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Abstract Dynamic optimization and multi-objective opti-
mization have separately gained increasing attention from
the research community during the last decade. However,
few studies have been reported on dynamic multi-objec-
tive optimization (dMO) and scarce effective dMO meth-
ods have been proposed. In this paper, we fulfill these gabs
by developing new dMO test problems and new effective
dMO algorithm. In the newly designed dMO problems,
Pareto-optimal decision values (i.e., Pareto-optimal solu-
tions: POS) or both POS and Pareto-optimal objective values
(i.e., Pareto-optimal front: POF) change with time. A new
multi-strategy ensemble multi-objective evolutionary algo-
rithm (MS-MOEA) is proposed to tackle the challenges of
dMO. In MS-MOEA, the convergence speed is accelerated
by the new offspring creating mechanism powered by adap-
tive genetic and differential operators (GDM); a Gaussian
mutation operator is employed to cope with premature con-
vergence; a memory like strategy is proposed to achieve
better starting population when a change takes place. In
order to show the advantages of the proposed algorithm, we
experimentally compare MS-MOEA with several algorithms
equipped with traditional restart strategy. It is suggested that
such a multi-strategy ensemble approach is promising for
dealing with dMO problems.
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1 Introduction

In real world, change and multiple objective are common
features of many important engineering and scientific prob-
lems [2,3,23]. For example in controller designing domain,
the accuracy, robustness and response time are all important
objectives that the controller under-design should pursuit [3].
While when the aging effect of the systems, as well as other
elements such as using different fuels, that will cause the
systems’ performances change at different time, are taken
into consideration, the problem turns to be a dynamic multi-
objective optimization problem, which means that the con-
troller should be able to adapt to the changing system with the
pursuit of multiple objectives. Another example of dynamic
multi-objective problem is the routing of vehicles. people
always want to get to the target with the shortest transport
time and the least transport cost. As is known to all, the road
condition is changing from time to time, which makes the
routing a dynamic multi-objective optimization problem.

In recent years, there has been a growing interest in study-
ing evolutionary algorithms (EAs) for dynamic optimiza-
tion problems [30,54]. Previously, various EAs have been
proposed to tackle such a challenging task [4,5,7–12,14,21,
48,51] with many successful applications. However, most
of these studies focused on dynamic single objective (dSO)
optimization problems, but few studies have been reported
on dynamic multi-objective (dMO) optimization. As far as
the authors know, the only works reported for dMO are
[2,6,23,24]. In a certain sense, dMO is a hard task, because
it synthesizes the difficulties of both static multi-objective
optimization (sMO) and dSO [23]. Such difficulties are
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summarized as follows, and further discussion is given in
Sect. 2:

– Compared with sMO problems, dMO problems set a
higher demand on convergence speed of algorithms,
which can be described as that POS should be found
within the stable duration. Meanwhile, the conflicts
between convergence speed and diversity maintenance
are much more serious for dMO [19,33,59]: Accelerating
unilaterally the convergence speed will not only result in
loss of diversity in decision space, but also result in loss
of some parts of POF. Static multi-objective optimiza-
tion evolutionary algorithms (sMOEAs) are believed to
be able to cope with dMO problems at the very beginning
[23], but will inevitably lose their effectiveness when the
environment changes.

– Compared with that a separate environment usually has
only one or a limited number of global optimal solutions
in most cases of dSO, the goal of dMO is to find an
approximation to the true POS [23]. Most multi-objec-
tive problems may have many or even infinite optimal
solutions (i.e., POS). Therefore, besides the similar goal
of approaching as quick as possible the global optimal
solutions in dSO, dMO has one another important goal of
maintaining a set of optimal solutions widely distributed
along the true POS.

Benchmark problems are important for designing and
evaluating algorithms for dMO [23]. Motivated by the fact
that few dMO benchmark problems are available by now, this
paper designs a suit of four test instances offering changes
in POS and one test instance offering changes in both POS
and POF. Compared with the test suite FDAs proposed in
[23], the POFs of these new instances can be mathemati-
cally described. Furthermore, their POFs have different char-
acteristics, such as convex, non-convex and disconnected.
Besides, the stable duration of these test instants can be tuned
to simulate various practical cases.

In the perspective of algorithm designing, two important
issues are analyzed in this paper: convergence speed and
dynamic environment handling strategy. Then, a multi-strat-
egy ensemble framework is proposed. In this framework,
different components (strategies), such as memory like strat-
egy, GDM and Gaussian mutation, are designed to address
different issues of dMO.

The remainder of this paper is structured as follows:
In Sect. 2, the related works on sMOEAs and dynamic
optimization are reviewed. Then, the necessity of devel-
oping dMOEAs is discussed. In Sect. 3, the definition of
dMO is presented. Then, five new test instances are intro-
duced. In addition, two crucial factors of dMOEAs are dis-
cussed. In Sect. 4, the framework of the new algorithm,
multi-strategy ensemble multi-objective evolutionary algo-

rithm (MS-MOEA), is proposed. Then, the multiple strat-
egies are presented in detail. In Sect. 5, to evaluate the
effect of GDM and Gaussian mutation operator, multi-
strategy ensemble static multi-objective evolutionary algo-
rithm (MS-MOEA(s)) is compared with several effec-
tive sMOEAs on sMO problems. Moreover, multi-strategy
ensemble dynamic multi-objective evolutionary algorithm
(MS-MOEA(d)) is experimentally compared with several
dMOEAs with traditional dynamic environment handling
strategies. In Sect. 6, a brief conclusion is given and the future
work is outlined.

2 Related works and necessity of developing dMOEAs

Historically, the attempt of making use of the popula-
tion based evolutionary approaches for sMO problems goes
back as far as 1985 [40]. The early works have been sum-
marized in the books [15,16]. Currently, the widely used
sMOEAs in engineering applications [1,25,38] include non-
dominated sorting genetic algorithm II (NSGA-II) [19],
strength Pareto evolutionary algorithm II [59] and Pareto
develop based selection algorithm [33]. For many sMO tasks,
these approaches have shown excellent performances. Due
to the arising of new challenges, several effective sMOEAs
with improved strategies have been proposed in recent years,
such as ε-MOEA [20], hypervolume based MOEA [22], reg-
ularity model-based multi-objective estimation of distribu-
tion algorithm [56], MOEA based on decomposition [55]
and fast hypervolume based MOEA (FH-MOEA) [43]. In
these sMOEAs, either more effective new offspring creating
mechanism or elite maintenance with stronger selection pres-
sure was adopted. Besides, another branch is to incorporate
the classical mathematical optimization tools [29,34,46],
such as sequential quadratic programming, into the sMOEAs
to form the memetic MOEAs, whose major idea is inherited
by MS-MOEA. It is apparent that simple detect-and-restart
strategy can be used to make sMOEAs suitable for dMO
problems, but the effect of such improvement was far from
satisfactory, which is similar to the matter met in dSO [52].
This viewpoint will be confirmed in the experimental study of
this paper. Therefore, further studies are required to develop
dynamic environment handling strategies for dMO.

To handle dynamic multi-objective environment, a natural
choice is to directly adopt the effective single dynamic envi-
ronment handling strategies, because some single objective
meta-heuristic algorithms with effective dynamic environ-
ment handling strategies have exhibited promising search
abilities [4,5,7–12,14,21,48,51]. For example, a mem-
ory-based technique was proposed in [11] to record use-
ful information from past generations. If the environment
did not change severely, the stored information can pro-
vide a much better starting point for the new environment
[30]. Multi-population (i.e., multi-swarm in particle swarm
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optimization (PSO)) strategy is another promising branch
to handle dynamic environment [12]. In detail, the whole
population is partitioned into a number of sub-populations
(i.e., swarms in PSO). Different swarms are forced to search
different promising regions simultaneously. Estimation of
distribution algorithms (EDAs), such as dual population-
based incremental learning (DPBIL) algorithms proposed
in [48,51,52], were also applied to dynamic problems, in
which a probabilistic memory scheme was used to improve
the adaptability in dynamic environment. Besides, the immi-
grants strategies, which re-initialize the worst individuals
throughout the optimization process, have been proved to be
beneficial to maintain the diversity of the population [49,50].
Generally speaking, the essential goal of the above dSO strat-
egies are to find a single global optimal ‘point’ in the search
space. However, the goal of dMO is to provide a ‘set of mov-
ing optimal points’, which contains certain individuals along
the changing POS. The relationship of their objectives and
global optimal solutions can be uniformly described as one
vs. many. Therefore, the above dSO optimization strategies
may fail on dMO problems due to various reasons: (1) the
consideration of isolated optimal points of memory strategy
and multi-swarm strategies in dSO are not so effective to
maintain the general shape of POS in dMO, which was dis-
cussed in [44]; (2) based on the experience obtained by [56],
an extremely expensive computational cost is necessary for
building the accurate probabilistic model of POS. The uni-
variate probability of DPBIL is not so effective as being used
in dSO problems; (3) unlike in single objective optimization,
many solutions in multi-objective optimization are non-dom-
inated, thus, it is hard to determine the worst-quality solutions
in multi-objective optimization.

For multi-objective optimization in uncertain environ-
ment, several algorithms have been proposed. In [24], a
multi-objective noisy environment was discussed in depth,
moreover, several effective techniques were proposed to cope
with the noisy environment. However, the dMO problems,
whose true POSs change, are out of the coverage of these
techniques. Although an ALife-inspired evolutionary algo-
rithm for variating fitness landscape search was presented
in [2], the validity of this algorithm has not been assessed
via sufficient experimental analysis, that is, no comparison
study is carried out. Furthermore, the main drawbacks of such
approach can be summarized as: (1) the convergence speed
is too slow; (2) the convergence speed strongly depends on
the distribution of the population in search space [2].

In summary of these reviewed literatures, we want to make
and emphasize the following remarks:

– sMOEAs are lack of strategies for handling dynamic envi-
ronments.

– The dSO optimization strategies are not suitable for dMO
problems.

– Previously, few studies have been reported on developing
dMOEAs.

3 Dynamic multi-objective optimization problem

Without loss of generality, the dMO problems considered in
this paper can be stated as follows:

minimize f = ( f1(x, t), f2(x, t), . . . , fM (x, t))

subject to x ∈ X,
(1)

where X ⊂ RD denotes the decision space with D dimen-
sions; x = (x1, x2, . . . , xD) ∈ RD is the decision variable
vector; f : X → RM stands for M objective functions that
map from D dimensional variable space to M dimensional
objective space f . Different from sMO problems, a special
case of dMO can be defined as that the parameter time t is
introduced where the environmental change takes place when
time t reaches some pre-defined breakpoints.

3.1 Related concepts

In dMO, the concept ‘Pareto dominate’ is the same as that in
sMO.

Definition 1 (Pareto dominate, POS and POF) x1 ‘Pareto
dominate’ (is better than) x2 is true when the following two
conditions hold: (1) f j (x1) ≤ f j (x2), j = 1, 2, . . . , M,

which means that all objective values of x1 are not worse
than x2. (2) ∃ j ∈ 1, 2, . . . , M , st. f j (x1) < f j (x2), which
means that at least one objective of x1 is better than x2. Based
on the ‘Pareto dominate’ concept, POS is defined as a set of
optimal solutions in the decision space that none of the other
feasible solutions dominates any one of them. POF is the
mapping of POS in the objective space.

The ultimate goal of sMOEAs is to achieve a set of solu-
tions spread uniformly along the POF.

Definition 2 We call POS(t) and POF(t) the set of Pareto-
optimal solutions and their objective values at time t in deci-
sion space and objective domain, respectively [2,23].

Based on Definition 2, there are four possible ways that a
dMO problem can demonstrate time varying change [23]:

– Type I: The POS changes, whereas the POF does not
change.

– Type II: Both POS and POF change.
– Type III: POS does not change, whereas POF changes.
– Type IV: Both POS and POF do not change, although the

problem can dynamically change.
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Table 1 Static multi-objective
test instances

Instance Variables Objective functions

MZDT1 x1 = [0, 1] f1(x) = x1

xi = [−1, 1] f2(x) = g(x)[1 − √
x1/g(x)]

i = 2, . . . D g(x) = 1 + 9(
∑D

i=2 |xi |)/(D − 1)

D = 30

MZDT2 x1 = [0, 1] f1(x) = x1

xi = [−1, 1] f2(x) = g(x)[1 − (x1/g(x))2]
i = 2, . . . D g(x) = 1 + 9(

∑D
i=2 |xi |)/(D − 1)

D = 30

MZDT3 x1 = [0, 1] f1(x) = x1

xi = [−1, 1] f2(x) = g(x)[1 − √
x1/g(x) − x1

g(x)
sin(10πx1)]

i = 2, . . . D g(x) = 1 + 9(
∑D

i=2 |xi |)/(D − 1)

D = 30

MZDT4 x1 = [0, 1] f1(x) = x1

xi = [−1, 1] f2(x) = g(x)[1 − √
x1/g(x)]

i = 2, . . . D g(x) = 10D − 9 + ∑D
i=2[|xi |2 − 10 cos(4π |xi |)]

D = 10

It is observed that sMOEAs may be directly adopted on
type III and type IV problems, since no change takes place
on POS. Especially, it is expected that sMOEAs are able to
perform well for type III and type IV in the case that a good
Pareto non-dominated set is found before the first change
occurs. Therefore, we concentrate on the first two types of
changes when conducting the new test instances.

3.2 Dynamic test instances evolved from static test
problems

Previous extensions of sMO problems for dMO have been
developed in [23,31]. The POFs of most of these problems
can not be mathematically prescribed. In these cases, some
important performance metrics, such as inverted generational
distance (IGD) [60], can not be easily calculated. In this
paper, we design several new test instances based on the
widely used test suit ZDTs [58]. The suite of selected ZDTs
are structured in the same manner and consist of various land-
scapes, such as convex POF of ZDT1, non-convex POF of
ZDT2, disconnected POF of ZDT3, and many local Pareto
optima in ZDT4. It is expected that the new test instances
share the following important features:

(1) they have different characteristics in POF;
(2) their dimensionality can be scaled to any size needed;
(3) their POS can not be simply located on the bounds of

the decision space;
(4) the major advantage over others is that the change of

POS can be controlled via simply shifting or distorting
the previous POS.

To satisfy feature 1 and feature 2, we utilize the basic com-
ponent functions with various landscapes as presented above.
To satisfy feature 3, the decision space of ZDTs is extended
as follows:

� = �D
i=1[ai , bi ] ∈ RD (2)

where a1 = 0, b1 = 1 and ai = −1, bi = 1 for i =
2, . . . , D. The formal definitions of modified ZDT (MZDT)
test instances are shown in Table 1.

In the newly designed dMO problems, we set the static
duration as a fixed number of fitness evaluations F E Sc. In
this case, the landscape remains stable in the steady period
within F E Sc fitness evaluations, which is similar to the dSO
optimization generator in [37]. To highlight the importance
of convergence speed, we set F E Sc = 1,250, 2,500, 5,000
and 10,000 for all test problems, while the size of fitness
evaluations is always set to be 20,000 or more for ZDTs
[19,33,59]. Since the size of fitness evaluations is very small
for an individual environment, the requirement of conver-
gence speed is very high. Another important aspect is the
size of changing step. Similar to [23], the size of changing
step can be controlled through tuning the metric nT , which
is used to control the changing step of the environment. A
smaller nT means larger changing step. A typical approach
of generating time dependent problems is defined as follows:

t = � fc/F E Sc�
Hi (t) = max{|bi − t/nT |, |ai − t/nT |}, i = 2, . . . , D

y1 = x1

yi = |xi − t/nT |/Hi (t), i = 2, . . . , D

(3)

123



Memetic Comp. (2010) 2:3–24 7

Table 2 Dynamic ZDT
multi-objective test instances

Instance Variables Objective functions

DMZDT1 x1 = [0, 1] f1(y) = y1

xi = [−1, 1] f2(y) = g(y)[1 − √
x1/g(y)]

i = 2, . . . D g(y) = 1 + 9(
∑D

i=2 |yi |)/(D − 1)

D = 30 t = � fc/F E Sc�
y1 = x1,

yi = |xi − t/nT |/H(t), i = 2, . . . , D

H(t) = max{|1 − t/nT /|, | − 1 − t/nT /|}
DMZDT2 x1 = [0, 1] f1(y) = y1

xi = [−1, 1] f2(y) = g(y)[1 − (x1/g(y))2]
i = 2, . . . D g(y) = 1 + 9(

∑D
i=2 |yi |)/(D − 1)

D = 30 t = � fc/F E Sc�
y1 = x1,

yi = |xi − t/nT |/H(t), i = 2, . . . , D

H(t) = max{|1 − t/nT /|, | − 1 − t/nT /|}
DMZDT3 x1 = [0, 1] f1(y) = y1

xi = [−1, 1] f2(y) = g(y)[1 − √
x1/g(y) − x1

g(y)
sin(10πy1)]

i = 2, . . . D g(y) = 1 + 9(
∑D

i=2 |yi |)/(D − 1)

D = 30 t = � fc/F E Sc�
y1 = x1,

yi = |xi − t/nT |/H(t), i = 2, . . . , D

H(t) = max{|1 − t/nT /|, | − 1 − t/nT /|}
DMZDT4 x1 = [0, 1] f1(y) = y1

xi = [−1, 1] f2(y) = g(y)[1 − √
y1/g(y)]

i = 2, . . . D g(y) = 10D − 9 + ∑D
i=2[|yi |2 − 10 cos(4π |yi |)]

D = 10 t = � fc/F E Sc�
y1 = x1,

yi = |xi − t/nT |/H(t), i = 2, . . . , D

H(t) = max{|1 − t/nT /|, | − 1 − t/nT /|}

where fc stands for the current computational cost (i.e., the
number of function evaluations used so far); ai and bi are
the lower and upper bounds of the problem; H(t) is the nor-
malized metric; when time t increases one, one environmen-
tal change takes place. Under the translation of Eq. (3), the
original variable vector x is mapped to the new one y. During
the optimization period, the true POS keeps fixed in y space
while that in x space changes with step t/nT . Then, the type
I test instance dynamic MZDT1 (DMZDT1) can be defined
as follows:

f1(y) = y1

f2(y) = g(y)
[
1 − √

x1/g(y)
]

(4)

g(y) = 1 + 9

(
D∑

i=2

|yi |
)

/(D − 1)

Other test instances DMZDT2–4 adopt the similar generated
approaches. The details of DMZDTs are shown in Table 2.

f1

f 2

POF of DMZDT1

0 1

1

x1

x 2

Change of POS for DMZDT1

0 1

1

t=0
t=1

t=5
t=6
t=7
t=8
t=9

t=2
t=3
t=4

t=1

Fig. 1 POF(t) for DMZDT1 on the left and POS(t) for DMZDT1 on
the right. Variation on only the first two decision variables are shown
for 10 time steps

Horizontal lines in the right part of Fig. 1 represent how the
first two variables of all POS(t) solutions vary in a particular
time instantiation of the test problem.

It is shown in Fig. 1 that the POF of type I problems
remains fixed during the optimization process. To generate
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Change of POF for WYL
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Fig. 2 POF(t) and POS(t) for WYL. Variation on only the first two
decision variables are shown for 10 time steps

changes in POF, several component functions are serially
adopted in one framework. The changes in terms of both POF
and POS of the new problem ‘WYL’ are shown in Fig. 2. The
detailed definition of WYL is shown in Table 3.

3.3 Discussion of memory like strategy in DMO

For sMO problems, sMOEAs aim at finding out the set of
Pareto optimal solutions that form the Pareto front in objec-
tive space. The question that arises in dynamic cases is: how
to track and predict the changes of POS [26]? This is espe-
cially important when the changing frequency is too high for
MOEAs to search from scratch. In the work of [52], it is indi-
cated that the memory strategy used in dSO is a good choice
for reusing useful information from the past environment.
The major problem in designing the memory like strategy
for DMO is: how to appropriately reuse a set of non-domi-
nated solutions.

Compared with memory strategies adopted in dSO, which
only store some good solutions found in the past genera-
tions, it is much more difficult in dMO to store the informa-
tion of non-dominated set that may contains infinite points.
In this paper, memory like strategy is implemented in the

Table 3 Dynamic WYL multi-objective test instance

Variables Objective functions

x1 = [0, 1] t = � fc/F E Sc�
xi = [−1, 1] y1 = x1,

i = 2, . . . D yi = |xi − t/nT |/H(t), i = 2, . . . , D

H(t) = max{|1 − t/nT /|, | − 1 − t/nT /|}
t mod 4 == 0 f1(y) = y1

f2(y) = g(y)[1 − √
x1/g(y)]

g(y) = 1 + 9(
∑D

i=2 |yi |)/(D − 1)

t mod 4 == 1 f1(y) = y1

f2(y) = g(y)[1 − (x1/g(y))2]
g(y) = 1 + 9(

∑D
i=2 |yi |)/(D − 1)

t mod 4 == 2 f1(y) = y1

f2(y) = g(y)[1 − √
x1/g(y) − x1

g(y)
sin(10πy1)]

g(y) = 1 + 9(
∑D

i=2 |yi |)/(D − 1)

t mod 4 == 3 f1(y) = y1

f2(y) = g(y)[1 − √
y1/g(y)]

g(y) = 10D − 9 + ∑D
i=2[|yi |2 − 10 cos(4π |yi |)]

re-initialization step. To discuss the merits and demerits of
different re-initialization strategies, we take the population
with current distribution in the first two variables shown in
Fig. 3 for example. For the re-evaluation strategy, the loca-
tions of the population stay the same while the objective fit-
ness values are re-evaluated. Note that such case may cause
serious loss of optimization propulsion of differential infor-
mation or estimation of distribution based algorithms. More-
over, the proportion of shrinking towards the local optima is
high when the previous POS is near to the local optimal POS
in the new environment. To cope with the demerits of re-eval-
uation strategy, a natural choice is to restart the whole popu-
lation immediately when an environment change is detected.
It performs as a serial of independent runs of EAs for sepa-
rate problems. Such an approach is beneficial in the case that
the landscape is full of local POS. However, in the cases that
the environments only incur a small-step change, the restart
strategy inevitably results in expensive cost to achieve the
new POS. The restart strategy is also inadequate when the
stable period of the environment is shorter than the conver-
gence time of EAs. The memory like strategy proposed in
this paper can be treated as a tradeoff between re-evalua-
tion and restart strategies. It can be observed in Fig. 3 that
a part of new offspring solutions are generated by sampling
Gaussian distributions with their centers locating at the mem-
ory solutions. These offspring solutions are put on exploiting
around the previous optimal solutions (memory), while the
other part of new offspring solutions widely distribute with
pursuit of exploration. This memory like strategy is similar
to the case-based initialization proposed in [39]. The dif-
ference lies in the aspect of reusing the optimal solutions.
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Fig. 3 Illustration of re-initialization strategies. Up-left: the current population; up-right: re-evaluation only; down-left: restart strategy; down-right:
memory like strategy

In principle, the major idea of memory like strategy is to
gain attraction around the memory solutions without los-
ing the global search ability. However, overmuch exploita-
tion around the memory optimal POS may cause shrinking
towards the local optimal POS. Therefore, a new re-initial-
ization strategy that adaptively sampling around memory is
presented in the following section.

3.4 Discussion of convergence speed in dMO

Similar to dSO [30], the convergence speed is equally impor-
tant in dMO. In the previous works on sMO [20,55,56], it
has been shown that the new offspring creating mechanism
and elite maintenance strategy can remarkably influence the
convergence speed.

The most widely used new offspring creating mecha-
nism is GA’s genetic operators [1,19,38,41,59]. In recent
years, some new strategies were reported to improve the
convergence speed of EAs, which is subject to high suc-
cess rate of finding the true POS. In [13], a jumping gene
paradigm evolutionary algorithm was proposed to accelerate
the convergence speed. Another branch of multi-objective

optimization that also requires extremely fast convergence
speed is expensive multi-objective optimization, where each
solution evaluation is financially and/or temporally expen-
sive. In [32], Knowles fully studied an effective single objec-
tive new offspring creating mechanism, then, an expensive
multi-objective optimization algorithm is proposed based on
this mechanism. The experimental results on real-valued,
low-dimensional functions demonstrated that a significantly
better performance was achieved by the new algorithm.
However, this algorithm is not so effective for general use,
due to the specific design for expensive problems. In some
recent works of sMOEAs assessment [42], it is very interest-
ing to note that the GA based algorithm [41] always pro-
vides top performance in the early optimization process,
although the major operators, polynomial mutation and sim-
ulated binary crossover, were proposed in 1999 [17]. Taking
the advantage of GA, the new algorithm framework proposed
in this paper adopts a new offspring creating mechanism to
enhance the convergence ability.

Elite maintenance strategy is another factor that plays a
crucial role in accelerating convergence speed [43]. A large
number of elite maintenance strategies have been proposed,
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Table 4 Procedure of MS-MOEA

Algorithm: Multi-strategy ensemble dynamic multi-objective evolutionary algorithm (MS-MOEA)

Step 0: Randomly initialize a population P(0). The non-dominated solution of P(0) are copied to an archive population A(0) one by one. Set the
iteration counter t = 0. Randomly chose 5 sentry individuals and evaluate the fitness of them

Step 1: If (t mod
Np
2 ) == 0, evaluate the fitness values of sentry individuals. If the new values are different from the old ones, re-initialize P(t)

and A(t) by the memory like strategy (shown in table 5). (mod is the rem operator)

Step 2: Select parent solutions from P(t) and A(t)

Step 3: Two offspring solutions c1 and c2 are created by adaptive genetic and differential operators (shown in Table 6)

Step 4: If t mod Np == 0, a new offspring solution is created by Gaussian mutation shown in Eq. (5), and is set to be c1

Step 5: Update the population by c1 and c2 using the same strategy of [20]

Step 6: Update the archive by c1 and c2 using fast hypervolume strategy (shown in Table 7)

Step 7: If termination criterion is not satisfied, set t = t + 1 and go to step 1, else report A(t)

which have made significant progresses compared with the
most widely adopted non-dominated sorting strategy [19].
For example, K. Deb presented a steady state ε-MOEA based
on the ε-domination elite strategy [20]. In such an approach,
the fitness value space is divided into a number of subspaces
beforehand. Throughout the optimization process, only one
solution is permitted to enter one subspace. It is experi-
mentally shown that this strategy is beneficial to obtain fast
convergence speed. Furthermore, the ε-domination strategy
remarkably improves the diversity metric in comparison with
several classical sMOEAs. However, the requirement of prior
knowledge makes it difficult to apply to dMO problems.
It is due to the fact that the best ε value has to be tuned
when the environment changes. Some other researches tried
to design elite maintenance with strong pressure by incor-
porating hyper-volume metric S, which was originally pro-
posed in [57]. In [22], a new algorithm directly adopted S
metric as the selection pressure. Although the experiments
strongly assessed the good performance of this algorithm,
the computational cost is still too expensive, which is O(8k2)

for two objectives problems with k population size at each
generation. This demerit inevitably limits its application to
dMO problems. To fix up this, Y. Wang [43] proposed a fast
hypervolume contribution calculation approach called ‘FH’,
of which the computational cost of conducting hypervolume
contribution decreases remarkably. In MS-MOEA, the ‘FH’
approach is adopted because of its excellent performance
reported.

4 Multi-strategy ensemble dynamic multi-objective
evolutionary algorithm

In this section, we elaborate the general framework of
MS-MOEA. In addition, multiple strategies, such as adap-
tive genetic and differential operators (GDM), Gaussian

mutation, memory like re-initialization strategy and FH, are
presented in detail.

4.1 Framework of MS-MOEA

In general, MS-MOEA adopts several strategies for different
purposes. To emphasize this, the major focuses of all strate-
gies are briefly introduced as follows:

– GDM: provide fast convergence speed in a short time after
an environment change is detected and provide higher-
quality non-dominated set when the non-dominated solu-
tions get close to the true POS.

– Gaussian mutation: strengthen the ability of escaping from
the local optima.

– Memory like strategy: gain attraction around the memory
solutions without losing the global search ability.

– FH: provide fast convergence speed and maintain well
diversity.

At each generation, the proposed algorithm maintains: a
population of NP solutions (i.e points in decision space) with
their objective values and an external archive to record the
non-dominated solutions found previously. For the memory
like strategy, the external archive can be utilized as a memory
storage. MS-MOEA works as shown in Table 4. Moreover,
Fig. 4 depicts a flowchart of MS-MOEA.

Step 1 is designed to handle the dynamic environment.
Several randomly chosen “sentry” individuals are re-evalu-
ated to detect the environment change. In this paper, the rules
of setting the number and locations of the sentries are inher-
ited from [21], that is, the locations are randomly initialized
in the initialization step and the number is set to be 5. At
each generation, only two offspring solutions are generated
under steps 2–4, which are denoted as selection, creation and
Gaussian mutation respectively. For selection step, different
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Fig. 4 Flowchart of MS-MOEA

numbers of parent solutions are needed for different new off-
spring creating strategies. After a fixed number of solutions
are generated, the Gaussian mutation is launched. In step 4,
the Gaussian mutation operator is defined as follows:

a = (a1, a2, . . . , aD)

c = (c1, c2, . . . , cD)

for i = 1, 2, . . . , D

ci =
{

ai + N (0, σ ), if rand < 2
D

ai , otherwise,
,

(5)

where c is the new offspring solution generated by the ran-
domly selected solution a from the archive via the Gaussian
mutation; D is the dimensional size of search space; rand is
a uniformly generated number within [0, 1]; σ is a positive
constant. The Gaussian mutation strategy defined as Eq. (5)
has been testified by many researches to be a good strategy
to enhance the ability of escaping the local optima [53]. To
inherit information from the archive solution a, the Gaussian
mutation is adopted with probability 2

D . By performing such
Gaussian mutation operator, some randomly selected archive
solutions can search for superior solution around its current
position. Therefore, it might be beneficial to find the superior
optimum in multimodal environments. In step 6, the archive
is updated by the offspring c1 and c2 one by one, which is
based on the strategy FH. The detail of re-initialization strat-
egy, GDM and FH will be introduced following.

4.2 Re-initialization strategy

As is described in Sect. 3.3, a memory like re-initialization
strategy is adopted for the new environment. Generally, the

Table 5 Procedure of re-initialization of MS-MOEA

Re-initialization strategy of MS-MOEA

0 Empty P .

1 for i = 1 to NP

2 if rand > pl

3 Randomly initialize the i th solution of the population.

4 else

5 Randomly select a parent solution a from A.

6 Create the i th solution using Eq. (6).

7 end if

8 end for

9 Empty A. Update A by P .

pl Is set to be 0.2 in MS-MOEA

new generated population are formed by two parts, which
are called part I and part II here. The part I solutions are ran-
domly generated within the bounds of the search space. The
part II solutions are generated by the Gaussian local search
operator defined as follows:

a = (a1, a2, . . . , aD)

c = (c1, c2, . . . , cD)

for i = 1, 2, . . . , D

ci = ai + N (0, σ )

(6)

Different from the Gaussian mutation operator presented
above in Eq. 5, all of the variables are generated by sam-
pling Gaussian distribution with the mean vector locating at
the randomly selected achieve solution a.

The procedure of re-initialization of MS-MOEA is shown
in Table 5. In line 2, the proportion of local search is con-
trolled by a probability pl . Therefore, each archive solution
has a chance to provide a neighborhood solution in the new
population. The ideal situation is that the distribution of indi-
viduals generated by local search inherits general manifold
of the old POS.

4.3 New offspring creating mechanism powered
by adaptive genetic and differential operators

It has been discussed in Sect. 3.4 that new offspring creat-
ing mechanism plays an important role in accelerating the
convergence speed in dMO. Suganthan [42] introduced that
the GA based sMOEAs [36,41] always emerged top conver-
gence speed within a low computational cost, while differ-
ential evolution (DE) based sMOEAs [28,35] can achieve
well-distributed Pareto front after a long optimization pro-
cess. In the new strategy, GA and DE are adopted serially
with the purpose of benefitting from both GA and DE. The
pseudocode of GDM is expressed in Table 6.
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Table 6 Procedure of new offspring creating mechanism of MS-MOEA

New offspring creating mechanism of MS-MOEA

0 if f ullcount < givencount

1 Create the offspring c1 and c2 by SBX and polynomial

2 mutation operators [17,18].

3 else

4 Randomly select 8 solutions p1, p2, …p8 from P;

5 Randomly select 1 solution a from A.

6 c1 = p1 + N (0.3, 0.1) · (p1 − a) + N (0.3, 0.1) · (p2 − p3),

7 c2 = p4 + N (0.3, 0.1) · (p5 − p6).

8 Crossover c1, c2 with p7 p8 by multi-points crossover
using pc = N (0.3, 0.5).

9 end

10 Output c1 and c2.

f ullcount Stands for the generations that the size of archive is full.
givencount is set to be 30 in MS-MOEA. N (0.3, 0.1) Stands for Gauss-
ian random number with mean 0.3 and deviation 0.1. pc Is set to be 0.3
in MS-MOEA

In the first stage of GDM, GA operators, including poly-
nomial mutation and simulated binary crossover [17], are
adopted. In the second stage, DE operators DE/rand/1 and
DE/current to best/1 are adopted, see lines 6–7 of Table 6.
The DE operators are shown in Table 6 lines 4–8, where
N (0.3, 0.1) is a normal random number with mean 0.3 and
deviation 0.1. The parameters setting of DE is inherited
from [28].

The crucial problem remained is how to determine when
DE operator is launched. In GDM, the trigger is defined as
the number of generations when the size of archive is full
( f ullcount exceeds a given fixed size givencount). It can
be described as: GA provides fast convergence speed in the
early stage; when a set of solutions with good convergence
property have been achieved, DE is implemented to improve
diversity of the non-dominated solutions. Note that only GA
is used when the trigger condition is not met till the end of
operation. That is, only GA operators are implemented for
some extremely complex tasks. A similar trigger condition
has been discussed in detailed in [45].

4.4 Fast hypervolume contribution calculation approach

Benefitting from the excellent property discussed in [43],
hyper-volume mechanism is expected to possess superior
performance in elite maintenance. However, the computa-
tional cost is quite expensive to conduct global hyper-vol-
ume contribution model for the whole population [22,60]. In
the previous work of [47], a faster algorithm for calculating
global hyper-volume is proposed to reduce the computational
cost to approximate polynomial time. In [43], ‘FH’ makes use

of an external archive and sliced technology, which is similar
to [47].

In FH, the contributions of each solution does not have to
be calculated at each generation. Only the contributions of a
small sub-set of population are tuned when a new solution is
added. It is also apparent that FH is designed to update the
archive with one added solution at a time. Compared with the
approach in [22], only the contributions of a small sub-set are
tuned, which reduces the computational cost remarkably.

5 Experimental study

In MS-MOEA, there are several incorporated strategies,
of which FH, GDM, Gaussian mutation are not designed
specially for dMO problems. In order to provide experi-
mental evidence to study how these incorporated strategies
improve the performance of traditional sMOEA separately,
MS-MOEA is compared with several sMOEAs without one
or more of these incorporated strategies on a suite of sMO
problems. After that, a suite of classical dMO problems FDAs
and a suite of newly designed dMO problems with four
different F E Scs are used to assess the advantages of this
multi-strategy approach. The algorithms under comparison
and their purposes are emphasized as follows:

– In order to show the evidence how GDM improves the
classical GA and DE based algorithms, we compared MS-
MOEA with an improved NSGA-II (INSGA-II), MOEA
with FH strategy only (FH-MOEA) [43].

– To show the advantage of memory like strategy, the algo-
rithm without such strategy (FH-MOEADE) is used.

In this experimental study, the algorithm versions for dMO
are named: INSGA-II(d), FH-MOEA(d), FH-MOEADE(d)
and MS-MOEA(d); the algorithm versions for sMO are
named: INSGA-II(s), FH-MOEA(s), FH-MOEADE(s) and
MS-MOEA(s). In this study, we will briefly introduce the
other algorithms in comparison and present the performance
indicators. Then, the empirical study is shown in terms of sta-
tistical metrics, evolution process figures and POF figures.

5.1 Algorithms in comparison

The original NSGA-II algorithm is proposed in [19]. It imple-
ments a fast non-dominated sorting approach to effectively
conduct the selection strategy. An improved non-dominated
selection has been proposed in [56], which removes dense
solutions one by one and recalculates the crowding dis-
tances before deciding which solution should be deleted. It
can improve the diversity property compared with the selec-
tion operator of NSGA-II. The only difference between INS-
GA-II and NSGA-II is the implementation of the improved
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Table 7 Procedure of update strategy

Framework of fast hypervolume contribution approach

Step 0: Get A from the main procedure
Step 1: When a new solution x is added. If A is empty, add x into A directly, and set the contribution of x to ∞, otherwise go to step 2
Step 2: Compare x with the value from the slice 1 a1 to the top slice and find out the first solution ai , which is larger in objective 1 than x . If x is

dominated by x , remove x and go to step 6, else if ai is dominated by x , go to step 3, otherwise go to step 5
Step 3: Remove solution ai and add x into the i th position of A. Then, tune the contribution of ai−1, ai and ai+1, set i = i + 1, go to step 4
Step 4: Pareto dominated comparison between ai and x . If ai is dominated by x , go to step 3, otherwise go to step 6
Step 5: Insert x into the i th position and tune the contributions ai−1 and ai . Remove the archive solutions (> i) that are dominated by x until the

first non-dominated solution or the last solution
Step 6: Terminate and return the new archive to the main procedure

Table 8 Procedure of FH-MOEA

Algorithm: Multi-objective evolutionary algorithm based-on fast hyper-volume contribution approach (FH-MOEA)

Step 0: Randomly initialize a population P(0). The non-dominated solution of P(0) are copied to an archive population A(0) one by one. Set the
iteration counter t = 0

Step 1: One parent solution x is chosen from the population P(t) using the league selection

Step 2: Another parent solution a is chosen from the archive population A(t) randomly

Step 3: Two offspring solutions c1 and c2 are created by genetic crossover and mutation

Step 4: Update the population by c1 and c2 using the same strategy as [20]

Step 5: Update the archive by c1 and c2 using the strategy in Table 7

Step 6: If termination criterion is not satisfied, set t = t + 1 and go to step 1, else report A(t)

non-dominated selection and an external archive. The param-
eters of GA is set to be: mutation rate pm = 0.1, crossover
rate pc = 0.9.

FH-MOEA is proposed in [43]. The major difference com-
pared with ε-MOEA [20] lies in the archive updating strategy.
The details of FH are shown in Table 7 and the procedure of
FH-MOEA is presented in Table 8. In these experiments, the
parameters for GA are the same as INSGA-II. Another FH
induced algorithm MS-MOEADE is similar to MS-MOEA
but without the memory like re-initialization strategy. The
population size NP is set to be 50 for all algorithms. The
size of sentry individuals is 5. At each iteration, the sentry
individuals are re-evaluated.

5.2 Performance indicators

As is presented in Sect. 3.2, the inverted generational dis-
tance (I G D) metric is hard to calculated for some classical
test instances [56]. In those cases (FDA2 and FDA3), hyper-
volume (H ) [60,57] are used for assessing the performance
of the algorithms. These two metrics I G Di and Hi are cal-
culated right before i + 1th change happens. The mean IGD
and hypervolume metrics are defined as:

I G D =
∑num_of _change

i=1 I G Di

num_of _change
(7)

H =
∑num_of _change

i=1 Hi

num_of _change
(8)

where num_of _change stands for the numbers of changes
in a run.

Let P∗ be a set of uniformly distributed points along the
POF (in the objective space). Let A be an approximate set to
the POF, the average distance from P∗ to A is defined as:

I G D(A, P∗) =
∑

v∈P∗ d(v, A)

|P∗| (9)

where d(v, A) is the minimum Euclidean distance between v

and the points in A. “If |P∗| is large enough to represent the
POF very well, I G D(A, P∗) could measure both the diver-
sity and convergence of A in a sense. To have a low value of
I G D(A, P∗), the set A must be very close to the POF and
cannot miss any part of the whole POF” [56].

The hypervolume H is another metric that can simulta-
neously compare the algorithms in both convergence and
diversity. It is defined as the space dominated by the set of
non-dominated solutions in relation to the reference point.

5.3 Experiment on static multi-objective optimization

The main purpose of this study is to evaluate the effect of
proposed GDM and Gaussian mutation. The test functions
MZDTs are shown in Table 1. In MZDTs, the POSs of ZDTs
have been shifted to non-bound position. We set the total
size of fitness evaluations F E S = 15,000 for MZDT1–3,
F E S = 20,000 for MZDT4. The statistical experimental
metrics I G D and H of 50 independent runs are summarized
in Table 9.
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Table 9 Comparison of IGD
metric for static multi-objective
optimization

MZDT1 MZDT2 MZDT3 MZDT4

MS-MOEA(s) 1.00E-02 (9.34E-04) 1.25E-02 (2.22E-03) 7.92E-03 (1.44E-03) 2.38E-02 (4.02E-02)

INSGA-II(s) 2.21E-02 (2.63E-03) 3.52E-02 (6.12E-03) 1.65E-02 (4.83E-03) 2.38E-02 (4.08E-02)

FH-MOEA(s) 1.39E-02 (1.14E-02) 1.40E-02 (2.83E-03) 8.27E-03 (2.05E-03) 7.20E-02 (1.04E-01)

Table 10 Comparison on FDAs
FDA1 (I G D) FDA2 (25-H ) FDA3 (25-H )

MS-MOEA(d) 7.63E-03 (3.09E-05) 7.80E-03(9.41E-05) 3.55E-01(2.03E-01)

INSGA-II(d) 1.53E-02 (3.70E-03) 1.10E-02 (1.11E-03) 2.55E-01 (1.82E-01)

FH-MOEA(d) 2.40E-02 (1.15E-02) 1.58E-02 (2.46E-03) 5.54E+00 (1.39E+00)

FH-MOEADE(d) 7.72E-03 (7.04E-05) 8.10E-03 (9.94E-05) 6.96E-01 (4.70E-01)

As is easy to be observed in Table 9, the proposed
algorithm MS-MOEA(s) provides remarkably better perfor-
mances on MZDT1, MZDT2 and MZDT3 than INSGA-II(s),
but only slightly outperforms FH-MOEA(s). After observing
the difference among these three algorithms, MS-MOEA(s)
and FH-MOEA(s) are more effective for these problems due
to the implementation of FH. For the instance with many local
Pareto optima MZDT4, MS-MOEA(s) and INSGA-II(s) pro-
vide comparable results, while FH-MOEA(s), which is ben-
eficial for the former three problems with relatively smooth
landscape, deteriorates sharply. It is interesting to see that
MS-MOEA(s) always provides the top performances for all
problems. FH-MOEA(s), without Gaussian mutation, fail to
obtain satisfactory performance on MZDT4. INSGA-II(s),
without GDM, perform badly on MZDT1–3. All these results
tell us that the cooperation of GDM and FH works quite well
in MS-MOEA(s) and is suitable for the problems with dif-
ferent landscapes, while the missing of either strategy may
cause the deterioration or failure on some problems. This is in
virtue of the fact that GDM strategy strengthens convergence
ability compared with DE based sMOEA, and diversity abil-
ity compared with GA based sMOEA and furthermore, the
Gaussian mutation improves the performance on complex
problem.

5.4 Experiment on dynamic FDAs

The test instances FDAs are proposed in [23]. So far, FDAs
are widely used in almost all of the dMO papers [2,44].
Three test instances with different characteristics and differ-
ent dimensional sizes are selected: FDA1 belongs to type
I; FDA2 and FDA3 belong to type II. The definitions of
FDAs are summarized in Table 11. More details are avail-
able in [23]. The statistical experimental metrics I G D for
FDA1 and (25 − H ) for FDA2 and FDA3 of 50 independent
runs are summarized in Table 10. For hypervolume metric,
the reference point [5, 5] is used, so the space that is not

Table 11 Dynamic FDA multi-objective test instances

Instance Variables Objective functions

FDA1 xI = x1 = [0, 1] f1(x) = x1

xI I = xi f2(x) = g(x)h(x)

xi = [−1, 1] g(x) = 1 + ∑
xi ∈xI I

(xi − G(t))2)

i = 2, . . . D h(x) = 1 − √
f1/g

G(t) = sin(0.5π t), t = � fc/F E Sc�/nT

FDA2 xI = x1 = [0, 1] f1(x) = x1

xI I = xi f2(x) = g(x)h(x)

i = 2, . . . 16 g(xI I ) = 1 + ∑
xi ∈xI I

x2
i

xI I I = xi h(x) = 1 − ( f1/g)P

i = 17, . . . 31 P = [H(t) + ∑
xi ∈xI I I

(xi − H(t))2]−1

xI I,I I I = [−1, 1] H(t) = 0.75 + 0.7 sin(0.5π t)

t = � fc/F E Sc�/nT

FDA3 xI = x1 = [0, 1] f1(x) = x F(t)
1

xI I = xi f2(x) = g(x)h(x)

xi = [−1, 1] g(x) = 1 + ∑
xi ∈xI I

(xi − G(t))2)

i = 2, . . . D h(x) = 1 − √
f1/g

G(t) = | sin(0.5π t)|, t = � fc/F E Sc�/nT

F(t) = 102sin(0.5π t)

In these test instances, the F E Sc = 5,000 stands for the static duration;
nT = 10

dominated by the population can be calculated as (25 − H ).
We set fitness evaluation size F E S = 50,000, set static dura-
tion F E Sc = 5,000 for all test instances.

In Table 10, MS-MOEA(d) shows a distinct advantage
over the other approaches for FDA1. As to Fig. 5, the memory
like re-initialization strategy tends to carry out the search in
a more reasonable region when the change is detected. Also,
MS-MOEA(d) slightly outperforms FH-MOEADE(d). For
FDA2, the performance of the proposed algorithm indicates
that it is steady and robust for such problems with both chang-
ing POS and POF. For FDA3, INSGA-II(d) demonstrates top
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Fig. 5 Comparison of IGD metric curves for FDA1

performance. It could be attributed to the fact that the DE of
GDM is launched too early for this problem. Obviously, such
situation may delay the search and emerge as poor distrib-
uted and converged non-dominated solutions. It is still inter-
esting to see that MS-MOEA(d) shows significantly better
performance than FH-MOEADE(d), see Table 13. Compared

with MS-MOEA(d), FH-MOEADE(d) lacks Gaussian muta-
tion and memory like strategy. Therefore, the effectiveness
of these two strategies is validated. We can conclude from the
above results that the results of MS-MOEA(d) for the clas-
sical dynamic test instances are encouraging and promising.

5.5 Experiment on dynamic DMZDTs and WYL

As defined in Table 2, DMZDT suite has 4 test instances,
and belongs to type I. The basic static functions MZDTs of
DMZDTs have been fully studied in many works [19,20,55].
The POFs of DMZDTs can be mathematically analyzed and
easily generated. The MZDT test cases are expanded to build
a test instance of type II, named WYL. The formal defi-
nition of WYL is shown in Table 3. We set static dura-
tion F E Sc = 1,250, 2,500, 5,000 and 10,000 for all test
instances, set the size of environments 100. The total size of
function evaluations is F E S = 100 × F E Sc.

The statistical experimental metrics I G D of 50 indepen-
dent runs are summarized in Table 12. In order to validate the

Table 12 The t-test results of comparing MS-DMOEA with the other algorithms

F E Sc = 1,250 F E Sc = 2,500 F E Sc = 5,000 F E Sc = 10,000

DMZDT1

MS-MOEA(d) 2.16E-01 (1.04E-02) 7.46E-02 (5.70E-03) 1.96E-02 (2.53E-04) 9.78E-03 (4.48E-05)

IDNSGA-II(d) 5.69E-01 (1.02E-02) 2.43E-01 (3.59E-03) 8.25E-02 (1.70E-03) 2.80E-02 (4.92E-04)

FH-MOEA(d) 4.23E-01 (1.02E-02) 1.79E-01 (4.50E-03) 6.75E-02 (3.82E-03) 1.86E-02 (7.17E-04)

FH-MOEADE(d) 4.37E-01 (4.30E-03) 1.71E-01 (4.30E-03) 5.12E-02 (3.70E-03) 1.56E-02 (7.00E-04)

DMZDT2

MS-MOEA(d) 3.19E-01 (3.76E-02) 1.31E-01 (1.22E-02) 3.26E-02 (4.98E-04) 1.21E-02 (5.91E-05)

IDNSGA-II(d) 1.11E+00 (2.26E-02) 4.93E-01 (1.53E-02) 1.54E-01 (8.68E-03) 4.22E-02 (4.84E-04)

FH-MOEA(d) 6.97E-01 (2.26E-02) 3.71E-01 (1.28E-02) 1.17E-01 (6.67E-03) 2.32E-02 (1.29E-03)

FH-MOEADE(d) 7.09E-01 (1.07E-02) 3.09E-01 (7.50E-03) 6.47E-02 (7.20E-03) 1.84E-02 (1.40E-03)

DMZDT3

MS-MOEA(d) 2.22E-01 (1.87E-02) 8.50E-02 (9.58E-03) 1.70E-02 (6.86E-04) 1.01E-02 (3.36E-05)

IDNSGA-II(d) 4.33E-01 (8.42E-03) 1.86E-01 (1.93E-03) 6.96E-02 (1.69E-03) 2.39E-02 (7.69E-04)

FH-MOEA(d) 3.28E-01 (8.42E-03) 1.24E-01 (4.95E-03) 5.01E-02 (2.53E-03) 2.29E-02 (1.57E-03)

FH-MOEADE(d) 3.22E-01 (5.00E-03) 1.26E-01 (2.50E-03) 3.65E-02 (2.40E-03) 1.82E-02 (1.60E-03)

DMZDT4

MS-MOEA(d) 1.21E+00 (1.12E-01) 5.79E-01 (6.21E-02) 2.95E-01 (2.49E-02) 2.93E-01 (3.10E-02)

IDNSGA-II(d) 2.69E+00 (9.87E-02) 1.30E+00 (5.72E-02) 6.22E-01 (4.38E-02) 1.92E-01 (1.94E-02)

FH-MOEA(d) 2.34E+00 (9.87E-02) 1.39E+00 (7.45E-02) 7.16E-01 (2.94E-02) 3.09E-01 (1.32E-02)

FH-MOEADE(d) 2.51E+00 (7.66E-02) 1.43E+00 (3.04E-02) 7.84E-01 (3.58E-02) 3.92E-01 (1.31E-02)

WYL

MS-MOEA(d) 3.34E-01 (2.91E-02) 1.52E-01 (1.39E-02) 7.22E-02 (2.01E-02) 5.32E-02 (3.36E-03)

IDNSGA-II(d) 8.49E-01 (5.76E-02) 3.88E-01 (3.36E-02) 1.63E-01 (1.79E-02) 6.03E-02 ( 5.13E-03)

FH-MOEA(d) 7.66E-01 (4.58E-002) 2.75E-01 (2.75E-02) 2.73E-01 (1.91E-02) 1.46E-01 ( 3.70E-03)

FH-MOEADE(d) 7.61E-01 (2.56E-02) 2.75E-01 (1.94E-02) 2.13E-01 (1.88E-02) 7.03E-02 (3.00E-03)
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Table 13 The t-test results of comparing MS-DMOEA with the other algorithms

t-test FDAs DMZDT1 DMZDT2

FESc(DMZDTs and WYL) FDA1 FDA2 FDA3 1,250 2,500 5,000 10,000 1,250 2,500 5,000 10,000

MS-MOEA(d) vs INSGA-II(d) s+ s+ − s+ s+ s+ s+ s+ s+ s+ s+
MS-MOEA(d) vs FH-MOEA(d) s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MS-MOEA(d) vs FH-MOEADE(d) + + s+ s+ s+ s+ s+ s+ s+ s+ s+
t-test DMZDT3 DMZDT4 WYL

FESc(DMZDTs and WYL) 1,250 2,500 5,000 10,000 1,250 2,500 5,000 10,000 1,250 2,500 5,000 10,000

MS-MOEA(d) vs INSGA-II(d) s+ s+ s+ s+ s+ s+ s+ − s+ s+ s+ s+
MS-MOEA(d) vs FH-MOEA(d) s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MS-MOEA(d) vs FH-MOEADE(d) s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

effectiveness of the new algorithm, the t-test, which is based
on one-tailed t-test with 98 degrees of freedom at a 0.05 level
of significance, is provided to statistically show the com-
parison between MS-MOEA(d) and the other algorithms.
In Table 13, the t-test results of dMO problems regarding
algori thm1 vs. algori thm2 are shown as ‘+’, ‘−’, ‘s+’
and ‘s−’ when algori thm1 is insignificantly better than,
insignificantly worse than, significantly better than, and sig-
nificantly worse than algori thm2 respectively. Figs. 12–16
depict the distributions of non-dominated sets of median run
before environment changes. The mean evolution processes
of last ten environments are shown in Figs. 6–10. Figure 11
records the experimental results on DMZDTs and WYL of
different F E Scs.

5.5.1 Test problems with relatively smooth fitness landscape
(DMZDT1–3)

The fitness landscapes of sMO problems MZDT1–3 are
relatively smooth. Therefore, the dMO problems extended
from them, including DMZDT1–3, have the same fitness
landscape features. However, these problems have different
characteristics of POF, such as convex, non-convex and dis-
connected. It is clear from Table 12 that MS-MOEA(d) pro-
vides the top performances on all of these problems with
different F E Sc settings. Furthermore, the t-test in Table 13
validates that the advantages of MS-MOEA(d) are signifi-
cant.

In the sMO experiments, MS-MOEA(s) only slightly
outperforms FH-MOEADE(s). However, it is evident from
Figs. 6–8 that the memory like strategy provides a better
starting point when an environmental change takes place, and
thus, makes a remarkable positive effect to MS-MOEA(d).
When examining the effect of memory like strategy on the
problems with short static duration (F E Sc = 1,250), it is

observed that the quality of re-initialized population gener-
ated by MS-MOEA(d), which is the only algorithm with such
strategy, remarkable outperforms the other algorithms. That
is, the purpose of designing such a memory like strategy is
met. Furthermore, as is shown in Figs. 6–8, it is interesting to
see that as the search continues, the quality of the non-domi-
nated set found for each environment tends to raise, while no
remarkable difference can be found for the restart strategy.

As the static duration increases, the performances of all
algorithms get better, see Table 12 and Fig. 11. The com-
parisons on the problems with F ECc = 2,500, 5,000 and
10,000 are similar to that on F E Sc = 1,250. In Figs. 12–14,
we compare the non-dominated solutions obtained of median
run for all environments. It is convinced that the non-domi-
nated sets obtained by MS-MOEA(d) are much nearer to the
true POF and with much better diversity characteristic. Espe-
cially, when F ECc = 5,000 and 10,000, MS-MOEA(d)
could locate the population along POF with well distribution
for all environments while solutions obtained by INSGA-
II(d) can not fully converge to POF and distribute widely in
the objective space.

5.5.2 Test problem with rugged fitness landscape
(DMZDT4)

Since the basic function MZDT4 has many local POFs in
each separate environment, DMZDT4 has rugged fitness
landscape. Compared with DMZDT1–3, DMZDT4 is much
harder. This viewpoint is also verified in Table 12, that is, the
I G D metrics of all algorithms on DMZDT4 are much worse
than those on DMZDT1–3.

For this hard dMO task, the performances of all algorithms
inevitably deteriorate badly. MS-MOEA(d) provides the best
performances and significantly outperforms the other algo-
rithms when F ECc = 1,250, 2,500 and 5,000, see Table 11.
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This is not surprising, because the excellent performance of
MS-MOEA(s) on MZDT4 has been verified in the above
sMO experiment, and furthermore, the memory like strategy
leads to better starting point once the environment changes.

However, INSGA-II(d) slightly outperforms MS-MOEA(d)
when F ECc = 10,000, due to the fact that GA has better
global search ability, while in GDM, the DE is launched too
earlier [44]. The Fig. 15 suggests that the non-dominated sets
provided by MS-MOEA(d) have better diversity and conver-
gence characteristics, except that when F ECc = 10,000,
INSGA-II(d) provides slightly better non-dominated sets in
terms of convergence.

5.5.3 Experiment on dynamic WYL

In the previous researches, few works have been carried out
on such problem with so sharply changing POF and POS.

For all F E Sc settings, MS-MOEA(d) significantly out-
performs the other algorithms, see Table 11. Figure 10
shows that MS-MOEA(d) is able to provide the best non-
dominated set at any time, while the performances of other
algorithms are identical. It is especially true when the envi-
ronment is generated by MZDT4. Correspondingly, the evo-
lution curves of other algorithms are almost overlapped. The
reason may be about the same as is discussed for DMZDT4.
As is shown in Fig. 16, the quality of non-dominated sets pro-
vided by MS-MOEA(d) are much better. Similar to the above
dMO experiments, the addition of memory like strategy also
provides a positive effect on WYL. We can conclude that
MS-MOEA(d) is much more suitable for this hard problem
of type II.

6 Conclusion

With strong requirement from engineering and scientific
application, it is important to study dMO problems and cor-
responding effective algorithms. Few algorithms have been
designed previously. In this paper, a number of dMO test
instances are proposed extended from the classical ZDTs.
Furthermore, two important issues of dMO algorithms,
dynamic environment handling strategy and convergence
speed in the stable period, are discussed. Based on the analy-
sis, a new algorithm, multi-strategy ensemble multi-objective
evolutionary algorithm (MS-MOEA), is proposed. In MS-
MOEA, several strategies are adopted for different purposes:
(1) GDM is used to achieve fast convergence speed in a short
time after the environment change is detected and provide
higher-quality non-dominated set when the non-dominated
solutions get close to the true POS; (2) Gaussian mutation is
designed to strengthen the ability of escaping from the local
optima; (3) to handle dynamic environment, memory like
strategy is designed to gain attraction around the memory
solutions without losing the global search ability.

In the experiments on sMO problems, the strategies used
to accelerate the convergence speed, including GDM and FH,
cooperate well and provide top performances on different
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Fig. 12 Comparison of distribution of non-dominated set for dynamic DMZDT1

kinds of problems. Via the experiments on dMO problems,
including FDAs, DMZDTs and WYL, the advantages of the
multi-strategy ensemble, such as fast convergence speed and
maintenance of historical information, are clearly revealed.

This work is also expected to call for more attention on
dMO. There are still several unsolved problems, such as how
to more appropriately make use of the past information, how
to more appropriately generate dMO test instances, and etc.
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