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found that process monitoring via DTs helps manage con-
struction waste and supports sustainability by enabling effi-
cient circular economy practices. Additionally, Mostafa et 
al. [6] presented a novel architecture for DT systems based 
on a structured multi-layer model, incorporating critical 
components for process monitoring. This practical model 
was implemented in production and mining environments, 
demonstrating the feasibility and applicability of DTs in 
real-world settings.

Given the widespread digitization in industrial sectors, 
the development of DTs is promising for various manufac-
turing categories [7]. For example, Castelló-Pedrero et al. 
[8] suggested integrating DTs with additive manufacturing 
technologies using an innovative multi-scale approach. Ren 
et al. [9] proposed a DT model for the roll forming field to 
control forming quality and enable advanced data analysis 
in the forming process. Uribe et al. [10] developed a sur-
rogate model for predictive control in single-blow upsetting 
using Proper Orthogonal Decomposition to facilitate model 
construction and reduce dimensionality. Zi et al. [11] intro-
duced a DT-driven ensemble learning milling tool for online 
wear monitoring. Furthermore, DTs have been proposed 
to investigate the properties of specific materials, such as 

Introduction

The increased focus on data and the opportunities created by 
digitization have highlighted the potential of digital twins 
(DTs) in the manufacturing industry [1]. DTs simulate real-
time working conditions, facilitating intelligent decision-
making [2]. This approach is particularly relevant in process 
monitoring within smart factories, where dynamic and 
responsive production environments are critical [3]. This 
concept aligns with Industry 4.0’s aim to meet the require-
ments of a Smart Factory [4].

Recently, Chen and Huang [5] examined the use of DT 
technologies across different sectors, focusing on remanu-
facturing processes within the construction industry. They 
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Abstract
Intelligent monitoring and maintenance protocols are undoubtedly crucial for improving manufacturing processes. Accord-
ingly, machine learning techniques and predictive control models have been customized and optimized to account for the 
specific characteristics of the processes under investigation. In this context, the management of manufacturing processes in 
a “smart way” requires the development of specific models based on input-output empirical data. The aim of the proposed 
research was to develop an easily customizable application integrated into a milling process executed at the laboratory 
level. The application was designed to identify and record the operator, the order and the specific work sequences. It 
also supports the operator in setting processing parameters according to the type of work sequence to be performed. The 
application analyses specific process outputs, such as the wear growth on the inserts of the cutter in relation to the main 
input process parameters: depth of cut, feed rate, and spindle speed. This analysis is implemented by leveraging empiri-
cal evidence.
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composite materials, relating these properties to the produc-
tion parameters [12].

Collectively, these studies illustrate the diverse applica-
tions of DT technology in process monitoring, from smart 
manufacturing to construction and material characteriza-
tion. DTs can also be integrated into process optimization 
strategies, ensuring enhanced sustainability and efficient 
resource management [13].

In the proposed research, a customized platform was 
developed to oversee a milling process within a smart man-
ufacturing framework. This platform incorporates input-
output empirical relationships and communicates with the 
employed machine to improve maintenance, product qual-
ity, and machining efficiency through preventive analyses. 
The goal is to provide a tool that supports the operator dur-
ing the manufacturing process, including the selection of 
operating sequences and optimal working ranges for each 
process variable. The platform records production steps 
and anomalies, and monitors inserts’ wear to predict severe 
conditions.

The experimental campaign for the 
construction of the input-output process 
relationship

A milling sequence was planned to study the process under 
specific working conditions by monitoring the growth of 
inserts’ wear over time. The experimental tests were con-
ducted in a laboratory setting using a Mazak Nexus Model 
410 A CNC Vertical Machining Center and a CoroMill 245 
face milling cutter. Different experimental campaigns were 
performed, with the main process variables fixed for each 

campaign and new cutters used at the start of each configu-
ration. The depth of cut (DoC), feed rate (FR), and spindle 
speed (SS) were the input parameters set up. Given the cut-
ter diameter (CD), it is also straightforward to calculate 
the cutting velocity (CV), a parameter commonly used by 
technicians:

CV =
πSSCD
1000

[ m
min

]
� (1)

A single full immersion movement of the milling cutter 
was tested. Specifically, at predefined process intervals, the 
milling was stopped and the cutter was removed from the 
spindle of the machining center. Micrographs of the insert 
shapes were then captured using a Leica DM400M metal-
lographic optical microscope. This allowed for the detection 
of inserts’ wear (Fig. 1).

Each experiment concluded when clear catastrophic 
wear was observed. This was the monitored criterion, used 
as an indicator for determining when to replace the inserts. 
Four different process configurations were tested to analyse 
the influence of the investigated process variables. The tests, 
conducted within the range of the manufacturer’s recom-
mendations, are summarized in Table 1.

By doing so, a preliminary input-output relationship was 
obtained for implementation in the proposed platform to 

Table 1  The investigated ranges of the investigated milling variables
Campaign number DoC (mm) FR (mm/min) SS (rev/min)
1 3 1600 1400
2 3 800 1400
3 3 800 700
4 4.5 800 1400

Fig. 1  The wear evolution at passing of the process time
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construct a smart manufacturing approach, reaching a TRL 
of 6 according to the EU definition [14]. To enhance the 
platform’s performance at an industrial level, these variable 
relationships must be strengthened using data derived from 
real production, thereby improving the consistency of the 
empirical model for predicting inserts’ wear under varying 
process conditions.

The proposed methodology

In the proposed research, a customized application was 
developed to achieve an integrated smart manufacturing 
solution, incorporating the previously discussed input-
output relationship. This application can be considered as 
one of the tools within a comprehensive smart manufactur-
ing software suite, usable in a multi-process manufacturing 
plant. The prototype was designed as an integrated solution 
that can be easily customized to account for a company’s 
specific needs. The access point to the user interface is 
shown in Fig. 2.

The application begins with a landing page that out-
lines all the processes executed in a typical manufacturing 
company. This page serves as the “level 0” of the proposed 
architecture. In Fig.  2, the displayed screen illustrates, as 
an example, two manufacturing routes. Upon selecting the 
milling process, the subsequent “Level 1” interface appears, 
presenting details specific to the milling process (Fig.  3). 

Here, the first required information identifies the operator 
performing the test, the order, and the specific work-in-pro-
cess (WIP) sequence. This structure is designed to enable 
centralized supervision within the company, allowing the 
operator to identify the order by accessing information from 
the engineering sector.

By doing so, the order to be processed is registered, and 
the application’s “Level 2” interface appears, as shown in 
Fig. 4. At this level, all processing variables to be set are dis-
played, with recommended ranges for each variable based 
on the cutter manufacturer’s specifications. For the milling 
process under analysis, information on the type and size of 
the cutter for the specific operation is provided, along with 
the recommended ranges for DoC, FR and SS, considering 
the loaded part program. Additionally, there is a column 
where the operator can input the desired values. Finally, the 
application is connected via intranet to the milling machine, 
reporting the actual values of the monitored variables.

Filling-in the Cutter Diameter, the Cutting Velocity in m/
min is automatically calculated according to Eq. (1).

Based on the recorded data, the wear growth forecast is 
represented in real-time by a graph. This wear prediction 
is derived from the empirical law established through the 
experimental tests described in Sect.  2. Wear growth is 
evaluated only when the input values of the monitored pro-
cess variables match those specified in the part program for 
material removal. The prediction model can be customized 
for each cutter-material pair, updated and enriched with data 

Fig. 2  The access window of the 
integrated smart manufacturing 
solution (Level 0)
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Fig. 4  Digital twin interface for mill-
ing process (Level 2)
 

Fig. 3  System identification on the 
integrated smart manufacturing solu-
tion (Level 1)
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Summarising, the above advantages highlight the multi-
faceted benefits of leveraging DT technology for a typical 
milling process, resulting in improved collaboration and 
decision-making among workers, as well as enhanced pro-
cess efficiencies and cost savings.

Conclusion

Amidst the complexities of Industry 4.0 and the advent of 
smart manufacturing, digital twins emerge as a disruptive 
technology, empowering organizations to adapt, innovate 
and excel in an increasingly competitive landscape. From 
expediting time-to-market for new products to fostering 
sustainable practices and facilitating agile decision-making, 
the transformative power of digital twins in manufacturing 
is boundless. As we venture further into this technological 
frontier, the path toward digital transformation promises to 
reshape the essence of modern industry, ushering in a new 
era characterized by efficiency, resilience and value creation.

The platform proposed in this work exemplifies how 
smart manufacturing strategies can enhance industrial effi-
ciency by streamlining information flow for data manage-
ment and boosting product competitiveness in production, 
without increasing costs.
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collected during industrial production. This helps prevent 
unexpected machine downtime.

At the same level, general working information is dis-
played in a text log window, which automatically compiles 
a report. This report can be manually enhanced by the opera-
tor, who, using their expertise, can detect “chatter” phenom-
ena or other process anomalies through sound or vibration 
variations. This procedure can be further improved by inte-
grating a “chatter” detection system to identify irregular 
process conditions. Once the manufacturing phase is com-
plete, the operator finalizes the information and exports the 
file, which can then be saved in the company database.

Discussions on the platform strengths

The advantages of implementing the proposed Digital Twin 
(DT) platform in an industrial setting, specifically in a 
generic manufacturing factory focused on machining pro-
cesses, can be summarized as follows:

1.	 Enhanced Collaboration: the DT facilitates seamless 
communication and collaboration among design engi-
neers, manufacturing engineers and machine operators 
by providing a direct interface and integration platform.

2.	 Process Optimization: the digital manufacturing envi-
ronment, as a “virtual replication” of real-world pro-
cesses, offers insights into optimal process parameters, 
thereby improving efficiency and production quality.

3.	 Improved Process Control: enhanced control over 
the machining process and workforce activities ensures 
better traceability of operator actions and adherence to 
company protocols.

4.	 Validation of Decisions: real-time data monitoring 
allows operators to validate their decisions against opti-
mal process values, ensuring consistent and reliable 
outcomes.

5.	 Streamlined Data Management: simplified data flow 
and integrated knowledge management facilitate effi-
cient decision-making and resource allocation.

6.	 Enhanced Production Efficiency: comprehensive 
monitoring of process parameters and defect tracing 
minimizes waste and optimizes resource utilization, 
thereby increasing production effectiveness.

7.	 Cost Reduction and Maximization of Production: 
the platform enables more effective cutter changes and 
optimal resource use, leading to reduced costs and max-
imized production.

8.	 Performance Analysis: detailed log files enable in-
depth analysis of both personnel performance and prod-
uct quality, supporting continuous efforts to improve 
products and processes.
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