
Memetic Comp. (2011) 3:33–49
DOI 10.1007/s12293-010-0044-5

REGULAR RESEARCH PAPER

Parallel hyperheuristics for the frequency assignment problem
Special issue on nature inspired cooperative strategies for optimization

Carlos Segura · Gara Miranda · Coromoto León

Received: 30 September 2009 / Accepted: 26 May 2010 / Published online: 10 June 2010
© Springer-Verlag 2010

Abstract This work presents a set of approaches used to
deal with the frequency assignment problem (FAP), which
is one of the key issues in the design of GSM networks. The
used formulation of FAP is focused on aspects which are rel-
evant for real-world GSM networks. A memetic algorithm,
together with the specifically designed local search and varia-
tion operators, are presented. The memetic algorithm obtains
good quality solutions but it must be adapted for each instance
to be solved. A parallel hyperheuristic-based model was used
to parallelize the approach and to avoid the requirement of
the adaptation step of the memetic algorithm. The model is
a hybrid algorithm which combines a parallel island-based
scheme with a hyperheuristic approach. The main operation
of the island-based model is kept, but the configurations of the
memetic algorithms executed on each island are dynamically
mapped. The model grants more computational resources
to those configurations that show a more promising behav-
ior. For this purpose two different criteria have been used in
order to select the configurations. The first one is based on
the improvements that each configuration is able to achieve
along the executions. The second one tries to detect synergies
among the configurations, i.e., detect which configurations
obtain better solutions when they are cooperating. Computa-
tional results obtained for two different real-world instances
of the FAP demonstrate the validity of the proposed model.
The new designed schemes have made possible to improve

C. Segura (B) · G. Miranda · C. León
Dpto. Estadística, I. O. y Computación,
Universidad de La Laguna, La Laguna,
38271 Santa Cruz de Tenerife, Spain
e-mail: csegura@ull.es

G. Miranda
e-mail: gmiranda@ull.es

C. León
e-mail: cleon@ull.es

the previously known best frequency plans for a real-world
network.

Keywords Frequency assignment problem · Memetic
algorithms ·Hyperheuristics · Parallel Island-based models ·
Cooperative strategies

1 Introduction

The frequency assignment problem (FAP) is a well-known
NP-complete combinatorial optimization problem of great
importance to the radio-communication industry. FAP arises
as one of the crucial issues in the design of GSM—global sys-
tem for mobile communications—networks [51]. This prob-
lem is also known as automatic frequency planning (AFP)
and channel assignment problem (CAP). The literature of
FAP has grown quickly over the past years. This is mainly due
to the fast implementation of wireless telephone networks
and satellite communications projects [1]. TV broadcasting
and military communications problems have also inspired
new research in the domain.

The set of applications of FAP leads to many different
mathematical and engineering models, but all of them share
two common features:

• A set of antennae must be assigned frequencies such that
data transmissions between the two end points of each
connection is possible.

• Depending on the frequencies assigned to the antennae,
they may interfere to one another, resulting in quality loss
of signal.

This work is focused in the FAP which arises in the design
of GSM networks. In such a case, the available frequency

123



34 Memetic Comp. (2011) 3:33–49

band is slotted into channels which have to be allocated to
the elementary transceivers (TRXs) installed in the base sta-
tions of the network. In GSM, FAP is a hard design task
because the usable radio spectrum is very scarce and fre-
quencies have to be reused throughout the network, and con-
sequently, some inevitable degree of interference will occur.
The goal of the designer is to minimize the interferences of
the network, i.e., minimize the quality loss of signal. Tack-
ling the FAP is crucial for today’s GSM operators not only at
the stage of the initial design, but also in subsequent modifi-
cations of the network aimed at solving, for instance, unpre-
dicted interference reports or handling an increase of traffic
demand in some areas. Indeed, by mid 2006, GSM services
were used by more than 1.8 billion subscribers (http://www.
wirelessintelligence.com/) across 210 countries, represent-
ing approximately 77% of the world’s cellular market. It is
widely accepted that the third generation mobile telecommu-
nication system (Universal Mobile Telecommunication Sys-
tem or UMTS) [54] will coexist with the enhanced releases
of the GSM standard (GPRS [26] and EDGE [23]) at least in
the first phases. GSM is then expected to play an important
role as a dominating technology for many years. Therefore,
frequency planning in these networks will be an important
task, at present as well as in the future.

From a mathematical point of view, the FAP is a general-
ization of the graph coloring problem and therefore, it is NP-
hard [29]. From an engineering point of view, the basic FAP
formulation is extended in order to tackle real world issues.
For instance, initial formulations in the 1970s were very sim-
ilar to the classical graph coloring problem and assumed
that adjacent frequencies do not interfere (only co-channel
interferences were considered) [1]. However, real-world
models must take into account all possible sources of inter-
ference, as well as regulatory concerns, and technological
limitations [20]. Nowadays, the large traffic demand and the
reduced frequency spectrum make it impossible to find inter-
ference-free frequency assignments. Therefore, most efforts
in the current literature intend to obtain frequency plans
that minimize the overall interference of the network (in
other words, that maximize the quality of service). Even
so, most of the research deals with benchmarking-like prob-
lems. In this work, we use a novel formulation proposed
in [44], so as to take full advantage of realistic and accu-
rate interference information from a real-world GSM net-
work.

The FAP was firstly introduced in the early 1970s by
Metzger [50]. Since then, multiple approaches to deal with
the FAP has been proposed. This large production has been
analyzed and organized in several surveys and books [1,
21,32,39]. On one hand, it has been frequently used as a
benchmark problem, because of its relation with other com-
binatorial problems. On other hand, it has been studied as a
real-world engineering problem, because of its applications.

Regarding to the approaches designed to deal with FAP
formulations, some exact proposals are seen to exist [5,22,
48]. However, they are not feasible when tackling large
instances of the problem [1], so several heuristic and meta-
heuristics methods [3] have also been proposed to deal with
FAP. In particular, most of the current research in the FAP
is based on using Memetic Algorithms (MAs) [28,31,36,
49,55]. MAs [38,52] are a synergy of a population-based
approach with separate individual learning or local improve-
ment procedures for problem search. They are also referred
to in the literature as Baldwinian evolutionary algorithms,
Lamarckian evolutionary algorithms, cultural algorithms or
genetic local search. Usually they make use of problem
domain information for implementing the learning process.
They are of great value because they perform some orders
of magnitude faster than traditional genetic algorithms for
some problem domains [24].

According to [1] the here considered version of FAP is
classified as a MI-FAP (minimum interference frequency
assignment problem) and for this formulation of the
problem the publications are more reduced. In [44] an Ant
Colony Optimization (ACO) algorithm was adapted to the
problem. A comparative study using a large set of metaheu-
ristics, including ACO, was performed in [45]. It included
both population-based and trajectory-based metaheuristics. It
revealed the good performance of a memetic algorithm with
increasing population size. The algorithm is a modified ver-
sion of a (1 + 1) Evolutionary Algorithm (EA), combined
with a local search specifically designed to deal with this
version of FAP. It made possible to obtain good quality solu-
tions for different instances. However, it must be adapted
for each solved instance. Thus, previously to solving a prob-
lem instance, a tuning step of the algorithm must be
performed.

Several studies have been performed in order to reduce
the execution time and the resource expenditure when using
metaheuristics. These studies naturally lead to its parallel-
ization [2,59,61]. Several models of parallel evolutionary
algorithms (PEAs) have been designed. PEAs can be clas-
sified [12] in four major computational paradigms: master-
slave, island-based or coarse-grained, diffusion or cellular,
and hybrid paradigm. These evolutionary approaches are
proved effectively solving problems, but they are often time
and domain knowledge intensive. The heavy dependence
on problem specific knowledge affects their reusability. In
order to provide a reusable and robust approach, applicable
to a wide range of problems and instances, a novel parallel
model has been applied. The model combines the operation
of an island-based scheme with the hyperheuristic approach
to manage the choice of which lower-level metaheuristics
should be applied at any given time, depending upon the
characteristics of the algorithm, problem, and instance
itself.

123

http://www.wirelessintelligence.com/
http://www.wirelessintelligence.com/


Memetic Comp. (2011) 3:33–49 35

The proposal here presented lies on the application of the
parallel hyperheuristic island-based model using the afore-
mentioned memetic algorithm to the FAP. Our present work
has three main aims:

• Design a parallel algorithm for the FAP which is able to
avoid the instance tuning step of the memetic algorithm.

• Reduce the required time to achieve good quality solu-
tions.

• Improve the best solutions obtained in previous
researches for the tackled instances.

The organization of the paper is as follows. Section 2
describes the mathematical formulation of the frequency
assignment problem here analyzed. Section 3 introduces the
sequential approach used to solve the FAP. Section 4 is
devoted to introduce the concept of hyperheuristics. The
designed parallel hyperheuristic-based island model is
explained in Sect. 5. The experimental evaluation of the algo-
rithms is presented in Sect. 6. Finally, in Sect. 7 the main
conclusions and an outline of future work are offered.

2 Mathematical formulation

In the last years, the basic FAP formulation has been widely
extended in order to tackle real world issues [37,44]. Most of
the FAP models differs in the way that the interferences are
measured. Computing the level of interference is a difficult
task which depends on the channels, the radio signals and
many other properties of the environment. Several ways of
quantifying this interference exist, resulting in the so-called
interference matrix, usually denoted by M . Some theoretical
methods to measure M have been proposed [1]. In [37] exten-
sive measurements in the network are performed in order to
calculate M . Theoretical methods have the advantage that
new instances can be tackled with less effort. In the case of
the extensive measurements methods, the M matrix is consti-
tuted by more accurate values, so resulting in more realistic
frequency plans. However, applying the method to new net-
works is an expensive task, because it requires an extensive
measurement step for each tackled instance. The FAP for-
mulation here proposed is based on a matrix M calculated
by extensive measurements.

Let T = {t1, t2, . . . , tn} be a set of n transceivers, and let
Fi = { fi1, . . . , fik} ⊂ N be the set of valid frequencies that
can be assigned to a transceiver ti ∈ T, i = 1, . . . , n. Note
that k—the cardinality of Fi —is not necessarily the same for
all the transceivers. Furthermore, let S = {s1, s2, . . . , sm}
be a set of given sectors (or cells) of cardinality m. Each
transceiver ti ∈ T is installed in exactly one of the m sec-
tors. Henceforth we denote the sector in which a transceiver
ti is installed by s(ti ) ∈ S. Finally, the interference matrix

M = {(μi j , σi j )}m×m , is given. The two elements μi j and σi j

of a matrix entry M(i, j) = (μi j , σi j ) are numerical values
greater than or equal to zero. μi j represents the mean and
σi j the standard deviation of a Gaussian probability distri-
bution describing the carrier-to-interference ratio (C/I) [64]
when sectors i and j operate on a same frequency. The higher
the mean value, the lower the interference and thus the bet-
ter the communication quality. Note that the interference
matrix is defined at sector (cell) level, because the trans-
ceivers installed in each sector all serve the same area.

A solution to the problem is obtained by assigning to each
transceiver ti ∈ T one of the frequencies from Fi . A solution
(or frequency plan) is henceforth denoted by p ∈ F1× F2×
· · ·×Fn , where p(ti ) ∈ Fi is the frequency assigned to trans-
ceiver ti . The objective is to find a solution p that minimizes
the following cost function:

C(p) =
∑

t∈T

∑

u∈T,u �=t

Csig(p, t, u) (1)

In order to define the function Csig(p, t, u), let st and su be
the sectors in which the transceivers t and u are installed,
that is, st = s(t) and su = s(u), respectively. Moreover,
let μst su and σst su be the two elements of the corresponding
matrix entry M(st , su) of the interference matrix with respect
to sectors st and su . Then,

Csig(p, t, u)

=

⎧
⎪⎪⎨

⎪⎪⎩

K if st = su , |p(t)− p(u)| < 2
Cco(μst su , σst su ) if st �= su , μst su > 0, |p(t)− p(u)| = 0
Cadj(μst su , σst su ) if st �= su , μst su > 0, |p(t)− p(u)| = 1
0 otherwise.

(2)

In real networks, it is unfeasible to operate with more than
one transceiver with the same or adjacent frequencies serving
the same area. Thus, K is defined as a very large constant.

Function Cco(μ, σ ) is defined as follows:

Cco(μ, σ ) = 100

(
1.0− Q

(
cSH − μ

σ

))
(3)

where

Q(z) =
∞∫

z

1√
2π

e
−x2

2 dx (4)

is the tail integral of a Gaussian probability distribution func-
tion with zero mean and unit variance, and cSH is a minimum
quality signalling threshold. Function Q is widely used in
digital communication systems because it characterizes the
error probability performance of digital signals [58]. This
means that Q(

cSH−μ
σ

) is the probability of the C/I ratio being
greater than cSH and, therefore, Cco(μst su , σst su ) computes
the probability of the C/I ratio in the serving area of sector

123



36 Memetic Comp. (2011) 3:33–49

st being below the quality threshold due to the interferences
provoked by sector su . That is, if this probability is low, the
C/I value in the sector st is not likely to be degraded by the
interfering signal coming from sector su and thus the commu-
nication quality yielded is high. Note that this is compliant
as to defining a minimization problem. On the contrary, a
high probability—and consequently a high cost—causes the
C/I mostly to be below the minimum threshold cSH and thus
incurring in low quality communications.

As function Q has no closed form for the integral, it has to
be evaluated numerically. For this purpose we use the com-
plementary error function E :

Q(z) = 1

2
E

(
z√
2

)
(5)

In [53], a numerical method is presented that allows the
value of E to be computed with a fractional error smaller than
1.2× 10−7. Analogously, function Cadj(μ, σ ) is defined as:

Cadj(μ, σ ) = 100

(
1.0− Q

(
cSH − cACR − μ

σ

))

= 100

(
1.0− 1

2
E

(
cSH − cACR − μ

σ
√

2

))
(6)

The only difference between functions Cco and Cadj is
the additional constant cACR > 0 (adjacent channel rejec-
tion) in the definition of function Cadj. This hardware spe-
cific constant measures the receiver’s ability to receive the
wanted signal in the presence of an unwanted signal at an
adjacent channel. Note that the effect of constant cACR is that
Cadj(μ, σ ) < Cco(μ, σ ). This makes sense, since using adja-
cent frequencies (channels) does not provoke such a strong
interference as using the same frequencies.

3 A memetic algorithm with increasing population size

The applied sequential approach (see Algorithm 1) is a
memetic algorithm which combines a modified evolution-
ary algorithm with a (1 + 1) selection operator and a local
search specifically designed to face the considered version
of the FAP. The algorithm has also been successfully applied
to a variation of a combinatorial 2D Packing Problem [42]
proposed in the GECCO 2008 contest session, achieving the
second best solution in the competition (http://www.sigevo.
org/gecco-2008/competitions.html). The algorithm has the
ability to perform as a trajectory-based algorithm when no
stagnation is detected, however it increases the population
size in order to avoid strong local optima when necessary,
behaving then as a population-based algorithm.

Individuals are encoded as an array of integer values,
p, where p(x) is the slot assigned to the transceiver tx .
I ni t P Size initial individuals are generated in a completely
random way (line 1). For each gene, a random value among

Algorithm 1 Pseudocode for the Memetic Approach
1: initialise(P)
2: P← localSearch(P)
3: while not time-limit do
4: offspring← variation(P)
5: offspring← localSearch(offspring)
6: for i = 0 to populationsi ze do
7: if P(i) is blocked Sof t Bloq generations then
8: P(i)← offspring(i)
9: else
10: P(i)← best(P(i), offSpring(i))
11: end if
12: end for
13: if P is blocked Hard Bloq generations then
14: if P.size < Max PopSize then
15: increase population size
16: end if
17: end if
18: end while

the admissible ones is assigned. On each generation, the
approach applies a variation operator over the population
(line 4). The variation step consists in the application of a
mutation operator to each individual in order to produce new
offsprings. The (1+1) selection operator is deterministic and
selects the best individual between an offspring and its par-
ent. In order to improve the behavior of the approach when
dealing with local optima, two improvements were consid-
ered. First, if after Sof t Bloq generations the fitness of the
current individual has not been improved, the selection oper-
ator used during the generation is a (1, 1), i.e., the offspring
is selected independently of its fitness value (lines 6–12).
Moreover, if after Hard Bloq generations the fitness value
of none of the individuals has been improved, an extra new
individual is introduced in the population (lines 13–17). Dur-
ing the following generations, each individual included in the
population is evolved applying the aforementioned rules. In
order to avoid an uncontrolled growth of the population, the
maximum size of the population is limited to Max PopSize.

3.1 Local search

The application of local search methods allows admissible
solutions to be achieved in relatively short times. This is a
typical requirement within commercial tools, the context in
which the FAP resides. The local search strategy has been
specifically designed to deal with our version of FAP. Given
its importance, a large effort has been put into making the
local search as efficient as possible.

The operation of the designed local search is based on opti-
mizing the assignment of frequencies to TRXs in a given sec-
tor, without modifying the remaining network assignments.
In [47] a local search method which also substitutes the fre-
quencies assigned to a set of transceivers, leaving intact the
remaining network, is proposed. However, in such a case,

123

http://www.sigevo.org/gecco-2008/competitions.html
http://www.sigevo.org/gecco-2008/competitions.html


Memetic Comp. (2011) 3:33–49 37

Fig. 1 Generation of a new neighbor by reassigning the frequencies of a sector

the set of considered transceivers are not those inside a sec-
tor but the ones satisfying a set of specific properties. In
[7,44] the local search methods are simpler. In both cases,
the new neighbors are generated by changing the assignment
to a only one TRX. Other proposals use tabu search [25]
or guided local search [63] in order to implement the local
search step.

In our proposal, the neighbors of a candidate solution
are obtained by replacing the frequencies in the TRXs of
each sector. The reassignment of frequencies within a sec-
tor is performed in the following way: first, the available
frequencies for the sector are sorted by their involved cost.
Then, two possibilities are considered, either assign the fre-
quency with lowest associated cost to a TRX that is allowed
to use that frequency, or assign its two adjacent frequencies
to two different TRXs (if they are allowed to use these fre-
quencies). For each of the newly generated partial solutions
the same process is repeated until all TRXs in the sector
have been assigned a frequency. The complete solution with
lowest associated cost is considered as the new neighbor,
while the other ones are discarded. Figure 1 illustrates the
generation of a new neighbor. In this example, it is con-
sidered that the sector contains three TRXs, and that each
TRX can use any frequency slot. For every node, the cost
associated to each slot is shown. The children of a node are
generated following the rules previously detailed. The slots
assigned to the TRXs are marked in bold. The nodes with
three slots assigned are complete solutions, while the other
ones are partial solutions. The complete solution identified
by the number three is the new neighbor because is the one
with lowest cost. The remaining generated solutions are dis-
carded.

The order in which neighbors are analyzed is randomly
determined (line 7 of Algorithm 2), but trying to avoid the
generation of neighbors that do not improve the current solu-
tion. For such a purpose, a set called current Sectors con-
taining the sectors that might improve the current solution
is maintained. Initially, all sectors are introduced in current
Sector (lines 2 and 4). For the generation of a new neighbor,

Algorithm 2 Pseudocode for the Local Search
1: Input: current solution S
2: next Sectors ← {1, …, numberOfSectors}
3: while (next Sectors ! = ∅) do
4: current Sectors ← next Sectors
5: next Sectors ← ∅
6: while (current Sectors != ∅) do
7: sec← extract a random sector from current Sectors
8: neighbour ← reassign frequencies of S in sector sec
9: if (neighbour improves S) then
10: S← neighbour
11: next Sectors + = sectors interfered by sec
12: next Sectors + = sectors that interfere sec
13: end if
14: end while
15: end while
16: return S

a sector sec is randomly extracted from current Sector
(line 7) and its frequencies reassigned as aforementioned
(line 8). The local search moves to the first new generated
neighbor that improves the current solution (lines 9–10), add-
ing all the sectors that interfere or are interfered by sec to the
set of the next sectors (next Sectors) to consider (lines 11–
12). When current Sectors set gets empty (line 6), sectors
in next Sectors are transferred to the current set (line 4) and
next Sectors set is cleared (line 5). The local search stops
when none of the neighbors improves the current solution
(line 3).

In cases where the network satisfies a set of properties,
the neighbor generation process ensures the achievement of
the optimal frequency assignment inside the analyzed sector,
considering the remaining network fixed. Such properties are
(1) all TRXs in a given sector are allowed to use the same fre-
quency ranges, (2) it is possible to make assignments which
do not use the same frequency or adjacent frequencies in any
two TRXs serving the same area, and (3) the best assignment
does not use the same frequency or adjacent frequencies in
any two TRXs withing the same sector. A sketch of the proof
is here presented. Let be Cost ( f ) the cost associated to the
assignment of the frequency f to any of the TRXs in the

123



38 Memetic Comp. (2011) 3:33–49

considered sector. Being f1 the frequency with minimum
associated cost, the best assignment must use f1, or must
simultaneously use f1−1 and f1+1. In fact, considering an
assignment in which f1+1 is used, but f1−1 is not used, we
can substitute the assignment of f1+1 by f1, thus obtaining
an assignment with lower cost. In the case of using f1 − 1,
but not f1 + 1, the same property holds. In the cases where
f1 − 1 and f1 + 1 are not used, since f1 is the best pos-
sible assignment, it must be used. Finally, the simultaneous
assignment of both f1 + 1 and f1 − 1, could lead to a better
assignment than the ones using f1 and other frequency f2.
For this reason, in order to ensure that the best assignment
is achieved, individuals which use f1, and individuals which
use simultaneously f1 − 1 and f1 + 1 should be analyzed.
The way in which neighbors are generated ensure that both
possibilities are explored, so the best assignment is achieved
under such conditions.

Considering that K is a very large constant, the three con-
sidered properties hold for the example illustrated in Fig. 1.
Thus, considering the remaining network fixed, the generated
solution is the best one.

3.2 Variation operators

A variation step, consisting on applying a mutation opera-
tor is performed on each generation (Algorithm 1—line 4).
Three different mutation operators were implemented and
compared. They include both directed and random operators.
The tested mutation operators were the following:

• Uniform Mutation (UM): each gene—or transceiver
assignment—is mutated with a probability pm . In order to
perform the new assignment to the gene, a random value
among the admissible ones is selected.

• Mapping Mutation (MM): being F the set of accepted fre-
quencies by any of the transceivers, a random bijection
m : F ↔ F is generated. Each transceiver assignment
tx is replace with a probability pm by the value m(tx ), if
m(tx ) is an admissible value for the transceiver tx .

• Neighbor-based Mutation (NM): first, a random TRX tx is
mutated. Then, its neighbors, i.e., the TRXs which inter-
fere tx , or are interfered by tx , are mutated with a proba-
bility pm . The previous steps are repeated N times, but the
TRX is selected among those ones which are neighbors
of the TRXs that has been mutated in the previous steps.
Thus, the mutation operator is focusing on one zone of
the network.

4 Hyperheuristics

A reduced version of the designed sequential approach here
proposed was used to deal with a combinatorial 2D

Packing Problem [42] and with the here analyzed version of
FAP [45]. In the case of the FAP, one mutation operator, and
one instance of the problem was analyzed. Promising results
were achieved, however, the impact of the mutation opera-
tors and its parameterization were not studied. Subsequent
experiments have revealed the importance of the selected
mutation operator as well as its parameterization. Thus, in
order to obtain a good performance, it is necessary to adapt
the strategy to each solved instance. In order to improve the
quality of the achieved solutions, an analysis of the impact
of the different parameters with each new instance should be
performed. Usually, the users do not have a prior knowledge
about the algorithm behavior when applied to a particular
instance, so if they have to try many alternatives, the process
could take too much user and computational effort. In order
to avoid such a step, hyperheuristics can be applied.

A hyperheuristic can be viewed as a heuristic that
iteratively chooses between a set of given low-level (meta)-
heuristics in order to solve an optimization problem [9].
Hyperheuristics operates at a higher level of abstraction than
heuristics, because they have no knowledge about the prob-
lem domain. The motivation behind the approach is that,
ideally, once a hyperheuristic algorithm has been developed,
several problem domains and instances could be tackled by
only replacing the low-level (meta)-heuristics. Thus, the aim
in using a hyperheuristic is to raise the level of generality at
which most current (meta)-heuristic systems operate. Since
the main motivation of hyperheuristics is to design prob-
lem-independent strategies, a hyperheuristic is not concerned
with solving a given problem directly as is the case of most
heuristics implementations. In fact, the search is on a (meta)-
heuristic search space rather than a search space of potential
problem solutions. The hyperheuristic solves the problem
indirectly by recommending which solution method to apply
at which stage of the solution process. Generally, the goal of
raising the level of generality is achieved at the expense of
reduced—but still acceptable—solution quality when com-
pared to tailor-made (meta)-heuristic approaches. A diagram
of a general hyperheuristic framework [9] is shown in Fig. 2.
It shows a problem domain barrier between the low level
(meta)-heuristics and the hyperheuristic itself. The data flow
obtained by the hyperheuristic could include the quality of
achieved solutions (average, improvement, best, worst), the
resources (time, processors, memory) invested to achieve
such solutions, etc. Based on such a information, the hype-
rheuristic make its decisions. The data flow coming from
the hyperheuristic could include information about which
heuristic must be executed, its parameters, stop criteria, etc.
The term hyperheuristic also refers to framekwors which are
capable of generating new heuristics by combining a set of
simpler components [6].

Previously to the appearance of the concept of hyperheu-
ristic, some research was performed analyzing similar ideas.

123



Memetic Comp. (2011) 3:33–49 39

Hyperheuristic

Domain Barrier

Low level metaheuristics

. . .h2h1 hn

Evaluation Function

Non-domain data flow

Non-domain data flow

Fig. 2 Hyperheuristic framework

Composer [27] was one of the first proposals which used
a search space constituted by heuristics. In such a case, the
search was performed by using a hill-climbing strategy. Other
proposals consisted in hybridizing genetic algorithms and
heuristics [60].

Hyperheuristics can be classified in terms of the character-
istics of the low-level metaheuristics into two groups [11], the
ones which operate with constructive techniques and the ones
which operate with improvement techniques. Constructive
techniques are used to build solutions from scratch. At each
step, they determine a subpart of the solution. Improvement
metaheuristics are iterative approaches which take an initial
solution, and modify it with the aim of improving the objec-
tive value. Some hyperheuristics have been designed to oper-
ate specifically with one kind of low-level metaheuristics,
while other ones, can use both, constructive and improve-
ment methods.

Several ways of incorporating the ideas of hyperheuris-
tics into an optimization problem have been proposed. The
hyperheuristics which deal with mono-objective optimiza-
tion problems are much more extensive. In [10] a tabu search
based hyperheuristic is presented. It operates with improve-
ment low-level heuristics. The same hyperheuristic was used
inside a simulated annealing algorithm [19]. The hyperheu-
ristic was used to combine several neighborhood definitions.
Tabu search based hyperheuristics have also been used com-
bined with constructive methods [11]. Other metaheuristics
which have inspired the creation of hyperheuristics are
genetic algorithms [14] and ant colony optimization [8,13,
18]. In the ant-based hyperheuristics, the pheromones repre-
sent how well a (meta)-heuristic operates after the applica-
tion of another (meta)-heuristic. Local search with restart [4]
has also been used to implement hyperheuristics. The choice
functions has been used multiple times [15,16,33]. In such
cases, a scoring function is used to assess the performance
of each low-level heuristic. The resources are granted to the
heuristic which maximize such a function. In [62] a choice
function is also used to score each method. However, the

resources are assigned using a probability function, which
is based on the assigned score. In [34,35] the resources are
assigned in a random way, and the hyperheuristic decides to
accept or reject the changes performed by each heuristic.

5 A parallel dynamic mapped island-based model

Parallel evolutionary algorithms (PEAs) can be classified
[12] in four major computational paradigms: master-slave,
island-based or coarse-grained, diffusion or cellular, and
hybrid paradigm. Such paradigms can be extended to MAs
parallelization, just by substituting the EAs by MAs. Island-
based models, also known as multi-deme models, have shown
good performance and scalability in many areas [2]. In such
a model, the population is divided into a number of indepen-
dent subpopulations or demes. Each subpopulation is associ-
ated to an island and an EA or MA configuration is executed
over each subpopulation. A configuration is constituted by an
algorithm together with its parameterization, variation opera-
tors and probabilities. Usually, each available processor con-
stitutes an island which evolves in isolation for the majority
of the parallel run. Occasionally, some solutions can be trans-
ferred among islands following a migration scheme. Several
island-based variants are seen to exist:

1. All islands execute identical configurations (homoge-
neous).

2. All islands execute different configurations (heteroge-
neous).

3. Each island represents a different region of the genotype
domain.

4. Each island represents a different region of the pheno-
type domain.

Parallel EA-based schemes show the same drawbacks as
sequential EA-based approaches. Usually, the dependence
on problem or instance specific knowledge hinders the appli-
cation of them. For instance, comparisons between parallel
island-based models [40] show that if there exists an algo-
rithm which clearly outperforms the other ones in solving
one type of problem, the homogeneous island-based model
using such an algorithm allows to obtain good quality
solutions. However, it is difficult to know a priori which
configuration is the most appropriate to solve a problem.
If the chosen algorithm is not suitable for the problem to
solve, poor quality solutions will be achieved. Heterogeneous
models allows to execute different configurations on each
processor at the same time. By using heterogeneous mod-
els, the user avoids the selection of a specific configuration
to solve the problem. However, if some of the configura-
tions are not suitable to optimize the problem, a waste of
resources is done. In order to provide a more reusable, robust,

123



40 Memetic Comp. (2011) 3:33–49

and efficient approach, applicable to a wider range of prob-
lems and instances, a parallel dynamic mapped island-based
model can be applied. The model combines the operation of
an island-based scheme with a hyperheuristic approach to
manage the choice of which lower-level algorithm configu-
ration is executed on each island at each optimization stage.
Similar models have been applied to mono-objective prob-
lems [42] and multi-objective problems [56]. The novelty
resides in the adaptation of the model to the FAP, and in the
incorporation of novel hyperheuristics inside the model.

The underlying principle in adding a hyperheuristic
approach to a standard island model is that different configu-
rations have different strengths and weaknesses and it makes
sense to combine them in parallel in an intelligent manner.
Thus, the proposed parallel model breaks from the standard
island scheme adding an adaptive property behavior to it.
The adaptive property allows, by applying a hyperheuristic,
to perform a dynamic mapping among the configurations and
the islands, with the aim of granting more resources to the
most promising configurations.

The no-free-lunch Theorem [65] shows that if an algo-
rithm achieves superior results on some problems, it must
pay with inferiority on other problems. The aim of the here
proposed model is to be able to solve a large set of problems
in acceptable times, at the cost of not being able to solve
the problems as quick as a tailor made optimization scheme.
However, in some cases it could happen that, due to the fea-
tures of the problem and/or due to the stochastic behavior of
the algorithms, the hyperheuristic could fail. Special difficul-
ties arise when dealing with problems in which it is better to
apply different algorithms and/or operators at different opti-
mization stages. These difficulties increase when such stages
are not long enough to be detected by the hyperheuristic. In
order to adapt the resources assignment, the hyperheuristic
requires some time to detect the behavior of the algorithms,
so, if the changes appear too quickly, the performance of the
approach gets worse.

The architecture of the new hybrid model is similar to the
island model, i.e., it is constituted by a set of slave islands
that evolve in isolation applying a certain evolutionary or
memetic algorithm to a given population (see Algorithm 3).
The number of islands and the set of configurations that
could be applied over the local populations are defined by the
user. Also, as in the island-based model, a tunable migration
scheme allows the exchange of solutions among neighbor
islands. Moreover, a new special island is introduced into the
scheme. That island, called master island (see Algorithm 4),
is in charge of applying the hyperheuristic principles, i.e.,
performing the mapping between the configurations and the
slave islands.

In the standard island-based model, a global stop crite-
rion is defined. In the proposed model, besides the global
stop criterion, local stop criteria are fixed for the execution

Algorithm 3 Slave Islands Pseudocode
1: configureMigration()
2: while (not globalStopCriterion()) do
3: lastConfig = ∅
4: newConfig← receiveConfiguration()
5: if (newConfig != lastConfig) then
6: initConfig(newConfig)
7: lastConfig← newConfig
8: checkPopulation(α)
9: end if
10: while (not localStopCriterion()) do
11: runGeneration()
12: migrate()
13: end while
14: sendSolutions()
15: end while
16: sendBestSolution()

Algorithm 4 Master Island Pseudocode
1: initAdaptiveModel()
2: assignInitConfigsToIslands()
3: while (not globalStopCriterion()) do
4: [island, config]← checkForIdleIsland()
5: if (island != NULL) then
6: solutions[config]← receiveSolution(island)
7: scores← updateScores(solutions)
8: nextConf← selectConfig(scores)
9: assignConfig(nextConf, island)
10: resumeExecution(island)
11: end if
12: end while
13: receiveSolutions()

of the configurations on the islands. When a local stop crite-
rion is reached—a quantum of time—the island execution is
stopped. Based on the results achieved by the island, a score is
assigned to the corresponding configuration. Based on such
a score or quality indicator, the selection strategy is applied
and the master selects the next configuration that should be
executed on the idle island. If the new selected configura-
tion is the same as the island current configuration, the local
stop criterion is updated and the execution continues. Oth-
erwise, the island configuration is updated and the changes
performed by the algorithm over its subpopulation must be
validated. In such a step, the model ensures that the individ-
uals in the subpopulation has not worsen its objective value
more than a fixed percentage value (α) along the last con-
figuration run. If an individual does not verify the condition,
the original individual is recovered. This step is necessary
because unsuitable configurations could excessively degrade
the population quality. Finally, when the global stop criterion
is reached, every island sends its local solution to the master
and the best one is selected as the final solution. Also, as in
standard island models, the user must configure the migration
scheme: the migration frequency, the number of individuals
to migrate at each step, and the migration topology must be
specified.

123



Memetic Comp. (2011) 3:33–49 41

As stated in the algorithm description, the model has been
centralized for the incorporation of the hyperheuristic princi-
ples. However this centralization does not strongly affects the
scalability of the approach. The computational work associ-
ated to the tasks performed by the master island—the hype-
rheuristic selection procedure—is negligible when compared
to the effort required by the slave islands—execution of the
configurations.

The model has been implemented using the metco
(Metaheuristic-based extensible tool for cooperative opti-
misation) tool [43]. In order to improve the efficiency of
the model, asynchronous communications for the migration
scheme have been implemented. All the communications
among the processes have been done using the message pass-
ing interface tool mpi.

5.1 Mapping scheme

One crucial issue for the correct operation of the model con-
sists in performing a suitable mapping among the islands
and configurations. The mapping process is managed by the
hyperheuristic. Two different hyperheuristics has been incor-
porated into the parallel model. Both hyperheuristics are
based on the use of choice functions. In parallel island-based
models, probability schemes seem more promising than elit-
ist schemes [41]. Therefore, a probability-based selection
scheme [62] was incorporated.

The general behavior of both hyperheuristics is similar.
First, a set of functions are used to assign a score to each
configuration. Then, a probabilistic selection, based on the
score of each configuration, is used to decide the next con-
figurations that must be assigned to the idle islands. It is
important to note that the behavior of the configurations can
change along the different stages of the execution. More-
over, the stochastic behavior of the involved low-level (meta)-
heuristics may lead to variations in the results achieved by
each configuration. Therefore, it is appropriate to make some
selections based on a completely random scheme. Both hype-
rheuristics can be tuned by means of the parameter β, which
represents the minimum selection probability that should be
assigned to a configuration. Thus, being nh the number of
involved (meta)-heuristics, a completely random selection is
performed in β ∗ nh percentage of the cases.

The first incorporated hyperheuristic (HH_imp) was pre-
viously used in [42]. The score assigned to each configura-
tion estimates the improvement that each configuration can
achieve, when breaking from the currently achieved solu-
tions. In order to perform such a estimation the quality
improvement achieved by each configuration is saved.
Improvements are calculated when a configuration is stopped,
i.e., when its local stop criterion is reached. The improve-
ment is defined as the difference (in objective value) between
the best achieved solution, and the best initial individual.

Improvements obtained during the migration stage of the
algorithm are discarded, obtaining the improvement imp.
Considering a configuration conf, which has been executed
j times, the score (s(conf)) is calculated as a weighted aver-
age of the last k improvements. The weighted average assigns
greater importance to the last executions:

s(conf) =
∑k

i=1 i ∗ imp[conf][ j − i]
∑k

i=1 i

The selection probability of the configuration conf (prob
(conf)) is given by:

prob(conf) = β + (1− β ∗ nh) ∗
[

s(conf)
∑nh

i=0 s(i)

]

In [56] it was shown that for some problems, given a set
of configurations, a dynamic-mapped scheme could lead to
better results than a static-mapped heterogeneous scheme
and than any of the homogeneous schemes that could be
constituted. It suggests that the combination of different strat-
egies working at the same time produces additional bene-
fits. The second incorporated hyperheuristic (HH_Syn) tries
to detect synergies between pairs of configurations. It takes
some ideas of the ant-based hyperheuristics [8]. In such a
case, the hyperheuristic was applied in a sequential scheme,
trying to detect how well a (meta)-heuristic operates after
the application of another (meta)-heuristic. In our case, since
it is incorporated in a parallel scheme, the hyperheuristic
tries to detect how well a (meta)-heuristic operates in paral-
lel with another (meta)-heuristic. HH_Syn assigns two dif-
ferent scores to each configuration. The first one, is called the
visibility (vis) and represents the independent performance
of each configuration. It is calculated as s in HH_imp. The
second one, is called the cooperation between pairs (cp) and
represents the performance of a (meta)-heuristic in the pres-
ence of other metaheuristics. The improvements achieved
along the execution by a metaheuristic m1, executed in paral-
lel with a metaheuristic m2, is saved in the set imp[m1][m2].
Given two metaheuristics m1 and m2, which have been exe-
cuted in parallel j times, the score cp(m1, m2) is calculated
as a weighted average of the last k improvements achieved
by m1, in the presence of m2.

cp(m1, m2) =
∑k

i=1 i ∗ imp[m1][m2][ j − i]
∑k

i=1 i

Given a metaheuristic m1 and the set of currently
assigned metaheuristics m_set = {h1, h2, . . . , hn}, the score
cs(m1) is calculated as the maximum cp of any of its compo-
nents, i.e., cs(m1)=max{cp(m1, h1), cp(m1, h2), . . . ,

cp(mn, hn)}.
When every island is idle, the hyperheuristic must grant

the resources among the available configurations. The first
assignment is performed as in HH_imp, but substituting s by

123



42 Memetic Comp. (2011) 3:33–49

vis, i.e., the selection probability of the configuration conf
is given by:

prob(conf) = β + (1− β ∗ nh) ∗
[

vis(conf)
∑nh

i=0 vis(i)

]

For the remaining assignments, the global cooperation cs

is also considered. cs is used with a probability γ . Thus, con-
sidering that hh is the set of configurations assigned to any
of the islands, the selection probability of the configuration
con f is given by:

prob(conf) = β + (1− β ∗ nh − γ ) ∗
[

vis(conf)
∑nh

i=0 vis(i)

]

+ γ ∗
[

cs(conf)
∑nh

i=0 cs(i)

]

6 Experimental evaluation

6.1 Description

This section shows the results achieved for two different real-
world instances of the FAP when using the sequential and
parallel schemes here proposed. Tests have been run on a
Debian GNU/Linux cluster of 8 nodes, each one consisting
of two Intel(R) Xeon(TM) at 2.66 GHz and 1 Gb RAM. The
interconnection network is a Gigabit Ethernet. The C++ com-
piler and mpi implementation used were gcc 3.3 and mpich
1.2.7. The implementation of the algorithms was performed
using metco [43] (Metaheuristic-based extensible tool for
cooperative optimisation).

Comparisons are performed considering two US cities
instances: Seattle and Denver. The Seattle instance has 970
TRXs and 15 different frequencies to be assigned. The Den-
ver instance is larger. It is constituted by 2612 TRXs and 18
frequencies. In both cases, the constants used in the mathe-
matical formulation [44] were set to K = 100,000, cSH =
6 dB, and cACR = 18 dB. These GSM networks are currently
operating so finding their optimal plannings is of great prac-
tical interest. It is important to remark that the data source to
build the interference matrix based on the C/I probability
distribution uses thousands of Mobile Measurement Reports
(MMRs) [37] rather than propagation prediction models. The
M matrix contains 59,169 elements in the Seattle network,
while it contains 20,638 elements for the Denver instance.
The analysis is focused in detecting the advantages achieved
by the incorporation of the hyperheuristics principles inside
the parallel models. Nowadays it is common to have access
to computers with several cores. Quad-core computers or
even eight-core are accessible for most of the researchers
and enterprises. Since the master operates when, at least,
one of the slave islands is idle, it can share the computational

resources with them. Therefore, parallel executions have been
performed using 4 and 8 slave islands.

A set of experiments were executed for each instance in
order to test the behavior of the different approaches. For
each kind of execution, 30 repetitions were performed and
average values considered. Since the tested algorithms are
stochastic, in order to provide the results with confidence
a suitable statistical analysis must be performed. The sta-
tistical comparisons has followed the guidelines presented
in [17,57]. First a Kolmogorov–Smirnov test is performed
in order to check whether the values of the results follow a
normal (gaussian) distribution or not. If so, the Levene test
checks for the homogeneity of the variances. If samples have
equal variance (positive Levene test), an ANOVA test is done;
otherwise a Welch test is performed. For non-gaussian dis-
tributions, the non-parametric Kruskal–Wallis test is used to
compare the medians of the algorithms. A confidence level
of 95% is considered (i.e., significance level of 5% or p value
under 0.05), which means that the differences are unlikely to
have occurred by chance with a probability of 95%.

6.2 Computational results

First experiment performs a comparison of the costs of the
frequency plans obtained by a set of sequential configurations
and by the proposed parallel approach with both explained
hyperheuristics. The configuration of the memetic algorithm
parameters was as follows: I ni t P Size = 2, Sof t Bloq =
50, Hard Bloq = 300, Max PopSize = 5. Many configu-
rations can be constituted by using the set of defined mutation
operators and by tuning their internal parameters. A set of 30
sequential configurations were executed and analyzed. They
were defined by uniformly dividing the ranges of accepted
values. The set of mutation operator configurations was the
following:

• UM with pm = {0.1, 0.3, 0.5, 0.7, 0.9}
• MM with pm = {0.1, 0.3, 0.5, 0.7, 0.9}
• NM with (pm, N ) = {(0.1, 1), (0.3, 1), (0.5, 1),

(0.7, 1), (0.9, 1), (0.1, 3), (0.3, 3), (0.5, 3), (0.7, 3),

(0.9, 3), (0.1, 5), (0.3, 5), (0.5, 5), (0.7, 5), (0.9, 5),

(0.1, 7), (0.3, 7), (0.5, 7), (0.7, 7), (0.9, 7)}

The presented parallel model has been executed using
the hyperheuristics HH_Imp and HH_Syn, and using the
30 described configurations as low-level meta-heuristics. In
both hyperheuristics the next parameterization was used: α =
0.5%, β = 0.2

30 and k = 5. In HH_Syn γ was fixed to 0.4.
Parallel executions were run using 4 and 8 slave islands.
They are referred as HH_Imp4, HH_Imp8, HH_Syn4 and
HH_Syn8. Every sequential and parallel execution was per-
formed with a stop criterion of 1 h. For the parallel execu-
tions the local stop criteria was fixed to 1 min, when 4 slave

123



Memetic Comp. (2011) 3:33–49 43

islands were used, and to 2 min for the executions with 8 slave
islands. Migration was performed following an asynchro-
nous scheme with a migration probability of 1. The topol-
ogy consisted in an all to all connected structure. Migrated
individuals are selected following an elitist scheme, i.e., the
best individual is selected to migrate. Replacements were
performed also following an elitist scheme. They only take
place when the migrated individual is better than any of
the individuals in the new island. Since only one individ-
ual is selected a good diversity is maintained among the
islands.

Considering the obtained results, sequential algorithms
were ordered based on the mean cost achieved at the end of
the executions. An index based on such an order is assigned
to each configuration. Therefore, for each instance, the best
sequential execution will be referred as “seq1”, while the
worst one will be referred as “seq30”. Generally the behav-
ior of a configuration depends on the instance. Table 1 shows
the best configurations for the Seattle instance, and its cor-
responding index for the Denver instance. Most of the best
configurations are suitable for both instances. However, some
of them are not adequate, so they would produce a waste of
resources if applied to the other instance. Thus, the robust-
ness of the scheme can be improved by applying the parallel
hyperheuristic-based approach. Moreover, some of the best
configurations correspond to high values of pm , while other
ones correspond to low values. Thus, it is very difficult to
know, a-priori, which configurations are suitable for a given
instance.

Table 1 Robustness of sequential configurations

Configuration Seattle index Denver index

NM (0.7, 7) 1 2

NM (0.9, 5) 2 1

NM (0.3, 3) 3 12

NM (0.5, 7) 4 5

NM (0.7, 5) 5 3

UM (0.1) 6 19

NM (0.5, 5) 7 17

Figure 3 displays, for both instances, the evolution of the
mean cost achieved by both parallel hyperheuristic-based
models, “seq1”, “seq15”, and “seq30”. In both instances the
cost achieved by HH_Imp4 and HH_Syn4 methods are very
similar to the one achieved by the best sequential approach.
In the Seattle network, “seq1” is slightly better than the paral-
lel approaches, while in the Denver network, the best results
are achieved by the parallel schemes. Therefore, the paral-
lel approaches, even with so few processors, can be used in
order to avoid the testing of each one of the low-level con-
figurations. Costs values achieved by “seq15” and “seq30”
are clearly worse than the ones achieved by the parallel mod-
els. Results achieved by HH_Syn4 slightly improve the ones
obtained by HH_Imp4, but they are not statistically differ-
ent. Executions with 8 slave islands produce much betters
results. Differences between the models with 4 islands, and

Fig. 3 Evolution of the cost function for Seattle and Denver networks

123



44 Memetic Comp. (2011) 3:33–49

seq15 seq1 Imp4 Syn4 Imp8 Syn8 seq15 seq1 Imp4 Syn4 Imp8 Syn8

seq15 seq1 Imp4 Syn4 Imp8 Syn8 seq15 seq1 Imp4 Syn4 Imp8 Syn8

Seattle − 30 min.

C
os

t

Denver − 30 min.

C
os

t

Seattle − 60 min.

C
os

t
80

0
10

00
12

00
14

00
16

00

85
00

0
87

00
0

89
00

0

80
0

90
0

10
00

12
00

85
00

0
86

00
0

87
00

0
88

00
0

89
00

0

Denver − 60 min.

C
os

t

Fig. 4 Box-plots of the achieved costs

Table 2 Statistical analysis fixing the execution time

Seattle Denver

↑ ↔ ↓ ↑ ↔ ↓
HH_Imp4 7 6 17 0 3 27

HH_Syn4 7 3 20 0 2 28

HH_Imp8 0 0 30 0 0 30

HH_Syn8 0 0 30 0 0 30

the ones with 8 islands are significant. Therefore, they allow
to avoid the testing of each one of the low-level configura-
tions, and to speed up the obtaining of high quality network
configurations. In both networks, the mean cost achieved
by HH_Syn8 at the end of the executions improves the one
achieved by HH_Imp8, but differences are not statistically
significant.

Figure 4 offers a more detailed information about the
cost achieved by each scheme, using as stop criterion 30 min
and 1 h. In both instances, the diagram shows the similarity
between “seq1” and the parallel models using 4 slave islands.
The parallel models with 8 slave islands clearly improve the
results achieved by any other model. Also, it shows the ben-
efits of HH_Syn, when compared to HH_Imp.

Table 2 shows, for both instances, the number of sequen-
tial configurations which are better (↑), not different (↔),

or worse (↓) than the corresponding row configuration. The
comparison is performed in terms of the achieved fitness
when considering a stop criterion of 1 h. It shows the bet-
ter adaptation of the hyperheuristic to the Denver instance,
than to the Seattle instance. In both instances, the paral-
lel approach with 4 slave islands is better than most of the
sequential configurations. When 8 slave islands are incorpo-
rated, the parallel approaches perform better than any sequen-
tial approach. Table 3 shows the same information as Table 2,
but in this case the amount of resources used are fixed. Thus,
the parallel approaches using 4 islands and a stop criterion
of 1 h were compared with sequential executions of 4 h, and
the parallel ones with 8 slave islands, were compared with
sequential approaches of 8 hours. With such a comparison
we can detect the number of sequential configurations which
make a better usage of the resources than the parallel schemes.
In the case of the Seattle instance, about 10 configurations
make a worse usage of the resources, i.e., a superlinear
speedup is expected when compared with them. In the case
of the Denver instance that number is increased to 15. Once
again, it shows the better adaptation of the parallel approaches
to the Denver network.

The previous experiment has compared the schemes,
mainly focused in terms of the achieved quality. However,
since the parallel executions use more computational
resources than the sequential ones, the improvement achieved
by the parallel model must be quantified. In order to measure

123



Memetic Comp. (2011) 3:33–49 45

Table 3 Statistical analysis fixing the amount of resources

Seattle Denver

↑ ↔ ↓ ↑ ↔ ↓
HH_Imp4 19 3 8 9 6 15

HH_Syn4 18 2 10 10 5 15

HH_Imp8 19 4 7 9 6 15

HH_Syn8 18 3 9 10 5 15

the improvement of the parallel approach, the second experi-
ment analyzes the run-time behavior of the parallel proposed
models. The ideas presented in [30] were followed. Each
sequential configuration, as well as the parallel models, were
executed using as finalization condition the achievement of
a certain level of quality. The quality level was established
so that HH_Imp4, i.e., the worst parallel approach, would
require 30 min in average, in order to reach it. Since some
of the sequential configurations are not able to reach such
a quality level, a second stopping criterion, consisting in
the execution of a maximum time of 10 h was also consid-
ered. Thus, the success ratio is defined as the probability of
achieving the required quality level, considering a limita-
tion in the execution time of 10 h. Figure 5 shows, the run
length distribution—success ratio versus time—for the paral-
lel models, and for the best behaved sequential configuration
when applied to the Seattle network. It shows the similarity
among the run length distribution of the hiperheuristic-based
methods using 4 slave islands, and the best sequential config-
uration. Thus, such parallel approaches and the best sequen-
tial configuration requires similar times to converge to a plan
with the considered quality. The parallel schemes with 8 slave
islands are able to obtain such a quality level in less time.
Figure 6 shows the same information for the Denver network.
In this case, the hyperheuristics-based methods are even able
to achieve better results than the best sequential configura-
tion. Therefore, for both instances it is possible to make use
of any of the parallel approaches in order to obtain good qual-
ity solutions. In fact, by using only 4 processors, the success
ratio achieved by the parallel models is similar—or even bet-
ter—than the ones achieved by the best sequential approach.
It shows the good behavior of the parallel approaches, spe-
cially considering the large set of low-level metaheuristics
incorporated in the model.

For the remaining configurations a summary of the
analysis is shown. Table 4 shows, for the Seattle network,
the success ratio and the average speedup of the parallel
models versus a set of selected sequential configurations.
The speedup is marked with a line in the cases in which the
sequential configurations were not able to achieve a success
ratio greater than 50%. These speedups are calculated based
only on the executions which achieved the considered quality

Fig. 5 Run length distribution for the Seattle network

Fig. 6 Run length distribution for the Denver network

level. Therefore, shown speedup values are lower approxi-
mations of the real ones. In order to calculate the real val-
ues, much longer executions should be performed for the
worst-behaved configurations. Although linear speedup is
not achieved when comparing with the best configuration,
it must be taken into account that when solving a problem,
the best configuration is not known a priori, so, the time sav-
ing is much greater than the speedup calculated versus the
best configuration. In fact, the speedup highly increases when
comparing to other configurations. Moreover, the addition of
more resources produce faster convergence to high-quality
results. The speedup achieved by the models which use 8
slave islands is about the double of the models which use
4 slave island. Thus, with the addition of the first resources
the testing of each low-level configuration can be avoided;
and with the addition of more resources, the speedup can be
improved. Table 5 shows the same information for the Denver
network. The behavior is very similar to the one detected in
the Seattle instance. Also, it is important to note that for both
instances, the parallel model based in HH_Syn has been able
to obtain greater speedups than the model using HH_Imp.

123



46 Memetic Comp. (2011) 3:33–49

Table 4 Speedup of the parallel models in the Seattle network

Config. HH_Imp4 HH_Syn4 HH_Imp8 HH_Syn8 Success
speedup speedup speedup speedup ratio (%)

seq1 0.9 1.1 2 2.4 100

seq5 1 1.2 2.2 2.6 100

seq10 2.3 2.6 4.8 5.8 100

seq15 3.8 4.3 8 9.6 100

seq20 6.3 7.1 13.2 15.9 100

seq25 – – – – 0

Table 5 Speedup of the parallel models in the Denver network

Config. HH_Imp4 HH_Syn4 HH_Imp8 HH_Syn8 Success
speedup speedup speedup speedup ratio (%)

seq1 1 1.2 2.4 2.4 90

seq5 1.1 1.3 2.6 2.6 90

seq10 2.3 2.8 5.4 5.4 90

seq15 2.4 3 5.8 5.8 90

seq20 11.4 13.9 26.8 26.8 60

seq25 – – – – 0

Although the improvement of the proposed model com-
pared to the sequential model has been demonstrated, in order
to further check its validity, it must also be compared with
other PEAs. In order to perform such a comparison, some
additional parallel executions were carried out. The param-
eters for such executions were the same as the ones used
in the above parallel experiments but in this case, instead
of using the hyperheuristic-based model, a homogeneous
island-based model was defined for each one of the 30 con-
figurations. Each model used 4 slave islands. The cost values
obtained in 30 and 60 min are used in the comparison. Table 6
shows, for the Seattle network, the number of homogeneous
schemes which are better, worst or not significantly differ-
ent from the proposed models. As shown in the table, less
than half of the proposed homogeneous models are better
than the hyperheuristic-based approaches. Table 7 shows the
same information for the Denver network. In this case, the
new proposed model is always among the best schemes. It
shows again the better adaptation of the proposed method to
the Denver instance. Since the adaptation scheme requires
some time to detect how the low-level metaheuristics are
behaving, the model performs better for longer executions.
Results show that the number of homogeneous models which
are worse than our model increases with the execution time
in every case. Moreover, for both studied instances, the hype-
rheuristic-based methods have shown their stability, allowing
the user to obtain very acceptable results without the require-
ment of testing a large set of different PEAs.

Also, it is important to check the suitability of the selec-
tion scheme. The proposed parallel models were compared

Table 6 Quality comparison of the parallel models for the Seattle
network

Model Better Worse Not differ

30 m 60 m 30 m 60 m 30 m 60 m

HH_Imp4 14 14 10 11 6 5

HH_Syn4 14 14 11 12 5 4

Table 7 Quality comparison of the parallel models for the Denver
network

Model Better Worse Not differ

30 m 60 m 30 m 60 m 30 m 60 m

HH_Imp 8 8 15 16 7 6

HH_Syn 8 5 13 17 9 8

with a strategy which randomly changes the configurations
executed on the islands. Such strategy has been denoted as
4-uniform. The involved configurations, migration scheme
and stopping criteria were identical to the ones used in the
first experiment. Tables 8 and 9 show the best, worst, average
and median of the costs achieved by HH_Imp4, HH_Syn4,
and 4-uniform approaches when applied to Seattle and Den-
ver instances, respectively. In every case, the average and
median costs achieved by the new proposed models are better
than the ones achieved by making a random mapping. More-
over, the statistical comparison of 4-uniform with HH_Imp4

and with HH_Syn4 shows the superiority of the hyperheuris-
tic-based approaches. As shown, the incorporated hyperheu-
ristic strategies produces an important improvement when
compared to random selection schemes.

As stated in the paper, the analyzed GSM networks are cur-
rently operating so finding their optimal plannings is of great
practical interest. They have been analyzed in several papers
[44,45]. The best results have been obtained by using “seq1”,
with a stop criterion of 10 h. Note that parallel approaches
have only been executed with more restricted stopping cri-
teria. For the Denver instance, the best obtained plan has
84,548.9 interference units. Since our knowledge it has only
been improved by the plans obtained by using grid systems
[46]. In such a case, executions with 300 processors were
performed. In the case of the Seattle instance, it was pro-
duced a plan of 654.53 units. Since our knowledge it is the
best known frequency plan.

7 Conclusions and future work

This paper has presented a set of approaches used to deal with
the FAP. Relevant aspects of real-world GSM networks has
been considered in the mathematical formulation of the FAP.
In previous works, a memetic algorithm with an increasing

123



Memetic Comp. (2011) 3:33–49 47

Table 8 Quality comparison of the hyperheuristic-based models with a random scheme for the Seattle network

4-uniform HH_Syn4 HH_Imp4

Best Worst Mean Median Best Worst Mean Median Best Worst Mean Median

30 min 951 1,316 1,138 1,149 852 1,264 1,051 1,052 857 1,314 1,063 1,069

60 min 949.5 1,278 1,074 1,067 796 1,200 1,007 1,008 857 1,198 1,024 1,016

Table 9 Quality comparison of the hyperheuristic-based models with a random scheme for the Denver network

4-uniform HH_Syn4 HH_Imp4

Best Worst Mean Median Best Worst Mean Median Best Worst Mean Median

30 min 86,849 89,174 87,790 87,756 85,273 89,296 87,162 87,103 85,760 88,507 87,198 87,175

60 min 86,390 88,620 87,224 87,201 84,718 88,186 86,502 86,564 85,465 88,037 86,677 86,553

population size had been designed to deal with such a ver-
sion of the FAP. The algorithm combines a modified evo-
lutionary algorithm with a (1 + 1) selection operator and
a specifically designed local search. A theoretical analysis
of the local search has been performed, showing the cases
in which optimal assignments are performed. In previous
researches, promising results were achieved by using such a
memetic algorithm. However, it had to be adapted for each
solved instance. Particularly, the internal parameters of the
variation operators had to be fixed. Thus, previously to solv-
ing a problem instance, an algorithm tuning step had to be
performed.

A novel parallel approach, based on hybridizing hype-
rheuristics and the island-based model, has been applied to
the FAP. The proposal adds an adaptive property to the well
known island-based model by applying the operation prin-
ciples of the hyperheuristics. The model combines a set of
low-level metaheuristics in an intelligent way, granting more
computational resources to those configurations that show a
more promising behavior. In the considered case, the low-
level metaheuristics are configurations of the memetic algo-
rithm, which use different sets of internal parameters and
variation operators. Specifically, 30 different configurations
have been used. Moreover, new variation operators has been
designed and tested. In order to perform the assignment of the
resources, two different hyperheuristics have been incorpo-
rated inside the model. Both hyperheuristics are based on the
use of choice functions and probabilistic selections strategies.
The first hyperheuristic (HH_Imp) is based on estimating
the improvement that each configuration can achieve, when
breaking from the currently achieved solutions. The second
hyperheuristic (HH_Syn) tries to detect synergies between
pairs of configurations, i.e. it analyzes the behavior of the
low-level metaheuristics when they are executed in parallel
with other metaheuristics.

Results achieved for two real-world networks demonstrate
the validity of the proposed scheme. Both networks are cur-
rently operating in US cities, so finding their optimal plan-
nings is of great practical interest. The new designed schemes
made possible to improve the previously known best fre-
quency plans for the Seattle instance. In the case of the
Denver instance, it has been able to improve the results
attained by sequential executions of more than 5 days [46].
However, it was not able to improve the quality of the plans
obtained by using large grid systems [46]. The experiments
compare the proposed model with the low-level sequential
algorithms, and with a set of parallel approaches: a homo-
geneous island-based model for each considered sequen-
tial approach. Results obtained by the designed approach
with 4 slave islands are similar to the ones obtained by the
best sequential scheme. Therefore, even with so few pro-
cessors, the hyperheuristic-based approaches can be used
in order to avoid the tuning step of the memetic algorithm.
Thus, the new model provides high-quality solutions with-
out forcing the user to have a prior knowledge about the
behavior of the different configurations when applied to a
given instance. Tests with 8 slave islands have allowed to
speedup the obtaining of high quality solutions. Thus, the
parallel model can be used to improve the quality of the
achieved solutions, or to obtain similar solutions in fewer
time. Results obtained by both hyperheuristics are similar in
terms of the quality achieved at the end of the executions.
However, HH_Syn has shown a slightly better behavior. In
order to confirm the suitability of the resource assignment
performed by the hyperheuristics, they were compared with
a model which randomly distributes the resources among
the low-level metaheuristics. The frequency plans obtained
by the new scheme with any of the incorporated hyperheu-
ristics improve the ones reached by performing a random
mapping.

123



48 Memetic Comp. (2011) 3:33–49

Future work targets the incorporation of some other mod-
ern metaheuristics inside the proposed approach to deal with
the FAP. Mixing evolutionary and classical optimization
approaches, in the same parallel scheme, can also produce
many benefits. Since it has been shown the importance of
customizing the variation operators, in order to achieve good
quality solutions, it would be interesting to incorporate new
crossover and mutation operators. Alternative hyperheuristic
strategies can be proposed and a deeper analysis with them
can be performed. Also, it would be interesting to execute
the parallel model in a larger cluster, or in a grid. Thus, an
scalability analysis can be performed. In order to confirm
the superiority of HH_Syn in relation to HH_Imp, it would
be be interesting to apply the parallel model to some other
real-world problems, specially to those involving high-cost
evaluation functions.

Acknowledgments This work was supported by the ec (FEDER) and
the Spanish Ministry of Science and Innovation as part of the ‘Plan Nac-
ional de i+d+i’, with contract number tin2008- 06491- c04- 02 and by
Canary Government project number pi2007/015. The work of Carlos
Segura was funded by grant fpu- ap2008- 03213.

References

1. Aardal KI, van Hoesel SPM, Koster AMCA, Mannino C, Sassano
A (2007) Models and solution techniques for frequency assign-
ment problems. Ann Oper Res 153(1):79–129

2. Alba E (2005) Parallel metaheuristics: a new class of algorithms.
Wiley-Interscience, London

3. Amaldi E, Capone A, Malucelli F, Mannino C (2006) Handbook
of optimization in telecommunications, chap optimization prob-
lems and models for planning cellular networks. Springer, Berlin,
pp 917–939

4. Araya I, Neveu B, Riff MC (2008) An efficient hyperheuristic for
strip-packing problems. In: Cotta C, Sörensen K (eds) Adaptive
and multilevel metaheuristics,studies in computational intelligence
vol 136. Springer, Berlin, pp 61–76

5. Avenali A, Mannino C, Sassano A (2002) Minimizing the span of
d-walks to compute optimum frequency assignments. Math Pro-
gram A 91:357–374

6. Bader-El-Den MB, Poli R, Fatima S (2009) Evolving timetabling
heuristics using a grammar-based genetic programming hyper-
heuristic framework. Memetic Comput 1(3):205–219

7. Bjorklund P, Varbrand P, Yuan D (2005) Optimized planning
of frequency hopping in cellular networks. Comput Oper Res
32(1):169–186

8. Burke E, Kendall G, Silva JL, O’Brien R, Soubeiga E (2005) An
Ant algorithm hyperheuristic for the project presentation schedul-
ing problem. In: Proceedings of the 2005 IEEE congress on evo-
lutionary computation (CEC 2005), vol 3. Edinburgh, Scotland,
pp 2263–2270

9. Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulen-
burg S (2003) Handbook of Meta-heuristics. Hyper-heuristics:
an emerging direction in modern search technology. Kluwer,
Dordrecht

10. Burke EK, Kendall G, Soubeiga E (2003) A Tabu-search
hyperheuristic for timetabling and rostering. J. Heuristics 9(6):
451–470

11. Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A
graph-based hyper-heuristic for educational timetabling problems.
Eur J Oper Res 176(1):177–192

12. Cantú-Paz E (1998) A survey of parallel genetic algorithms. Calc
Paralleles 10

13. Chen PC, Kendall G, Vanden Berghe G (2007) An ant based hyper-
heuristic for the travelling tournament problem. In: Proceedings
of IEEE symposium of computational intelligence in scheduling
(CISched 2007). Honolulu, Hawaii, pp 19–26

14. Cowling P, Kendall G, Han L (2002) An investigation of a
hyperheuristic genetic algorithm applied to a trainer scheduling
problem. In: Proceedings of the 2002 IEEE congress on evolution-
ary computation (CEC 2002). IEEE Computer Society, Honolulu
Hawaii, pp 1185–1190

15. Cowling P, Kendall G, Soubeiga E (2001) A parameter-free hype-
rheuristic for scheduling a sales summit. In: Proceedings of 4th
metahuristics international conference (MIC 2001). Porto Portu-
gal, pp 127–131

16. Cowling PI, Kendall G, Soubeiga E (2002) Hyperheuristics: a
robust optimisation method applied to nurse scheduling. In:
Guervós JJM, Adamidis P, Beyer HG, Martín JLFV, Schwefel HP
(eds) PPSN lecture notes in computer science, vol 2439. Springer,
Berlin, pp 851–860

17. Dems̆ar J (2006) Statistical comparison of classifiers over multiple
data sets. J Machine Learn Res 7:1–30

18. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: Opti-
mization by a colony of cooperating agents. IEEE Trans Syst Man
Cybern Part B 26(1):29–41

19. Dowsland K, Soubeiga E, Burke E (2007) A simulated anneal-
ing hyper-heuristic for determining shipper sizes. Eur J Oper Res
179(3):759–774

20. Eisenblätter A (2001) Frequency assignment in GSM networks:
Models, heuristics, and lower bounds. Ph.D. thesis, Technische
Universität Berlin

21. Eisenblätter A, Grötschel M, Koster AMCA (2002) Frequency
planning and ramifications of coloring. Discuss Math Graph
Theory 22(1):51–88

22. Fischetti M, Lepsch C, Minerva G, Romanin-Jacur G, Toto E
(2000) Frequency assignment in mobile radio systems using
branch-and-cut techniques. Eur J Oper Res 123(2):241–255

23. Furuskar A, Naslund J, Olofsson H (1999) EDGE—enhanced data
rates for GSM and TDMA/136 evolution. Ericsson Rev (1)

24. Garg P (2009) A comparison between memetic algorithm and
genetic algorithm for the cryptanalysis of simplified data encryp-
tion standard algorithm. Int J Netw Secur Appl 1(1):34–42

25. Glover F (1998) A template for scatter search and path relinking.
In: AE ’97: Selected papers from the third european conference on
artificial evolution. Springer, London 3–54

26. Granbohm H, Wiklund J (1999) GPRS—general packet radio
service. Ericsson Rev (1)

27. Gratch J, Chien S (1993) Learning search control knowledge for the
deep space network scheduling problem. Tech. rep., Champaign,
IL, USA

28. Greff JY, Idoumghar L, Schott R (2004) Application of markov
decision processes to the frequency assignment problem. Appl
Artif Intell 18(8):761–773

29. Hale WK (1980) Frequency assignment: theory and applications.
Proc IEEE 68(12):1497–1514

30. Hoos HH (1999) On the run-time behavior of stochastic local search
algorithms for SAT. In: Proceedings of AAAI’99. MIT Press,
pp 661–666

31. Idoumghar L, Schott R (2006) A new hybrid GA-MDP algorithm
for the frequency assignment problem. In: Proceedings of the 18th
IEEE international conference on tools with artificial intelligence
(ICTAI’06), pp 18–25

123



Memetic Comp. (2011) 3:33–49 49

32. Jaumard B, Marcotte O, Meyer C (1999) Telecommunications net-
work planning, chap, mathematical models and exact methods for
channel assignment in cellular networks. Kluwer, UK, pp 239–256

33. Kendall G, Cowling P, Soubeiga E (2002) Choice function and
random hyperheuristics. In: Proceedings of the 4th Asia-Pacific
conference on simulated evolution and learning (SEAL 2002).
Singapore, pp 667–671

34. Kendall G, Mohamad M (2004) Channel assignment in cellu-
lar communication using a great deluge hyper-heuristic. In: Pro-
ceedings of the 2004 IEEE international conference on networks
(ICON). Singapore, pp 769–773

35. Kendall G, Mohamad M (2004) Channel assignment optimisation
using a hyper-heuristic. In: Proceedings of the 2004 IEEE confer-
ence on cybernetics and intelligent systems (CIS 2004). Singapore,
pp 790–795 (2004)

36. Kim SS, Smith AE, Lee JH (2007) A memetic algorithm for chan-
nel assignment in wireless FDMA systems. Comput Oper Res
34:1842–1856

37. Kuurne AMJ (2002) On GSM mobile measurement based interfer-
ence matrix generation. In: IEEE 55th vehicular technology con-
ference. VTC Spring 2002, pp 1965–1969

38. Le MN, Ong YS, Jin Y, Sendhoff B (2009) Lamarckian memet-
ic algorithms: local optimum and connectivity structure analysis.
Memetic Comput 1(3):175–190

39. Leese R, Hurley S (2002) Methods and algorithms for radio chan-
nel assignment. Oxford lecture series in mathematics and its appli-
cations. Oxford University Press, New York

40. León C, Miranda G, Segredo E, Segura C (2008) Parallel
hypervolume-guided hyperheuristic for adapting the multi-objec-
tive evolutionary island model. In: International workshop on
nature inspired cooperative strategies for optimization, studies in
computational intelligence. Springer, Berlin

41. León C, Miranda G, Segura C (2007) Parallel skeleton for multi-
objective optimization. In: Genetic and evolutionary computation
conference. ACM, London, p 906

42. Leon C, Miranda G, Segura C (2009) A memetic algorithm and
a parallel hyperheuristic island-based model for a 2d packing
problem. In: GECCO’09: Proceedings of the 11th annual confer-
ence on genetic and evolutionary computation. ACM, New York,
pp 1371–1378

43. León C, Miranda G, Segura C (2009) METCO: a parallel plugin-
based framework for multi-objective optimization. Int J Artif Intell
Tools 18(4)

44. Luna F, Blum C, Alba E, Nebro AJ (2007) ACO vs EAs for solving
a real-world frequency assignment problem in GSM networks. In:
Genetic and evolutionary computation conference (GECCO 2007),
pp 94–101

45. Luna F, Estébanez C, León C, Chaves-González JM, Alba E, Aler
R, Segura C, Vega-Rodríguez MA, Nebro AJ, Valls JM, Miranda G,
Gómez-Pulido JA (2008) Metaheuristics for solving a real-world
frequency assignment problem in gsm networks. In: Conference on
genetic and evolutionary computation (GECCO 2008), pp 1579–
1586

46. Luna F, Nebro AJ, Alba E, Durillo JJ (2008) Solving large-scale
real-world telecommunication problems using a grid-based genetic
algorithm. Eng Optim 40(11):1067–1084

47. Mannino C, Oriolo G, Ricci F, Chandran S (2007) The stable set
problem and the thinness of a graph. Oper Res Lett 35(1):1–9

48. Mannino C, Sassano A (2003) An enumerative algorithm for the
frequency assignment problem. Discrete Appl Math 129:155–169

49. Matsui S, Watanabe I, Tokoro KI (2005) Application of the param-
eter-free genetic algorithm to the fixed channel assignment prob-
lem. Syst Comput Jpn 36(4):71–81

50. Metzger BH (1970) Spectrum management technique. In: 38th
national ORSA meeting

51. Mouly M, Paulet MB (1992) The GSM system for mobile com-
munications. Mouly et Paulet, Palaiseau

52. Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of
adaptive memetic algorithms: a comparative study. IEEE Trans
Syst Man Cybern Part B 36(1):141–152

53. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992)
Numerical recipes in C: the art of scientific computing. Cambridge
University Press, Cambridge

54. Rapeli J (1995) UMTS: targets, system concept, and standardiza-
tion in a global framework. IEEE Pers Commun 2(1):30–37

55. Salcedo-Sanz S, Bousoño-Calzón C (2005) A portable and scal-
able algorithm for a class of constrained combinatorial optimiza-
tion problems. Comput Oper Res 32:2671–2687

56. Segura C, Cervantes A, Nebro AJ, Jaraz-Simn MD,
Segredo E, Garca S, Luna F, Gmez-Pulido JA, Miranda G, Luque C,
Alba E, Vega-Rodrguez MA, Len C, Galvfn I (2009) Optimizing
the DFCN broadcast protocol with a parallel cooperative strategy
of multi-objective evolutionary algorithms. In: Springer (ed) 5th
international conference devoted to evolutionary multi-criterion
optimization, vol 5467. Nantes, France pp 305–319

57. Sheskin DJ (2003) Handbook of parametric and nonparametric sta-
tistical procedures. CRC Press, Boca Raton

58. Simon MK, Alouini MS (2005) Digital communication over fad-
ing channels: a unified approach to performance analysis. Wiley,
London

59. Talbi EG (2006) Parallel Combinatorial Optimization (Wiley
Series on Parallel and Distributed Computing). Wiley-Interscience,
London

60. Terashima-Marn H, Ross P (1999) Evolution of constraint satis-
faction strategies in examination timetabling. In: Proceedings of
the genetic and evolutionary computation conference (GECCO99).
Morgan Kaufmann, pp 635–642

61. Veldhuizen DAV, Zydallis JB, Lamont GB (2003) Considerations
in engineering parallel multiobjective evolutionary algorithms.
IEEE Trans Evol Comput 7(2):144–173

62. Vink T, Izzo D (2007) Learning the best combination of solvers in
a distributed global optimization environment. In: Proceedings of
advances in global optimization: methods and applications (AGO).
Mykonos, Greece, pp 13–17

63. Voudouris C, Tsang E (1999) Guided local search. Eur J Oper Res
113(2):449–499

64. Walke BH (2002) Mobile radio networks: networking, protocols
and traffic performance. Wiley, London

65. Wolpert D, Macready W (1997) No free lunch theorems for opti-
mization. IEEE Trans Evol Comput 1(1):67–82

123


	Parallel hyperheuristics for the frequency assignment problem
	Special issue on nature inspired cooperative strategies for optimization
	Abstract
	1 Introduction
	2 Mathematical formulation
	3 A memetic algorithm with increasing population size
	3.1 Local search
	3.2 Variation operators

	4 Hyperheuristics
	5 A parallel dynamic mapped island-based model
	5.1 Mapping scheme

	6 Experimental evaluation
	6.1 Description
	6.2 Computational results

	7 Conclusions and future work
	Acknowledgments
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


