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Abstract In combinatorial solution spaces Iterated Local
Search (ILS) turns out to be exceptionally successful.
The question arises: is ILS also capable of improving the
optimization process in continuous solution spaces? To
demonstrate that hybridization leads to powerful techniques
in continuous domains, we introduce a hybrid meta-heuris-
tic that integrates Powell’s direct search method. It combines
direct search with elements from population based evolution-
ary optimization. The approach is analyzed experimentally
on a set of well known test problems and compared to a state-
of-the-art technique, i.e., a restart variant of the Covariance
Matrix Adaptation Evolution Strategy with increasing pop-
ulation sizes (G-CMA-ES). It turns out that the population-
based Powell-ILS is competitive to the CMA-ES, in some
cases even significantly faster and behaves more robust than
the pure strategy of Powell in multimodal fitness landscapes.
Further experiments on the perturbation mechanism, popu-
lation sizes, and problems with noise complete the analysis
of the hybrid methodology and lead to parameter recommen-
dations.

Keywords Memetic algorithms · Iterated local search ·
Global optimization · Evolution strategies · Powell’s direct
search method

1 Introduction

In the last years many results have been published in the field
of Evolutionary Algorithms (EAs) showing that hybridiza-
tions between meta-heuristics and local search techniques
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are exceptionally successful. Hybrid meta-heuristics are also
known as memetic algorithms, Baldwinian or Lamarckian
EAs. Successful hybridizations have been proposed in par-
ticular for combinatorial and discrete solution spaces [37,
67]. Interestingly, for real-valued solution spaces few results
have been introduced yet—an astonishing fact as many direct
search methods are fairly fast optimizers. We will give a short
survey in Sect. 2.4. In this paper we introduce a hybrid meta-
heuristic that is based on Powell’s direct search method and
population-based Iterated Local Search (ILS), a preliminary
investigation of this Powell-ILS has been introduced recently
[32]. The ILS is similar to a (µ, λ)-evolution strategy (ES),
but each candidate solution is locally optimized using Pow-
ell’s method. As the latter is exceedingly fast moving into
local optima, the outer ES only has to search in the space of
local optima of the fitness landscape by means of Gaussian
mutations. An essential part of our approach is the Gauss-
ian based perturbation mechanism: If the search gets stuck,
the step sizes are increased. This allows to leave basins of
attraction. The strengths of the perturbation mechanism is
controlled in order to adapt to the fitness landscape of local
optima.

The work is structured as follows. First, we will introduce
the concept of hybridization in general and the ILS concept
in Sect. 2. Section 3 introduces the Powell-ILS starting
with Powell’s method that is based on conjugate direc-
tions and a description of how it is integrated into the ILS
technique. Section 4 provides an experimental evaluation
of the proposed approach and a comparison to the restart
G-CMA-ES by Auger and Hansen [1], and the pure strat-
egy of Powell. The analysis also concentrates on the pertur-
bation mechanism and derives recommendable parameters
for the perturbation strength τ . Furthermore, we analyze the
influence of population sizes and noise in the fitness func-
tion.
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2 Hybrid meta-heuristics and iterated local search

ILS belongs to the class of hybrid meta-heuristics. Before
we introduce the ILS approach, we give a brief overview of
hybrid approaches introducing a taxonomy of hybrid tech-
niques for optimization problems.

2.1 Hybrid meta-heuristics

Search algorithms can be divided into two categories: exact
techniques and heuristics. Exact algorithms find local opti-
mal solutions exactly, and with a guaranteed runtime, but the
computational efficiency deteriorates significantly with the
size of the problem dimension. Heuristics and meta-heuris-
tics usually approximate the solution on the basis of stochas-
tic components, but do not find the optimum in every case.
However, their runtime on large problem instances is more
acceptable. The hybridization of meta-heuristics and local
search methods is motivated by the combination of the advan-
tages of the exact and the heuristic world. The success of
hybridization is reflected by an increasing number of publica-
tions in this research area and the foundation of international
conferences and workshops like the HM—Hybrid Meta-Heu-
ristics workshop or the Workshop on Mathematical Con-
tributions to Meta-Heuristics. In the case of combinatorial
solution spaces exact methods like integer linear program-
ming, dynamic programming approaches [2] or branch-and-
bound techniques [33] are frequently combined with EAs.

An important design decision for hybrid techniques is the
way of information interchange between its components. In
which order shall the components work together, which infor-
mation is shared, and when? Can general hybridization rules
be derived from theory or experiments? For a systematic
overview Talbi [71] and Raidl [58] proposed a taxonomy of
hybrid meta-heuristics. Our view on hybrid meta-heuristics is
based on this taxonomy, see Fig. 1. Hybrids can be classified
into collaborative techniques that work successively or inter-
twined. A relay or sequential hybrid is a simple successive
execution of two or more algorithmic components. The main
idea is: A stochastic method preoptimizes coarsely while the
local search performs fine-tuning and approximation of local
optima. The intertwined collaborative hybrid is alternately
running various optimizers. The integrative hybrids represent
the other branch of the taxonomy. Coevolutionary or concur-
rent hybrids are nested approaches. Typically, a local search
method is embedded into an evolutionary optimizer: In each
iteration the local search optimizes the offspring solutions
until a predefined termination condition is fulfilled. Infor-
mation is passed alternately between the components in the
concurrent approach. The local search method might have
an own termination condition that can be specified by the
embedding optimizer. The alternative to integrate stochastic

Hybrid Meta-Heuristics

hybrid

collaborative

sequential,
relay

intertwined

integrative

local in EA,
concurrent,
ILS

EA in local

Fig. 1 Survey of hybridization strategies. Hybrids can be divided into
collaborative approaches that run successively (relay or intertwined),
and integrative approaches use other algorithms as operators in each
iteration, e.g., a local search method embedded in an EA or vice versa

Fig. 2 Pseudocode of the ILS method

optimization into a deterministic or local optimizer is rather
unusual.

2.2 Iterated local search

ILS is based on a simple, but successful idea. Instead of
repeating local search, starting from initial solutions like
restart-approaches do, ILS starts with a solution s, and suc-
cessively applies local search and perturbation of the local
optimal solution ŝ. This procedure is repeated iteratively
until a termination condition is fulfilled. Figure 2 shows
the pseudocode of the ILS approach. Initial solutions should
employ as much information as possible to be a good starting
point for local search. Most local search operators are deter-
ministic. Consequently, the perturbation mechanism should
introduce non-deterministic components to explore the solu-
tion space. The perturbation mechanism performs global
random search in the space of local optima that are approx-
imated by the local search method. Blum and Roli [5] point
out that the balance of the perturbation mechanism is quite
important. The perturbation must be strong enough to allow
the escape from basins of attraction, but low enough to exploit
knowledge from previous iterations. Otherwise, the ILS will
become a simple restart strategy. The acceptance criterion
of line 7 may vary from always accept to only in case of
improvement. Approaches like simulated annealing may be
adopted.
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There are many examples in literature for the successful
application of ILS variants on combinatorial optimization
problems. A survey of ILS techniques has been presented
by Lourenço et al. [38]. The authors also provide a compre-
hensive introduction [37] to ILS. A famous combinatorial
instance, many ILS methods have been developed for, is the
traveling salesman problem (TSP). Stützle and Hoos [68]
introduced an approach that combines restarts with a spe-
cific acceptance criterion to maintain diversity for the TSP,
while Katayama and Narihisa [27] proposed a perturbation
mechanism that combines 4-opt with a greedy algorithm.
Stützle [69] uses an ILS hybrid to solve the quadratic assign-
ment problem. The technique is enhanced by acceptance
criteria that allow moves to worse local optima. Furthermore,
population-based extensions are introduced and an experi-
mental analysis showing that the approach outperforms other
state-of-the-art algorithms. Duarte et al. [13] introduce an ILS
heuristic for the problem of assigning referees to scheduled
games in sports based on greedy search. Our perturbation
mechanism is related to their approach. Preliminary work
on the adaptation of the perturbation algorithm has been
proposed by Mladenovic et al. [44] for variable neighbor-
hood search and tabu search by Glover et al. [21], but not in
real-valued search domains. For a further depiction of ILS
methods and a starting point to deeper investigations we refer
the reader to the mentioned literature.

2.3 Evolutionary methods in continuous domains

Evolutionary global optimization has a long tradition. EAs
are famous for their biological motivation as their genetic
operators can be seen as translation of concepts that can be
observed in Darwinian evolution: crossover, mutation and
selection. In the sixties and seventies Fogel [18], Holland
[26], Rechenberg [59], and Schwefel [62] translated this par-
adigm of evolution into algorithms. EAs have grown to rich
and frequently used optimization methods. In the context of
global continuous optimization, ES have to be mentioned.
They are specialized EAs for continuous optimization. For a
comprehensive introduction we refer to Beyer and Schwefel
[4]. ES use a (µ +, λ) population scheme, i.e., in each genera-
tion the algorithm produces λ offspring solutions and selects
µ parental solutions as parents for generation t + 1. Often,
intermediate recombination is applied. ES became famous
for their mutation operator, i.e., σ -self-adaptive Gaussian
mutation. Self-adaptation is an important property of ES. A
self-adaptively controlled strategy parameter vector σ ∈ S
is subject to variation, specifies defined properties of the EA,
and is selected bound to the corresponding objective vari-
ables (x′, σ ′) with regard to the solution quality f (x′). For an
introduction to self-adaptation we refer to Eiben et al. [14],
Meyer-Nieberg and Beyer [42] or Kramer [31]. Advanced

ES are the covariance matrix adaptation variants that we will
briefly introduce Sect. 4.2.

Related research on evolutionary continuous optimiza-
tion concerns the work of Deb et al. [11] who developed a
generic parent-centric crossover operator and a steady-state,
elite-preserving population-alteration model. The authors
compare their approach on three test problems, and with six
related optimization method reporting competitive results.
Herrera et al. [24,25] proposed to apply a two-loop EA with
adaptive control of mutation sizes. It adjusts the step size of
an inner EA and a restart control of a mutation operator in
the outer loop. Differential evolution (DE) is another branch
of evolutionary methods for continuous optimization. Price
et al. [56] give an introductory survey to DE. Qin et al. [57]
proposed an adaptive DE that learns operator selection and
associated control parameter values. The learning process is
based on previously generated successful solutions. Parti-
cle swarm optimization (PSO) is a further line of research
that concentrates on continuous global optimization [28,64].
PSO is inspired by the movement of swarms in nature like fish
schools or flocks of birds, and simulates the movement of can-
didate solutions using flocking-like equations with locations
and velocities. A learning strategy variant has been proposed
by Liang et al. [36]. This variant uses all particles’ historical
best information to update the particle history. Recently, Das
et al. [9] defined PSO-like neighborhood structures based on
index-graphs. They proposed schemes to balance exploration
and exploitation without much additional costs and report
competitive experimental results on artificial benchmark and
real-world problems.

Theoretical investigations can enrich experimental analy-
ses. For this sake, Gutin and Karapetyan [23] summarized a
selection of theoretical tools to analyze optimization heuris-
tics. They discuss examples of preprocessing procedures and
probabilistic instance analysis methods as well as theoreti-
cal explanations of successes and failures of heuristics. The
purpose of this brief depiction was to show the broad vari-
ety of continuous optimizers in evolutionary computation.
In the following section we will summarize related memetic
approaches for continuous solution spaces.

2.4 Hybrid approaches in continuous domains

An early memetic method in continuous domains has been
introduced by Griewank [22], who proposed to combine
a gradient method with a deterministic perturbation term.
Toksari and Güner [73] introduced an ILS method for
real-valued search spaces based on variable neighborhood
search. Their basic idea is to explore various neighborhoods
using local search. Two neighborhoods are introduced: ran-
dom directions and decreasing jumps. In comparison to our
Powell-ILS, the lengths of the jumps are gradually decreased
and not controlled according to the success of the search.
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Mladenović [43] have also introduced a variable neighbor-
hood search meta-heuristic. Random points are generated
using different neighborhoods and distributions for the per-
turbation step. The approach is extended with exterior point
penalty functions to be able to handle constraints. Yu et al.
[75] analyze various immigrant schemes that maintain the
diversity of the population throughout the run. A new immi-
grant scheme is proposed and experimental results on contin-
uous dynamic problems are presented. Le et al. [34] introduce
the concept of local optimum structure for the analysis of
Lamarckian memetic algorithms. They generalize the notion
of neighborhood to connectivity structure. Solution quality
and efficiency of operators are analyzed to get results about
structure of local optima of representative benchmark prob-
lems. Local optimum and connectivity structure turn out to
have a significant influence on the performance of memetic
algorithms. Ting et al. [72] propose a hybridization of genetic
algorithms and tabu search to balance selection pressure and
population diversity. The tabu restriction prevents inbreed-
ing for diversity maintenance, while the aspiration criterion
provides moderate selection pressure under the tabu restric-
tion. Experimental analyses on continuous and combinatorial
problems show a significant improvement of performance.

Memetic schemes have been proposed that concentrate on
the choice and the balance between appropriate evolutionary
and local operators. Ong et al. [49] concentrated on the choice
of a proper local search technique. They presented a memet-
ic algorithm that chooses among various local search meth-
ods at run-time. The approach is called Meta-Lamarckian
learning and successfully tested on continuous parametric
benchmark problems, as well as a real-world aerodynamic
problem. In a follow-up paper they presented a meme adapta-
tion heuristic that is based on classification of memes accord-
ing to historical knowledge [50]. Empirical studies revealed
the behavior on global benchmark problems, complemented
by asymptotic convergence analyses. Nguyen et al. [47] pro-
posed a probabilistic memetic framework that is able to adapt
the balance between local search and evolutionary operators
by estimating the probability of each process to reach the
global optimum. Their approach is based on a theoretical
upper bound for each individual and each search process.
They report a robust behavior and an improvement of perfor-
mance on a set of benchmark problems. Vrugt et al. [74]
recently proposed a multi-method scheme that self-adap-
tively controls the number of offspring solutions of three
methods, i.e., the CMA-ES, a common genetic algorithm,
and a PSO approach contribute to the evolutionary search
process in each generation. An analysis on problems from
the CEC 2005 Special Session on Real-Parameter Optimi-
zation [70] reveals competitive results on high-dimensional
multimodal problems.

Some memetic approaches concentrate on crossover.
Lozano et al. [39] presented a continuous memetic algorithm

with a crossover hill-climbing method as local search
procedure. The approach assigns local search probabilities
to each individual and is thus able to balance between local
and global search. Sánchez et al. [61] stated that many effec-
tive crossover operators for real-coded genetic algorithms
exist. Different crossover operators are advantageous in var-
ious situations, and at changing stages of the search process.
Consequently, they proposed a technique called hybrid cross-
over operators as alternative in order to increase the variety
of crossover operators to choose from. Second, they pointed
out the strengths of operators that produce more than two off-
spring solutions. Noman and Iba et al. [48] proposed a cross-
over-based adaptive local search operator for DE. As it is not
easy to determine the length of the local search for a broad
class of problems, they presented a hill climber that adapts
this length. An improvement of the DE technique could be
observed. Also Li and Wang [53] have recently proposed a
DE-based memetic approach. They introduced the differen-
tial operator of DE into harmony search, and in turn, embed-
ded harmony search into the DE framework. Furthermore,
parameter studies showed the effect on the performance of
the new hybridizations. Neri and Tirronen [46] proposed a
scale factor local search DE approach consisting of two local
search algorithms combined with an adaptive scheme. The
local search algorithms detect scale factor values during the
optimization process and produce solutions, i.e., they are
used as operators generating candidate solutions during the
optimization process. The approach has been experimentally
tested on a set of test problems from literature.

Other memetic methods stem from the area of evolu-
tionary multi-objective optimization. Emmerich et al. [15]
hybridize an ES based on S-metric selection with local
search. The main idea of the hybrid is to guide the local
search by calculating the gradient of the S-metric. Emmerich
et al. report a linear convergence to the optimum. Sindhya
et al. [66] have examined a hybrid version of the NSGA-
II [12] with an integrated gradient descent method as local
optimizer. They use an augmented scalarization function to
map the multi-objective solution to a single scalar value.
Martínez and Coello [40] proposed to hybridize the NSGA-II
with classical direct search techniques. Shukla [65] has also
hybridized the NSGA-II with two gradient methods using a
perturbation technique as mutation operator. Koch et al. [29]
hybridized the SMS-EMOA with Hooke and Jeeves, steep-
est descent [17] and the Newton method by Fliege et al. [16].
A slight improvement of the optimization process, i.e., the
maximization of the S-metric, could be observed.

Research on restart strategies, a further receipt against
getting trapped in local optima, is related to the proposed
ILS hybridization. In comparison to ILS, restart optimiz-
ers start from scratch each time, sometimes with differ-
ent parameter settings. In 1977, Powell [55] introduced a
restart procedure for the conjugate gradient method. As the

123



Memetic Comp. (2010) 2:69–83 73

frequency of restarts depends on the objective function, Pow-
ell’s restart procedure takes it automatically into account.
Furthermore, he derived a multiplying factor for the defini-
tion of the search direction. Dai et al. [8] introduced a restart
algorithm based on Powell’s method and the computation of
the conjugate gradient direction in a transformed space. Its
global convergence is proved. It shows similar experimen-
tal results like the Beal-Powell restart algorithm, analyzed
by Dai and Yuan [7]. A restart approach for the CMA-ES
[51] with increasing population sizes has been introduced by
Auger and Hansen [1]. They state that by increasing the pop-
ulation size the search characteristic becomes more global
after each restart. We will compare our hybrid approach to a
variant of the G-CMA-ES in Sect. 4.3.

3 The Powell-ILS

Our hybrid ILS variant is based on Powell’s optimization
method. Preliminary experiments revealed the efficiency of
Powell’s method in comparison to real-valued stochastic
search methods. However, as we will observe this in the
experimental Sect. 4, Powell’s method gets stuck in local
optima in multimodal solution spaces. A similar idea to
hybridize local search with stochastic optimization meth-
ods has been proposed by Griewank [22], who combines
a gradient method with a deterministic perturbation term. A
hybridization with the strategy of Powell and a control of the
perturbation strength has not been proposed previously to the
best of our knowledge.

3.1 The strategy of Powell

The classical non-evolutionary optimization methods for
continuous problems can mainly be classified into direct,
gradient and Hessian search methods. The direct methods
determine the search direction without using a derivative
[63]. Lewis et al. [35] give an overview of direct search
methods. Pattern search methods [10] examine the objec-
tive function with a pattern of points that lie on a rational
lattice. Simplex search [45] is based on the idea that a gradi-
ent can be estimated with a set of N +1 points, i.e., a simplex.
Direct search methods like Rosenbrock’s [60] and Powell’s
[54] collect information about the curvature of the objective
function during the course of the search. If the derivatives
of a function are available, the gradient and Hessian meth-
ods can be applied. Gradient methods take the first derivative
of the function into account, while the Hessian methods also
use the second derivative. A successful example is the Quasi-
Newton method [6]. It searches for the stationary point of a
function, where the gradient is 0. Quasi-Newton estimates
the Hessian matrix analyzing successive gradient vectors.

Fig. 3 Pseudocode of the conjugate gradient strategy that is the basis of
Powell’s method. At the beginning, the algorithm needs a set of linearly
independent vectors di , 1 ≤ i ≤ N and a starting point x0

Powell’s method belongs to the direct search methods, i.e.,
no first or second order derivatives are required. It is based
on so called conjugate directions. Powell [54,55] states that
its main justification is based on the properties, when the
objective function f (x) is convex and quadratic:

f (x) = 1

2
xT Ax + bT x + c. (1)

Two directions di and d j , i �= j are mutually conjugate if it
holds:

dT
i Ad j = 0. (2)

A set of mutual conjugate directions di , d j ∈ X ⊂ R, i �=
j constitutes a basis of X . The conjugate gradient method
works as follows. Let x0 be the initial guess of a minimum of
function f . In iteration k we require the gradient gk = g(xk).
If k = 1, and dk the steepest descent direction is dk = −gk .
For k > 1 Powell applies the equation:

dk = −gk + βkdk−1, (3)

with the Euclidean vector norms:

βk = ‖gk‖2

‖gk−1‖2 . (4)

The main idea of the conjugate direction method is to search
for the minimal value of f (x) along direction dk to obtain
the next solution xk+1, i.e., find the λ that minimizes:

f (xk + λdk). (5)

For a minimizing λk set the vector xk+1 to:

xk+1 = xk + λkdk . (6)

Figure 3 shows the pseudocode of the conjugate gradient
method that is the basis of Powell’s strategy. In our imple-
mentation the search for λk is implemented with line search.
For a more detailed introduction and thoughts on the strat-
egy of Powell, we refer to the depiction by Powell [54] and
Schwefel [63].

123



74 Memetic Comp. (2010) 2:69–83

3.2 Iterated local search

The Powell-ILS proposed in this paper is based on four key
concepts, each focusing on typical problems that occur in
real-valued solution spaces:

– Powell’s optimization method [54]: Powell’s method is
a fast direct search optimization method, in particular
appropriate for unimodal, i.e., convex fitness landscapes.

– Iterative Local Search: In order to prevent Powell’s
method from getting stuck in local optima, the ILS
approach is based on the successive repetition of Pow-
ell’s conjugate gradient method as local search technique
and a perturbation mechanism.

– Population-based ILS: We propose to evolve a population
of candidate solutions similar to ES for exploration.1

– Adaptive control of mutation strengths: The strength of
the ILS-perturbation is controlled by means of an adaptive
control mechanism. In case of stagnation, the mutation
strength is increased in order to leave local optima.

In the previous sections we introduced the strategy of Powell
and the ILS principle. Figure 4 shows the pseudocode of the
Powell-ILS. At the beginning, µ initial solutions (s0) j ∈ R

N

with 1 ≤ j ≤ µ are produced and optimized with the strategy
of Powell. In an iterative loop λ offspring solutions (st )

′
j ∈

R
N with 1 ≤ j ≤ λ are produced by means of Gauss-

ian mutations with the global mutation strength σ , i.e., each
component xi ∈ R of s = (x1, . . . , xN )T is mutated inde-
pendently:

x ′
i = xi + σ · Ni (0, 1). (7)

Afterwards, s′
t is locally optimized with the strategy of

Powell and we get ŝ′
t . After λ solutions have been produced

this way, the µ-best are selected according to their fitness, i.e.,
with comma-selection. Then, we apply global recombina-
tion, i.e., the arithmetic mean 〈ŝt+1〉 of all selected solutions
is computed. The fitness of this arithmetic mean is evaluated
and compared to the fitness of the arithmetic mean of the last
generation. If the search stagnates, i.e., the condition

| f (〈ŝt+1〉) − f (〈ŝt 〉)| < θ (8)

becomes true, the mutation strength is increased by multipli-
cation with τ > 1:

σ = σ · τ. (9)

1 A hybridization with covariance matrix optimizers is no reasonable
undertaking as the local search method disturbs the Gaussian based
update of the covariance matrix, and our experimental analysis con-
firmed that no further improvement can be gathered in comparison to
the approach at hand.

Fig. 4 Pseudocode of the Powell-ILS

Otherwise, the mutation strength σ is decreased by mul-
tiplication with 1/τ . The effect of an increasing mutation
strength σ is that local optima can be left. Powell’s method
drives the search into local optima, and the outer ILS per-
forms a search within the space of local optima controlling
the perturbation strength σ . A decrease of σ lets the algo-
rithm converge to the local optimum in a range defined by
σ . At first, this technique seems to be in contraposition to
the 1/5-th success rule by Rechenberg [59]. Rechenberg’s
rule adapts the mutation strengths in the following way: The
whole population makes use of a global mutation strength σ

for all individuals. If the ratio of successful candidate solu-
tions is greater than 1/5-th, the step size should be increased,
because bigger steps towards the optimum can be done, while
small steps would be a waste of time. If the success ratio is
lower than 1/5-th the step size should be decreased. This
rule is applied every g generations. The aim of Rechenberg’s
approach is to stay in the so called evolution window, guaran-
teeing nearly optimal progress. The optimal value for the step
size factor τ depends on several conditions such as fitness
landscape, number of dimensions N or number of genera-
tions g. This strategy is reasonable for local approximation:
Smaller changes to solutions will increase the probability to
be successful during approximation of local optima. How-
ever, in our approach the strategy of Powell performs the
approximation of the local optimum, not the upper ES. The
step control of the Powell-ILS part has another task: leaving
local optima when the search stagnates. Of course, the local
optimum may be the global one, and left again. The step con-
trol might push the ILS away from the global optimum, but
if the vicinity of the optimum has been reached, it is proba-
ble that the optimum will be reached again. The point is that
basins of attractions can be left because of the increasing step
size. Hence, the probability is greater than zero that also the
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Table 1 Survey of test problems, and corresponding stagnation criteria, perturbation strengths and population ratios for the Powell-ILS

Name Problem θ τ (µ, λ)

Sphere fSp(x) = ∑N
i=1 x2

i 10−6 2.0 (2,8)

Doublesum fDou(x) = ∑N
i=1

(∑i
j=1(x j )

)2
10−6 2.0 (2,8)

Noisy Doublesum fNDou(x) = ∑N
i=1

(∑i
j=1(x j )

)2 · (1 + δ · |N (0, 1)|) 10−6 2.0 (2,8)

Ellipsoidal fEll(x) = ∑N
i=1(106)

i−1
N−1 · x2

i 10−6 2.0 (2,8)

Rosenbrock fRos(x) = ∑N−1
i=1

(
(100(x2

i − xi+1)
2 + (xi − 1)2

)
10−6 2.0 (2,8)

Rastrigin fRas(x) = ∑N
i=1

(
x2

i − 10 cos(2πxi ) + 10
)

10−6 2.0 (2,8)

Griewank fGri(x) = ∑N
i=1

x2
i

4000 − ∏N
i=1 cos

(
xi√

i

)
+ 1 10−1 5.0 (1,4)

Ackley f Ack(x) = 20 + e − 20 · e

(

−0.2
√

1
N ·∑N

i=1 x2
i

)

− e

(
1
N ·∑N

i=1 cos(2π ·xi )
)

10−6 2.0 (2,8)

Schwefel fSch(x) = 418.9820 · N − ∑N
i=1

(
xi sin

√|xi |
)

10−1 2.0 (2,8)

Kursawe fKur(x) = ∑N
i=1

(|xi |0.8 + 5 · sin(xi )
3 + 3.5828

)
10−6 2.0 (2,8)

The first four problems are unimodal, the last six problems are multimodal

global optimum can be found. The problem that the global
optimum may also be left, if not recognized, can be compen-
sated by saving the best found solution in the course of the
optimization process.

4 Experimental analysis

This section provides an experimental analysis of the Pow-
ell-ILS, in particular in comparison to the restart variant of
the CMA-ES with increasing population sizes. The experi-
mental analysis concentrates on typical test problems known
in literature, oriented to the CEC 2005 Special Session on
Real-Parameter Optimization [70], see Table 1. We use the
following performance measure. The experimental results of
this paper show the number of fitness function evaluations
until the optimum is reached with accuracy fstop, i.e., if the
difference between the best achieved fitness f (xb) of one
candidate solution xb of the algorithm and fitness f (x∗) of
the known optimum x∗ is lower than fstop:

‖ f (xb) − f (x∗)‖ ≤ fstop (10)

This performance measure is focused on the convergence
abilities of the approach. Parameter # counts the number
of runs the optimum has been reached. In case of stag-
nation, the algorithm may also terminate. In this case the
number of evaluations is not considered in the performance
analysis.

4.1 Powell’s method

At first, we analyze Powell’s method on the test suite, intro-
duced in Table 1. Solutions are randomly initialized in the

interval [−100, 100]N . Each experiment is repeated 30 times.
Powell’s method terminates, if the improvement from one to
the next iteration is lower than φ = 10−10, or if the opti-
mum is found with accuracy fstop = 10−10. As Powell’s
method is a convex optimization technique, we expect that
only the unimodal problem can be solved. Table 2 confirms
these expectations. On unimodal functions Powell’s method
is exceedingly fast. On the Sphere problem, e.g., a budget of
only 101.7 in mean is sufficient to approximate the optimum.
These fast approximation capabilities can also be observed
on the other convex problems, i.e., Doublesum, the Noisy
Doublesum (with δ = 1/N 2), the Ellipsoidal function (F3 of
the CEC 2005 benchmarks) and on Rosenbrock. This success
can also be observed on higher dimensions like N = 30, and
N = 50.

The experiments on the Noisy Doublesum problem show
that noise limits the convergence behavior of Powell’s
method. Experiments with the settings suggested in the
CEC 2005 benchmarks, i.e., noise with the strength
4.0 · N (0, 1), showed that Powell’s method is not able to
cope with strong noise. However, Powell’s method is able
to cope with noise of strength 1/N 2 · N (0, 1) and is faster
than the G-CMA-ES. We will come back later to optimi-
zation with noise in Sect. 4.5. The figures also show that
Powell’s method is not able to approximate the optima of
multimodal functions like Rastrigin, Schwefel or Kursawe.
On “easier” multimodal functions like Griewank or Ackley,
the random initializations allow to find the optimum in few
of the 30 runs. The fast convergence behavior on convex
function parts motivates to perform local search as oper-
ator in a global evolutionary optimization framework, and
is the basis of the Powell-ILS that we will analyze in
Sect. 4.3.
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Table 2 Experimental
comparison of Powell’s method
on the test problems with
N = 10, 30, and 50 dimensions

Best, median, worst, mean and
dev provide statistical
information about the number of
fitness function evaluations of
30 runs until the difference
between the fitness of the best
solution and the optimum is
smaller than fstop = 10−10.
Parameter # states the number of
runs that find the optimum

Powell’s Method

Best Median Worst Mean Std #

N = 10
fSp 100 102 102 101.7 0.67 30

fDou 91 92 92 91.8 0.42 30

fNDou 716 844.5 5,156 1,942.4 1,710.48 30

fEll 102 102 139 105.7 11.70 30

fRos 2,947 4,617 12,470 5,941.87 3,353.14 24

fRas – – – – – 0

fGri 329 329 329 329 0 1

fAck 3,340 3,480 3,630 3,477 103.49 2

fSch – – – – – 0

fKur – – – – – 0

N = 30
fSp 299 302 302 301.3 1.05 30

fDou 291 291.5 292 291.5 0.52 30

fNDou 1,856 2,172 2,447 2,143.7 201.81 30

fEll 300 302 492 335.1 69.48 30

fRos 14,888 33,315 59,193 36,455.85 16,789.41 21

fRas – – – – – 0

fGri 904 997 1,001 967.33 54.88 3

fAck – – – – – 0

fSch – – – – – 0

fKur – – – – – 0

N = 50
fSp 497 501 780 547 100.10 30

fDou 488 490.5 492 490.5 1.17 30

fNDou 3,001 3,150.5 3,400 3,153.6 110.85 30

fEll 500 818 944 731.5 204.04 30

fRos 70,564 75,815.5 81,067 75,815.5 7,426.74 6

fRas – – – – – 0

fGri 1,160 1,160 1,160 1,160 0 1

fAck – – – – – 0

fSch – – – – – 0

fKur – – – – – 0

4.2 The G-CMA-ES: a CMA-ES restart variant with
increasing population sizes

For comparison with the proposed Powell-ILS we tested a
competitive CMA-ES variant, a modified G-CMA-ES from
Auger and Hansen [1], on the same set of problems. A first
approach, the cumulative path-length control, that is the basis
of the CMA-ES has been introduced by Ostermeier et al. [52].
The cumulative path-length control is an approach to deran-
domize the adaptation of strategy parameters. Two algorith-
mic variants were the results of their attempt: the cumulative

step-size adaptation (CSA) [20], and later the CMA-ES [51].
It is based on a covariance matrix adaptation that determines
the shape of the mutation distribution. The covariance matrix
implicitly approximates the Hessian and transforms the
problem into a simpler one. Beyer and Sendhoff [3] recently
introduced the self-adaptive variant CMSA-ES. Many suc-
cessful examples of CMA-ES applications can be reported,
e.g., in flow optimization [30] or in optimization of kernel
parameters for classification problems [41].

The G-CMA-ES has been introduced and tested by Auger
and Hansen [1] in the context of the CEC 2005 Special

123



Memetic Comp. (2010) 2:69–83 77

Session on Real-Parameter Optimization [70]. It is a CMA-
ES that is restarted in case of a set of conditions, and uses
increasing population sizes after each restart. Initial small
populations allow fast convergence at the beginning. Increas-
ing population sizes for each independent restart allow global
search without getting trapped in local optima. Auger and
Hansen proposed five restart criterions, e.g., fitness stagna-
tion for 10 + 30 · N/λ generations or standard deviation
stagnation, see [1]. For our G-CMA-ES variant we restricted
the analysis to fitness stagnation, i.e., the same restart cri-
terion as Powell’s termination criterion. The G-CMA-ES is
restarted if the fitness change in 20 successive generations is
below a threshold θ ′. In this case the CMA-ES is restarted
with double population sizes, increasing the probability of
leaving local optima. Augen and Hansen did not report the
influence of each of the five restart criteria or their interac-
tions. A careful analysis of the influence of restart criteria
on the G-CMA-ES and the Powell-ILS will be subject to
future work, but the results stated in [1] are consistent with
the results that we have achieved with only one stagnation
criterion, see the following section.

4.3 Comparison between the Powell-ILS and the
G-CMA-ES

In the following, we will compare the Powell-ILS with the
G-CMA-ES experimentally. Table 1 shows the test problems
this paper concentrates on, and the corresponding stagnation
parameter θ . Initial solutions are generated in the interval
[−100, 100]N with problem dimension N , and the step sizes
are set to σinit = 1.0. Each experiment is repeated 30 times.
For the Powell-ILS we use the population ratios stated in
Table 1, in most cases λ = 8 offspring solutions and µ = 2
parental solutions. Each solution is mutated and locally opti-
mized with Powell’s method. Again, Powell’s method termi-
nates, if the improvement from one to the next iteration is
lower than φ = 10−10, or if the optimum is found with accu-
racy fstop = 10−10. If the search on the ILS level stagnates,
i.e., the achieved improvement is smaller than θ , the muta-
tion strength is increased with mutation parameter τ = 2.
The G-CMA-ES variant starts with a population size of
4 + 3 · log N , and µ = λ/2. The G-CMA-ES stops when
the achieved accuracy is equal or better than fstop = 10−10.
In case of stagnation, i.e., if the termination condition is not
reached, and the fitness does not change with precision θ ′ =
10−12 for tθ = 20 generations, the search is restarted with
a double population size. Restarts and the increase of pop-
ulation sizes are repeated until the termination condition is
reached. Furthermore, we assume a maximal budget of fitness
function evaluation of ffemax = 2.0 ·106. If the optimum has
not been found within this time, Table 3 reports > 2.0 · 106.

Table 3 shows the results of the analysis of the Powell-ILS
and the G-CMA-ES on the test problems with N = 10, 30,

and 50 dimensions. The Wilcoxon rank-sum test validates
the statistical relevance of the experiments, the table also
shows the corresponding p-values. A discussion of the Wil-
coxon test and its use, in particular with regard to the CEC
2005 Special Session on Real-Parameter Optimization [70]
can be found in García et al. [19]. The results of Table 2 have
shown that Powell’s method is very fast on unimodal prob-
lems. Of course, the Powell-ILS shows the same capabilities
and approximates the optimum in the first iteration. On the
Sphere problem, Doublesum, the Noisy Doublesum, and the
Ellipsoidal problem, this advantage is significant in com-
parison to the G-CMA-ES. The G-CMA-ES does not apply
restarts on convex problems. The small p-value of the Wilco-
xon test confirms that the results are statistically significant.
In Sect. 4.5 we will explore the magnitude of noise that the
Powell-ILS is able to tolerate, in particular in comparison to
the G-CMA-ES on a noisy variant of the Rastrigin function.

We have already observed that Powell gets stuck in local
optima of multimodal problems, e.g., Rastrigin. The Pow-
ell-ILS perturbates a solution when getting stuck and applies
Powell’s method again, with the perturbation mechanism of
Eq. 9. The results show that the iterated application of Pow-
ell’s method in each generation allows to approximate the
global optimum. This effect becomes obvious on Rastrigin.
The Powell-ILS is able to approximate the optimum, in com-
parison to its counterpart without ILS. It convergences sig-
nificantly faster than the G-CMA-ES with p = 1.3 · 10−6.
Also on Griewank a statistically significant superiority of the
Powell-ILS can be observed. On Rosenbrock and Ackley no
statistical significant superiority of any of the two optimiza-
tion algorithms can be reported. In mean the Powell-ILS is
worse than the G-CMA-ES. Obviously, the worst runs of the
Powell-ILS cause a fitness deterioration in mean, but the best
runs are still much faster than the best runs of the G-CMA-ES.
The G-CMA-ES is more robust with smaller standard devi-
ations, but does not offer the potential to find the optimal
solution that fast. The Ackley problem is almost flat outside
the interval [−32, 32]N , hence the solutions are initialized
within this interval. An increased initialization interval dete-
riorates the search as both methods only perform random
walk on the flat areas. The CEC 2005 benchmark uses the
same initialization interval. On the highly multimodal prob-
lem Kursawe, the Powell-ILS achieves good results, but the
G-CMA-ES is significantly faster only 29, 670 fitness func-
tion evaluations in mean to reach the optimum.

A similar behavior can be observed on the test problems
with dimensions N = 30, and N = 50, see the middle
and the lower parts of Table 3. For example, on the classical
Sphere problem with N = 50, Powell’s method only takes
524.8 function evaluations in mean, averaged over 30 rep-
etitions. The G-CMA-ES takes about seventeen times more
evaluations. This also holds true for the other unimodal test
problems. The Powell-ILS is superior, and the results are

123



78 Memetic Comp. (2010) 2:69–83

Table 3 Experimental comparison of the Powell-ILS and the G-CMA-ES variant on the test problems with N = 10, 30, and 50 dimensions

Powell-ILS G-CMA-ES

Best Median Worst Mean Std Best Median Worst Mean Std p

N = 10
fSp 99 100 153 105.1 1.6E1 2,120 2,195 2,350 2,204 7.0E1 1.3E-6

fDou 89 92 178 108.6 3.6E1 2,280 2,355 2,490 2,358 6.2E1 0.0060

fNDou 667 2,063 8,331 1,698.44 6.2E2 2,660 3,225 6,210 3,573 1.0E3 0.1688

fEll 97 100 101 99.33 1.80 6,500 6,810 7,390 6,844 2.5E2 1.3E-6

fRos 3,308 5,074.5 29,250 7,772.6 7.8E3 7,060 10,550 18,080 11,292 4.1E3 0.0744

fRas 2,359 14,969.5 38,550 15,682.5 9.1E3 36,360 90,540 203,120 103,456 5.7E4 1.3E-6

fGri 477 1,506 6,572 2,240 2,283.3 2,150 4,375 13,090 5,579 4,164.7 0.0111

fAck 1,064 2,901 10,338 3,486 2.8E3 3,340 3,480 3,630 3,477 1.0E2 0.2411

fSch 331,954 1.3E6 1.7E6 1.2E6 5.0E5 >2.0E6 >2.0E6 >2.0E6 >2.0E6 – 1.3E-6

fKur 4,300 196,218 316,528 165,325 9.9E4 10,780 21,960 81,370 29,670 22,001.4 0.0069

N = 30
fSp 290 295.5 299 295.3 2.83 5,684 5,880 6,118 5,896.8 1.4E2 0.0068

fDou 283 286.5 479 305.6 6.0E1 7,770 8,092 8,302 8,075.2 1.6E2 1.3E-6

fNDou 1,953 2,148 2,521 2,169.44 2.0E2 8,540 8,876 9,548 8,962.8 3.6E2 1.3E-6

fEll 285 296 446 310.88 5.0E1 30,940 31,479 32,522 31,547.6 5.1E2 1.3E-6

fRos 25,363 61,768 385,964 95,339 1.0E5 45,976 51,681 109,984 58,595.6 1.9E4 0.5076

fRas 58,943 78,537.5 191,489 102,429 4.4E4 360,990 699,846 721,224 576,511.6 1.7E5 1.3E-6

fGri 971 5,994.5 20,913 9,629.6 7,689.0 6,370 6,755 17,374 8,764 4,439.6 0.1168

fAck 5,194 15,516 43,602 18,502.44 1.2E4 9,128 9,457 19,096 10,505.6 3.0E3 0.0166

fSch >2.0E6 >2.0E6 >2.0E6 >2.0E6 – >2.0E6 >2.0E6 >2.0E6 >2.0E6 – –

fKur >2.0E6 >2.0E6 >2.0E6 >2.0E6 – 55,244 89,138 138,670 93,518.6 37,420.5 1.3E-6

N = 50
fSp 485 489.5 843 524.8 1.1E2 8,745 9,007.5 9,375 9,019.5 2.2E2 1.3E-6

fDou 475 482.5 601 494.1 3.7E1 14,130 14,685 15,210 14,704.5 3.9E2 1.3E-6

fNDou 3,006 3,139 3,357 3,193.33 1.3E2 15,585 16,005 16,800 16,030.5 3.3E2 1.3E-6

fEll 487 492 1335 613.44 2.8E2 71,400 73,162.5 74,025 72,807 9.1E2 1.3E-6

fRos 68,555 162,145.5 968,324 252,360.5 2.6E5 106,905 131,557.5 159,825 133,153.5 1.4E4 0.2026

fRas 135,576 269,424.5 492,577 294,150,6 1.0E5 570,615 1.1E6 1.2E6 1.0E6 3.0E5 1.3E-6

fGri 2,053 18,148 38,206 18,552.8 1.2E4 10,815 11,332.5 28,845 13,068 5.5E3 0.2411

fAck 20,418 52,993 56,841 42,932.22 1.5E4 13,725 14,767.5 16,260 14,766 7.1E2 0.0050

fSch >2.0E6 >2.0E6 >2.0E6 >2.0E6 – >2.0E6 >2.0E6 >2.0E6 >2.0E6 – –

fKur >2.0E6 >2.0E6 >2.0E6 >2.0E6 – 80,385 172,027.5 365,850 192,387 82,386.0 1.3E-6

The figures show the number of fitness function evaluations until the difference between the fitness of the best solution and the optimum is smaller
than fstop = 10−10. This termination condition has been reached in every run. The p-value of the Wilcoxon test is an indicator for statistical
significance of the comparison

statistically relevant. On the multimodal test problems in
higher dimensions similar results like for N = 10 can be
observed: The Powell-ILS is statistically better on Rastr-
igin. The G-CMA-ES’s mean and median are better on
Rosenbrock, Griewank and Ackley, but the Powell-ILS again
performed the fastest run, with the exception of Ackley with
N = 50. Experiments on Schwefel in higher dimensions
did not lead to reasonable results, but lead to the maximum
budget termination criterion. On Ackley and on Kursawe the
G-CMA-ES is significantly faster. On Kursawe, the Powell-

ILS is not able to approximate the optimum, while on Ackley,
the G-CMA-ES is about two times faster in mean for N = 30,
and about three times faster for N = 50.

Figure 5 shows fitness curves and step sizes of typical
runs on both problems. On the left hand side of the fig-
ure we can observe the fitness development on Schwefel’s
problem (left, upper part). It can clearly be observed that
the search successively gets stuck and leaves local optimal.
The strategy of Powell moves the candidate solutions
into local optima quite fast. In average Powell needs 200
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Fig. 5 Left: development of fitness (upper figure) and step size σ

(lower figure) on the the multimodal problem Schwefel with N = 10.
When the search gets stuck in local optima, the perturbation mechanism
increases σ and lets the Powell-ILS escape from basins of attraction.

Right: development of fitness (upper figure) on Kursawe’s problem.
The mutation strength σ (lower figure) of the perturbation mechanism
is fluctuating in the highly multimodal fitness landscape

evaluations to terminate, i.e., to find a local optimum. The
corresponding step sizes (left, lower part) increase within a
local optimum and decrease after the local optimum has been
left. A similar behavior can be observed on Kursawe’s prob-
lem (right part of Fig. 5). When the search gets stuck in a local
optimum, the strategy increases σ until the local optimum is
successfully left and a better local optimum is found. The
approach moves from one local optimum to another con-
trolling σ , until the global optimum is found. The fitness
development reveals that the search has to accept worse solu-
tions from time to time to approximate the optimal solution.
The figures confirm the basic idea of the algorithm. The ILS
controls the global search, while Powell’s method drives the
search into local optima. Frequently, the hybrid is only able to
leave local optima by controlling the strength σ of the Gauss-
ian perturbation mechanism. The ILS conducts a search in
the space of local optima.

The outcome of the experiments can be summarized as
follows:

– The strategy of Powell, and also the Powell-ILS outper-
form the CMA-ES on unimodal problems like Sphere,
Doublesum, Noisy Doublesum, and the Ellipsoidal test
function.

– On highly multimodal problems like Schwefel, Rastr-
igin or Kursawe the strategy of Powell gets stuck in
local optima. But the ILS-approach is able to leave
these local optima and approximate the optimal solu-
tion with the help of an adaptive perturbation mecha-
nism.

– On Rastrigin, Griewank, and Schwefel the Powell-ILS is
significantly faster than the G-CMA-ES for N = 10.

– On Kursawe the G-CMA-ES is superior for all numbers
of dimensions.
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Table 4 Analysis of the Powell-ILS perturbation parameter τ and the population sizes on Rastrigin with N = 30 using the same initial settings as
in the previous experiments

τ = 1.5 τ = 2.0

Best Median Worst Best Median Worst

(1,4) 53,913 92,544 130,675 31,686 78,214.5 121,170

(2,8) 56,074 100,835.5 143,642 65,540 112,643 242,983

(4,16) 149,350 162,083.5 210,384 77,481 117,972.5 163,693

(8,32) 156,517 295,457.5 370,320 193,259 209,725 244,325

τ = 5.0 τ = 10.0

Best Median Worst Best Median Worst

(1,4) 53,465 105,513 406,495 >2 · 109 >2 · 109 >2 · 109

(2,8) 48,274 104,461.5 285,651 32,773 680,363 1,473,097

(4,16) 67,241 103,142.5 202,447 52,991 208,088.5 338,922

(8,32) 109,820 189,676 221,069 123,838 309,169 802,285

Performance measure and termination condition are chosen like in the previous experiments

4.4 Perturbation mechanism and population sizes

For deeper insights into the perturbation mechanism and the
interaction with population sizes, we conduct further exper-
iments on Rastrigin, where the Powell-ILS has shown suc-
cessful results. The strength of the perturbation mechanism
plays an essential role for the ILS. In case of stagnation the
step size is increased, like described in Eq. 9 with τ > 1, to
let the search escape from local optima. Frequently, a suc-
cessive increase of the perturbation strength is necessary to
prevent stagnation. In case of an improvement, the step size
is decreased with the same Eq. 9, but τ < 1. The idea of
the step size reduction is to prevent the search process from
jumping over promising regions of the solution space. In
the following, we analyze the perturbation mechanism and
the population sizes on Rastrigin. What are useful param-
eter settings for τ and for population parameters µ and λ?
To answer this question we test various settings experimen-
tally.

Table 4 shows the experimental results. The best result has
been achieved with τ = 2.0 and population sizes (1, 4). Also
the best median has been achieved with this setting, while the
second best has been achieved with τ = 1.5 and population
sizes (1, 4). With parameter setting τ = 10.0 the Powell-ILS
achieves a good best solution, but the deviation of the results
is high, e.g., the worst solution is quite bad. In general, the
results for τ = 10.0 are quite weak, for (1, 4) the algorithm
does not converge within reasonable time. For low mutation
strengths the best results can be observed for low popula-
tion sizes. In turn, for high mutation strengths, i.e. τ = 5.0,
high population sizes are necessary to compensate the explor-
ative effect. Further experiments on other problems led to the
decision, that a (2, 8)-Powell-ILS is a good compromise
between exploration and efficiency, while a (4, 16)-Powell-

ILS is a rather conservative, but stable choice with reliable
results.

4.5 The Powell-ILS and noise

In the first experiment of Powell’s method on the test suite,
see Table 2, we have observed that noise deteriorates the
optimization process. In this section we briefly investigate
the magnitude of noise under that Powell’s method is still
able to find the optimum, and compare the results to the
G-CMA-ES. For this purpose, we use the Noisy Double-
sum with various noise parameters, i.e., various values for
parameter δ. Table 5 summarizes the results, in particular
in comparison to the G-CMA-ES. While the approximation
capabilities of the G-CMA-ES are almost not influenced from
δ = 0 to δ = 0.02, the Powell-ILS gets worse when the noise
is increased. For noise higher than δ = 0.01 the results dete-
riorate significantly, for noise higher than δ ≥ 0.1 Powell
is not able to approximate the optimum at all, and does not
converge. The G-CMA-ES is robust until δ = 0.02, and sud-
denly collapses from δ ≥ 0.1. Although the G-CMA-ES is
able to approximate the optimum with more noise than Pow-
ell’s method, for noise with δ ≤ 0.001 Powell is faster.

5 Conclusion

ILS is a successful hybridization technique in combinatorial
solution spaces. This work shows that Powell’s method is an
excellent example for a meta-heuristic in real-valued solu-
tion spaces. We proposed to combine the strategy of Powell
and elements from evolutionary search in an ILS frame-
work. The hybrid outperforms the standard G-CMA-ES on
unimodal problems, independent of the dimension. With
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Table 5 Experimental comparison of Powell’s method, the Powell-ILS, respectively, and the G-CMA-ES on the Noisy Doublesum problem with
N = 10

δ Powell / Powell-ILS G-CMA-ES

Best Median Worst Mean Std Best Median Worst Mean Std

0 92 93 93 92.8 0.42 2,390 2,500 2,590 2,488 71.30

1.00E-08 160 187 231 187.7 17.95 2,260 2,385 2,500 2,380 85.50

1.00E-07 168 190 240 192.9 18.00 2,160 2,380 2,740 2,392 157.88

1.00E-06 186 214.5 331 226.3 45.15 2,340 2,445 2,720 2,462 106.22

1.00E-05 254 327.5 382 317 41.46 2,200 2,475 2,600 2,437 136.95

1.00E-04 290 339 384 339.5 31.11 2,310 2,445 2,660 2,459 120.22

1.00E-03 412 439 461 438.1 19.42 2,350 2,480 2,580 2,464 73.36

0.01 823 1,064 3,073 1,407.1 723.25 2,290 2,430 2,620 2,441 90.73

0.02 1,391 3,744 9,434 4,369.6 2,552.12 2,300 2,435 2,780 2,465 162.08

0.1 – – – – – 2,830 3,135 3,060 3,135 3,210

0.5 – – – – – – – – – –

Performance measure and termination condition are chosen like in the previous experiments

Powell’s method the search converges fast towards local
optimal solutions of convex parts of the fitness landscape.
In multimodal solution spaces, the ILS controls the walk
in the space of local optima. Its perturbation mechanism
helps the search process to free from bad basins of attrac-
tion, making use of an adaptive step size rule that increases
step sizes in case of stagnation. The experimental com-
parison with the G-CMA-ES reveals a competitive perfor-
mance. Noise deteriorates the approximation capabilities.
A deeper analysis of the perturbation mechanism revealed
attractive settings for the strategy parameter τ and showed
that the search can get stuck with too high mutation param-
eter values. A recommendable balance between explora-
tion and performance are the settings µ = 2, λ = 8, and
µ = 4, λ = 16.

To conclude, combining both worlds of optimization, the
evolutionary and the deterministic, is a promising undertak-
ing. It reflects the original idea of EAs: If we do not know
anything about the problem, stochastic algorithms are an
appropriate choice. In multimodal fitness landscapes we typ-
ically know nothing about the landscape of local optima. The
Powell-ILS only assumes that attractive local optima lie
closely together and thus the search might jump from one
basin of attraction into a neighbored one. To move into local
optima Powell’s method turns out to be fairly successful.
Furthermore, the adaptation of the perturbation strength is a
natural enhancement in real-valued solution spaces. A pop-
ulation-based implementation allows to run multiple Powell
searches in parallel and will lead to a crucial speedup in
distributed computing environments. An analysis of further
restart criteria like proposed by Auger and Hansen [1] will
be interesting in the future.

A next step will be the integration of constraint handling
methods to the ILS-framework. Many optimization problems
are subject to constraints. Even simple objective functions are
subject to interval constraints. One possible approach is to
integrate constraint handling on the level of Powell’s method.
Another possibility will be the integration of penalty func-
tions that deteriorate infeasible solutions.
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