Memetic Comp. (2009) 1:85-100
DOI 10.1007/s12293-009-0011-1

REGULAR RESEARCH PAPER

A proposition on memes and meta-memes in computing

for higher-order learning

Ryan Meuth - Meng-Hiot Lim . Yew-Soon Ong -
Donald C. Wunsch II

Received: 26 September 2008 / Accepted: 7 April 2009 / Published online: 29 April 2009

© Springer-Verlag 2009

Abstract In computational intelligence, the term ‘memetic
algorithm’ has come to be associated with the algorithmic
pairing of a global search method with a local search method.
In a sociological context, a ‘meme’ has been loosely defined
as a unit of cultural information, the social analog of genes
for individuals. Both of these definitions are inadequate, as
‘memetic algorithm’ is too specific, and ultimately a misno-
mer, as much as a ‘meme’ is defined too generally to be of
scientific use. In this paper, we extend the notion of memes
from a computational viewpoint and explore the purpose,
definitions, design guidelines and architecture for effective
memetic computing. Utilizing two conceptual case studies,
we illustrate the power of high-order meme-based learning.
With applications ranging from cognitive science to machine
learning, memetic computing has the potential to provide
much-needed stimulation to the field of computational intel-
ligence by providing a framework for higher order learning.

Keywords Machine learning - Memetic computing -
Meta-learning - Computational intelligence architectures

R. Meuth (<) - D. C. Wunsch IT

Applied Computational Intelligence Laboratory,

Department of Electrical and Computer Engineering,

Missouri University of Science and Technology, Rolla, MO, USA
e-mail: rmeuth@mst.edu

M.-H. Lim
School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore 639798, Singapore

Y.-S. Ong
School of Computer Engineering, Nanyang Technological University,
Singapore 639798, Singapore

1 Introduction

Over the past several years many hundreds of papers have
been published on the modification and application of only
a handful of core computational intelligence techniques—
namely dynamic programming, evolutionary algorithms,
neural networks, fuzzy logic, and data clustering methods.
Algorithmically, there have been refinements and crossovers
in these categories, such as heuristic dynamic programming,
particle swarm optimization, evolutionary-trained fuzzy neu-
ral networks, and hybrid genetic algorithms, resulting in sig-
nificant but relatively modest quality and performance gains.
Beyond these modifications the pace of new algorithm design
has been stagnant for a period of time, while the complexity of
machine learning and optimization problems has grown ever
larger with the maturity of the internet, digital media, and the
proliferation of data sources in all aspects of human life.
Meanwhile, advancement in hardware technology has
brought about affordable and powerful computing platforms
which are more easily accessible. However, it is clear that
increase in computational capacity cannot even come close
to addressing the challenges posed by the complexity of prob-
lems, many of which are typical of real-world scenarios [14].
More advanced and novel computational paradigms, partic-
ularly from the algorithms front have to be championed. The
general perception on how algorithms have managed to keep
pace with increasing problem complexity over the years is
depicted in Fig. 1. Initially, algorithms by and large were able
to keep up with the demands of increasing problem com-
plexity. To a certain extent, the algorithms which typically
belong to the category of conventional or exact enumerative
procedures were able to surpass the complexity of problems
that were typical of what people were trying to solve. Subse-
quently, as the complexity of problems pushes the capability
limits of algorithms, it became evident that the complexity

@ Springer

86

Memetic Comp. (2009) 1:85-100

Current

Complexit * state-of-art — Problem
y index Learning Enhanced

= = Algorithms

7
7)’ Algorithms

» Time

Fig. 1 An abstract comparison on state of optimization from the
perspectives of problems and algorithms complexity

of problems being addressed began to overwhelm the algo-
rithms available. We view the region corresponding to the
convergence and divergence of the curves as being synony-
mous to the era of computational intelligence techniques. It
can be envisaged that in time, the spread between complex-
ity of problems and algorithms will widen if computational
intelligence remains at status quo. There are clear signs that
these issues are in the early stages of being addressed. In
particular, the phase of research should be putting emphasis
not just on learning per se, but rather on issues pertaining to
higher order learning. This is a natural tendency in order to
address the demands and challenges of problems that surface.

The era of computational intelligence to a certain extent
managed to contain the gap between algorithms and problem.
In time, it will become clear that the divergence between
the two curves will continue, as shown in Fig. 1. A more
promising outlook as shown by the broken line curve can
be achieved and modern day optimization techniques can
rise to this challenge by incorporating not just mechanisms
for adaptation during the process of solving an instance of a
difficult problem, but rather mechanisms of adaptation or
more appropriately learning spanning across instances of
problems encountered during the course of optimization.
While a certain degree of similarity may be drawn when
compared to case-based reasoning (CBR), such perceived
‘experiential’ trait similarity in the sense that both encom-
pass mechanisms to draw on ‘experience’ from previously
encountered problem instances is superficial. Unlike CBR
methods which rely on the need for explicit examples and
ranking procedures, optimization problems are usually not
amenable to such explicit case by case assessment to yield
information that is potentially useful to a search algorithm
[23,70]. Rather, a more likely emphasis should be the build-
ing up of a body of knowledge, more specifically memes and
meta-memes that collectively offer capability with a much
broader problem-solving scope in order to deal with the class
of problems being addressed.

In 1997, Wolpert and Macready formalized the ‘No Free
Lunch Theorem’ stating simply:

@ Springer

Any two [optimization] algorithms are equivalent when
their performance is averaged across all possible
problems.

Additionally, Wolpert and Macready made the observa-
tion that in order to reduce the average cost across a set of
problems and optimizers, one must methodically utilize prior
or acquired information about the matching of problems to
procedures, given a priori knowledge gained from experience
[71]. The realizations brought by the No Free Lunch Theorem
changed the research focus of the field of computational intel-
ligence from the design of individual algorithms to the design
of architectures of algorithms and parameters optimization.
It is in this spirit that the development of memetic algorithms
has been motivated [13,21,31,32,34,36,41,53,54,73].

Taken alone, current methods tend to be overwhelmed by
large datasets and suffer from the curse of dimensionality. A
new class of higher order learning algorithms are needed that
can autonomously discern patterns in data that exist on mul-
tiple temporal and spatial scales, and across multiple modes
of input. These new algorithms can be architectures utilizing
existing methods as elements, but to design these architec-
tures effectively, some design principles should be explored.

Ultimately, the curse of complexity cannot be wholly
avoided. As the size or dimension of the problems increases,
a greater amount of computation becomes necessary to find
high quality solutions. However, such computation need not
be done on the fly, meaning at the exact time that a problem
is presented. If a memory mechanism is provided that can
store and retrieve previously used or generalized solutions,
then computation can be shifted into the past, greatly reduc-
ing the amount of computation necessary to arrive at a high
quality solution at the time of problem presentation.

One of the major drawbacks of evolutionary algorithms
and computational intelligence methods in general is the solv-
ers employed usually start from zero information, indepen-
dent of how similar the problem instance is to other instances
the method has been applied to in the past. In effect, the opti-
mization methods typically do not incorporate any mecha-
nisms to establish inter-instance memory. This property is
useful for comparing different computational intelligence
methods and in some cases, particularly when computation
time is not an issue, the capacity to draw on memory of past
instances solved is desirable as it allows the search to be more
focused, thus leading to solutions that would not otherwise
have been found efficiently. It is also worth noting that many
real-world problem domains are composed of sub-problems
that can be solved individually, and combined (often in a
non-trivial way) to provide a solution for the larger problem
[35,60].

In some problem instances, such as large instances of the
even parity problem, it is nearly impossible to stochastically
arrive at a complete solution without utilizing generalized

Memetic Comp. (2009) 1:85-100

87

solutions for small instances of the problem [24]. It is simple
to evolve a function that performs even parity on 2 bits using
only the logical functions AND, OR and NOT as primitives,
but extremely difficult to evolve a 10-bit even parity function
without any a priori information as the space of all possi-
ble solutions is immensely larger, and even the best known
solution is complex. By simply defining the general 2-bit
XOR function (the even parity computation for 2 bits), the
optimization method has a higher probability of combining
instances of XOR to arrive at an n-bit even-parity function,
greatly accelerating the optimization process.

In the game of chess, humans start at the top, and solve a
successive sequence of smaller, tractable problems to arrive
at a move. However, the learning process is bottom-up—a
human player of chess first learns the legal moves of every
piece, and then combines those general move capabilities
into strategies, strategies into tactics and those tactics com-
bine with the tactics of the opposing player to form a high-
level view of the game as a whole. At each level optimization
and generalization are performed to pass information up and
down the play hierarchy. However, this natural progression
is not reflected in the methods that we utilize to computation-
ally approach problems of this scale. The typical approach is
combinatorial optimization, where a sequence of low-level
moves is statistically analyzed in order to arrive at a plan
of play. As a whole, this is a computationally intractable
problem, and it does not even come close to resembling the
way humans play chess. Additionally, the skills learned in
chess may translate across several domains as general prob-
lem solving skills. The ability to translate knowledge from
one domain to another implies the necessity of meta-learning
or learning about how or what to learn—in order to recog-
nize similar problem features in disparate environments and
scenarios.

The remaining of this paper is organized as follows.
Section 2 gives a brief outline of the classes of brain inspired
memetic computing. In Sect. 3 we discuss and compare
between schema and memes, in particular their roles in learn-
ing. Section 1 gives an architectural framework for comput-
ing with memes and meta-memes, exposing some important
issues in the design of systems with higher order learning
capability. Two examples, the even parity in Sect. 5 and trav-
elling salesman problem in Sect. 6 are studied to illustrate the
concept of learning that spans across instances of problems.
In Sect. 7, we conclude this paper.

2 Brain inspired memetic computing

While Darwinian evolution has been a source of inspiration
for a class of algorithms for problem-solving, memetics has
served as a motivation for problem-solving techniques with
memetic algorithms being the most prominent and direct

manifestation of the inspiration. In recent years, there has
been a marked increase in research interests and activities
in the field of Memetic Algorithms. The first generation
of MA refers to hybrid algorithms, a marriage between a
population-based global search (often in the form of an
evolutionary algorithm) coupled with a cultural evolution-
ary stage. The first generation of MA though it encompasses
characteristics of cultural evolution (in the form of local
refinement) in the search cycle, may not qualify as a true
evolving system according to Universal Darwinism, since all
the core principles of inheritance/memetic transmission, var-
iation and selection are missing. This suggests why the term
MA stirs up criticisms and controversies among researchers
when first introduced in [43]. The typical design issues [49]
include (i) how often should individual learning be applied,
(i1) on which solutions should individual learning be used,
(iii) how long should individual learning be run, (iv) what
maximum computational budget to allocate for individual
learning, and (v) what individual learning method or meme
should be used for a particular problem, sub-problem or
individual.

Multi-meme [28], hyper-heuristic [22] and meta-
Lamarckian MA [53,54] are referred to as second genera-
tion MA exhibiting the principles of memetic transmission
and selection in their design [48]. In multi-meme MA, the
memetic material is encoded as part of the genotype. Sub-
sequently, the decoded meme of each respective individual
is then used to perform a local refinement. The memetic
material is then transmitted through a simple inheritance
mechanism from parent to offspring. On the other hand, in
hyper-heuristic and meta-Lamarckian MA, the pool of can-
didate memes considered will compete, based on their past
merits in generating local improvements through a reward
mechanism, deciding on which meme to be selected to pro-
ceed for future local refinements. A meme having higher
rewards will have greater chances of being replicated or cop-
ied subsequently. For a review on second generation MA,
i.e., MA considering multiple individual learning methods
within an evolutionary system, the reader is referred to [53].
Co-evolution and self-generation MAs introduced in [34] and
[62] are described in [48] as third generation MA where all
three principles satisfying the definitions of a basic evolving
system has been considered. In contrast to second genera-
tion MA which assumes the pool of memes to be used being
known a priori, a rule-based representation of local search
is co-adapted alongside candidate solutions within the evo-
lutionary system, thus capturing regular repeated features or
patterns in the problem space.

From the three classes of MA outlined, memes can be
seen as mechanisms that capture the essence of knowledge in
the form of procedures that affect the transition of solutions
during a search. The level of participation or activation of
memes is typically dictated by certain indicative performance

@ Springer

88

Memetic Comp. (2009) 1:85-100

Table 1 Generational descriptions of memetic algorithms

Classes Characteristics

Example systems

First Generation Global search paired with local search

Second Generation

(Lamarckian evolution)

Third Generation

Global search with multiple local optimizers. Memetic
information (Choice of optimizer) Passed to offspring

Global search with multiple local optimizers. Memetic
information (Choice of local optimizer) passed to

(i) A canonical MA [43,50]

(i1) Adaptive global/local search [16]

(iii) MA for combinatorial optimization [33]

(iv) Handling computationally expensive problems [55]

(v) Multiobjective permutation flowshop scheduling [19]

(vi) Fitness landscape analysis of MA [38]

(vii) Robust aerodynamic design [56]

(viii) Evolutionary gradient search (Arnold and Salomon [6])
(ix) Large-scale quadratic assignment problem [63]

(x) Evolutionary Lin—Kernighan for traveling salesman
problem [40]

(xi) Dynamic optimization problem [68]
and many others

(1) Nurse rostering problem [9]
(ii) Hyper-heuristic MA [15,22]

(iii) Structure prediction and structure comparison of
proteins [29]

(iv) Meta-Lamarckian MA [54]
(v) Multimeme MA [31]
(vi) Adaptive multi-meme MA [53]

(vii) Multimeme algorithm for designing HIV multidrug
therapies [10,45]

(viii) Agent-based memetic algorithm [17,67]

(ix) Diffusion memetic algorithm [48]
and several others

(i) Co-evolution MA [62]
(ii) Self-generation MA [30]

offspring (Lamarckian Evolution). A mapping between

evolutionary trajectory and choice of local
optimizer is learned

4th Generation Mechanisms of recognition, Generalization,

optimization, and memory are utilized

Unknown

metrics, the objective being to achieve a healthy balance
between local and global search. Memes instead of being
performance-driven should be extended to include capac-
ity to evolve based on the snapshots of problem instances.
In the process of solving a repertoire of problem instances,
memes can culminate based on the recurrence of patterns
or structures. From basic patterns or structures, more com-
plex higher level structures can arise. In this regard, a brain
inspired meta-learning memetic computational system, con-
sisting of an optimizer, a memory, a selection mechanism,
and a generalization mechanism that conceptualizes memes
not just within the scope of a problem instance, but rather in
a more generic contextual scope is appropriate. Such traits
which are lacking in the third generation MA can serve as the
basis of 4th generation class of MAs. The reader is referred to
Table 1 for asummary of generational description of Memetic

@ Springer

Algorithms. The summary although by no means exhaustive
should serve as a useful guide on the classifications of the
various traits of existing MA research.

The mammalian brain exhibits hierarchical self-similar-
ity, where neurons, groups of neurons, regions of the brain,
and even whole lobes of the brain are connected laterally and
hierarchically. Biological neurons are particularly well suited
to this architecture; a single neuron serves as both a selection
and learning mechanism. A neuron only fires when it receives
significant input from one or more sources, and thus serves
as a correlation detector. Additionally, it learns by modify-
ing the weights of its inputs based on local information from
firing rate, as well as global information from the chemi-
cal environment. Thus neurons activate when they encounter
patterns that have made them fire before, and are able to adapt
in delayed-reward situations due to global signals.

Memetic Comp. (2009) 1:85-100

89

In laterally connected architectures, neuron groups can
provide the function of clustering, as active neurons suppress
the activity of their neighbors to pass their information down
the processing chain, providing both selection and routing of
information. The effect of this selectivity is that biological
neural architectures route a spreading front of activation to
different down-stream networks based on the similarity of
the features present in the pattern of activation to previously
presented patterns. As the activation front passes each neu-
ron, the synaptic weights are changed based on local informa-
tion—the firing rate of the neuron, the chemical environment,
and the features present in the signal that activated the neu-
ron, slightly changing how an individual neuron will respond
at the next presentation of patterns [8].

Connected in loops, neurons provide short-term memory,
process control and create temporally-delayed clustering.
Combining loops and lateral connections at several levels
of neuron groups (groups of neurons, groups of groups, etc)
the neural architecture is able to exhibit increasing levels
of selection, memory, and control. This is exactly the archi-
tecture that we see in the human cortex—a single cortical
column contains recursion and lateral inhibition, and these
cortical columns are arranged in a similar way, progress-
ing in a fractal learning architecture up to the level of lobes,
where sections of the brain are physically separated [20]. This
fractal architecture is similar to the Nth-order meta-learning
architecture described later in Sect. 4.

The brain inspired meta-learning memetic computational
system is thus regarded here as a 4th generation memetic
computational system. The novelty of the proposed meta-
learning memetic system is highlighted below.

(1) In contrast to the second generation memetic algo-
rithms, there is no need to pre-define a pool of memes
that will be used to refine the search. Instead memes
are learned automatically—they are generalized infor-
mation that passed between problem instances.

(i1) Since it satisfies all the three basic principles of an
evolving system, it also qualifies as a third gener-
ation memetic computational system. Unlike simple
rule-based representation of meme used in co-evolu-
tion and self-generation MAs, the brain inspired meta-
learning memetic computational system models the
human brain that encodes each meme as hierarchies
of cortical neurons [20]. With a self-organizing corti-
cal architecture, meaningful information from recur-
ring real-world patterns can be captured automatically
and expressed in hierarchical nested relationships. A
human brain stimulated by the recurrence of patterns,
builds bidirectional hierarchical structures upward.
The structure starts from the sensory neurons, through
levels of cortical nodes and back down towards muscle
activating neurons.

(iii)) There exists a memory component to store the sys-
tem’s generalized patterns or structures of previously
encountered problems—these elements could be
thought of as memes.

(iv) Selection mechanisms are provided to perform asso-
ciation between problem features and previously gen-
eralized patterns that are likely to yield high-quality
results.

(v) Meta-learning about the characteristics of the prob-
lem is introduced to construct meta-memes which are
stored in the selection mechanism, allowing higher-
order learning to occur automatically.

(vi) Memes and meta-memes in computing are concep-
tualized for higher-order learning as opposed to the
typical definition of local search method used in all
the works in memetic algorithm.

3 Schema-meme relationship

A genetic algorithm learns by passing schema (the genetic
information of individuals) from generation to generation.
Through natural selection and reproduction, useful schemata
proliferate and are refined through genetic operators. The
central concept of learning is that of the schema—a unit
of information that is developed through a learning pro-
cess [18,57,59]. The typical ‘memetic algorithm’ uses an
additional mechanism to modify schemata during an indi-
vidual’s ‘lifetime’, taken as the period of evaluation from
the point of view of a genetic algorithm, and that refine-
ment is able to be passed on to an individual’s descendants.
The concept of schemata being passable just as behaviors
or thoughts are passed on is what we term as memes—a
meme being a unit of cultural information [53,54,61,64].
Thus, memes can be thought of as an extension of sche-
mata—schemata that are modified and passed on over a learn-
ing process. However, this distinction is a matter of scale.
In a learning method, the current content of the representa-
tion could be called a schema, but when that information is
passed between methods, it is more appropriately regarded
as a meme.

This is analogous to the sociological definition of a meme
[12]. In this form, a meme may contain certain food prepa-
ration practices, or how to build a home or which side of
the road to drive on. Within the individuals of a genera-
tion, they are relatively fixed, but they are the result of a
great deal of optimization, capturing the adaptations result-
ing from the history of a society. These cultural memes are
passed from generation to generation of the population, being
slightly refined at each step—new ingredients are added to
the cooking methods, new building materials influence con-
struction, traffic rules change, etc. The mechanism that allows
this transformation is that of generalization [51,52,58].

@ Springer

90

Memetic Comp. (2009) 1:85-100

To communicate an internal schema from one individual to
another, it must be generalized into a common representa-
tion—that of language in the case of human society. The
specifics of the schema are of no great importance, as they
would mean very little to an individual other than the origina-
tor due to the inherent differences between individuals. For
instance, a description of the precise movements necessary
to create a salad, such as the technique used to slice toma-
toes and wash lettuce, is less important than the ingredients
and general process of preparing the salad. Thus the salad
recipe is a meme, a generalized representation of the salad,
but the recipe alone is insufficient to produce the salad. The
salad recipe is expressed only when it is put through the pro-
cess of preparation, of acquiring and preparing the individ-
ual ingredients, and combining them according to the salad
meme.

A meme may be thought of as generalized schema. Sche-
mata are refined for an instance; memes are generalized to
the extent of being transmissible between problem instances.
To resolve the potential confusion that may arise, we put
forth aloose definition of the term ‘Memetic Computation’—
a paradigm of computational problem-solving that encom-
passes the construction of a comprehensive set of memes thus
extending the capability of an optimizer to quickly derive a
solution to a specific problem by refining existing general
solutions, rather than needing to rediscover solutions in every
situation.

4 A framework for higher order learning

A meta-learning system should be composed of four primary
components—an optimizer, a memory, a selection mecha-
nism, and a generalization mechanism, shown in Fig. 2. The
selection mechanism takes the features of a given problem
as input, and performs a mapping to solutions in the mem-
ory that have an expected high quality. The memory stores
previous or generalized solutions encountered by the sys-
tem, and passes selected solution(s) on to the optimizer. The
optimizer performs specialization and modification of solu-
tions to optimize a given specific problem instance, while
the generalization mechanism compares the resultant solu-
tion with existing solutions in memory, and either adds a new
solution or modifies an existing solution. In memetic compu-
tation terms, the optimizer generates or modifies memes into
schema, and then the generalization mechanism converts the
schema back into memes for storage in memory. The selec-
tion mechanism provides a mapping about memes, providing
recognition from a problem specification to a likely useful
general solution, effectively utilizing internally represented
meta-memes.

With these components, the architecture should be capa-
ble of exploiting information gained in previous problem

@ Springer

Input

Proc1

Selection / Proc 2

Proc 3

Procn

<
o
IOOOIII g
2

1 Optimi@—' Output

Generalize

Proc n+1

W

Fig. 2 Meta-learning architecture

sessions towards the solution of problems of increasing com-
plexity. Integrating a cross-instance memory and a selection
mechanism with an optimization method allows the recog-
nition of a situation and the selection of previously utilized
schema as likely high quality solution candidates. The opti-
mization process then combines and refines these solution
candidates to provide a good solution much faster than if the
method had only random initial solutions. Once the solution
is deployed, the selection method is trained to associate the
situation (stimulus) with the solution (behavior) utilizing the
fitness (reward) of the solution.

The process described above is itself a learning process,
and thus could be augmented with increasingly higher level
memory and selection methods, to allow complex, high-order
solutions to be found. A sort of fractal meta-learning archi-
tecture of this type may be capable of virtually unlimited
problem-solving capacity across a wide variety of problem
domains.

The sequence of learning sessions matters greatly to the
expression of complex behavior. By starting with simple
problem instances and presenting successively more complex
scenarios, the problem is decomposed, allowing solutions
from sub-problems to be exploited, increasing the likelihood
that higher level solutions will occur. Additionally, by train-
ing these simple solution components, a wider variety of
high-level solutions can be trained more rapidly. For exam-
ple, when training a dog, teaching him to ‘sit” decreases the
amount of training necessary for both ‘stay’ and ‘beg’ behav-
iors. This is analogous to the automatic construction of a
‘Society of Mind’ as described by [42].

When constructing optimization architectures, an issue of
particular relevance is that of representation—how the sche-
mata are stored. In population based algorithms schemata
are stored as parameter strings, in neural networks, sche-
mata are implicitly represented as interconnection weights,
clustering methods store templates for categories, etc. How
these schemata are expressed (and thereby their meaning) is
dependent on the expression structure. In genetic algorithms
a string is decoded into a trial problem solution, the weights

Memetic Comp. (2009) 1:85-100

Input

Memory

/

Sclection

D‘% 1 Optimi@—‘ Output

I Generalize

Fig. 3 Meta-meta learning

in neural networks are utilized through weighted summation
and passing through a transfer function. This division of rep-
resentation prevents the simple utilization of schema across
solution methods. To get disparate methods to work together,
great care must be taken to modify both methods to utilize
the same schema, which has been the subject of a great deal
of research [1,2,4,7,11,25,39,44,46,54].

First order learning methods consist of a single algorithm
that modifies schema to optimize a system. Individually, all
classical machine learning methods fall into this category.
Meta-learning or second-order methods learn about the pro-
cess of learning, and modify the learning method, which in
turn modifies schema. A simple illustration of a meta-learn-
ing architecture is presented in Fig. 2. In this figure, schemata
are represented as ‘procedures’, which are stored in memory.
A problem is presented to the architecture, and a selection
mechanism chooses likely valuable schema from memory,
which are then modified to the particular problem instance.
High-value schema are then generalized and saved back into
memory, and the selection mechanism then learns an asso-
ciation between characteristics of the problem instance and
schema that yielded positive results.

These second order methods should be able to be com-
bined with other methods or layers to produce third-order
methods and so on to order N, as illustrated in Figs. 3 and 4.
To produce higher order methods, information gained in one
problem instance should be utilized to provide a partial solu-
tion to another similar problem instance allowing the system
as a whole to take advantage of previous learning episodes.

5 Even-parity example

To demonstrate the principles and advantages of meta-learn-
ing, we examine its application to the even and odd parity

91
input
Memory
L
Selection /
Generalize I
Pl
1
1
1
1
| S

Fig. 4 Nth-order meta learning

problems, standard benchmarks for genetic programming
and automatic function definition methods [26,27]. We pro-
pose a hypothetical genetic programming system utilizing
a set of Boolean operators to construct individuals imple-
menting the even or odd parity functions (XOR and XNOR,
respectively). We analyze two cases of the evolution of the
three-input XOR function, both starting with populations
implementing the two-input XOR function, with and with-
out the abstraction that is inherent in a meta-learning system.
A third case is presented illustrating the functionality of a
simple selection mechanism on the odd-parity function.

5.1 Problem overview

Koza described the even parity problem below.

The Boolean even-parity function of £ Boolean argu-
ments returns 7 (True) if an odd number of its argu-
ments are 7', and otherwise returns NIL (False). The
concatenation of this returned bit to the original string
making the total string even, hence even-parity.

In applying genetic programming to the even-parity
function of k arguments, the terminal set 7' consists of
the k Boolean arguments DO, D1, D2, ... involved in
the problem, so that

T = {D0, D1, D2, ...}.

The function set F for all the examples herein consists
of the following computationally complete set of four
two-argument primitive Boolean functions:

F = {AND, OR, NAND, NOR, NOT}.

The Boolean even-parity functions appear to be the
most difficult Boolean functions to find via a blind ran-
dom generative search of expressions using the above
function set F and the terminal set 7. For example,

@ Springer

92

Memetic Comp. (2009) 1:85-100

(+)
(+)
5 R
OO0,

(2.2 -(%))+(7* cos(Y))

Fig. 5 TIllustration of function representation as tree structure

even though there are only 256 different Boolean func-
tions with three arguments and one output, the Boolean
even-3-parity function is so difficult to find via a blind
random generative search that we did not encounter it at
all after randomly generating 10,000,000 expressions
using this function set F' and terminal set 7. In addi-
tion, the even-parity function appears to be the most
difficult to learn using genetic programming using this
function set F and terminal set T [26,27].

The odd-parity function is similarly constructed, return-
ing true if an even number of its arguments are true, and
otherwise returning false.

In genetic programming (GP), the genome of an individ-
ual is represented as a tree structure, where operations are
applied at branches, and the leaves are constants and prob-
lem parameters. An illustration of a functional represented as
tree strurture is shown in Fig. 5 [24,26,27]. One advantage
of GP is that the results can be easily human interpretable
and formally verifiable, a quality that is not present in many
other computational intelligence methods [58].

The even-2-parity function is simply the XOR function,
which is itself a composition of the terminal set functions in
one simple possible configuration:

a XOR b = (a OR b) AND (a NAND b)

Using a tree representation, the XOR function is shown in
Fig. 6.

Constructing the even-3-parity function using only these
primitives is more difficult, but follows a similar pattern,
illustrated below and in Fig. 7:

XOR (a, b, ¢) = (((a OR b) AND (a NAND b)) OR c)
AND (((a OR b) AND (a NAND b)) NAND c)

@ Springer

Fig. 6 XOR tree representation

Note that the three-input XOR structure relies on the recur-
sive use of the two-input XOR function, replacing the ‘a’
nodes with XOR nodes, and re-assigning the top-level ‘b’
nodes to be the ‘c’ variable.

Note that if a 2-bit XOR function is defined explicitly as in
Fig. 8, the even-3-parity function becomes greatly simplified,
as written below and shown in Fig. 9.

XOR (a, b, ¢) = (a XOR b) XOR ¢

5.2 Case 1: Non-meta XOR3 evolution

Taking a genetic programming system as an example, in a
non-meta learning system, evolution of the XOR3 function
must proceed through at least two generations. To further
expand on our illustration, we consider the best case scenario
whereby all the individuals in the population incorporate the
simplified XOR function, as shown in Fig. 10.

As there are four leaf nodes out of seven total nodes, the
probability of selecting a leaf node for crossover (Pr 1) is 4/7.
Assuming a uniform population of individuals implementing
XOR?2 (translating to a 100% probability of choosing another
XOR2 individual for crossover) the probability of selecting
the root node of another individual to replace the selected
leaf node is (Pr1) 1/7.

Then, the evolutionary process must select one of the two
top-level ‘b’ nodes for mutation from the tree which has a
total of 13 nodes, thus the probability of selecting one correct
leaf for mutation (Ppy1) is 2/13. Choosing from the eight pos-
sible node types (the combination of terminal set and func-
tional set), the probability of selecting the correct ‘c’ variable
(Py1) is 1/8.

At this point the evolutionary reproduction steps are com-
pleted, and the individual shown in Fig. 11 is evaluated. This
partial XOR3 function is not yet complete, but it correctly
completes one test case more than the XOR2 function, which
may give it an evolutionary advantage. Assuming that the
individual survives to the next generation and is again
selected as a parent with 100% probability, an additional

Memetic Comp. (2009) 1:85-100

93

Fig. 7 Three-input XOR tree
representation

Fig. 8 Simplified two-input XOR

Fig. 9 Simplified three-input XOR

reproduction step must be completed to yield an XOR3
function.

Now the correct leaf node must be selected for crossover,
but this time there is only one node, the ‘a’ node at a depth
of three, from the 13 possible nodes, so the probability of
selecting the correct leaf node for crossover (Pr») is 1/13.
Once again, assuming all other individuals in the population
still implement the XOR?2 function in Fig. 8, the probability
of selecting the root of another XOR2 individual to replace
the leaf (Pr2) is 1/7. At the completion of crossover, the total
number of nodes in the tree becomes 18. At the mutation step,
the remaining ‘b’ node at depth three must be selected, and
the probability of selecting correct leaf for mutation (Py2)
is 1/18. Completing the XOR3, the probability of selecting

Fig. 10 Initial non-meta learning XOR2 individual

the correct variable from the total set of node types (Py>) is
1/8. The completed three-input XOR function is illustrated
earlier in Fig. 9.

Ignoring changes in the population and evolutionary sur-
vivability, the probability of transitioning from XOR2 to
XOR3 in two generations without meta-learning is calcu-
lated below.

Pxor37nor1meta=PLl * Ppy o Py % Pyp x P Ppp
*Pyro * Py
=1.19x 107’

where,

P11 the probability of a leaf node selection for crossover
during the first generation,

Pr1 the probability of functional root selection for cross-
over during the first generation,

Pyy1 the probability of proper leaf selection for mutation
during the first generation,

Py the probability of proper variable selection for muta-
tion during the first generation,

P1> the probability of a leaf node selection for crossover
during the second generation,

@ Springer

94

Memetic Comp. (2009) 1:85-100

Fig. 11 Intermediate step in
development of 3-bit XOR
function after a single
generation

Pr> the probability of functional root selection for cross-
over during the second generation,

Pyr> the probability of proper leaf selection for mutation
during the second generation,

Py the probability of proper variable selection for muta-
tion during the second generation.

Note that this ignores the significant influence of relative fit-
ness, generational selection, parent selection, probability of
application of crossover/mutation operators and population
influence and may be interpreted as a kind of upper-bound on
the probability that a two-input XOR individual will develop
into a three-input XOR without the abstraction capability of
meta-learning.

5.3 Case 2: Meta-learning XOR3 evolution

In this case we assume a meta-learning system that has
already learned a two-input XOR function, performed gener-
alization and added this to the function set (F = AND, OR,
NAND, NOR, NOT, XOR2). The probability that the sys-
tem will transition from XOR2 to XOR3 is calculated using
only the mutation step.

With a population uniformly initialized with the two-input
XOR and an individual selected from this population, illus-
trated in Fig. 8, the probability of selecting a leaf node for
mutation (Pr,) is 2/3 as the simplified XOR tree has only three
nodes, and two of them are terminals. Having selected a ter-
minal, the probability of selecting the XOR2 function from
the node set of six functions and three terminals to replace the
leafnode (Pr)is 1/9. Assuming arecursive mutation process,
two new leaf nodes must be selected, and they must contain
variables not yet used by the tree to produce a three-input
XOR. The probability of selecting the correct terminal node
is 1/9, and this process must be repeated twice, so the proba-
bility of selecting two correct terminal nodes (Py) is (1/9)?
or 1/81. Using only one generation the three-input XOR can

@ Springer

be developed in a meta-learning system.

Probability of XOR3 from XOR2 : Pxo13 meta
= Pp % Pr x Py = 0.000914

where,

Py, the probability of a leaf node selection for mutation,
Pr the probability of XOR2 function selection for muta-
tion,

Py the probability of proper leaf selection for mutation.

Note that using meta-learning, the three-input XOR can
also occur with a crossover and a mutation, where the non-
meta learning system must utilize two full generations. Also
note that though the size of the functional set has increased,
the number of changes necessary to place an upper-bound
on the probability of a three-input XOR occurring has been
substantially decreased, allowing the evolutionary process to
focus on high-level changes.

Thus in a large population, the XOR3 function may occur
in a single generation with a meta-learning system, where a
non-meta learning system must take at least two generation
and probably many thousands of evaluations to evolve an
XOR3.

5.4 Case 3: Selection and odd-parity evolution

To demonstrate the advantages of the complete meta-learning
procedure, we first present the 2-bit even-parity problem to
a theoretical meta-learning system, then the 2-bit odd-parity
problem, and finally the 3-bit even-parity problem. The selec-
tion mechanism shall have 2 inputs—the first is activated only
when the system is operating on the even-parity problem, the
second is activated only when operating on the odd-parity
problem. Initially, the memory is empty, so the optimizer is
initialized with random solutions.

Memetic Comp. (2009) 1:85-100

95

Presented with the even-2-parity problem, the optimizer
outputs a resulting solution that performs the XOR func-
tion—°‘D0 XOR D1’, where DO and D1 are the Boolean
arguments of the input. This function is passed to the gener-
alization mechanism, which removes the absolute references
to the Boolean arguments, replacing them with dummy vari-
ables ‘A’ and ‘B’, resulting in the function ‘A XOR B’. This
generalized XOR function is then added to the memory, mak-
ing the function available as a primitive. The functional set
becomes:

F = {AND, OR, NAND, NOR, NOT, XOR}.

The selection mechanism is updated to learn an associa-
tion between the active ‘even-parity’ input and the new mem-
ory element. At this point the procedure and difference in
optimization would be no different than if the optimizer were
operating without the rest of the meta-learning architecture.

Next, the odd-2-parity problem is presented, the ‘odd-par-
ity’ input is activated on the selector mechanism, and having
no other elements to select, the sole item in memory (the gen-
eralized ‘A XOR B’ function) is selected to initialize the state
of the optimizer. The optimizer replaces the dummy variables
with references to the Boolean arguments and begins optimi-
zation. As only a small modification is necessary, the addi-
tion of the NOT primitive function at a high-level to create
an XNOR function, the optimizer has a high probability of
quickly finding a perfect solution to the odd-2-parity prob-
lem. This differs from a randomly initialized optimizer as
there would be a lower probability of finding a good solu-
tion due to the need to explore more modifications. Once the
meta-learning optimizer finds the solution, the generaliza-
tion, memory insert, and selection training steps are repeated
for the XNOR function:

F = {AND, OR, NAND, NOR, NOT, XOR, XNOR}.

Finally, the even-3-parity problem is presented to the meta-
learning architecture. The selection ‘even-parity’ input is
activated, and the associated XOR memory element is used
to initialize the optimizer state. The optimizer replaces the
XOR dummy variables with argument references, and begins
the optimization process. The optimizer need only make the
relatively small change of cascading the XOR function to
produce a 3-input XOR function, where a raw optimization
function without a memory or selection method would need
to evaluate and modify many combinations of the original five
functional primitives to arrive at a good solution. Thus the
meta-learning architecture should be able to arrive at high-
value solutions rapidly by exploiting previously generated
solution to construct high-level solutions.

In this example the memory component stores general-
ized solutions to previously encountered problems—these
elements could be thought of as memes, as they are solutions
that are passed between problem instances. The selection

mechanism performs association between problem features
and solutions that are likely to yield high-value results. By
not only providing the input data to the problem, but addi-
tional meta-data about the characteristics of the problem, the
meta-learning architecture can construct meta-memes which
are stored in the selection mechanism, allowing higher-order
learning to occur automatically.

6 Traveling salesman problem

The Traveling Salesman Problem (TSP) is a standard combi-
natorial optimization problem used for the design and evalua-
tion of optimization methods [3,5,7,11,37,44,46,47,65,66,
69,72,74]. TSP optimization algorithms have a wide range
of applications including job scheduling, DNA sequencing,
traffic management, and robotic path planning. To further
illustrate the capabilities of the meta-learning design para-
digm, an example is presented using instances of the TSP.

To apply meta-learning to the TSP problem, the schema
of the problem must be identified. Here the schema takes the
form of the ordering of points in a tour. The addition of a
clustering method to divide and conquer the TSP has been
shown to greatly accelerate the solution of the TSP [40]. With
this addition, the overall schema for the optimizer consists
of the combination of cluster templates, tour point ordering,
and the locations of points. This schema must be generalized
to create a meme, which is trivial for the cluster templates,
but more challenging for the tour ordering and points’ loca-
tions. The problem is further complicated by the necessity to
generalize tours to be applicable over multiple scales.

For this application, a meme consists of a small ordered
tour, containing small, limited number of points. To gener-
alize the meme, the centroid of the group is calculated and
subtracted from each point, making the centroid the origin
of the group. The coordinates of each point are then normal-
ized by distance from the origin. This projects the points into
unit-space, and allows comparisons across multiple scales.
Each TSP-meme serves as a pre-optimized tour template.
Each point in the TSP-meme can represent a real point in the
problem instance, or the centroid of a group of points, itself
represented by a meme.

Given an instance of the TSP, the meta-TSP algorithm uti-
lizes a clustering method to divide the problem into sub-prob-
lems, and divides those sub-problems into sub-sub problems
and so on, until a threshold for sub-problem size is reached.
The relationships between sub-problems are recorded in a
tree-representation. Each of these sub-problems is general-
ized, and compared against the recorded memes for existing
solutions.

The recognition mechanism must be able to detect struc-
turally similar sub-problems. For this experiment the match-
ing mechanism compares two normalized sub-problems by

@ Springer

96

Memetic Comp. (2009) 1:85-100

Fig. 12 Small TSP instance of approximately 30 points

finding the nearest corresponding points between the memes,
and calculating the mean squared error between these points.

If a match is found in memory, the existing meme-solution
(a point ordering) is copied to the current sub-problem, and
the sub-problem updates the meme by refining template point
positions. If no match exists in memory, the sub-problem is
solved as accurately as possible. With a small enough prob-
lem threshold, exact solutions to sub-problems can be found,
depending on computational resources available. The sub-
problem is then stored in memory as a new meme. After all
the sub-problems are solved, they are combined into a global
tour by collapsing the problem-tree, and utilizing a simple
O (n) merge algorithm as detailed in Mulder and Wunsch
[44].

To illustrate this process, an example is given utilizing a
simple instance of the TSP, shown in Fig. 12. A first pass
of clustering is shown in Fig. 13. Note that cluster M3 con-
tains many points, and that a single point has been left out of
the clusters for illustrative purposes. A second pass further
divides cluster M3 into clusters M5, M6, and M7, as shown
in Fig. 14. The final clustering pass assigns all clusters to
a global cluster, M8, in Fig. 15. The hierarchy of clusters,
and thereby sub-problems, is denoted by the cluster tree in
Fig. 16.

At this stage, each sub-problem is optimized indepen-
dently, as shown in Fig. 17. Note that some of the sub-prob-
lems contain references to other sub-problems, particularly
M3 and MS. The centroids of sub-problems are utilized for
optimization and solution, representing sub-problems as a
whole. During the course of optimization, each sub-prob-
lem is normalized, and compared with previously computed,
normalized solutions in the memory. These memes can be
stored across instances, building a large library of pre-com-
puted solutions that can be deployed to yield high quality
solutions rapidly. Sub-problems of a global problem instance

@ Springer

Fig. 13 TSP Instance after first clustering pass. Each cluster initializes
a meme, labeled with ‘M#’ and a ‘+’ denoting the centroid

Fig. 14 Second clustering pass. Note the new clusters, M5, M6, and
M7

Fig. 15 Final clustering pass, with global cluster M8

Memetic Comp. (2009) 1:85-100

97

Fig. 16 Tree of sub-problems (clusters)

can be thought of as new problem instances, and pre-com-
puted solutions that are generated during the calculation of a
global instance can be applied across sub-problems.

For example, the normalized versions of M2 and M4 would
be very similar in structure, and once M2 is computed, the
structural similarity of the sub-problems would be recog-
nized, and the ordering of points for M4 need not to be com-
puted, only copied from M2 to M4. The same process applies
across scales and global problem instances.

When all sub-problems are completed, the problem
hierarchy is collapsed by de-referencing sub-problems and
incrementally merging them with higher level tours. This is
accomplished by choosing the closest set of two vertices in
the sub-problem to any two vertices in the higher level tour.

Fig. 17 Completed memes,
M1 through MS8. Super-clusters
reference the centroids of
sub-clusters. Note that memes
M2 and M4 are similar in
structure, but not scale

To avoid an O (n?) operation, a small neighborhood of ver-
tices from the super-tour is chosen based on proximity to
the centroid of the sub-tour. This neighborhood of super-tour
vertices is compared to each vertex in the sub-tour to find
the best match. A result of this merge operation is illustrated
in Figs. 18 and 19. Figure 19 shows the final merge of all
complete sub-tours into a final tour. The completed tour is
shown in Fig. 20.

The computational complexity of the proposed method
is expected to be very efficient at O(nlog(n)) improving
with linearly decreasing complexity as the library of pre-
optimized solutions grows, decreasing the amount of opti-
mization to be performed on a given TSP instance.

The qualitative performance of this method is the subject
of future development. The algorithm presented here serves
as an example of meta-learning driven design, incorporating
mechanisms of memory, selection, optimization, and gener-
alization.

7 Conclusion

The desire for a new and robust computational intelligence
paradigm spans many problem domains, including real time
robotic systems which must deal with increasing complex-
ity on a daily basis, deep data mining such as natural lan-
guage processing with applications in information retrieval
and machine understanding, human—computer interaction,

@ Springer

98

Memetic Comp. (2009) 1:85-100

o — °
l ° 2
° oo
° 2 °
oo |
°
° L] °
\ » S]
* °
o °
°
o °
° °

Fig. 20 Completed tour

and long-term optimization. These new, complex frontiers
of machine learning and optimization could all benefit from
the higher order memetic computing methods described here.

We have presented an overview of important definitions
and architectures in memetic computing and have attempted
toillustrate the power of next-generation memetic algorithms.

@ Springer

The primary difficulty of designing meta-learning systems
lies in the construction of valid scale-invariant representa-
tions which enable the simple construction of selection,
generalization, and memory mechanisms. By providing
generalization, memory, optimization, and selection mech-
anisms, a meta-learning architecture can operate on high-
level features of a problem instance, selecting generalized
solutions that have been used previously with high utility
in the problem context. Utilizing these features, a system
should be able to learn not only the solution to a problem,
butlearn about solving problems. Such a system may enable a
quantum leap in the performance of real-world adaptive sys-
tems as they provide the central components of meta-adaptive
systems to be constructed.

References

1. Abramson M, Wechsler H (2001) Competitive reinforcement learn-
ing for combinatorial problems. In: International joint conference
on neural networks proceedings. IJJCNN ’01

2. Agarwal A, Lim M-H, Er M-J, Chew C-Y (2005) ACO for a new
TSP in region coverage. IEEE/RSJ Int Conf Intel Robot Syst

3. Agarwal A, Lim M-H, Er MJ, Nguyen TN (2007) Rectilinear work-
space partitioning for parallel coverage using multiple UAVs. Adv
Robot 21(1)

4. Angeline PJ (1993) Evolutionary algorithms and emergent intelli-
gence. Doctoral thesis, Ohio State University, Columbus

5. Applegate D, Cook W, Rohe A (2003) Chained Lin-Kernighan for
large traveling salesman problems. INFORMS J Comput 15(1):82—
92

6. Arnold DV, Salomon R (2007) Evolutionary gradient search revis-
ited. IEEE Trans Evol Comput 11(4):480-495

7. Baraglia R, Hidalgo JI, Perego R (2001) A hybrid heuristic for the
traveling salesman problem. IEEE Trans Evol Comput 5(6):613—
622

8. Beinenstock EL, Cooper L, Munro P (1982) Theory for the devel-
opment of neuron selectivity: orientation specifity and binocular
interaction in the visual cortex. J Neurosci 2(1):32-48

9. Burke E, Cowling P, Causmaecker PD, Berghe G (2001) A
memetic approach to the nurse rostering problem. Appl Int
15(3):199-214

10. Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A
fast memetic algorithm for off-line and on-line control design of
PMSM drives. IEEE Trans Syst Man Cybern Part B Spec Issue
Memetic Algorithms 37(1):28—41

11. DangJ, Zhang Z (2005) A polynomial time evolutionary algorithm
for the traveling salesman problem. Int Conf Neural Netw Brain

12. Dawkins R (1989) The selfish gene. Oxford University Press, USA

13. Francois O, Lavergne C (2001) Design of evolutionary algorithms-
A statistical perspective. Evol Comput IEEE Trans on 5(2):129-
148

14. Gaudiot J-L, Kang J-Y, Ro WW (2005) Techniques to improve
performance beyond pipelining: superpipelining, superscalar, and
VLIW. Adv Comput (63)

15. Gutin G, Karapetyan D (2009) A selection of useful theoreti-
cal tools for the design and analysis of optimization heuristics.
Memetic Comput 1(1)

16. Hart WE (1994) Adaptive global optimization with local search.
University of California, California

Memetic Comp. (2009) 1:85-100

99

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Hasan SMK, Sarker R, Essam D, Cornforth D (2008) Memetic
algorithms for solving job-shop scheduling problems. Memetic
Comput J

Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor

Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic
search and local search in memetic algorithms for multiobjec-
tive permutation flowshop scheduling. IEEE Trans Evol Comput
7(2):204-223

Johansson C, Lansner A (2007) Towards cortex sized artificial
neural systems. Neural Netw 20(1):48-61

Kazarlis SA, Papadakis SE, Theocharis JB, Petridis V (2001)
Microgenetic algorithms as generalized hill-climbing operators
for GA optimization. Evol Comput IEEE Trans on 5(3):204—
217

Kendall G, Soubeiga E, Cowling P (2002) Choice function and
random hyperheuristics. In: 4th Asia Pac Conf Simul Evol Learn,
pp 667-671

Kolodner J (1993) Case-based reasoning. Morgan Kaufmann
Publishers Inc., San Francisco

Koza JR (1989) Hierarchical genetic algorithms operating on pop-
ulations of computer programs. In: International joint conference
on artificial intelligence. Morgan Kaufman Publishers

Koza JR (1991) Evolution and co-evolution of computer programs
to control independent-acting agents. In: From animals to animats:
proceedings of the first international conference on simulation of
adaptive behavior

Koza JR (1992) The genetic programming paradigm: geneti-
cally breeding populations of computer programs to solve prob-
lems. Dynamic, genetic and chaotic programming. Wiley, London,
pp 201-321

Koza JR (1992) Hierarchical automatic function definition in
genetic programming. Foundations of genetic algorithms, vol 2.
Morgan Kaufmann, San Francisco, pp 297-318

Krasnogor N (2002) Studies on the theory and design space of me-
metic algorithms. PhD, Faculty Comput Math Eng Bristol, UK,
University West of England

Krasnogor N, Blackburne B, Hirst JD, Burke EK (2002) Multi-
meme algorithms for the structure prediction and structure com-
parison of proteins. In: Proc. parallel problem solving from nature.
Lecture notes in computer science. Springer, Heidelberg
Krasnogor N, Gustafson S (2004) A study on the use of self-gen-
eration in memetic algorithms. Nat Comput 3(1):53-76
Krasnogor N, Smith J (2005) A tutorial for competent memetic
algorithms: model, taxonomy, and design issues. Evol Comput
IEEE Trans 9(5):474-488

Kuncheva LI, Jain LC (2000) Designing classifier fusion systems
by genetic algorithms. Evol Comput IEEE Trans 4(4):327-336
Land MWS (1998) Evolutionary algorithms with local search for
combinatorial optimization. University of California, California
Lee JT, Lau E, Yu-Chi H (2001) The Witsenhausen counterexam-
ple: a hierarchical search approach for nonconvex optimization
problems. Automat Control IEEE Trans 46(3):382-397

Lenat D, Guha RV (1989) Building large knowledge-based sys-
tems. Addison-Wesley, Reading

Lim M-H, Gustafson S, Krasnogor N, Ong Y-S (2009) Editorial to
the first issue. Memetic Comput 1(1)

Lin S, Kernighan BW (1973) An effective heuristic algorithm for
the traveling salesman problem. Oper Res 21(2):498-516

Merz P (2004) Advanced fitness landscape analysis and the
performance of memetic algorithms. Evol Comput 12(3):303-325
Merz P, Freisleben B (1997) Genetic local search for the TSP: new
results. IEEE Conf Evol Comput

Meuth RJ, Wunsch DC II (2008) Divide and conquer evolutionary
Tsp solution for vehicle path planning. In: Congress on evolution-
ary computation (WCCI’08)

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Milano M, Roli A (2004) MAGMA: a multiagent architecture for
metaheuristics. Syst Man Cybern Part B IEEE Trans 34(2):925-
941

Minsky M (1986) The society of mind. Simon & Schuster Inc,
New York

Moscato P (1989) On evolution, search, optimization, genetic algo-
rithms and martial arts: towards memetic algorithms, caltech con-
current computation program, C3P Report, 826

Mulder S, Wunsch DC (2003) Million city traveling salesman prob-
lem solution by divide and conquer clustering with adaptive reso-
nance neural networks. Neural Netw

Neri F, Toivanen J, Cascella GL, Ong Y (2007) An adaptive mul-
timeme algorithm for designing HIV multidrug therapies. IEEE
ACM Trans Comput Biol Bioinform 4(2):264

Nguyen HD, Yoshihara I, Yamamori K, Yasunaga M (2000) Mod-
ified edge recombination operators of genetic algorithms for the
traveling salesman problem. In: 26th Annual conference of the
IEEE industrial electronics society

Nguyen HD, Yoshihara I, Yamamori K, Yasunaga M (2007) Imple-
mentation of an effective hybrid GA for large scale traveling sales-
man problems. IEEE Trans Syst Man Cybern Part B 37(1):92-99
Nguyen Q-H, Ong Y-S, Lim M-H (2008) Non-genetic transmission
of memes by diffusion. In: 10th Annual conference on genetic and
evolutionary computation (GECCO’08), Atlanta, GA

Nguyen QH, Ong YS, Krasnogor N (2007) A study on the design
issues of memetic algorithm IEEE congress on evolutionary com-
putation singapore. IEEE 2390-2397

Norman MG, Moscato P (1989) A competitive and cooperative
approach to comple combinatorial search, caltech concurrent com-
putation program, C3P Report 790

O’Neill M, Ryan C (1999) Automatic generation of high level func-
tions using evolutionary algorithms. In: 1st International workshop
on soft computing applied to software engineering. Limerick Uni-
versity Press, Limerick

O’Neill M, Ryan C (2001) Grammatical evolution. IEEE Trans
Evol Comput 5(4):349-358

Ong Y-S, Lim M-H, Zhu N, Wong K-W (2006) Classification of
adaptive memetic algorithms: a comparative study. IEEE Trans
Syst Man Cybern Part B 36(1)

Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic
algorithms. IEEE Trans Evol Comput 8(2):99-110

Ong YS, Nair PB, Keane AJ (2003) Evolutionary optimization
of computationally expensive problems via surrogate modeling.
AIAA J 41(4):687-696

Ong YS, Nair PB, Lum KY (2006) Max-Min surrogate-assisted
evolutionary algorithm for robust aerodynamic design. IEEE Trans
Evol Comput 10(4):392-404

Poli R (2001) Exact schema theory for genetic programming and
variable-length genetic algorithms with one-point crossover. Genet
Program Evolvable Mach 2(2):123-163

Rosca JP (1995) Genetic programming exploratory power and the
discovery of functions. Conference on Evolutionary Programming.
MIT Press, Cambridge

Rumelhart DE (1980) Schemata: the building blocks of cognition.
Theoretical issues in reading and comprehension. B. B. R.J. Sprio,
& W.F. Brewer, Erlbaum

Shahaf D, Amir E (2007) Towards a theory of Al completeness.
In: 8th Interational symposium on logic formalizations of com-
monsense reasoning

Smart W, Zhang M (2004) Applying online gradient descent
search to genetic programming for object recognition. In: Second
workshop on Australasian information security, data mining
and web intelligence, and software internationalisation, Dunedin,
New Zealand

Smith JE (2007) Coevolving memetic algorithms: a review and
progress report. IEEE Trans Syst Man Cybern Part B 37(1):6-17

@ Springer

100

Memetic Comp. (2009) 1:85-100

63.

64.

65.

66.

67.

68.

Tang J, Lim MH, Ong YS (2007) Diversity-adaptive parallel me-
metic algorithm for solving large scale combinatorial optimization
problems. Soft Comput 11(9):873-888

Topchy A, Punsch WF (2001) Faster genetic programming based
on local gradient search of numeric leaf values. Genet Evol Comput
Conf

Tsai H-K, Yang J-M, Kao C-Y (2002) Solving traveling salesman
problems by combining global and local search mechanisms. Conf
Evol Comput

Tsai H-K, Yang J-M, Kao C-Y (2004) An evolutionary algorithm
for large traveling salesman problems. IEEE Trans Syst Man
Cybern Part B 34(4):1718-1729

Ullah ASSMB, Sarker RA, Cornforth D, Lokan C (2007) An agent-
based memetic algorithm (AMA) for solving constrained optima-
zation problems. In: IEEE congress on evolutionary computation,
Singapore

Wang H, Wang D, Yang S (2009) A memetic algorithm with adap-
tive hill climbing strategy for dynamic optimization problems. Soft
Comput

@ Springer

69.

70.

71.

72.

73.

74.

Wang L, Maciejewski AA, Seigel HJ, Roychowdhury VP (1998) A
comparitive study of five parallel genetic algorithms using the trav-
eling salesman problem. In: First merged international conference
and symposium on parallel and distributed processing

Wills LM, Kolodner J (1994) Towards more creative case-based
design systems. In: Proceedings of the twelfth annual national con-
ference on artificial intelligence (AAAI-94):50-55

Woldpert DH, Macready WG (1997) No free lunch theorms for
optimization. IEEE Trans Evol Comput 1(1):67-82

Wunsch DC, Mulder S (2003) Using adaptive resonance theory
and local optimization to divide and conquer large scale traveling
salesman problems. Int Joint Conf Neural Netw

Xin Y (1999) Evolving artificial neural networks. Proc IEEE
87(9):1423-1447

Xu R, Wunsch DII (2005) Survey of clustering algorithms. Neural
Netw IEEE Trans 16(3):645-678

	A proposition on memes and meta-memes in computingfor higher-order learning
	Abstract
	1 Introduction
	2 Brain inspired memetic computing
	3 Schema--meme relationship
	4 A framework for higher order learning
	5 Even-parity example
	5.1 Problem overview
	5.2 Case 1: Non-meta XOR3 evolution
	5.3 Case 2: Meta-learning XOR3 evolution
	5.4 Case 3: Selection and odd-parity evolution

	6 Traveling salesman problem
	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

