm and ABCgBest Dist , the best
performing ABC variant, were tested against five reference
algorithms for the standard optimization goal Gstd . Fig. 3
depicts boxplots of the number of function evaluations for
each algorithm on each test function.

In terms of the necessary number of function evaluations,
the proposed ABC variant ABCgBest Dist performs signifi-
cantly better than all the reference algorithms for two test
functions (Ackley and Rosenbrock). For two test functions
(Sphere and Schaffer) its performance is on par with the per-
formance of the PSO and the

∨
H-PSO algorithm, respec-

tively. For the Rastrigin test function ABCgBest Dist shows
a comparable performance with the hierarchical PSO vari-
ant

∨
H-PSO and outperforms all the other reference algo-

rithms. For the Griewank test function the hierarchical PSO
variant

∨
H-PSO outperforms all other algorithms signifi-

Table 5 Test with moved global optima of test functions (Funtion→) for the ABC

Function Mean Stdv Median Min Max Sig

Schaffer→ 18,068 14,831 13,280 2,642 97,418 –

Sphere→ 9,055 1,060 8,880 7,245 14,235 W

Griewank→ 10,364 2,730 9,885 6,525 18,630 –

Rastrigin→ 3,785 654 3,855 2,055 5,385 W

Rosenbrock→ 16,201 7,598 13,920 6,615 33,045 W

Ackley→ 24,843 2,465 24,750 18,735 30,675 W

Median, mean, standard deviation (Stdv), minimum (Min) and maximum (Max) values of function evaluations needed to reach the standard goal
Gstd ; In column Sig ‘W ’ denotes significantly worse performance compared to the same test function without a moved global optima, ‘–’ denotes
no significant difference

123

158 Memetic Comp. (2011) 3:149–162

Table 6 Median, mean and standard deviation (Stdv) of the number of function evaluations required to reach the standard goal Gstd for ABC,
ABCgBest , and ABCgBest Dist

Function Method Median Mean Stdv Significance

ABC ABCgBest ABCgBest Dist

Schaffer ABC 11,145 14,820 11,169 – –

ABCgBest 5,715 6,680 4,012 X –

ABCgBest Dist 4,611 6,377 4,686 X –

Sphere ABC 7,695 7,810 791 – –

ABCgBest 6,495 6,509 676 X –

ABCgBest Dist 6,150 6,245 698 X X

Griewank ABC 10,087 10,404 2,572 – –

ABCgBest 8,872 9,020 1,408 X –

ABCgBest Dist 8,430 8,680 1,499 X –

Rastrigin ABC 3,135 3,162 496 – –

ABCgBest 2,527 2,506 270 X –

ABCgBest Dist 2,467 2,466 260 X –

Rosenbrock ABC 8,497 10,017 4,655 – –

ABCgBest 5,805 6,682 2,678 X –

ABCgBest Dist 6,225 7,049 2,868 X –

Ackley ABC 15,937 15,969 1,343 – –

ABCgBest 10,110 10,118 488 X –

ABCgBest Dist 10,035 10,038 560 X –

Population size n = 30, number of EBs neb = 15, number of OBs nob = 15. For each test function the significance between each pair of algorithms
is shown, ‘X ’ denotes that the algorithm in the corresponding row is significantly better than the algorithm in the corresponding column, ‘–’ denotes
no significant difference

cantly, with the ABC, ABCgBest Dist and H-PSO scoring the
second place.

5.6 Runtime behavior

The results presented in the previous section are based on
the standard optimization goals defined in Sect. 4. To test the
ABCgBest Dist ’s performance over long runtimes, a test with
all benchmark functions and reference algorithms was per-
formed using the hard optimization goals. As the local best
PSO (lbest-PSO) showed better convergence speed than the
gbest-PSO over long optimization runs in previous studies
[16], it was used here instead of the gbest-PSO.

Each algorithm was allowed a maximum of 3 · 105 func-
tion evaluations, after which it was terminated. Fig. 4 depicts
the evolution of the median best solution value of each
algorithm over 50 runs. It can be seen that ABCgBest Dist

showed the fastest convergence on three out of six func-
tions (Schaffer, Rastrigin, Griewank). It also achieved second
fastest convergence on two of the remaining three functions
(Sphere, Rosenbrock) and ranked fourth on the Ackley func-
tion. This indicates that ABCgBest Dist is able to maintain its
performance even over longer optimization runs. Its conver-
gence behavior is comparable to state-of-the-art optimization
methods even under hard optimization goals.

6 Discussion and outlook

In the first part of this paper we investigated in detail the
influence of several parameters (i.e., colony size, onlooker
employed ratio and abandon limit) on the performance of
the ABC using six standard benchmark test functions.

Regarding the population size, the results suggest that
ABC performs better with a smaller population size than
usually used in standard ABC setups, given a moderate
optimization goal. However, it was also shown that the
ideal population size depends on the hardness of the opti-
mization goal. For harder goals, larger populations seem
to be advantageous. In contrast to previous studies [2,24],
which suggested standard population sizes regardless of
problem domain, the current results indicate that the algo-
rithm’s performance in terms of population size is prob-
lem dependent and thus requires tuning to achieve optimal
results.

Whether it is advantageous to use onlooker bees also
depends on the optimization goal. For weaker optimization
goals using OBs was advantageous for all test functions,
but for the harder optimization goals it was in most cases
advantageous not to use OBs. This questions the standard
division of the ABC population into an equal number of EBs
and OBs.

123

Memetic Comp. (2011) 3:149–162 159

Schaffer

M
ea

n
F

un
ct

io
n

E
va

lu
at

io
ns

ABC
ABCgBestDist

ACOR DE H−PSO PSO VH−PSO

Sphere

M
ea

n
F

un
ct

io
n

E
va

lu
at

io
ns

ABC
ABCgBestDist

ACOR DE H−PSO PSO VH−PSO

Griewank

M
ea

n
F

un
ct

io
n

E
va

lu
at

io
ns

ABC
ABCgBestDist

ACOR DE H−PSO PSO VH−PSO

Rastrigin

M
ea

n
F

un
ct

io
n

E
va

lu
at

io
ns

ABC
ABCgBestDist

ACOR DE H−PSO PSO VH−PSO

Rosenbrock

M
ea

n
F

un
ct

io
n

E
va

lu
at

io
ns

ABC ABCgBestDist DE H−PSO PSO VH−PSO

1e
+

03
5e

+
03

2e
+

04
1e

+
05

50
00

10
00

0
20

00
0

10
00

0
20

00
0

40
00

0

2e
+

03
1e

+
04

5e
+

04
2e

+
05

5e
+

03
2e

+
04

1e
+

05

10
00

0
15

00
0

20
00

0

Ackley
M

ea
n

F
un

ct
io

n
E

va
lu

at
io

ns

ABC ABCgBestDist DE H−PSO PSO VH−PSO

Fig. 3 Boxplots of the number of function evaluations needed to reach
the standard optimization goals Gstd for ABC, ABCgBest Dist , PSO,∨

H-PSO, H-PSO, DE and ACOR . Results for ACOR are omitted when

it was not able to reach the optimization goal in 5 · 105 function evalu-
ations

Our results on the abandon-limit parameter suggest that
it needs to be set sufficiently high. Given a small limit (i.e.,
solutions are abandoned very fast), the number of function
evaluations required for the algorithm to converge increases.
Once the parameter crosses a certain threshold, its setting
seems to impose little effect on the algorithm’s performance.
We also found that the robustness regarding high limit val-
ues is influenced by colony size: small colonies showed slow
convergence speed under low and high settings of the limit
parameter. For the Schaffer function a bad performance was
noted for colonies of all sizes under low and high limit
value conditions. This indicates that the setting of the aban-
don-limit parameter might depend strongly on the problem
domain.

The ABC was also tested in scenarios where the global
optimum was not located in the center of the domain space.
This investigation was performed as other optimization algo-
rithms such as the PSO, have previously been found to lack
the ability to deal with global optima that are located on the

border of the domain space [15]. ABC performs significantly
worse in such a scenario compared to a scenario where the
global optimum is located in the center of the domain space.
This indicates that the performance of the ABC is depen-
dent on the location of the global optimum and constitutes
an aspect of the ABC that needs to be improved in future
work. In summary the parameter tests outline that the ABC
is less robust than previously suggested and that it needs to be
carefully tuned regarding the optimization domain in order
to achieve optimal results.

As the past has shown many optimization algorithms
are able to yield increased performance when extended or
hybridized. There are several aspects regarding hybridization
and modification that could be investigated in future work on
the ABC.

One aspect concerns the local search operator that is
used in the ABC. In its current form, the position of a new
candidate solution will only differ in one dimension from
the position of the employed bee it was generated from.

123

160 Memetic Comp. (2011) 3:149–162

1e
-1

6
1e

-1
3

1e
-0

9
1e

-0
5

1e
-0

1

1.0e+03 1.0e+04 2.5e+04 3.7e+04 5.0e+04

M
ed

ia
n

B
es

t V
al

ue

Schaffer
ABCgbestdist

ACO
DE

l-PSO
ABC

VH-PSO

1e
-2

70
1e

-1
80

1e
-9

0
1e

+
02

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

Sphere

ABCgbestdist
ACO

DE
l-PSO

ABC
VH-PSO

1e
-1

9
1e

-1
4

1e
-0

9
1e

-0
4

1e
+

01

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

M
ed

ia
n

B
es

t V
al

ue

Griewank

ABCgbestdist
ACO

DE
l-PSO

ABC
VH-PSO

1e
-1

7
1e

-1
2

1e
-0

7
1e

-0
2

1e
+

03

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

Rastrigin

ABCgbestdist
ACO

DE
l-PSO

ABC
VH-PSO

1e
-0

1
1e

+
02

1e
+

05
1e

+
08

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

M
ed

ia
n

B
es

t V
al

ue

Function Evaluations

Rosenbrock
ABCgbestdist

ACO
DE

l-PSO
ABC

VH-PSO

1e
-1

5
1e

-1
1

1e
-0

7
1e

-0
3

1e
+

01

5.0e+04 1.0e+05 1.5e+05 2.0e+05 2.5e+05 3.0e+05

Function Evaluations

Ackley

ABCgbestdist
ACO

DE
l-PSO

ABC
VH-PSO

Fig. 4 Evolution of best solution values over 50 runs on six different functions with a maximum of 3 · 105 function evaluations permitted. Best
solution value (y-axis) on each iteration was recorded. The number of function evaluations (x-axis) was also recorded at each iteration

Given the “curse of dimensionality” [5] this could impact
the convergence of the algorithm in very high dimensional
problem domains. A modification of the local search operator
might thus be interesting to further improve the performance
of the algorithm. This could be done by allowing the modifi-
cation of more than one dimension (e.g., the approach used
in differential evolution [41]). Another possibility would be
a hybridization of the ABC and other optimization meth-
ods, which could be achieved by substituting the ABC’s
local search operator. Here, there are many possibilities. One
could, for example, consider the use of a particle-swarm-like
search, where the number of search steps an employed bee is
allowed to do correlates with its relative fitness. Other optimi-
zation techniques could also be used to implement the local
search, such as simulated annealing [28], the Nelder Mead
Simplex [34], Powell’s method like search strategies (e.g.,
[29]) or the recently introduced BOBYQA algorithm [36].

In this study we did not alter the local search operator.
Instead, the selection mechanism of the reference positions

that influence the location updates of the artificial bees was
modified. In its original form the reference selection is ran-
dom, while the two variants that were proposed here—
called ABCgBest and ABCgBest Dist —include the global best
reference in the generation of candidate solutions as well
as taking the distances to reference solutions into account
during selection. Both proposed variants performed signifi-
cantly better than the standard ABC on all six test functions.
ABCgBest Dist performed slightly better than ABCgBest . In
comparison to other optimization algorithms, ABCgBest Dist

was better than, or at least as good as, all tested algo-
rithms on five of the six benchmark functions (in the case
of Griewank it was outperformed by

∨
H-PSO). Under

hard optimization goals ABCgBest Dist also showed excel-
lent performance. In terms of convergence speed it per-
formed best in three out of the six benchmark functions,
was second in two of the remaining three and third in the
last function, which underlines the robust performance of
ABCgBest Dist .

123

Memetic Comp. (2011) 3:149–162 161

Acknowledgments We are grateful to Cliodhna Quigley for assis-
tance with the manuscript. This work was supported by the Human
Frontier Science Program Research Grant “Optimization in natural sys-
tems: ants, bees and slime molds”.

References

1. Abbass HA (2001) Marriage in honeybees optimization (MBO):
a haplometrosis polygynous swarming approach. IEEE Press,
Piscataway, NJ 207–214

2. Akay B, Karaboga D (2009) Parameter tuning for the artificial
bee colony algorithm. In: Nguyen N, Kowalczyk R, Chen SM
(eds) Proceedings of the ICCCI 2009, LNCS, vol 5796. Springer,
Berlin/Heidelberg, Germany, pp 608–619

3. Bahamish HAA, Abdullah R, Salam RA (2009) Protein tertiary
structure prediction using artificial bee colony algorithm. In: Pro-
ceedings of the Asia International Conference on Modelling &
Simulation. IEEE Computer Society, pp 258–263

4. Baykasoglu A, Oezbakr L, Tapkan P (2007) Artificial bee colony
algorithm and its application to generalized assignment problem.
In: Chan FTS, Tiwari MK (eds) Swarm intelligence: focus on ant
and particle swarm optimization. Itech Education and Publishing,
Vienna, Austria, pp 113–144

5. Bellman R (1961) Adaptive control processes: a guided tour.
Princeton University Press, Princton, NJ

6. Biesmeijer JC, de Vries H (2001) Exploration and exploitation of
food sources by social insect colonies: a revision of the scout-recruit
concept. Behav Ecol Sociobiol 49(2):89–99

7. Blum C, Merkle D (eds) (2008) Swarm intelligence: introduction
and applications. Springer, Berlin/Heidelberg, Germany

8. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence:
from natural to artificial systems. Oxford University Press, Oxford

9. Diwold K, Beekman M, Middendorf M (2010) Bee nest site selec-
tion as an optimization process. In: Proceedings of the 12th interna-
tional conference on the synthesis and simulation of living systems
(Alife XII). The MIT Press, Cambridge, MA, pp 626–633

10. Diwold K, Beekman M, Middendorf M (2010) Honeybee optimi-
sation an overview and a new bee inspired optimisation scheme.
In: Hiot LM, Ong YS, Panigrahi BK, Shi Y, Lim MH (eds) Hand-
book of swarm intelligence, adaptation, learning, and optimization,
vol 8. Springer, Berlin/Heidelberg, Germany, pp 295–327

11. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: opti-
mization by a colony of cooperating agents. IEEE Trans Syst Man
Cybern–Part B 26(1):29–41

12. Dornhaus A, Kluegl F, Oechslein C, Puppe F, Chittka L
(2006) Benefits of recruitment in honey bees: effects of ecology
and colony size in an individual-based model. Behav Ecol
17(3):333–344

13. Forbes N (2004) Imitation of life: how biology is inspiring com-
puting. The MIT Press, Cambridge, MA

14. Holm S (1979) A simple sequentially rejective multiple test pro-
cedure. Scand J Stat 6:65–70

15. Huang T, Mohan AS (2005) A hybrid boundary condition for
robust particle swarm optimization. IEEE Antennas Wirel Propag
Lett 4:112–118

16. Janson S, Middendorf M (2005) A hierarchical particle swarm
optimizer and its adaptive variant. IEEE Trans Syst Man Cybern–
Part B 35(6):1272–1282

17. Karaboga D (2005) An idea based on honey bee swarm for numer-
ical optimization. Tech. rep., Erciyes University, Engineering
Faculty

18. Karaboga D (2009) A new design method based on artificial bee
colony algorithm for digital IIR filters. J Franklin Inst 346(4):328–
348

19. Karaboga D, Akay B (2007) Artificial bee colony (ABC) algo-
rithm on training artificial neural networks. In: IEEE 15th Signal
Processing and Communications Applications. IEEE Press, Piscat-
away, NJ, pp 1–4

20. Karaboga D, Akay B (2009) A comparative study of artificial bee
colony algorithm. Appl Math Comput 214(1):108–132

21. Karaboga D, Akay B (2009) A survey: algorithms simulating bee
swarm intelligence. Artif Intell Rev 31:61–85

22. Karaboga D, Basturk B (2007) Artificial bee colony (ABC) opti-
mization algorithm for solving constrained optimization problems.
In: Melin P, Castillo O, Aguilar L, Kacprzyk J, Pedrycz W (eds)
Foundations of fuzzy logic and soft computing, LNCS, vol 4529.
Springer, Berlin/Heidelberg, Germany, pp 789–798

23. Karaboga D, Basturk B (2007) A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm. J Glob Optim 39(3):459–471

24. Karaboga D, Basturk B (2008) On the performance of artificial bee
colony (ABC) algorithm. Appl Soft Comput 8:687–697

25. Karaboga D, Akay B, Ozturk C (2007) Artificial bee colony (ABC)
optimization algorithm for training feed-forward neural networks.
In: Torra V, Narukawa Y, Yoshida Y (eds) Modeling deci-
sions for artificial intelligence, LNCS, vol 4617. Springer, Berlin/
Heidelberg, Germany, pp 318–329

26. Karci A (2004) Imitation of bee reproduction as a crossover oper-
ator in genetic algorithms. In: Zhang C, Guesgen HW, Yeap
WK (eds) PRICAI 2004: trends in artificial intelligence, LNCS,
vol 3157. Springer, Berlin/Heidelberg, Germany, pp 1015–1016

27. Kennedy J, Eberhart R (1995) Particle swarm optimization.
In: Proceedings of the IEEE International Conference on Neural
Networks. IEEE Press, Piscataway, NJ, vol 4, pp 1942–1948

28. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by sim-
ulated annealing. Science 220(4598):671–680

29. Kramer O (2010) Iterated local search with powells method: a
memetic algorithm for continuous global optimization. Memet
Comput 2:69–83

30. Krink T, Filipic B, Fogel G, Thomsen R (2004) Noisy optimiza-
tion problems - a particular challenge for differential evolution? In:
Proceedings of the Congress on Evolutionary Computation. IEEE
Press, Piscataway, NJ, vol 1, pp 332–339

31. Lemmens N, de Jong S, Tuyls K, Nowé A (2008) Bee behav-
iour in multi-agent systems. In: Tuyls K, Nowe A, Guessoum Z,
Kudenko D (eds) Adaptive agents and multi-agent systems III.
Adaptation and multi-agent learning, LNCS, vol 4865. Springer
Berlin/Heidelberg, Germany, pp 145–156

32. Marinakis Y, Marinaki M, Matsatsinis N (2010) A bumble bees
mating optimization algorithm for global unconstrained optimi-
zation problems. In: González J, Pelta D, Cruz C, Terrazas G,
Krasnogor N (eds) Nature inspired cooperative strategies for opti-
mization (NICSO 2010), studies in computational intelligence,
vol 284. Springer, Berlin/Heidelberg, Germany, pp 305–318

33. Mattila HR, Seeley TD (2007) Genetic diversity in honey bee col-
onies enhances productivity and fitness. Science 317:362–364

34. Nelder JA, Mead R (1965) A simplex method for function mini-
mization. Comput J 7(4):308–313

35. Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, MZaid-
i (2006) The bees algorithm a novel tool for complex optimisation
problems. In: Proceedings of IPROMS 2006 conference, pp 454–
461

36. Powell M (2009) The bobyqa algorithm for bound constrained opti-
mization without derivatives. Tech. Rep. NA2009/06, Department
of Applied Mathematics and Theoretical Physics, University of
Cambridge

37. Sato T, Hagiwara M (1997) Bee system: finding solution by a con-
centrated search. In: IEEE International Conference on Systems,
Man, and Cybernetics, 1997. ‘Computational Cybernetics and Sim-
ulation’. IEEE Press, Piscataway, NJ, vol 4, pp 3954–3959

123

162 Memetic Comp. (2011) 3:149–162

38. Schmickl T, Crailsheim K (2008) Trophallaxis within a robotic
swarm: bio-inspired communication among robots in a swarm.
Auton Robots 25:171–188

39. Seeley TD (2010) Honeybee democracy. Princeton University
Press, Princeton, NJ

40. Socha K, Dorigo M (2008) Ant colony optimization for continuous
domains. Eur J Oper Res 185(3):1155–1173

41. Storn R, Price K (1997) Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces.
J Glob Optim 11:341–359

42. Teodorovic D, Lucic P, Markovic G, Orco MD (2006) Bee colony
optimization: Principles and applications. In: 8th seminar on neu-
ral network applications in electrical engineering, NEUREL 2006.
IEEE Press, Piscataway, NJ, pp 151–156

43. Trelea IC (2003) The particle swarm optimization algorithm: con-
vergence analysis and parameter selection. Inf Process Lett
85:317–325

44. Wedde HF, Farooq M (2005) Handbook of Bioinspired Algorithms
and Applications, Chapmann & Hall, chap New ideas for develop-
ing routing algorithms inspired by honey bee behavior, pp 321–339

123

	Performance evaluation of artificial bee colony optimization and new selection schemes
	Abstract
	1 Introduction
	2 Artificial bee colony optimization
	3 ABC variants
	4 Experimental setup
	5 Results
	5.1 Population size
	5.2 Number of onlooker bees
	5.3 Limit parameter
	5.4 Non-centered global optimum
	5.5 Comparison of ABC and other algorithms
	5.6 Runtime behavior

	6 Discussion and outlook
	Acknowledgments
	References

