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Abstract This work presents an architecture for the devel-
opment of on-line prediction models. The architecture defines
unified modular environment based on three concepts from
machine learning, these are: (i) ensemble methods, (ii)
local learning, and (iii) meta learning. The three concepts
are organised in a three layer hierarchy within the architec-
ture. For the actual prediction making any data-driven predic-
tive method such as artificial neural network, support vector
machines, etc. can be implemented and plugged in. In addi-
tion to the predictive methods, data pre-processing meth-
ods can also be implemented as plug-ins. Models developed
according to the architecture can be trained and operated in
different modes. With regard to the training, the architec-
ture supports the building of initial models based on a batch
of training data, but if this data is not available the mod-
els can also be trained in incremental mode. In a scenario
where correct target values are (occasionally) available dur-
ing the run-time, the architecture supports life-long learning
by providing several adaptation mechanisms across the three
hierarchical levels. In order to demonstrate its practicality,
we show how the issues of current soft sensor development
and maintenance can be effectively dealt with by using the
architecture as a construction plan for the development of
adaptive soft sensing algorithms.
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1 Introduction

The traditional predictive modelling scenario dealing with
industrial data deploys a static model after the training phase
[1]. However, this approach often fails to provide a satis-
factory solution in an environment with non-stationary data
which can often be found in industrial modelling tasks. As
a result, the predictive model building often requires a lot of
effort that has to be dedicated to manual data pre-processing
and treatment prior to the training of the model, model selec-
tion and evaluation as well as periodical tuning or re-training
of the model during its run-time. Furthermore, these steps
have to be performed by experts having sound knowledge
of the data and the underlying process (a priori knowledge)
which makes the development of such models expensive. The
minimisation of the effort needed for the development and
run-time treatment of the models are thus two of the main
motivations for the conceptual architecture proposed in this
work.

This goal is achieved by resorting to available techniques
from computational intelligence and by organising these in a
three level hierarchical structure. At each level of the hierar-
chy, there are different mechanisms for the control, diversity
management and adaptation implemented. The architecture
not only defines these three levels but also the links and inter-
action channels between them. Furthermore, in order to pro-
vide an interaction capability between the model developer
and the model, the architecture supports channels for user
intervention at all three levels of the hierarchy.

The three key concepts reflected within the architecture are
(i) ensemble methods and diversity management, (ii) local
learning, and (iii) meta learning. These techniques will be
briefly reviewed in the following paragraphs.

Investigations into ensemble methods have formed a lively
research area since the first works in this field (see e.g. [2,3])
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were published. For valuable reviews of ensemble methods
refer to [4,5]. The success of the ensemble methods origi-
nates in the various theoretical proofs of their effectiveness
[3,6–8] as well as empirical evidence of their superior perfor-
mance when compared to single predictive methods [9–14].
In terms of the Bias-Variance Decomposition (BVD) [15],
ensemble methods lead to the reduction of the variance term
due to the averaging effect of the combination [16]. Some
authors have demonstrated that ensemble methods such as
Boosting or Bagging can also achieve reduction of the bias
term of the decomposition [10]. In relation to the presented
architecture, Jacobs analysed the behaviour of his Mixture
Of Experts (ME) architecture in terms of the BVD in [17].
In his work Jacobs has shown that the variance term of the
BVD can be further split into the actual variance and covari-
ance term which has a reducing effect on the squared error of
the architecture. The same effect has been shown in terms of
the ambiguity decomposition [6] which is also based on the
BVD. The decomposition shows that a crucial aspect for the
benefit of ensemble methods is a certain degree of diversity
among the combined models. This aspect has been brought
further by presenting different types and levels of diversity in
[18]. Inspired by the presented evidence, the ensemble meth-
ods and diversity management play an important role within
the architecture presented in this work.

A particular way of achieving a diverse population of mod-
els is by applying the local learning concept, which evolved
from techniques like Radial Basis Function Networks [19]
and Resource Allocating Networks [20], and was theoreti-
cally considered in [21]. In the case of local learning, the
particular models are trained on partitions of the data space.
This partitions of the data space are often called receptive
fields (RF) in the literature (see e.g. [22]) which is also
adopted in this work. An approach related to this work is
the Locally Weighted Learning (LWL) technique [23] which
was proposed as an effective way of dealing with the bias/var-
iance dilemma [15] and negative interference [24]. Based on
LWL, the Locally Weighted Projection Regression (LWPR)
where additionally a local dimensionality reduction has been
applied in order to deal with high dimensional data with
locally low dimensional manifold has been proposed in [25].
Since the LWL and LWPR were developed in the framework
of non-parametric statistics, the (local) models are based on
(non-parametric) linear regression predictors.

The next concept represented within the architecture is
meta learning (see [26] for a review of meta learning). Meta-
learning can be effectively applied when targeting the goals
of the architecture. So far, there is no unified definition of the
term “meta learning” but in many publications it is described
as a flexible way to algorithm selection and finding of map-
pings between task characteristics and algorithmic perfor-
mance (e.g. [27–30]). The task characteristics are based on
meta attributes which ideally should be a description of the

task which is relevant for the algorithm selection and thus
links the task with the performance of the considered algo-
rithms. In this work, we adopt a slightly different defini-
tion of meta learning. In the context of the architecture we
describe any method or mechanism which is applied at a
level, which is above the level of the ensemble methods, as
meta learning. The meta learner can also be represented as
building the high-level knowledge of the model which should
incrementally grow by applying the model to different tasks
[31].

In order to demonstrate the usefulness of the theoretical
concept, we show some practical implementations of the
architecture. Based on the measurements within the process-
ing plants, the task of the developed models is to predict
some critical process variables, like for example the quality
of the process product. This kind of applied models are often
referred to as on-line prediction soft sensors [32]. In practical
scenarios the soft sensor’s performance can quickly deterio-
rate as a result of operating state changes, process input mate-
rial changes, etc. Such a dynamically changing environment
calls for adaptive capabilities of the soft sensors in order to
avoid their frequent manual tuning and re-training [33].

The rest of this paper is organized as follows. Section 2
puts the proposed architecture in the context of so far pub-
lished related work. The main contribution of this work is
covered in Sect. 3 which first describes the concepts and
main goals of the proposed architecture and then provides
a detailed description of its modules. A case study showing
a practical instance of the architecture applied to deal with
on-line predictive modelling of several process industry data
sets is shown in Sect. 4 and Sect. 5. Finally, the paper is
concluded in Sect. 6.

2 Related work

To our best knowledge, there is no approach dealing with the
outlined tasks in a way similar to the proposed architecture.
Nevertheless, there are several works which are related and
partially served as inspiration of the architecture proposed in
this work.

A framework which is related to the proposed architecture
is the Evolving Connectionist System (ECOS) discussed in
[34]. The goal of ECOS is to deal with dynamic real-world
problems. The ECOS system deals with the changing envi-
ronment by deploying a multi-level modular structure. The
modules in ECOS are feature selection part, neural network
modules, higher level decision part, action modules, adapta-
tion module and knowledge-based part. The ECOS frame-
work was implemented in terms of a neuro-fuzzy system
(EFuNN) and shown to be able to deal with changing environ-
ment, especially with changing dimensionality of the input
space [35].
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ECOS and another evolving model, namely Evolving
Fuzzy Systems (EFS) [36], were presented in the light of a
more general paradigm called Evolving Computational Intel-
ligence Systems (ECIS) [37]. ECIS focuses on the introduc-
tion of a unified framework for knowledge-based evolving
system. The primary focus of ECIS is on neuro-fuzzy models
as these fulfil the ECIS requirements [37]. In contrast to this,
in this work we propose a framework which is less con-
strained in terms of the applied predictive methods. Due to
the heterogeneous environment of the different model types,
there is a need for automated approaches for model selection,
parametrisation and validation within the proposed frame-
work. In contrast to the ECOS and the other EFS approaches,
providing such mechanisms are one of the critical aspects
of the proposed framework. Another distinguishing feature
is the way of knowledge representation. While in ECOS
the learnt knowledge is concentrated within the knowledge-
based part, in our architecture it is distributed across the archi-
tecture in a hierarchical way ranging from the lowest level
storing local information to the meta level where the global,
high-level, accumulated knowledge is represented.

From the point of view of hierarchical representation,
the DIVACE-II framework [18] is related to the proposed
architecture. The DIVACE-II model focuses on building and
evolving hybrid ensembles in order to improve generalisation
capabilities of the final model. It is also based on a three-level
hierarchical structure. The three levels present in DIVACE-II
deal with three different types of diversity required for suc-
cessful hybrid ensemble building. The framework enforces
both the competition of the models at the same level and
their co-operative behaviour by grouping them into ensem-
bles at the higher levels at the same time. The DIVACE-II
model could be represented as a specific instance of the pro-
posed architecture as some of its functionality is related to the
functionality of some modules of the proposed architecture
(e.g. Instance Selection Management (ISM) implementing
the mechanism to generate and evolve the Training set struc-
ture diversity).

3 The architecture

3.1 General overview

The main idea of the proposed architecture revolves around
a certain degree of diversity represented by multiple compet-
itive paths and their flexible combinations.

There are three hierarchical levels of information process-
ing within the architecture. These are: (i) Computational path
(local) level; (ii) Path combinations (PC) (intermediate) level
and (iii) Meta (global) level. Figure 1 shows the hierarchy
upon which the presented architecture is built. In the fol-
lowing the three hierarchical levels are going to be briefly
outlined.

Computational path 
(local)
level

Path combination
(intermediate)

level

Meta
(global)

level

Diversity

C
om
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Fig. 1 Three levels of information processing within the architecture

Computational path level As shown in Fig. 1 this is the
level with the lowest complexity but the largest diversity.
This is achieved by maintaining a pool of diverse compu-
tational paths (CPs). In the terminology of this work, CPs
are basic units of information processing. Each computa-
tional path consists of none, one, or more pre-processing
methods (PPM) and one predictive technique which maps the
(pre-processed) input data onto the output space (see Fig. 4).
For further details regarding the path structure and function-
ality see Sect. 3.3.3. A special attention is also paid to the
diversity managed among the paths as this plays an important
role for the performance of the whole model. In [38], there
are described four types of diversity generation mechanisms,
these are:

– the initial conditions
– the modelling method
– the training set structure
– the training algorithm.

The proposed architecture allows the application of all of
these diversity mechanisms at the level of the CPs as it is
going to be shown later in this paper in Sect. 3.3.3. The
training set structure diversity is achieved by applying local
learning. Involving this kind of models also increases the
flexibility of the architecture and allows the implementation
of CPs which focus on partitions of the input space. This
kind of localised models are further on in this work referred
to as local experts (LEs) which is a term commonly used
in the context of local learning (see e.g. [39]). Using local
learning is beneficial especially in the case of industrial data
where the information content of the available data is often
limited and the underlying data structure is complex at the
same time. Another positive effect of this approach is that
data pre-processing like for example feature selection can
be tuned locally which is often more effective than applying
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Table 1 Main concepts within
the architecture Concept Purpose of introduction

Adaptation Dealing with changing environment, keeping validity of the model

Ensemble building and
diversity management

Improving prediction performance, providing different prediction
and adaptation mechanisms

Local learning Dealing with sparse data, limiting the complexity of the applied
models

Meta-learning Implementing global strategy, building abstraction layer between user
and model

global pre-processing. More details on local learning imple-
mentation within the architecture can be found in Sect. 3.3.5.

Path combination level This level shows an increased level
of complexity and decreased diversity. This is achieved by
combining individual CPs from the preceding level. At this
level the paths, which are competing against each other at the
path level, are forced to a collaborative behaviour. By doing
this, teams of individuals which complement each other can
be formed. Referring to Fig. 1, one can see that there is still
a certain amount of diversity at this level as not only a single
combination but a set of them is maintained at this level of
the hierarchy. Managing a set of combinations dramatically
increases the flexibility of the architecture. The ensemble
building concept is in detail described in Sect. 3.3.4.

Meta level At the top of the complexity pyramid is the meta
level. From this level the model is controlled to optimise
the predictions in terms of the global performance func-
tion which is the actual function which has to be optimised
by the developed model. It can be approached by (i) con-
trolling the populations at the lower levels, e.g. by launch-
ing paths to cover unexplored parts of the input space; (ii)
looking for relations between parameters of the paths and
the achieved performance; (iii) adapting the combinations,
i.e. teams of experts, in order to reflect the current state of
the data. Another task performed at this level, which cor-
responds to the traditional understanding of meta learning,
is the extraction and storage of knowledge from past runs
of the architecture. In this way, the high-level knowledge of
the architecture is built. In this type of memory the experi-
ence of past applications to different tasks is accumulated
and generalised in order to make it efficiently applicable to
future tasks. In accordance with the traditional meta learn-
ing approaches, this can be done by extracting meta features
and linking them to the observed performance of the models.
In summary, using meta learning capabilities facilitates the
usage of high-level mechanisms for learning and building the
high-level knowledge of the architecture. Furthermore, meta
learning can take control of the parameters of the methods
at the lower levels of complexity and adjust these accord-
ing to the global strategy defined by the user. In this way an

Computational
path

adaptation

Path
combination
adaptation

Meta
adaptation

a b

c

d

Fig. 2 Adaptation loops within the architecture arranged consistently
with the three layer structure

abstraction layer between the model operator and the lower
layers of the architecture is built. The meta learning mecha-
nisms within the architecture are in further detail explained
in Sect. 3.3.6.

In summary, Table 1 presents the main concepts repre-
sented within the architecture and of their main goals.

3.2 Adaptation capability of the architecture

The adaptation capability follows the hierarchy of the archi-
tecture and is present across the three different levels of
model complexity. The adaptation loops and the interac-
tion between the three levels of complexity is schematically
shown in Fig. 2. The figure shows the self-adaptation capa-
bility of the local and intermediate levels (see loops a, b in
Fig. 2). In contrast to this, from the meta-level there is a
connection to the lower levels (loops c, d). The adaptation
functionality of the architecture is in further detail addressed
in Sect. 3.4.

3.3 Elements of the architecture

This section describes in detail the elements represented
within the particular modules of the architecture. Figure 3
presents a detailed view of the architecture consisting of the
following modules:

– Two pools of methods (PPMP, CLMP)
– Data Source module
– Paths module
– Path Combinations module

123



Memetic Comp. (2009) 1:241–269 245

F
ig

.
3

T
he

ge
ne

ra
ls

tr
uc

tu
re

of
th

e
pr

op
os

ed
ar

ch
ite

ct
ur

e

123



246 Memetic Comp. (2009) 1:241–269

– ISM module
– Meta-Level Learning (MLL) module
– Global Performance Evaluation (GPE) module.

Furthermore, there are four different connection types:

– D: Data Stream connection which distributes the data to
the remaining modules of the architecture.

– e: Evaluation Results which is another data object carry-
ing the results of evaluation of the predictions.

– c: Control Connections transporting control information
originating from the Instance Selection (IS), the MLL or
from the Expert Knowledge (EK) module.

– p: Pooling Connections indicating which of the methods
from the pools are used within the Paths or PC module.

There are tree different types of the Evaluation Connections
distinguishable in dependency on its origin::

– cp: results of the CPs in the Paths module
– cc: results of the PC
– cg: results of the model at the Meta level.

As for the Control Connections, these can be distinguished
on one hand on the module of their origin and on the other
hand on the destination module. The details of the Control
Connections are provided in the following descriptions of
particular relevant modules.

As one can see, the architecture is rather general and pro-
vides a lot of degrees of freedom for its implementation which
in turn provides the possibility to focus on a particular func-
tionality required by the task to be solved.

3.3.1 Data source

This module acts as an interface between the physical data-
base or any other type of data storage and the actual architec-
ture. The data are encapsulated into special data objects D
which are distributed across the architecture. These objects
consist not only of the input data X and target data Y but also
of basic statistical information S (e.g. variable distributions)
which can be useful for the other parts of the architecture.
The data object has the following form: D := {(X, Y ), S}.

Additionally, there are different regimes of the data pro-
vision possible. For the traditional learning scenario the data
is distributed in batches of training, validation and test data.
In a scenario dealing with an industrial modelling task, there
can be a set of historical data distributed to the other modules
during the training phase in batch mode followed by a stream
of single data instances during the on-line phase.

The way how the data is distributed to the model is con-
trolled using the connection ce→d . In the experiments

described later the control signal is for example used to switch
between the batch and streamed distribution of the data.

3.3.2 Method pools

The next part of the architecture are two pools of meth-
ods, namely the Pre-Processing Methods Pool (PPMP) and
the Computational Learning Methods Pool (CLMP). These
pools are repositories of objects which represent the data pre-
processing and computational learning techniques instan-
tiated and used within the other parts of the architecture.
The role of the pools is limited to providing the incorpo-
rated objects (e.g. data normalisation in PPMP or Multi-
Layer Perceptron (MLP) in CLMP) to the other parts of the
architecture.

The communication with the other parts of the architec-
ture is carried out using pooling connections p. These con-
nections indicate that a certain computational path is using
an instance of the object (e.g. pP P3→Path3_3 which indicates
that Path3 uses the pre-processing method P P3 from PPMP
and places it at the third position within the path). Figure 3
shows an example where Path3 uses objects RF2, FS3 and
PP3 from PPMP.

The PPMP is further split into three different sub-pools:
(i) Pre-Processing (PP) methods (outlier detection, normali-
sation, etc.); (ii) Feature Selection (FS) methods (correlation-
based feature selection, etc.); and (iii) Instance Selection (IS)
methods containing instance filters in the form of RF used
for the local learning functionality.

3.3.3 Computational Path

The concept of CPs is one of the essences of the proposed
architecture. This module implements the bottom level of the
hierarchy presented in Sect. 3.1. The task of this module is
to maintain a competitive environment where the CPs are
managed. The management involves the building, adapting
and removing of the particular paths which is all controlled
from the Path Control of the module.

The input of this module is formed by the following
signals:

– D: Data object from the Data Source
– ec: Performance (e.g. Mean Squared Error) of the path

combination objects managed in the PC module (see
Sect. 3.3.4)

– eg: Information about the performance of the whole
model at the global level coming from the GPE module
(see Sect. 3.3.7)

– ci→p: Control information from the ISM, for example
notifications about the appearance of a new receptive field
which triggers the deployment of a new computational
path dealing with the new receptive field
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Fig. 4 The inner structure of
the Computational Path object

– cm→p: Meta-level control information from the MLL
module (see Sect. 3.3.6). An example of this kind of
information is the adaptation rate for a particular com-
putational path.

– ce→p: This control signal provides a possibility to involve
EK into the decisions made in the Path Control
(see Sect. 3.3.8). This can be for example explicit use
of a pre-processing method for all paths.

Given all this information the Path Control can implement
various strategies for launching, adaptation and removal of
the CPs.

The actual CPs consist of several elements as shown in
Fig. 4. Among these, there can be one or more pre-process-
ing steps from the PPMP and one computational learning
method from the CLMP. Furthermore, to be able to assess the
local (path-level) performance there is a need for local eval-
uation provided by the Local (Path) Evaluation unit which
calculates the performance of the path ep according to the
locally1 defined performance measure. This is set and con-
trolled using the cp control signal from the Path Control. The
performance data is then provided to the Local Control Unit
(LCU) which sends the control information clp to the path
elements and to the Local (Path) Memory. This control infor-
mation can be for example a trigger for the adaptation of the
path elements. The LCU receives not only the path perfor-
mance data but also information from the higher levels (i.e.
from MLL through Path Control) of the architecture which
can additionally influence the adaptation steps. The Local
(Path) Memory is responsible for storing past data instances
and/or information extracted from them (e.g. variable distri-

1 In this context local refers to the particular computational path rather
than local in terms of the data space as used in local learning.

bution and statistics). The stored information plays an impor-
tant role for the adaptation of the computational path (for
details see Sect. 3.4).

The embedding of the computational path presented in
Fig. 4 into the Paths module is shown in Fig. 7.

The computational path can be operated in three different
modes with flexible switching between them performed from
the LCU. These are:

Training mode In this mode the path is trained. This applies
to the Computational Learning Method as well as to the PPM
within the path (e.g. training of PCA as the dimensionality
reduction method). If local learning is applied, it is important
that the Receptive Field is set-up and activated for the train-
ing phase. This guaranties that the data instances are filtered
and the path elements are trained using only the relevant data
instances from the current receptive field.

Prediction mode For the prediction mode, where the path
is required to provide predictions of the target values given
the input data instances, the Receptive Field element of the
path can be deactivated since the path is requested to provide
predictions to all data samples independent of their receptive
field origin. Depending on the scenario and the adaptation
mechanism, the data instances during this phase may also be
stored in the Local (Path) Memory.

Incremental mode In this mode the data arrives sequentially
either in the form of single instances or groups of them.
The task of the CP is to implement the adaptation strat-
egy at the lowest level (see Fig. 2 - loop a). Once a new
data instance arrives, the path makes a prediction of the tar-
get value. When the correct target value becomes available
the performance of the predictions is assessed in the Local
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Fig. 5 The inner structure of
the path combination object

Evaluation and passed to the LCU which makes a decision
whether the path shall be adapted or not. In the case when
a decision in favour of the adaptation is made the particu-
lar elements of the path are adapted using the implemented
adaptation strategy controlled from the LCU. For example,
in the case of moving window adaptation the samples stored
in the Local Memory are retrieved and passed to the learning
method which uses these data instances for retraining of the
path elements (both pre-processing as well as the prediction
methods).

3.3.4 Path Combinations

The concept of ensemble building is well established and
accepted as a way of improving the generalisation perfor-
mance of prediction models. For this reason, there is a spe-
cial module, namely the Path Combination module, devoted
to ensemble building techniques. This module operates at the
intermediate level of complexity pyramid shown in Fig. 1. At
this level the individual paths which are competing against
each other at the path level are merged to groups where they
cooperatively perform the target value prediction.

In the traditional combination scenario there is a set of
models whose predictions are combined by a combiner [4].
In order to increase the flexibility of the architecture we go
further, and provide a possibility to manage a set of indepen-
dent model combinations or even their hierarchies (as shown
for example in [40,41]).

The particular elements within the PC module are man-
aged from the Path Combination Control (PCC) of the
module.

Figure 3 shows that the predictions of particular CPs
f p(X) are, together with the target values y from the data
object D, aggregated to a new data object F p := {

( f p
i (x j ),

y j )
}

i, j . The aim of the PC is to make a prediction of the
target value in this space.

The advantage of such a representation, which is very
similar to the one at the lower (i.e. path) level, is that com-
binations can be represented in the same way as the CPs
only operating in the space formed by the data object F p

(compare Fig. 4 with Fig. 5). In particular, it means that for
example feature selection methods can be applied to select
a subset of paths (i.e. s subspace of F p) which have to be
combined.

Furthermore, the PC can be driven in the same three modes,
i.e. training, prediction and incremental learning, as it was the
case for the computational path and the same approaches can
be used for the implementation of three modes (e.g. moving
window adaptation for the incremental mode).

The embedding of the combinations into the PC module
of the architecture is also shown in Fig. 7.

3.3.5 Instance Selection Management

The ISM module is responsible for the partitioning of the
input data space into locally coherent sub-spaces called RF.
Having this functionality the architecture can incorporate
local learning models (see e.g. [23]).

The construction of the RF can for example be done using
clustering algorithms (e.g. k-means [42]) or any other data
partitioning method such as the algorithm presented in
Sect. 4.3.

The ISM module is managed from the ISM Control which
has the following two signals as input:

– cm→i : Control connection from the MLL module which
can provide parameters like the number of receptive fields
to be managed or threshold parameters for the deployment
of new RF.
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– ce→i : EK, which can overwrite the cm→i signal or man-
ually define RF which are of advantage for the global
model from the expert’s point of view.

Providing the full local learning functionality involves
several parts of the architecture. The ISM handles the deploy-
ing of new RF, their adaptation and removing. Furthermore,
the ISM provides the information about the RF to the PPMP
using the control connection ci .

According to the three globally defined modes of opera-
tion the ISM module can be run in the following modes:

Training mode In this mode the ISM receives a batch of
historical data and its task is to split the data into local parti-
tions. The number of the partitions may be provided by the
EK (i.e. by the user) if available. If not, techniques for the
estimation of the optimal number of RF like cross-valida-
tion of the parameter in MLL or techniques which derive
the number of local partitions intrinsically like the algorithm
presented later on in Sect. 4.3 have to be applied.

Prediction mode In this mode, there is no task for the ISM
and it can be deactivated.

Incremental mode As the goal of the incremental mode is to
make prediction of the incoming data instances and to adapt
the model at the same time, the task of the ISM is to update the
RF depending on the on-line data. This task includes deploy-
ing of new RF, adaptation and the removing (pruning) of the
existing ones. Examples of such approaches can be found in
[43–49] or in Sect. 4.3 in this work.

3.3.6 Meta-Level Learning

The Meta-Level Learning (MLL) module of the architecture
is responsible for the high-level learning, control and deci-
sion making. On the basis of the collected information from
the other parts of the architecture, a picture of the global
behaviour of the architecture is constructed in this module.

The input to the MLL module is formed by:

– D: The data object
– F p: The paths predictions object
– The evaluation results signals from all levels across the

architecture, for details see Sect. 3.3.
– ce→i : The control connection coming from the EK mod-

ule. This signal is especially useful for setting the param-
eters of the applied meta-level technique.

A particular role of this module is to learn the dependency
between the methods from the pools and the performance at
the different levels of complexity. which is collected across
different RF, datasets, initial parameter sets, etc. There are

several approaches dealing with this task which can be uti-
lised at this level. Examples of these are:

– Statistical/Information theoretical meta-attributes [29]
– Model based meta-attributes [50]
– Landmarking [28].

3.3.7 Global Performance Evaluation

Referring to the common modelling scenario, the predic-
tion performance of the developed model is usually based on
performance measures like the Mean Squared Error (MSE)
which is universally applied when checking the prediction
performance of a model.

The GPE module goes further and provides a flexible way
to implement various performance measures. This does not
necessarily need to refer to the predictive performance only.
Several performance measures, which may be considered
in the architecture, are discussed in [51]. Examples of such
methods are: compactness, computational complexity and
noise handling.

This module can also incorporate multi-objective evalu-
ation techniques. Extending the previous example the per-
formance measure could be a combination of the models’
performance prediction and its diversity.

Since the output of the GPE module is used in the deci-
sion making at all three levels of information processing
(see signal eg being input to the Paths, PC and MLL mod-
ules), there is a default performance measure implemented
(e.g. the MSE). However, for cases where another perfor-
mance measure is required, there is mechanism for changing
the default measure using the EK module and the control
signal ce→g available. Using the connection cm→g the meta-
level methods of the architecture can be used to switch
between the available ensemble prediction and thus to select
the final output of the model.

The GPE module also acts as the output module which
presents the predictions results and other information about
the model to the user.

3.3.8 Expert Knowledge

This part of the architecture provides an interface for the
interaction between the model operator and the model. Using
this interface the operator gets access to the particular mod-
ules and can manually influence the operation of the parts
of the architecture. For the high-level parts of the architec-
ture (MLL and GPE) this module is used to define the tech-
niques operating at this level and to set their parameters. In
the case of the GPE the expert has the possibility to set the
performance evaluation functions and criteria if the default
measure is not desired.
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The particular control connections from the EK module
together with possible examples of information which can be
distributed using these connections are:

– ce→p: In this case the expert can manually control either
the CPs themselves, their parameters or the Path Con-
trol where decisions about the adaptation, launching and
removing of the paths are made. In a particular example
the expert can, based on the available knowledge about
the data, define necessary pre-processing steps and their
parameters (e.g. PCA with ten principal components).

– ce→c: Similarly to the previous case, the expert can influ-
ence either the decision making within the PCC or suggest
some PC (e.g. combine paths 1, 3 and 5 using the mean
ensemble building method) which have to be included in
the combinations population.

– ce→g: The task of this signal is the definition of the GPE
function, for example balancing the MSE and correlation
coefficient values of the predictions as a multi-objective
performance measure.

– ce→i : This signal provides the expert a possibility to
influence the building of new RF and the adaptation and
removal of available ones. In a particular case the signal
could carry the numbers of instances which according to
the expert’s knowledge represent a particular state of the
data and have to be presented as a separate receptive field.

– ce→m : This connection carries the information about the
method which has to be applied at the meta level and
its parameters. Relating to the examples mentioned in
Sect. 3.3.6, it could for example be the type of meta-fea-
tures and meta-learner which have to be applied in the
MLL module.

Figure 6 shows the hierarchical structure of the architecture
and the interaction possibilities of the EK module at the dif-
ferent levels of the pyramid.

Another task controlled from the EK module can be the
switching between the three operating modes of the model.
From here, the control signals ce are used for switching of
the Paths, PC, ISM and MLL modules between the training,
prediction and incremental modes.

Fig. 6 Relation between the Expert Knowledge module and the three
levels of information processing

3.4 Adaptation mechanisms

One of the key features of the proposed architecture is its abil-
ity to deal with dynamic environment represented by chang-
ing data. In order to use the adaptation capabilities of the
architecture the particular modules have to be switched to
the incremental mode. Figure 7 shows details of the adap-
tation mechanisms and their interaction possibilities and the
next three paragraphs provide a detailed discussion of the
adaptation mechanisms at the three complexity levels.

Path level adaptation The adaptation at the path level refers
to the adaptation ability of the particular CPs. At this level, the
paths can be adapted in two different ways. On one hand using
the knowledge about their own performance only, which is
also referred to as self-adaptation, (see loop a in Fig. 2 and
the evaluation connection ep

1 in Fig. 7) or on the other hand by
using the global control coming from the higher level of the
architecture (represented by loop d in Fig. 2 and connection
cp

1 in Fig. 7).
The self-adaptation loop consists of the feedback of the

prediction which is compared to the correct target values in
the Local (Path) Evaluation unit (see also Fig. 4). Given the
implemented local error measure, the error ep between the
prediction f p(X) and the correct values y is calculated in
the Local Evaluation unit and passed to the LCU. Another
input to the LCU is the information from the Path Control
(i.e. cp) which is further linked to the two higher levels of the
architecture. This kind of input is useful for the stimulation
of the adaptation in a way, which is beneficial from the point
of view of the global behaviour of the architecture (see loop
d in Fig. 2). An example of such a control is the management
of highly adaptive paths which follow the frequent changes
of the data and at the same time to have another set of paths
which are more stable and focus on the long term dynamics
such slow data drifts.

An element which is important for the CPs’ adaptation is
the Local Memory. Dependent on the implemented adapta-
tion strategy it might be necessary to retrieve some old data
samples for the adaptation, as it is for example the case for
the moving window technique. In a more advanced scenario,
for example the one presented in Sect. 4 or the fully incre-
mental algorithm presented in [52], it might be sufficient to
store some statistics of the data instead of the data samples
themselves.

The actual adaptation techniques are implemented within
the Method Control of the Computational Learning Methods
(CLM) and of the PPM because they may differ from method
to method.

The adaptation at this level is activated from the higher
level through the Path Control of the Paths module using
the cp signals which switches the path to the incremental
mode.
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The choice of adaptation techniques which can be imple-
mented at this place is large. In fact, one can implement any
concept drift handling techniques. Examples of such tech-
niques are:

– Moving window: [53]
– Partial memory learning: [54]
– Instance weighting and selection: [55]
– Gradual forgetting: [56].

Path combination level adaptation At this level, the PC are
adapted. As mentioned in Sect. 3.3.4, the combinations can
be represented in the same way as the computational path, a
benefit of this representation is that similar adaptation mech-
anisms as in the case of the path level adaptation can be
applied at this level. In the case of weighted combinations, a
common adaptation technique is the modification of the com-
bination weights. By changing the weights, one can dynam-
ically change the contribution of the particular CPs to the
final prediction. This adaptation technique has the advantage
that there is no need to adapt the CPs themselves. However,
the limitation of this method is that it assumes that there is at
least one computational path which is able to deliver correct
prediction, and as such it is not able to adapt to new states if
applied on its own.

Meta level adaptation At the meta level, the adaptation has
influence on the dynamic behaviour of the whole architecture.
As shown in Fig. 3, the MLL module collects the informa-
tion about the performance of the elements from all levels
of the architecture, i.e. from the CPs ep, PC ec as well as
the global performance eg . This information allows to ana-
lyse not only the performance achieved across the different
architecture levels but also to estimate the influence of the
changes at different positions in the model.

A simple example of a strategy, which uses the meta-level
adaptation capabilities, and can be implemented within the
architecture is AdaBoost [8]. In this case the MLL monitors
the performance of the previously deployed CPs and looks
for area of the data space D which need improved prediction
performance. Once identified, this area is deployed as a new
receptive field within the IS module and a new computational
path is trained. After deploying the new path, the involved
combination in the Path Combination module has also to be
adapted to incorporate the new paths.

4 Case study: a robust and adaptive soft sensing
algorithm

In this section the theoretical concept of the architecture is
applied to the development of an on-line prediction soft sens-
ing algorithm which is able to deal with data impurities and

changing environment. The presented case study also shows
how combining several, rather simple, approaches for data
pre-processing, predictive modelling, adaptation and meta
learning inside the architecture can lead to a robust model.

The core of the model is the algorithm published by the
authors in [33] which is a local learning approach. As such
it not only implicitly provides several possibilities for model
adaptation but also has the ability to be extended into a com-
plex model which can be represented as an instance of the
proposed architecture. The key aspects where the previous
method is extended are:

– Multiple local experts per receptive field
– Different pre-processing and predictive methods for the

LEs
– Local expert management using competitive, diversity

and cooperative selection
– More complex data management
– Adaptation mechanisms at the combination level.

Another effect which can be observed throughout the pre-
sented instance is that the methods applied at the higher lev-
els of the complexity pyramid are mainly non-parametric
methods or methods with only few parameters while at the
lower levels there can be also methods with larger number of
parameters applied. The reason for this is that the manage-
ment of the parameters of the methods at the lower levels is
done by the MLL, whereas the parameters of the techniques
at the highest level need to be controlled by the user and it is
therefore of benefit to use non-parametric methods such as
the k-nearest neighbour technique (see Sect. 4.6).

4.1 Data Source

This module emulates a typical scenario for the development
of a model based on industrial data. It is assumed that there
is a batch of historical data Dhist describing the behaviour of
the process in the past available. This data is fully labelled,
i.e. the target value is available for each of the data samples:

Dhist = {xi , yi }I
i=1 , with xi = [

xi,1, . . . , xi,J
]
, (1)

where I is the number of historical samples and J the num-
ber of variables (or measurements) for each sample. The his-
torical data is applied for the initial training of the model.
Although there are no formal requirements for the size of
this data, the model will in general benefit from larger his-
torical data sets and so all available historical data should be
applied at this stage.

After the training phase, the Data Source streams the on-
line data Donline on sample-by-sample basis as it becomes
available. This data can be either unlabelled:

Donline = {x} , with x = [
x·,1, . . . , x·,J

]
, (2)

123



Memetic Comp. (2009) 1:241–269 253

where x·,1 refers to the first variable of the data. In such a
case the model is expected to make a prediction y p for the
given sample. On the other hand, in industrial scenarios it is
often the case that the correct target value is (occasionally)
available during the on-line phase. In such a case the on-line
data have the following format:

D = {x, y} , with x = [
x·,1, . . . , x·,J

]
(3)

and the target values can be exploited for the adaptation of
the model.

4.2 Method pools

The two method pools provide several methods for data
pre-processing and predictive modelling. The provided tech-
niques are methods commonly used for soft sensor develop-
ment [32].

The PPMP provides the following objects for the imple-
mentation:

– Standardisation (STD): mapping the particular variable
to the range (0, 1)

– Smoothing filter (SF): Smoothing the particular variables
using an averaging sliding window

– Robust Principal Component Analysis (RPCA): Variable
transformation [57]

The following methods are implemented in the CLMP:

– Multiple Linear Regression (MLR): linear regression [58]
– Multi-Layer Perceptron (MLP): feed-forward ANN [16]
– Least Squares Support Vector Machines (LS-SVM):

kernel-based technique [59]
– Radial Basis Function Network (RBF): another variant of

the feed-forward ANN [16]
– LWL: lazy-learning algorithm [60]

The aim of providing such a set of methods is achieve to
certain level of diversity at the level of the architecture of the
learning machine which was described in [18] as an effec-
tive way of creating diverse ensembles which in turn led to
improved generalisation performance.

4.3 Instance Selection Management

This module performs the partitioning of the data into RF.
In this work the same algorithm which we have developed
and published earlier in [33] is used. This algorithm splits the
data using a concept detection approach. The algorithm can
be applied during the training phase for the splitting of the
historical data as well as during the on-line phase for on-line
partitioning of the data.

4.3.1 Training phase

The notion of data concept is linked to the area where a
model, called landmarker, provides constant performance.
The decrease of performance of the landmarker is interpreted
as a new concept which leads to building of a new receptive
field. Provided the historical data set Dhist, the first step of the
algorithm is training the landmarker using samples from an
initial window Dinit which is a subset of the historical data:

Dinit
i = {X, y} = {(xi , yi )}k+N init

i=k , (4)

where k is the index of the first sample in the current receptive
field and N init is the length of the initial window.

Provided the initial set, the landmarker f lm can be trained
and the residual vector rinit of the landmarker’s prediction on
the training data can be calculated:

rinit
i = yinit − f lm(X init), (5)

where f lm(X init) is the prediction of the landmarker.
The next step is shifting the window one step forward

(s = 1), while keeping its size constant:

Dshifted = (X shifted, yshifted) := {(xi , yi )}k+s+l
i=k+s (6)

with s = 1, (7)

and calculating the new residual values rshifted(s) of land-
marker’s prediction using the shifted data window:

rshifted(s) = yshifted − f lm(X shifted). (8)

Following this, the two residual vectors (rinit
i and

rshifted
i (s)) are tested for a statistically significant difference

using the t test [61]. This test was chosen because the residu-
als can be, ideally, assumed as normally distributed. The t test
is looking for a significant difference in the mean values of
the two residual vectors and so it is able to identify a signifi-
cant change in the performance of the landmarker as an effect
of the concept drift of the data. As long as the null hypothesis
remains valid, it can be assumed that the performance of the
landmarker on the data within the shifted window is compa-
rable to the performance on the training data and thus that
the data samples, within the shifted window Dshifted, belong
to the same concept as the samples from the initial window
Dinit. This procedure is repeated, i.e the window is shifted,
as long as the null hypothesis of the significance test remains
valid:

sfinal
i = argmin

s∈[1,...,N−k]
(t test(rinit, rshifted(s)) == 1), (9)

where N is the number of samples in the historical data set
and sfinal corresponds to the first sample for which the t test
rejects the null hypothesis and thus there is a significant dif-
ference in the residuals.
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Finally, the receptive field is constructed in the following
way:

DRF = {(xi , yi )}k+l+sfinal
i −1

i=k , (10)

and the algorithm can move to the next receptive field by
constructing new initial window. This is constructed by tak-
ing the last N init samples of the previous receptive field (i.e.
using the last shifted window of the previous receptive field):

Dinit := Dshifted = {(xi , yi )}k+sfinal+N init

i=k+sfinal . (11)

The procedure of RF building is graphically illustrated in
Fig. 8.

After the RF are built in ISM, they are deployed as IS
filters in the PPMP.

4.3.2 On-line phase

The same algorithm can be applied to build new RF during
the on-line phase. The building of a new RF is triggered from
MLL (see Sect. 4.6). However, during the on-line phase, since
we are interested in launching a new receptive field for the
latest data, the algorithm runs backwards from the latest data
sample until the landmarker’s performance drops.

4.4 Paths

As discussed in Sect. 3.3.3, the Paths module is responsible
for the management of the actual models. The actual manage-
ment of the paths is performed from the Path Control of the

Train
landmarker

Test
landmarker

initial
window

shifted
window

Significant
difference? no

Shift
window

yes

Deploy
receptive

field

Receptive Field:

Fig. 8 Process of the receptive fields construction

Paths module (see Fig. 3) and therefore all the functionality
described bellow is implemented in this part of the architec-
ture. As such, the role of the module is to deploy, manage,
monitor and remove the paths based on information coming
from the other parts of the architecture.

4.4.1 Training phase

In the presented case, there is a set of LEs launched for each
built receptive field. The initial set of models is referred to
as Local Expert Candidates (LEC):

FLEC :=
{

f LEC
(m)

}N LEC

m=1
, (12)

with N LEC being the number of LEC.
The PPM, predictive algorithm and the parameters of these

for each of the LEC are sampled from the performance distri-
butions P which are built and stored in MLL (for details see
Sect. 4.6 and Fig. 13). In order to further increase the diver-
sity of the trained models each of the LEC is trained on
random sub-sample of the receptive field data. Further more,
in order to effectively exploit the limited available data, each
LEC is trained using the cross-validation technique. Further-
more each LEC is trained on a random subsample of the
data. This mechanism supports on one hand the diversity of
the LECs and the dealing with data outliers on the other hand.
Figure 9 shows the model space after the initial phase. Each
of the LECs is defined by a point in three-dimensional space
with the following dimensions:

– Receptive field number
– Local expert candidate number
– Cross-validation fold.

RF

CV

LEC

Fig. 9 The model space after the competitive selection, red models
showing LECs which passed the competitive selection
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Fig. 10 Example of the two-dimensional LEC descriptor L

Fig. 11 The model space after the diversity selection

In order to reduce the number of paths there are two selec-
tion steps: (i) the competitive selection; and (ii) the diversity
selection implemented at this stage. The aim of competitive
selection is to remove LECs with low performance and is
carried out inside the receptive field (see Fig. 9). The per-
formance is measured in terms of the Local (Path) Evalua-
tion function (see Fig. 4) and is based on the cross-valida-
tion performance estimation. The LECs, in order to pass this
selection, have to fulfil the following condition:

∀m=1:N LEC : erel
(m) ≤ erel

( min) ∗ tcomp,

with e( min) = argmin
m=1:N LEC

(e(m))

and erel
(m) = e(m)

e( min)

(13)

where erel
(m) is the relative error of the mth LEC, e(m) the abso-

lute performance of the mth path in terms of its Local (Path)
Evaluation and tcomp a threshold value which can be used to
manipulate the size of the local expert population after the
competitive selection.

After the competitive selection, the barriers between the
RF are removed and the LECs are treated independently of
their origin as shown in Fig. 11. For each of the LEC, which
have passed the competitive selection, descriptors L(X, y)

which describe the relative performance of the LECs in the
input-output space are built in the same way as shown in [33]
(see Fig. 10 for an example of a descriptor). In order to be
able to compare the performance of LECs from all RF there is
a common validation data set Dval required. In this work this

data set is built by randomly sampling the historical data.
The descriptors are constructed using the two-dimensional
Parzen window method [62]:

L(m), j = 1
∥
∥Dval

∥
∥

∑

i∈Dval

w(m),i�(µ,�) (14)

where m refers to a local expert candidate, j to an input
variable of the data,

∥
∥Dval

∥
∥ is the number of data points in

Deval, w(m),i is the weight of the contribution of the point
(for more details see bellow), �(µ,�) is a two-dimensional
Gaussian kernel function with mean value at the position
defined by µ := [

xi, j , yi
]

and variance matrix � (a diagonal
2 × 2 matrix with the kernel width σ at the diagonal posi-
tions). The kernel width σ is a parameter of the algorithm
which defines the size of the neighbourhood influenced by
each data point. For simplicity we keep the variance in both
dimensions equal but the approach can be easily extended
to a more general case with different kernel widths along
different dimensions.

The weights w(m),i for the construction of the descriptors
(see Eq. 14) are proportional to the prediction error of the
LECs:

w(m),i = exp(−e(m),i ) = exp(−( f LEC
(m) − yi )

2) (15)

Weighting the contribution of each sample by the predic-
tion performance of the corresponding LEs assures that the
descriptors model the LEs’ area of expertise in the input-
output space and as such can be later sampled to estimate
the local expert’s performance given the input data and its
prediction.

It should be also noted that the descriptors L are built in
the data space which results from the data pre-processing of
each computational path (i.e. in Fig. 4 just before processing
the data in CLM). In combination with the PCA or any other
feature selection method this leads to significantly reduced
computational requirements. The descriptors are stored in the
Local (Path) Memory of the computational path (see Fig. 4).
Since there is one descriptor built for each variable of the
data space the final descriptor L(m) for the mth local expert
candidate has the following form:

L(m) = {
L(m), j

}J
j=1 (16)

where J is the number of variables.
Coming back to the diversity selection, the LEC descrip-

tors can be used to obtain a weight vector ω(m) for the partic-
ular LEC by sampling them at positions defined on one hand
by the input data of the evaluation data x ∈ Deval and the pre-
dictions of LECs ( f LEC(x)) on the other hand (for details of
the calculation of the weights vector see Eq. 23 and 24). Hav-
ing the weight vectors ω(m) for all LECs, their correlation is
calculated and those having the strongest correlation patterns
are removed. In our implementation, we iteratively remove
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Fig. 12 Adaptation mask for the modification of the neighbourhood of the current sample point

LECs having the highest correlation coefficient with all other
LECs which is repeated as long as there is no LEC with corre-
lation coefficient higher than an user-defined threshold tcorr.
This threshold can be manipulated in order to control the
local expert population size.

After the diversity selection the remaining LEC are called
LEs FLE as they will be kept (unless they are pruned later)
in the Paths module and used as part of the final model.

4.4.2 On-line phase

During the on-line phase the Paths module is passing the
incoming data through the LEs, obtaining their predictions
which are provided to the other modules of the architecture.
In an adaptive model scenario with available target values
during the on-line phase, there are also several possibilities
for model adaptation provided.

The simplest way of adaptation, to which we refer as Type
1 adaptation, is the adaptation of the local expert descriptors
L(m) stored in the Local (Path) Memory of each computa-
tional path. Provided a labelled on-line data sample:

Donline := {x, y} , (17)

the prediction error e(m) of all of the LE can be calculated
using the Local (Path) Evaluation (e.g. using the squared
error bellow):

e(m)(x) = ( f LE
i (x) − y)2. (18)

The error is further on mapped onto a performance index
u(m):

u(m) = exp

(
−e(m) − med(e)

med(e) log(2)

)
, (19)

with e = [
e(1), . . . , e(N LE)

]

where med(e) is the median squared error across the LEs
and N LE the number of LEs. The above mapping transforms
the prediction error in such a way that the best performing
local expert receives a weight equal to 1 and the weights of
the remaining LEs decay exponentially with the increasing
error, whereas the median error is mapped to the value 0.5.
This mapping function leads to a decrease in the neighbour-
hood of the current sample within the local expert descriptors
(see Fig. 12a for the adaptation mask in such a case) of LEs
providing weak performance for the current on-line data sam-
ple. Contrary to this, descriptors of LEs whose performance
is better than the average are increased in the neighbourhood
of the current sample (see Fig. 12b for an example of such
an adaptation mask).

The Paths module is also part of another more complex
adaptation scenario, which involves the deployment of new
RF during the on-line phase (see Type 2 adaptation in
Sect. 4.6). The tasks performed during the Type 2 adaptation
inside the Paths module are equivalent to those performed at
the training phase of the modelling. The Path Control is pro-
vided with past samples and performs the following actions:
(i) building and training of the LECs; (ii) competitive selec-
tion; and (iii) diversity selection. The only difference to the
training phase is that now the newly deployed LEC are com-
peting with the LEs, which were built earlier, during the
diversity selection. In other words, for the diversity selec-
tion it does not matter if the path was deployed as part of
the latest receptive field or if it was already present in the
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system. Additionally to improving the diversity of the paths,
this mechanism is also an effective pruning approach as one
can maintain a stable number of the LEs inside the Paths
module.

4.5 Path Combinations

The PC module provides the functionality for ensemble meth-
ods. More than that, it also has the ability to manage a set
of combinations and to apply similar mechanisms as for the
CPs.

4.5.1 Training phase

The task of the PCC during the training phase is to perform
the third selection step, namely the co-operative selection.
The goal of this selection is to build teams of LEs which
co-operatively achieve high performance. In contrast to the
previous two selection steps, the LEs which are not selected
for any ensemble are kept in the Paths module since they can
be useful at a later stage. The ensemble building is imple-
mented in the PCC and proceeds as follows: Based on the
evaluation data set Deval used earlier, the best performing
local expert ( f LE

( min)) in terms of its predictive performance
is selected:

f LE
( min) = argmin

m=1:N LE

(
∑

i

( f LE
(m)(xi ) − yi )

2

)

with Deval = {xi , yi }N eval

i=1 . (20)

After finding the best performing LE, it is added to the first
ensemble Fens

1 :

Fens
1 =

{
f LE
min

}
. (21)

As next, the LEs, which most improve the ensembles predic-
tion, are iteratively added to the ensemble:

f LE
( min) = argmin

m=1:N LE

f LE
(m)

/∈F ens
1

(
∑

i

(
c
(
Fens

(temp)(xi )
)

− yi

)2
)

with Fens
temp =

{
Fens

1 , f LE
(i)

}
(22)

Fens
1 =

{
Fens

1 , f LE
(min)

}
,

where c(Fens
temp) is a combination function which forms the

combined prediction of the ensemble (for detail on the com-
bination function see bellow). The procedure described in
Eq. 22 is repeated as long as adding a new member to the
ensemble improves the performance.

In a non-adaptive scenario, there is only one combination
built and managed in the PC module. However, in a sce-
nario with available feedback information during the on-line
phase, it is useful to create several PC and switch between

them based on their performance. In this particular imple-
mentation, the different combinations are varied by chang-
ing the initial Local Expert, which leads to different PC. The
number of managed PC N PC is a parameter which can be
defined externally by the user.

Within the architecture the discussed method is imple-
mented within the PCC which launches the PC. The Local
Expert selection for the combinations is achieved by filter-
ing the LEs in the Feature (Path) Selection part of the path
combination (see Fig. 5).

4.5.2 On-line phase

In order to obtain the prediction Fens(x) from the ensembles
given the on-line input data x, the predictions of the partic-
ular LEs need to be combined. The combination is based on
the approach described in [33]. The combination approach is
a weighted sum of the predictions of LEs which are part of
the ensemble:

Fens =
N ens∑

m=1

v(m)(x, f LE
(m)) f LE

(m)(x), (23)

where N ens is the number of LEs in the ensemble, f LE
(m) are

the particular ensemble members, f LE
(m)(x) their predictions

given the on-line data sample and v(m) the combination
weight of the mth local expert’s prediction. In the case of this
instance, the weights are read from the local expert descrip-
tors L(m). Since the descriptors store maps of the LEs perfor-
mance in the input-output space, they can be sampled to get
the predicted performance of the LEs for the given on-line
data sample. This can be expressed as the posterior proba-
bility of the mth local expert given the test sample x and the
Local Expert’s prediction f LE

(m)(x):

v(m)(x, f LE
(m)) = p(m|x, f LE

(m)) = p(x, f LE
(m)|m)p(m)

∑
m p(x, f LE

(m)|m)
, (24)

where p(m) is the a priori probability of the mth Local Expert
(in our implementation equal for all LEs but in general it can
be used to prioritise between them),

∑
m p(x, f LE

(m)|m) is a

normalisation factor and p(x, f LE
(m)|m) the likelihood of x

and the local expert which can be calculated by reading the
descriptor of the mth Local expert L(m):

p(x, f LE
(m)|m) =

J∏

j=1

p(x·, j , f LE
(m)|m)

=
J∏

j=1

L(m), j (x·, j , f LE
(m)(x)). (25)

Equation 25 shows that the descriptors L(m) are sampled
at positions which are given by the scalar value x·, j of the
j th variable of the sample point x and at the position of the
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predicted output f LE
(m)(x) of the mth local expert. Sampling

the descriptors at the positions of the predicted outputs may
be potentially ineffective because the predicted value does
not necessarily need to be similar to the correct target value.
However, as the correct target values are not available during
the on-line phase at the time of the prediction this is the only
way how to read the values from the descriptors. Further-
more, the rationale for this approach is that the local expert
is likely to make correct prediction if it generates a prediction
which conforms with an area which was occupied by a large
number of accurate predictions during the training phase.

There are two adaptation mechanisms related to the PC
called Type 3 adaptation and Type 4 adaptation, respectively.
In case of Type 3 adaptation, the MLL module switches
between the available combinations and thus selects current
output model. In this instance, the MLL checks every ten
samples which of the combinations performed best over the
last ten samples and selects the output model accordingly.
As for the Type 4 adaptation, in this case new PC are built.
This adaptation is also controlled from the MLL module and
is triggered if the performance of the model drops bellow
a certain threshold value. When triggered, the adaptation
mechanisms perform the same action (with different eval-
uation data though) as it was done during the training phase
(see Sect. 4.5.1) and builds new combination schemes. The
details of this adaptation type are provided in Sect. 4.6.2.

4.6 Meta-Level Learning

The major task of this module is to manage the underlying
modules by monitoring the performance of the full model and
taking appropriate actions if necessary. This is on one hand
achieved by controlling some critical parameters, such as the
correlation coefficient threshold tcorr discussed in Sect. 4.4,
and on the other hand by controlling the adaptation mecha-
nisms.

4.6.1 Training phase

During the training phase, an important role of the MLL is
to build and store performance descriptors P of the RF (see
Fig. 13 for an example of such a map). The goal of these
descriptors is to build a map of the performances of differ-
ent pre-processing and predictive techniques. The descriptors
are built by randomly sampling from the space of all possible
parameters of the pre-processing and predictive techniques
which are available in the two method pools of the archi-
tecture (i.e PPMP and CLMP, respectively). The parameter
ranges of the techniques (e.g. the number of hidden units
range of an MLP) to be tested have to be defined by the
user through the EK module. Once built, the performance
descriptors can be sampled in order to obtain the configura-
tions of the LECs as described in Sect. 4.4.
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Fig. 13 Performance distribution of various methods and their
parameters

Additionally to the receptive field performance descrip-
tors, meta-descriptors M describing the RF are also calcu-
lated in the MLL. The meta-descriptors have the following
format:

Mr =
[∥∥
∥DRF

r

∥
∥
∥ , Jr , perf( f LM

r )
]
, (26)

where
∥
∥DRF

r

∥
∥ is the number of data samples in the r th recep-

tive field, Jr is the number of variables of the receptive
field data after the local pre-processing using the PCA and
perf( f LM) is the quadratic error of the prediction of the land-
marker associated with the receptive field. The purpose of the
meta-descriptor is to be able to find similar RF during the on-
line phase and thus to inherit their performance descriptors
which will be useful to avoid the need to calculate these as it
is related to a high computational demand (for more details
see the Type 4 adaptation in Sect. 4.6.2).

4.6.2 On-line phase

The most critical role of the MLL module is to control the
adaptation of the model. The four available adaptation pos-
sibilities were already discussed through this work. In what
follows is a discussion of the role of the MLL with regard to
the adaptation techniques.

For the Type 1 adaptation the MLL does not play any role,
as this adaptation is controlled and performed by CPs them-
selves. Referring to Fig. 2, this adaptation mechanism corre-
sponds to the loop b as adapting the LE descriptors changes
the combination weights of the PC.

The Type 2 adaptation is more complex and requires an
attention of the MLL. This adaptation is triggered if the cur-
rent performance of the full model drops bellow a certain
threshold tada2 (defined by the user through the EK mod-
ule) and its goal is to build new RF during the on-line phase.
In order to achieve this, firstly the receptive field detection
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in ISM needs to be performed (see Sect. 4.3.2). Provided
the receptive field, the performance descriptor P of the new
receptive field needs to be calculated. Due to its high compu-
tational costs the calculation of the performance descriptor
P of the new receptive field is avoided by building the meta-
descriptor of the new receptive field, finding the most simi-
lar stored receptive field (i.e. using the k-nearest neighbour
technique in the meta-descriptor space) and inheriting the
performance descriptor of the closest receptive field. Once
having the performance descriptor, the LECs can be built and
reduced to LEs using the competitive and diversity selec-
tion as discussed in Sect. 4.4.1. The Type 2 adaptation is
completed by building new PC in the PC module according
to Sect. 4.5.1. The above discussion shows that performing
this type of adaptation is quite a complex process involving
several parts of the architecture. The Type 2 adaptation is
part of the loop d in Fig. 2.

In contrast to the Type 2 adaptation, the Type 3 adapta-
tion is rather simple. The goal of this adaptation method is to
select the currently best performing path combination man-
aged in the PC module. As such, it is started periodically.
In the case of this instance it is performed every ten data
data points. It involves checking the performance of the PC
over the latest ten samples in the MLL module and selecting
the combination with best performance as the current output
model in the GPE module.

The Type 4 adaptation involves building new combina-
tions in the PC module. This adaptation is triggered in a
similar way as the Type 2 adaptation, namely by monitor-
ing the performance of the full model. The threshold for the
adaptation tada4 is in general lower than the one for the Type
2 adaptation as it is less complex and can be used as a first
attempt to improve the decreasing performance of the full
model. The procedure for this adaptation involves building
a data set Deval which consists of the data samples between
the last Type 2 or Type 4 adaptation, dependent on which
occurred later, and the current on-line data samples. This
data is provided to the PCC which performs the building
of the new ensembles according to Sect. 4.5.1. The Type 3
and 4 adaptation mechanisms are represented as loop c in
Fig. 2.

Apart from the adaptation control, the MLL is also respon-
sible for the control of the population size of the LEs in the
Paths module. The number of CPs is controlled by changing
the tcorr parameter of the diversity selection. In the presented
instance the target number of LEs is 50 and depending on the
actual number of the LEs the parameter is either increased
or decreased.

4.7 Performance Evaluation

Within this module, there are the MSE and correlation coeffi-
cient measures implemented. These two measures are used to

assess the performance of the output model which is on one
hand distributed throughout the architecture and provided to
the model operator on the other hand.

4.8 Expert Knowledge

As discussed throughout this paper, the Expert Knowledge
(EK) module’s main purpose is to provide an interaction
channel between the model developer, in this case soft sen-
sor developer, and the actual model. In the presented instance
we restrict the expert interaction to the control of the critical
parameters of the model.

The EK module also provides default values for all the
parameters (see Table 2). This should make the model devel-
opment even more straightforward and effective while still
providing the flexibility to change some of the parameters or
their ranges if required. This fact is demonstrated in Sect. 5.2,
where three different soft sensors are developed using the
same input parameters for all three models.

5 Experiments

The set-up and parametrisation of the architecture instances
applied to the data sets is performed according to Sect. 4.
The model applied to all three data sets is the same without
any data set specific manual parameter optimisation. In the
experiments, there are two different scenarios, namely (i) a
non-adaptive case and (ii) an adaptive case. In the first case it
is assumed that no target data is available during the on-line
phase and thus the model can not adapt and after the train-
ing phase remains unchanged. In the latter case we assume
that the target values for all on-line data samples becomes
available after making the prediction for the current on-line
data sample. Such a scenario allows to assess the adaptation
ability of the models.

5.1 Data sets

The three data sets used for the experiments were kindly pro-
vided by Evonik Degussa GmbH. The following paragraphs
briefly outline the data sets.

Thermal oxidiser This on-line prediction data set deals with
the prediction of exhaust gas concentration of an industrial
process. The task is to predict the concentrations of N Ox

in the exhaust gases. The data set consists of 36 input fea-
tures (i.e. hard sensor measurements). The input features are
physical values like concentrations, flows, pressures and tem-
peratures measured during the operation of the plant. The
data set consists of 2,053 samples of raw unprocessed data
as it was recorded by the process information and measure-
ment system. As a result of this, many of the input variables

123



260 Memetic Comp. (2009) 1:241–269

Table 2 Summary of the parameters of this instantiation of the architecture (for abbreviation see Sect. 4.4)

Module Parameter Comments

Data source – –

Instance Selection Management N init The size of the initial window

Default: set to 3*J (number of variables of the data)

f LM The landmarker computational path

Default: PCA (covering 95% of the variance + MLR)

N CV Number of cross-validation folds

Default: 2

Pre-Processing Methods Pool SF: N smooth Length of the window of a smoothing filter

Default: [1, 4, 7, 10]

RPCA: cv Covered variance of the RPCA [57]

Default: [0.92, 0.97, 0.99]

Computational Learning Methods Pool SVM: k Kernel size of the Gaussian kernel of the SVM

Default: [0.1, 1, 10, 100, 1,000]

MLP: N hidden Number of hidden units of an MLP

Default: [1, 3, 5, 7, 9, 11]

RBF: N hidden Number of hidden units of an RBF

Default: [6, 9, 12]

Paths LWL: N neighbour Neighbourhood size of the LWL

Default: [10, 50, 100]

N LEC Number of Local Expert Candidates to be launched

Default: 100

tcomp Threshold for the competitive selection

Default: 2.0

tdiv Threshold for the diversity selection, controlled from MLL

Default: 0.8

σ Kernel size of the Gaussian function for LE descriptors

Default: 0.001

Path Combinations N PC Number of managed path combinations

Default: 10

Meta-Level Learning tada2 Threshold for triggering the Type 2 adaptation (absolute error)

Default: 0.1

tada4 Threshold for triggering the Type 4 adaptation (absolute error)

Default: 0.08

N ada3 Number of samples between the Type 3 adaptation

Default: 10

present common issues of industrial data like measurement
noise (high level of noise can be found in 20% of the data fea-
tures) and data outliers which severelly affect approximatelly
half of the features.

Industrial drier The target values of this data set are lab-
oratory measurements of the residual humidity of the pro-
cess product. The data set has 19 input features, most of
them being temperatures, pressures and humidities measured
within the processing plant. The data set consists of 1219
data samples covering almost seven months of the operation

of the process. It consists of raw unprocessed data as it was
recorded by the process information and measurement sys-
tem. The main issue of this data set is the high noise level
which affects all of the data features as well as outliers which
can also be found in most of the features. Missing values are
present in 16% of the features.

Catalyst activation This data set was used for the NiSIS
2006 competition.2 The task was to predict the activity of a

2 http://www.nisis.risk-technologies.com/filedown.aspx?file=125.
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catalyst in a multi-tube reactor. The input data are 14 sensor
measurements like flows, concentrations and temperatures,
from a real process together with one feature describing the
timestamps of the measurements. The target variable is mod-
elled activity of the catalyst in the reactor. The data set covers
one year of operation of the process plant. In particular this
data set requires strong adaptive mechanisms since the test
data are unrelated to the training data. Apart from this prob-
lem the data shows also very high co-linearity of the features
and high amount of outliers which can be found in as many
as 80% of the features.

5.2 Experimental Results

In this section the model which is developed according to the
presented architecture is called Robust On-line Soft Sensor
(ROSS). In the non-adaptive scenario this model is
benchmarked with a model based on MLP and PCA data
pre-processing, which is a common way of developing a soft
sensor as well as with a non-incremental version of the LWPR
method. In the adaptive case we compare ROSS using dif-
ferent adaptation methods with an incremental version of
the LWPR. The parameters of the ROSS model were set
according to Table 2 and were kept constant for all three
soft sensors (with an exception of the tada2 and tada4 param-
eters in the case of the industrial drier soft sensor, for more
details see Sect. 5.2.3). In order to analyse the impact of
the four adaptation types, there are three different adaptation
experiments, each using a different set of adaptation types,
performed and analysed. The different experiments are sum-
marised in Table 3.

The parameters for the remaining two methods (MLP and
LWPR) were optimised using an exhaustive search in the
space of their parameters. This approach was chosen in order
to guarantee an optimal performance of the benchmark meth-
ods. The selected parameters are listed in the corresponding
experiments.

5.2.1 Thermal oxidiser

Non-adaptive soft sensors The first model analysed in the
non-adaptive scenario is the MLP with PCA pre-process-
ing. For the pre-processing 12 principal components were
selected as optimal parameter of the PCA. Although for the
MLP there are not many parameters to be optimised, the
model selection for this soft sensor is rather difficult as dem-
onstrated in Fig. 14. This figure shows the MSE and corre-
lation coefficient of the predictions of the MLP models for
the on-line data. Each of the box-plots represents an MLP
model with a given number of hidden units and is based
on ten random initialisations of the MLP. As one can see
the distribution of the performance is wide and it is virtu-
ally impossible to select an optimal number of hidden units.
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Fig. 14 Performance of the MLP soft sensors for the thermal oxidiser
data. a MSE, b correlation coefficient

Nevertheless for the following comparison an MLP with one
hidden neuron has been selected as the optimal model.

For the second benchmark model, namely the LWPR,
the optimal parameters were identified using greedy search
based on parameter cross-validation in the space of reason-
able parameter values (as proposed in [63]). The input param-
eters found as optimal are:

– ‘init-D’=4
– ‘init-alpha’=100
– ‘diag-only’=0
– ‘w-gen’=0.9
– ‘w-prune’=0.9
– ‘penalty’=1e−7
– ‘meta’=0
– ‘update-D’=0
– ‘kernel’=‘Gaussian’

The parameters used for the ROSS are listed in Table 2.
During the training phase there were only two RF built which
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Table 3 Summary of the three
adaptation cases Type 1 adaptation Type 2 adaptation Type 3 adaptation Type 4 adaptation

Adaptation case 1 1 0 0 0

Adaptation case 2 1 1 0 0

Adaptation case 3 1 1 1 1
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Fig. 15 Predictions of the three non-adaptive models for the thermal oxidiser data. a MLP, b LWPR, c ROSS

results into the training of 200 LEC. From these, there were
22 LEs (i.e. N LE = 22) left after the competitive and diversity
selection. Among these the distribution of the predictive
methods was the following:

– MLR: 2
– LS-SVM: 10
– MLP: 1
– RBF: 5
– LWL: 5

However, for the final model, there were only two LWL mod-
els selected during the co-operative selection which means
that the results shown in Fig. 15c are based on two LWL
models only. Taking into account that the non-adaptive ROSS
model outperformed the non-adaptive LWPR model it is an
encouraging result.

The results for the three non-adaptive models are pre-
sented in Fig. 15. First inspection of the data shows that none
of the non-adaptive models is able to deal with the data and
that the data set calls for an adaptive approach. Although the
best performance in terms of MSE and correlation coefficient
is achieved by the MLP model, after a visual inspection of
the results in Fig. 15 and due to the problems with the model
selection of the MLP discussed above the non-adaptive ROSS
seems to be a better option for this task. Table 4 gives ones
again a summary of the performances of the non-adaptive
models.

Adaptive soft sensors As next the adaptive case is analysed.
The benchmark model in this case is an incremental version

Table 4 Performance of the non-adaptive models for the thermal oxi-
diser data

MLP LWPR ROSS

MSE 1.37e−3 2.21e−3 1.57e−3

CC 0.43 0.18 0.24

of the LWPR algorithm. Using the same parameters as in the
non-adaptive case the method is allowed to adapt after mak-
ing prediction for each of the on-line data samples. The model
dramatically improves its performance as demonstrated in
Fig. 16.

The results of the different adaptation cases for the adap-
tive ROSS model are outlined in Table 5.

The table shows that in the case of this data it is necessary
to use the Type 2 adaptation, which involves deploying new
RF during the on-line operation. This fact is confirmed by
the results of the LWPR techniques as well as of the ROSS
model. Especially the ROSS model using all available adap-
tation mechanisms (i.e. adaptation case 3) achieves outstand-
ing performance and is able to follow the data very well as
demonstrated in Fig. 16.

The composition of the LEs pool in the Paths module
is analysed next. Figure 17 shows that during the on-line
phase the LS-SVM method is dominant. One can also see
the almost negligible role of the linear regression (MLR)
method. Another interesting aspect is the growing impor-
tance of the MLP method in the second half of the data. The
figure also shows the total number of the LEs in the Paths
module, one can see that the number of LEs N LE remains
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Fig. 16 Predictions of the adaptive models for the thermal oxidiser data. a LWPR, b ROSS using adaptation case 3

Table 5 Performance of the adaptive models for the thermal oxidiser
data

LWPR Ad. case 1 Ad. case 2 Ad. case 3

MSE 1.04e−3 1.52e−3 8.48e−4 7.91e−4
CC 0.61 0.52 0.69 0.71
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Fig. 17 Composition of the local experts computational methods in
the Paths module for the thermal oxidiser data

stable despite the fact that several new RF are deployed dur-
ing the on-line phase. This fact demonstrates the efficiency
of the diversity selection step. The actual deployment of new
RF can be observed as the step changes in Fig. 17. Reading
the plot one can see that there are 11 RF deployed during the
on-line phase.

5.2.2 Catalyst activation

Non-adaptive soft sensors For this data set, the parameter
selection for the MLP model was also difficult. Referring
to Fig. 18 one can see that both the MSE and correlation
coefficient does not provide any strong information for the
selection of a particular number of hidden units for the MLP.
The selected number of hidden units for the benchmarking
was nine and the number of principal components for the
PCA pre-processing is five.

As for the LWPR, the following parameters were found
as optimal:

– ‘init-D’=10
– ‘init-alpha’=1000
– ‘diag-only’=0
– ‘w-gen’=1.51
– ‘w-prune’=1.0
– ‘penalty’=1e−5
– ‘meta’=1
– ‘update-D’=1
– ‘kernel’= ‘Gaussian’

The parameters for the ROSS model are not different from
the parameters in the previous experiment. The resulting
composition of the LEs after the trainings phase was:

– MLR: 0
– LS-SVM: 20
– MLP: 4
– RBF: 7
– LWL: 0.
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Fig. 18 Performance of the MLP soft sensors for the catalyst activation
data. a MSE, b correlation coefficient

Table 6 Performance of the non-adaptive models for the catalyst acti-
vation data

MLP LWPR ROSS

MSE 4.46e−2 5.76e−2 1.05e−1

CC 0.82 0.32 0.55

One can again observe the dominance of the support vector
machines among the 31 LEs. However, in contrast to the pre-
vious experiment there are no MLRs or LWLs in the pool in
this case. The final model (after the co-operative selection)
is built on the basis of four SVM LEs.

Interpreting the results of the non-adaptive soft sensors
presented in Fig. 19 and Table 6, it can be clearly seen that
none of the models is able to follow the target variable and
thus there is a strong need for an adaptive model.

Adaptive soft sensors In the adaptive scenario one can again
observe an increase in the performance as demonstrated in
Fig. 20. One can also see that the ROSS model outperforms
the LWPR model even despite the fact that the LWPR model
was manually optimised for this data set which is not the
case for the ROSS model. In Table 7 one can see the impor-
tance of the Type 2 adaptation for this data set as using this
adaptation technique leads to a significant increase in the
performance.

Figure 21 shows the stable population of the LEs in the
Paths module. It is again clearly demonstrated that the popu-
lation size remains stable despite the numerous deployments
of new RF. The composition of the computational learning
patterns shows a different pattern compared to the previous
experiment. In this case the distribution of the MLP, RBF and
LS-SVM methods is approximately equal and the LWL and
MLR methods play an insignificant role.
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Fig. 19 Predictions of the three non-adaptive models for the catalyst activation data. a MLP, b LWPR, c ROSS
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Fig. 20 Predictions of the adaptive models for catalyst activation soft sensor. a LWPR, b ROSS using adaptation case 3

Table 7 Performance of the adaptive models for the catalyst activation
data

LWPR Ad. case 1 Ad. case 2 Ad. case 3

MSE 3.72e−3 8.61e−2 3.10e−3 3.02e−3

CC 0.90 0.19 0.92 0.92
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Fig. 21 Composition of the local experts computational methods in
the Paths module for the catalyst activation data

5.2.3 Industrial drier

Non-adaptive soft sensors For the pre-processing of this
data set the PCA using 8 principal components has been
found as optimal. Performing model selection using the
MLP leads to similar problems as with the other data sets.
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Fig. 22 Performance of the MLP soft sensors for the industrial drier
data. a MSE, b correlation coefficient

Figure 14 shows the box-plots of the MSE and correlation
performance of the various MLP models. An MLP with five
hidden units has been selected as optimal (Fig. 22).
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Fig. 23 Predictions of the three non-adaptive models for the industrial drier data. a MLP, b LWPR, c ROSS

The optimal parameter for the LWPR are:

– ‘init-D’=5
– ‘init-alpha’=0.1
– ‘diag-only’=0
– ‘w-gen’=1.0
– ‘w-prune’=0.9
– ‘penalty’=1e−5
– ‘meta’=0
– ‘update-D’=1
– ‘kernel’= ‘Gaussian’

The parameters used for the ROSS are again the same as
for the other data sets (see Table 2) with an exception of the
thresholds for the triggering of the Type 2 and Type 4 adap-
tation (tada2 and tada4, respectively). Due to the high noise
in the target variable (see e.g. Fig. 23) the thresholds for this
data sets were increased to tada2 = 0.20 and tada4 = 0.15 in
order to prevent the model from excessive and unnecessary
deployment of RF.

During the training phase there were four RF built which
resulted in training of 400 LEC. From these, there were 43
LEs left after the competitive and diversity selection. Among
these the distribution of the predictive methods was the fol-
lowing:

– MLR: 2
– LS-SVM: 27
– MLP: 1
– RBF: 4
– LWL: 9

After the co-operative selection the final non-adaptive soft
sensor consists of four models, namely one MLP and three
LWLs.

The results for the three non-adaptive models are pre-
sented in Fig. 23. In contrast to the previous two data sets,
in this case it is possible to build a non-adaptive model

Table 8 Performance of the non-adaptive models for the industrial drier
data

MLP LWPR ROSS

MSE 9.81e−3 5.42e−3 5.51e−3
CC 0.27 0.32 0.33

which will deliver good performance as demonstrated by the
LWPR and ROSS models which deliver similar performance
(Table 8).

Adaptive soft sensors Although one can again observe a cer-
tain increase in the performance when applying the adapta-
tion techniques in this case the increase is not that significant
as it was with the other data sets. On the contrary one can
also observe a decrease in performance when using only the
Type 1 adaptation technique for the ROSS model. The perfor-
mance drop can lead to the small size of the path combination
(only one MLP and three LWL are used) which builds the
final model (Fig. 24; Table 9).

Figure 25 is concluding the discussion of this data set.
The figure shows once more the stable size of the models in
the Paths module as well as a dominant role of the LS-SVM
method.

6 Conclusions

We proposed a complex and generic architecture for the
development of on-line predictive models. For such models it
not only defines an environment in which the models can use
several concept from machine learning such as local learn-
ing, ensemble methods and meta learning but also defines the
interaction channels between these techniques. Through its
generic structure the architecture can be applied to a variety
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Fig. 24 Predictions of the adaptive models for industrial drier soft sensor. a LWPR, b ROSS using the adaptation case 3

of different modelling problems. However, the focus of the
architecture is put on dealing with difficult predictive prob-
lems often found in industrial or commercial applications. In
this work we have focused on the application of the architec-
ture to on-line prediction soft sensors which is a challenging
task due to the impurities and changing quality of the data
upon which the models have to be built. In the presented case
study we have shown an instance of the architecture which is
based on some commonly available and rather simple tech-
niques from machine learning. As such the contribution of
this work is not the invention of yet another predictive mod-
elling technique but rather the demonstration of how the var-
ious available techniques can be put into an unified scheme
which manages the techniques on different levels in order to
deliver strong performance. In the experiments dealing with
three real data sets from the process industry we have demon-
strated several benefits of the model developed according to
the architecture. The model not only outperformed the state-
of-the-art non-adaptive and adaptive techniques but also by
providing automated data pre-processing and model selec-
tion takes a lot of the model development burden away from
the model developer. Another strength of the model devel-
oped according to the architecture is a variety of adapta-
tion mechanisms which can be applied at different positions
in the architecture. As demonstrated in the experiments the
adaptation techniques can have a significant effect on the
performance of the models. The last but probably most sig-
nificant contribution of the proposed architecture is that it
opens space for further research which can focus for exam-
ple on the interaction between the techniques in the archi-
tecture, on the dynamic behaviour of the architecture, on the

implementation of novel adaptation techniques, on the appli-
cation of more sophisticated approaches for the meta-level
methods, etc.

Table 9 Performance of the adaptive models for the catalyst activation
data

LWPR Ad. case 1 Ad. case 2 Ad. case 3

MSE 4.33e−3 7.26e−3 4.67e−3 4.37e−3

CC 0.45 0.32 0.39 0.44
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Fig. 25 Composition of the local experts computational methods in
the Paths module for the industrial drier data
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